
City University of New York (CUNY)
CUNY Academic Works

Open Educational Resources Queensborough Community College

Spring 5-2019

Designing Computational Biology Workflows with
Perl - Part 2
Esma Yildirim
CUNY Queensborough Community College

How does access to this work benefit you? Let us know!
Follow this and additional works at: https://academicworks.cuny.edu/qb_oers

Part of the Bioinformatics Commons, and the Other Computer Sciences Commons

This Activity or Lab is brought to you for free and open access by the Queensborough Community College at CUNY Academic Works. It has been
accepted for inclusion in Open Educational Resources by an authorized administrator of CUNY Academic Works. For more information, please
contact AcademicWorks@cuny.edu.

Recommended Citation
Yildirim, Esma, "Designing Computational Biology Workflows with Perl - Part 2" (2019). CUNY Academic Works.
https://academicworks.cuny.edu/qb_oers/42

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City University of New York

https://core.ac.uk/display/217358279?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://academicworks.cuny.edu?utm_source=academicworks.cuny.edu%2Fqb_oers%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
https://academicworks.cuny.edu/qb_oers?utm_source=academicworks.cuny.edu%2Fqb_oers%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
https://academicworks.cuny.edu/qb?utm_source=academicworks.cuny.edu%2Fqb_oers%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ols.cuny.edu/academicworks/?ref=https://academicworks.cuny.edu/qb_oers/42
https://academicworks.cuny.edu/qb_oers?utm_source=academicworks.cuny.edu%2Fqb_oers%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=academicworks.cuny.edu%2Fqb_oers%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=academicworks.cuny.edu%2Fqb_oers%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
https://academicworks.cuny.edu/qb_oers/42?utm_source=academicworks.cuny.edu%2Fqb_oers%2F42&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AcademicWorks@cuny.edu

Title: Designing Computational Biology Workflows with Perl – Part2

Author/Affiliation: Esma Yildirim / Queensborough Community College

Date: 05/15/2019

Material Type: Lab

CS + Computational Biology

Software/Equipment Dependencies:
An Amazon Web Services (AWS) account, a web browser and a command line
interpreter program (e.g. Putty on Windows, Terminal on Linux/MacOSX)

Prior Knowledge Needed (if any): The material covered in “Designing Computational
Biology Workflows with Perl – Part1”

Keywords: Gene-sequencing file formats, SNPs, INDELs, Alignment, Variant Calling,
Perl

Approximate time needed: 1 hour

Description: This material introduces the AWS console interface, describes how to
create an instance on AWS with the VMI provided and connect to that machine
instance using the SSH protocol. Once connected, it requires the students to write a
script to automate the tasks to create VCF files from two different sample genomes
belonging to E.coli microorganisms by using the FASTA and FASTQ files in the input
folder of the virtual machine. The same exercise can be applied if the VMI is installed
on a local machine using virtualization software (e.g. Oracle VirtualBox). In this case,
the Terminal program of the VMI can be used to do the exercise.

Designing Computational Biology Workflows with Perl
– Part 2

In this lab, you will learn how to create a virtual machine instance on AWS
cloud and write a Perl script to automate the tasks to create a VCF file from
FASTA and FASTQ files.

1. What is a Virtual Machine Image(VMI)?

A virtual machine image is the software representation of a machine with its
operating system, hardware settings, installed programs and all the data in its
file system. It can be configured on any matching hardware settings that might
be running on any type of operating system through the use of virtualization
software (e.g. Oracle VirtualBox).

Example: An Ubuntu Linux Virtual Machine with 10GB hard disk, 4 GB
memory settings can be launched on top of a computer that runs Windows
operating system and has 250GB of disk, 8GB of memory and a 4-core CPU.

The Virtual Machine Image provided as part of this course is a Ubuntu Linux
machine with 4GM of memory and 20GB of disk space, prepared via Oracle
VirtualBox Version 5.2.20 r125813 (Qt5.6.2) virtualization software that ran on
a Windows operating system.

2. Why do we need a VMI?

The open source software packages used in gene sequencing analysis
usually run on top of a UNIX/Linux based system which is not a common
operating system type used in a Lab setting. However, they can easily be
installed on a UNIX/Linux machine and exported as a VMI to be launched in a
Cloud Computing environment through the use of a web browser and a
command line interpreter program.

Also, the installation process of gene sequencing software packages is a
cumbersome process and they have a lot of dependencies. The VMI comes
with all the necessary software pre-installed along with the input data needed
to do the lab exercises. After the instructor converts the VMI to an AWS
compatible AMI (Amazon Machine Image), shares that AMI through his/her
AWS account. You can then launch an instance on AWS cloud using the
converted AMI in a few seconds and connect to the machine to do the lab
exercises.

Alternatively, use virtualization software like Oracle VirtualBox to import the
VMI provided by your instructor and start it on your local desktop machine.

3. Create a machine instance on AWS [Optional]

This section can be used only after the students register and activate their
AWS accounts or the instructor creates IAM user accounts for the students
through his/her account. The services provided by AWS cloud are many. But
the one service that allows us to create machine instances is called the “EC2”
service.

Step 1. Go to AWS console web page using this link and sign in. From the
services menu at the top, select EC2.

Figure 1. EC2 Dashboard

Step2. From the left menu, select “AMIs” under “IMAGES”. The list of AMIs
will appear on the right hand side frame. From the drop down menu, select
“Private images” and you will see the AMI added by your instructor.

https://aws.amazon.com/console/

Figure 2. AMI list.

Step 3. Select the AMI from the list and select “Launch” from the “Actions”
menu.

Figure 3. Launch your AMI

Step 4. For the following pages that come after “Launch”, do not make any
changes and follow the instructions on the pages. The settings will
automatically be selected by the specifications of the AMI. If it is not, select an
instance type with 4GB of memory and 20GB of harddrive. Once you come
to the page that asks for keypairs, select the option to “continue without a
keypair” from the dropdown menu. When you are done, go back to the EC2
dashboard and select instances on the left menu. Your launched instance
along with its description will appear on the right frame. Make a note of the
public IP address.

Figure 4. Instance specification

Once the status of your instance indicates “running”, you are ready to connect
to the instance remotely.

Step5. Launch your Terminal program on your local machine. Make sure that
SSH is installed on it. In Windows machines, a Putty client can be used as
well. Use the following command to connect to your remote machine:

$ ssh ubuntu@52.90.38.56

The numbers 52.90.38.56 indicate the IP address of the remote machine and
it can be different for each instance. The username “ubuntu” is fixed, because
that is the only username configured with this AMI.

Type ‘Yes’ to the question that appears and type ‘ubuntu2967’ for password.
You will connect to the instance. After that, any command that you type will be
executed on the remote machine instance.

Step6. Once you’re finished with the lab exercises, from the Actions menu
click ‘Instance state’ and select ‘Terminate’. If the instance is not terminated, it
will charge for the hours that the instance is alive. Therefore, it is very
important that, once you are done, terminate the instance. Before that, save
your work. Once the instance is terminated, all the changes you make in the
file system will disappear.

4. Automation of Gene Sequencing Preprocessing Workflow

The gene-sequencing preprocessing workflow consists of index creation,
alignment, sorting, marking duplicates and finally variant calling tasks. In the
following subsections you will write a Perl script to automate these tasks.

4.1. Index creation

This step allows tools to access certain sections of the reference genome
faster. The gene-sequencing input data resides under the directory

“/home/ubuntu/input/”. This directory includes a FASTA file for the
reference genome and 4 FASTQ files(a pair for each sample) for two sample
strands of the E.coli microorganism.

Step1. Create another directory called “scripts” under /home/ubuntu/ by using
mkdir command.

Then, use ls –l command to see all files and directories under /home/ubuntu/
directory. If “scripts” directory is in this list, you are ready to move to the next
step.

Step2. Go inside “scripts” directory by using the cd command. Then use pwd
command to print the current working directory. If the output of the command
is “/home/ubuntu/scripts”, then, move on to the next step.

Step3. Create a script called lab2.pl by using vim command. Go into insert
mode and then do the following tasks one by one:

• Create a variable named $path and assign the value of $ARGV[0] to
it. This path will come from the command line as an argument, when
you run the script. You will give the path of the input directory as an
argument, which is /home/ubuntu/input. Print the path.

• Use backquotes ` ` to run ls command to list all the files that end with
the extension “.fasta”. Use the wildcard character * to do that. Assign

the returned output to a variable named $ref. Use print function to
print the value of this variable to make sure that it includes the entire
path of the FASTA file. Use chomp() function to remove any new line
character from the $ref variable.

• Use the system() function with “samtools” to create an index file that
ends with the extension .fai. samtools should take “faidx” option and
$ref variable as arguments.

• Use the system() function with “bwa” to create several index files. bwa
should take “index” option and $ref variable as arguments.

Step 4. Escape insert mode and exit vim text editor by saving your changes to
the file.

Step 5. Run your script as follows:

$ perl lab2.pl /home/ubuntu/input

Step 6. Use “ls -l” command to list all the files in “/home/ubuntu/input”. Your
output should include the following index files in addition to the fasta and fastq
files:

-rw-r--r-- 1 ubuntu ubuntu 12 Apr 30 11:34 E.coli-str.K-
12substr.MG1655.fasta.amb
-rw-r--r-- 1 ubuntu ubuntu 98 Apr 30 11:34 E.coli-str.K-
12substr.MG1655.fasta.ann
-rw-r--r-- 1 ubuntu ubuntu 4641732 Apr 30 11:34 E.coli-str.K-
12substr.MG1655.fasta.bwt
-rw-r--r-- 1 ubuntu ubuntu 29 Apr 30 11:34 E.coli-str.K-
12substr.MG1655.fasta.fai
-rw-r--r-- 1 ubuntu ubuntu 1160415 Apr 30 11:34 E.coli-str.K-
12substr.MG1655.fasta.pac
-rw-r--r-- 1 ubuntu ubuntu 2320880 Apr 30 11:34 E.coli-str.K-
12substr.MG1655.fasta.sa

4.2. Alignment

There are two sample strands of E.coli DNA in the input directory. We are
going to assume that we do not know their names and use Perl to gather this
information before starting the alignment process on the first sample.

Step 1. Open lab2.pl with vim editor and go into Insert Mode. Comment the
lines with the system function(put # before system() call) so that the next time
you run the script, the index files are not created again.

Step 2. Use “ls” command with backquotes ` ` to list all the files that end with

the extension “.fastq”. Then, assign the result to an array named @samples.

Use the print function to display the contents of the @samples array. You
should see the paths for 4 FASTQ files. The first pair belongs to the first
sample, while the second pair belongs to the second sample. We will be
working on the first sample first. So the paths of the FASTQ files for it will be
stored in $samples[0] and $samples[1].

Step 3. Create a variable $output1 just to include the path of the samples
without its extension using the following line:

$output1 = substr $samples[0], 0, -9

This will throw away 9 characters from the end of the path and assign the new

value to $output1 variable. We are going to use this variable to create output

file names with different extensions. Then use chomp() function on both

$sample[0] and $samples[1] to remove new line characters.

Step 4. Use the system() function with “bwa” to start the alignment process.

• The ID and SM should be assigned the name “K12”.

• -t option should be used with the number of processors the VMI is
running on. If it has two cores it should be –t 2.

• $ref variable should be used for the path of the reference genome

• $samples[0] and $samples[1] should be used for the paths of the

FASTQ files and $output1.raw.bam should be used as the output
BAM file to be generated.

Step 5. Exit insert mode and save your file. Then run your script.

$perl lab2.pl /home/ubuntu/input

Step 6. Use ls –l command to see all the files that ends with the extension
.raw.bam. Your aligned file should be listed.

$ls –l *.raw.bam

4.3. Sorting and Marking Duplicates

Now that the alignment process is over and the raw BAM file is created, it is
time to sort and mark duplicates over that file. We are going to use
sambamba tool to do both tasks.

Step1. Open lab2.pl with vim and comment all the lines with system() function
call, so that the previous alignment task is not run again.

Step2. Call the system() function to run sambamba with “sort” option and give

$output1.raw.bam as the second argument. A file with the extension

“.raw.sorted.bam” will be created.

Step3. Call the system() function to run sambamba with “markdup” option, set

the hash-table-size to 4194304, give $output1.raw.sorted.bam as the third

argument and finally $output1.bam as the fourth argument. A file with the
extension .bam will be created (without .raw and .sorted extensions).

Step4. Exit insert mode and save your file. Then run your perl script. You
should see the BAM output files with the ls command.

$ ls -l /home/ubuntu/input/*.bam
total 5665320
-rw-r--r-- 1 ubuntu ubuntu 204859553 May 9 13:46 SRR1770413.bam
-rw-r--r-- 1 ubuntu ubuntu 282074721 May 9 13:31 SRR1770413.raw.bam
-rw-r--r-- 1 ubuntu ubuntu 204793669 May 9 13:44
SRR1770413.raw.sorted.bam

4.5. Variant Calling

The last step in the workflow is the creation of the VCF file to do variant
calling analysis. We are going to use the freebayes tool to do that.

Step 1. Open lab2.pl with vim and comment all the lines with system()
function call, so that the previous tasks are not run again.

Step 2. Run system() function with the command “freebayes”. Give $ref

variable to –f option as an argument, set “--ploidy 1” and “$output1.bam

> $output1.vcf” as the third and fourth argument.

Step 4. Exit insert mode and save your file. Then run your script. You should
see the created VCF file in the output of the ls command.

$ ls -l /home/ubuntu/input/*.vcf
total 5665320
-rw-r--r-- 1 ubuntu ubuntu 17752445 May 9 14:10 SRR1770413.vcf

4.6. Repeat

Repeat all the steps in 4.2-4.5 for the second sample with little alterations:

• The ID and SM options should be given a different name: O104_H4.

• $samples[0] and $samples[1] should be replaced with $samples[2] and
$samples[3].

• $output1 should be replaced with $output2.

Once the VCF files are created, submit your properly commented Perl script
and the output of the ls command to list all the files in /home/ubuntu/input
directory.

4.7. Visualize[Optional]

If you are running the VMI on a local machine and have access to the
Desktop view, you may run the IGV program from the Downloads folder.

From the Terminal window, go to /home/ubuntu/Downloads/igv with cd
command.

Run igv.sh with the following command:

$./igv.sh

A window will appear. Select “Genomes” from the Menu and load Reference
FASTA file. Then select “File” from the Menu and load one of the VCF files
you created from /home/ubuntu/input. Zoom in from the + sign on the top right
corner and hover over one of the bars to see the type of variation(Figure 5).

Figure 5. IGV view of VCF file

This OER material was produced as a result of the CS04ALL CUNY OER project.

Creative Commons License

https://creativecommons.org/licenses/by-nc-sa/4.0/

	City University of New York (CUNY)
	CUNY Academic Works
	Spring 5-2019

	Designing Computational Biology Workflows with Perl - Part 2
	Esma Yildirim
	How does access to this work benefit you? Let us know!
	Recommended Citation

	tmp.1559053918.pdf.k39sT

