City University of New York (CUNY) CUNY Academic Works

Open Educational Resources

New York City College of Technology

Spring 2017

CST1101–Problem Solving with Computer Programming, Syllabus

Elena Filatova CUNY New York City College of Technology

How does access to this work benefit you? Let us know!

Follow this and additional works at: https://academicworks.cuny.edu/ny_oers

Part of the Programming Languages and Compilers Commons

Recommended Citation

Filatova, Elena, "CST1101–Problem Solving with Computer Programming, Syllabus" (2017). *CUNY Academic Works*. https://academicworks.cuny.edu/ny_oers/17

This Syllabus is brought to you for free and open access by the New York City College of Technology at CUNY Academic Works. It has been accepted for inclusion in Open Educational Resources by an authorized administrator of CUNY Academic Works. For more information, please contact AcademicWorks@cuny.edu.

NEW YORK CITY COLLEGE OF TECHNOLOGY/CUNY DEPARTMENT OF COMPUTER SYSTEMS TECHNOLOGY

CST1101–PROBLEM SOLVING WITH COMPUTER PROGRAMMING (4 hours – 3 credits)

Instructor:

Name: Prof. Office: e-mail: Office Hours:

Course Description:

This course introduces students to concepts of problem solving using constructs of logic inherent in computer programming languages. Students study the nature of problems, common solution approaches and analysis techniques. Students use a flowchart interpreter to diagram problem solutions. Students learn the basics of computer programming by learning Python. Both Python scripts and flowcharts enable students to construct solutions to common algorithmic problems. The major emphasis is on teaching the student to identify solutions to a problem and translate them into various forms that will enable the computer to perform some of the steps in a solution of an actual problem instance. These forms include flowcharting tool, viewing generated software code and the basics of debugging the code. At the end of the class students will write a project Python scripts that demonstrates the students' knowledge of all the basic programming concepts discussed in class (e.g., variables, conditions, loops, functions).

Course Objectives:

Upon successful completion of the course, students should be able to:

- 1. Demonstrate understanding of the steps required to solve a problem using a computer.
- 2. Demonstrate understanding of flowcharting techniques to solve an algorithm.
- 3. Demonstrate the knowledge or Boolean algebra (AND, OR, NOT operations).
- 4. Demonstrate understanding of the major programming notions: variables, decision statements, repetition/loop statements (both count- and event-controlled), arrays/lists, modules/functions, classes and objects and their use for basic problem solving.
- 5. Demonstrate understanding of the two major programming paradigms: procedural and object-oriented.
- 6. Install and run the IDLE Python programming environment.
- 7. Design and implement basic Python scripts.
- 8. Demonstrate broad problem-solving experience by referring to solutions from a problem bank covered during class.

General Education Outcomes:

- **SKILLS/Inquiry/Analysis:** Students will employ scientific reasoning and logical thinking.
- **SKILLS/Communication:** Students will communicate in diverse settings using oral (both speaking and listening) and visual means.
- VALUES, ETHICS, RELATIONSHIPS / Professional/Personal Development: Students will have access to on-line materials and solutions to programming problems and will be required to process those materials and solutions, understand them, use the ideas from them without passing others' ideas as their own.

Prerequisite – CUNY certification in mathematics, reading and writing. General knowledge of a personal computer is needed. Students may enroll in a workshop at the Academic Learning Center, located in the Atrium.

This is an OER (Open Educational Resources) course. All the required reading materials are free. The OER page for the course can be viewed here: <u>https://openlab.citytech.cuny.edu/cst1101-problemsolvingpython</u>

Software Download (free, online)

• Python official site that includes documentation, downloads (IDLE for Python 3.6), news:

https://www.python.org

• Flowchart interpreter

http://www.flowgorithm.org/

Required Reading (free, online)

Think Python, 2nd Edition by Allen B. Downey
O
O
O
O

http://greenteapress.com/wp/think-python-2e/

• How to Think Like a Computer Scientist: Interactive Edition

http://interactivepython.org/runestone/static/thinkcspy/index.html

Recommended reading (free, online)

• Algorithmic Problem Solving with Python by John B. Schneider, Shira Lynn Broschat, and Jess Dahmen.

• How to Think Like a Computer Scientist by Peter Wentworth, Jeffrey Elkner, Allen B. Downey, and Chris Meyers

http://www.openbookproject.net/thinkcs/python/english3e/

• Python Bibliotheca: <u>http://www.openbookproject.net/pybiblio/</u>

Tentative Evaluation and Grading Distribution (the exact grade distribution is defined by the instructors teaching individual sections)

Lab, Homework Assignments, quizzes	30%
Test1	15%
Test2	15%
Project	10%
Final Exam (cumulative)	30%
Total	100%

Grade System:

Letter	А	A-	B+	В	B-	C+	С	D	F
Grade									
Numerical	93-	90-	87-	83-	80-	77-	70-	60-	<=59.9
Grade	100	92.9	89.9	86.9	82.9	79.9	76.9	69.9	

The grade distribution follows the information in the NYCCT Student Handbook (p.43).

During the course of the class you are required to follow the NYCCT Academic Integrity Standards described in the Student Handbook (pp.95 - 99)

NYCCT Student Handbook can be downloaded here: <u>http://www.citytech.cuny.edu/current-student/docs/StudentHandbook.pdf</u>.

Storage Media -- You must have a USB storage media.

Tentative schedule

- the changes in the schedule can be made to address the pace of an individual class
- Reading assignment for the topics can be checked on the CST 1101 OER site: https://openlab.citytech.cuny.edu/cst1101-problemsolvingpython/assignments/

	Topic name
1	Topic 01
$\frac{1}{2}$	<u>Class logistics</u>
23	Introduction:
5	What is problem solving?
	• What is problem solving?
	• why Python?
	• Why Flowcharts?
	Computer problem solving:
	• Solution = program / algorithm
	• Well-defined set of steps
	• Examples of problems solved using sets of steps: cooking recipes, puzzles
	Computer problem solving
	Elementary program examples
4	Topic 02
5	IDLE introduction, installation tips, Python 3.6
	My first "Hello, World" program
	Code readability and comments,
	Introduction of two modes for Python IDLE (interactive and shell).
	Saving Python scripts and flowcharts. How saved scripts and flowcharts can be called
	and run/executed.
	Why interactive mode is not enough?
6	Topic 03
7	Variables types and data input/output
,	variables, types, and data input/output
	The idea of a variable is introduced and the dynamics of the assignment statement are
	detailed. Three basic types are illustrated through examples integers floats strings
	Boolean.
	Type conversion
0	
8	$\frac{1 \text{ opic } 04}{\text{ De alexen la sie Canditional excession (if alex)}}$
9	Boolean logic. Conditional execution (II-else)
10	Boolean type is introduced together with three Boolean operations: and, or, not.
	Program structure and program flow. Demonstration of branching using flowcharts.
	Conditions/selections in Puthon:
	If
	If_alse

11	Topic 05
12	Modules/functions
13	Why creating modules within a program?
	Examples of modules (functions)
	Parameters / arguments
	Passing parameters
14	<u>Test1</u>
15	Topic 06
16	While loop
	Condition controlled loop
18	Topic 07
	Lists
18	Topic 08
19	For loop and lists
20	For vs While loop
	For loop with Range: different settings.
21	Test 2
22	<u>Topic 09</u>
23	String as a special case of a list
24	Strings and iteration
	Importing modules
25	Topic 10
23	Introduction of the OOP paradigm.
26	Topic 11
27	Turtle graphics library. Turtles-objects.
	Use Turtle Graphics to review the notion of an object and basic programming tools:
	condition and selection.
28	Additional topics based on the professor interest / leftover material / repetition of the
	topics that caused most problems and questions during the semester.
29	Review for the final
30	Final (cumulative)

Assessment Criteria

For the successful completion of this	Evaluation methods and criteria
course a student should be able to:	

1.	Demonstrate understanding of the steps required to solve a problem using a computer.	Students will describe problem, identify inputs, processes and desired outcomes in laboratory assignments, class work and tests.
2.	Demonstrate understanding of flowcharting techniques to solve an algorithm.	Students will solve problems using the flowchart interpreter software and Python 2.7 in laboratory assignments, class work and tests.
3.	Demonstrate the knowledge or Boolean algebra (AND, OR, NOT operations)	Students will solve Boolean algebra problems in laboratory assignments, class work and tests and incorporate these solutions in flowcharts and Python scripts.
4.	Demonstrate understanding of the major programming notions: variables, decision statements, repetition/loop statements (both count- and event- controlled), arrays/lists, modules/functions, classes and objects and their use for basic problem solving.	Students will create algorithms for problem solving using the basic programming notions in laboratory assignments, class work and tests.
5.	Demonstrate understanding of the two major programming paradigms: procedural and object-oriented.	Students will create new classes and objects of these classes in laboratory assignments, class work and tests.
6.	Install and run the IDLE Python programming environment.	To complete homework assignments and practice programming skills outside the college students will install the IDLE Python environment on their own computers.
7.	Design and implement basic Python scripts.	Students will use the knowledge of Boolean Algebra, problem solving paradigms and basic programming notions to write Python scripts in laboratory assignments, class work and tests.
8.	Demonstrate broad problem-solving experience by referring to solutions from a problem bank covered during class	Students will demonstrate problem-solving ability in laboratory assignments, class work and tests.

General Education Outcomes and Assessment:

Learning Outcomes	Assessment Method
SKILLS/Inquiry/Analysis Students will	Students will describe problem, identify
employ scientific reasoning and logical	inputs, processes and desired outcomes
thinking.	

	in laboratory assignments, class work
	and tests.
	Students will solve problems using the
	flowchart interpreter software and
	Python in laboratory assignments, class
	work and tests.
	Students will identify coding paradigms
	in Laboratory Assignments, Class work
	and tests
SKILLS/Communication Students will	Students will discuss various problems
communicate in diverse settings using oral	and approaches towards solving these
(both speaking and listening) and visual	problems in class
means.	
VALUES, ETHICS, RELATIONSHIPS	Students will learn to respectfully use
/ Professional/Personal Development	the code generated by other
Students will have access to on-line	programmers giving.
materials and solutions to programming	
problems and will be required to process	
those materials and solutions, understand	
them, use the ideas from them without	
passing others' ideas as their own.	