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Daily Peak Wind Gust (DPWG) time series are important for the evaluation of
wind-related hazard risks to different socioeconomic and environmental sectors.
Yet, wind time series analyses can be impacted by several artefacts, both tempo-
rally and spatially, which may introduce inhomogeneities that mislead the study of
their decadal variability and trends. The aim of this study is to present a strategy in
the homogenization of a challenging climate extreme such as the DPWG using
548 time series across Australia for 1941–2016. This automatic homogenization of
DPWG is implemented in the recently developed Version 3.1 of the R package
Climatol. This approach is an advance in homogenization of climate records as it
identifies 353 break points based on monthly data, splits the daily series into homo-
geneous subperiods, and homogenizes them without needing the monthly correc-
tions. The major advantages of this homogenization strategy are its ability to:
(a) automatically homogenize a large number of DPWG series, including short-
term ones and without needing site metadata (e.g., the change in observational
equipment in 2010/2011 was correctly identified); (b) use the closest reference
series even not sharing a common period with candidate series or presenting miss-
ing data; and (c) supply homogenized series, correcting anomalous data (quality
control by spatial coherence), and filling in all the missing data. The NCEP/NCAR
reanalysis wind speed data were also trialled in aiding homogenization given the
station density was very low during the early decades of the record; however, rea-
nalysis data did not improve the homogenization. Application of this approach
found a reduced range of DPWG trends based on site data, and an increased nega-
tive regional trend of this climate extreme, compared to raw data and homogenized
data using NCEP/NCAR. The analysis produced the first homogenized DPWG
dataset to assess and attribute long-term variability of extreme winds across
Australia.
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1 | INTRODUCTION

The quality control and homogenization of climate time
series must be performed prior to assessing climate change

and variability (Venema et al., 2012), or when using obser-
vations to estimate future climate scenarios (Laapas and
Venäläinen, 2017). This is because there are many artefacts
that may substantially alter the meteorological measurements
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(Aguilar et al., 2003). For instance, for wind speed:
(a) station relocations; (b) anemometer height changes;
(c) instrument malfunctions; (d) instruments changes;
(e) different sampling intervals; and (f ) observing environ-
ment changes (Azorin-Molina et al., 2014). Therefore,
advances in the quality control and homogenization proce-
dures seek to identify and remove all artefacts in the climate
time series so that variance in the resultant series is only
driven by weather and climate changes (Conrad and Pollack,
1950).

Numerous methods have been developed to identify
inhomogeneities in climate series in the form of abrupt (break
points) or short-term (local trends) changes in the averages of
those series, thereby avoiding artificial trends in the assess-
ment of climate. Peterson et al. (1998) and Aguilar et al.
(2003) conducted comprehensive reviews of existing homog-
enization methods and approaches for developing homoge-
nized data sets. The European COST (Cooperation in
Science and Technology) Action ES0601 “Advances in
Homogenization Methods of Climate Series: An Integrated
Approach” (HOME; 2006–2011; http://www.cost.eu/COST_
Actions/essem/ES0601; Accessed 1 December 2018) allowed
scientists from over 20 countries to compare and discuss their
methodologies developed to perform the challenging task of
quality controlling and homogenizing monthly climate series.
Venema et al. (2012) reviewed the most suitable homogeni-
zation algorithms used in the software HOME for monthly
air temperature and precipitation data and concluded that:
(a) applying automated homogenization algorithms give bet-
ter results than user-reliant algorithms when users are not
experts; and (b) developing easy-to-use software as operator
training is crucial to produce accurate climate series.
Recently, Hunziker et al. (2018) demonstrated the effects of
undetected data quality issues on the most common relative
homogenization approach (i.e., that relies on high spatial cor-
relation with the climate signal of nearby stations; Conrad
and Pollack, 1950), by reducing the correlation coefficients
of station pairs, deteriorating the performance of data homog-
enization methods, increasing the spread of individual station
trends, and significantly biasing regional air temperature and
precipitation trends. However, most previous homogenization
studies have focused on two climate variables (air tempera-
ture and precipitation; e.g., Štěpánek et al., 2009), with very
few homogenization efforts on daily wind extremes (e.g., see
review in Table 1 below).

Advances in statistical approaches to homogenize
extreme wind time series are of great scientific interest. Fur-
thermore, given a changing climate, assessing trends of this
natural hazard from reliable series also has substantial socio-
economic and environmental significance for many sectors
(Vose et al., 2014), such as: (a) agriculture and hydrology;
(b) long-term wind power generation; (c) wind-related haz-
ards such as wind-driven fires and catastrophes (loss of life,
property, and habitat); (d) land and aviation transport;

(e) marine and coastal impacts due to wind-driven storm
surges and waves; (f ) tourism and wind sports; (g) air qual-
ity and human health; amongst many others. Consequently,
it is of utmost importance to develop adequate data quality
control and homogenization approaches for long-term wind
studies.

Due to the variety of factors affecting the measurement of
wind speed, that is, its high natural short-term variance
(Balling and Cerveny, 2005; Jakob, 2010), long-term trends
(Vautard et al., 2010; McVicar et al., 2012), and the rela-
tively high spatial variability (Azorin-Molina et al., 2014), as
well as the high sensitivity of wind to local site conditions
(WMO, 2017), implementing quality control and homogeni-
zation procedures on wind series has been challenging. To
summarize, only a few approaches have been developed for
mean wind speed so far in recent years: (a) Wang (2008) and
Wan et al. (2010) used the RHtestV2 data homogenization
package (Wang and Feng, 2007) for Canadian monthly mean
wind speed data, and Si et al. (2018) applied the RHtestV4
for Tianjin (China) monthly mean wind speed data;
(b) Petrovi�c et al. (2008), Li et al. (2011), and Péliné-Németh
et al. (2014) applied the Multiple Analyses of Series for
Homogenization (MASH; Szentimrey, 1999, 2008) to
homogenize daily wind speed series for Ireland, for the
greater Beijing area (China) and Hungary, respectively;
(c) Štěpánek et al. (2013), Azorin-Molina et al. (2014), and
Minola et al. (2016) used the AnClim package (Štěpánek,
2004) to detect sudden break points in monthly wind speed
series for the Czech Republic, Spain and Portugal, and Swe-
den, respectively; (d) Guijarro (2015) and Azorin-Molina
et al. (2018b) applied the Climatol package to detect artificial
change points and adjust inhomogeneities in monthly wind
speed time series in Spain and Portugal and Saudi Arabia,
respectively; and (e) Laapas and Venäläinen (2017) and
Azorin-Molina et al. (2018a) applied the recently developed
relative homogeneity test HOMER (HOMogenization soft-
ware in R; Mestre et al., 2013) for homogenizing monthly
mean wind speed in Finland and the Canary Islands, respec-
tively. Zahradní�cek et al. (2018) homogenized daily data in
the Czech Republic by applying the Standard Normal
Homogeneity Test (SNHT, Alexandersson, 1986) and the
Maronna-Yohai test to monthly, seasonal, and annual aggre-
gates. None of these methods stands out as being best, so dif-
ferent approaches have been applied thereby justifying the
need of benchmarking the performance of homogenization of
wind speed data, as Venema et al. (2012) conducted in
HOME for air temperature and precipitation. Benchmarking
approaches used for temperature studies such as that of
Venema et al. (2012) require the construction of a synthetic
data set. As no such synthetic data set is known to exist for
wind speed, an alternative approach is required.

The detection of break points in daily series such as daily
peak wind gusts (hereafter DPWG) is more difficult than
when using monthly mean series, as the higher variability of
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daily data series decreases the signal-to-noise ratio
(Szentimrey, 2013). Table 1 reviews the studies of long-term
trends of wind speed extremes from anemometer observa-
tions and the methodological approaches applied to quality
control and homogenize series. This shows that almost all
studies have only applied limited quality control and homog-
enization based on few metadata. The generally accepted
strategy to overcome this difficulty has been to homogenize
the monthly aggregates first, and then adjust the daily series
by applying the monthly corrections interpolated to the daily
resolution (Vincent et al., 2002). This approach, formerly
applied to homogenize daily air temperature and precipita-
tion data series (Lakatos et al., 2011) and wind speed
(Péliné-Németh et al., 2014), was trialled with DPWG time
series from Spain and Portugal (Azorin-Molina et al., 2016).
However, these daily adjusted results from the interpolation
of monthly corrections were discarded as the resultant series
had remaining inhomogeneities, and it was decided to apply
a direct homogenization of the daily series. This direct daily
homogenization approach adopted by Azorin-Molina et al.
(2016) detected a smaller number of break points, and
achieved a better correction as errors from the interpolation
of monthly corrections were avoided whilst the most sub-
stantial inhomogeneities were detected.

In view of this state of the art, the overall aim of this
study is (a) to present a strategy and advances in the homog-
enization of a challenging climate extreme such as the
DPWG using the Version 3.1 of the R package Climatol
(Guijarro, 2016). The scientific innovation implements the
use of break points detected at monthly basis to split the
daily series, which are then homogenized without needing
the monthly corrections. This homogenization approach is
described in detail and demonstrated through application to
a large DPWG dataset (548 stations) covering Australia for
1941–2016. Our secondary objectives are: (b) investigating
the ability of reanalysed mean wind-speed data (from reana-
lysis) to aid the detection of break points when used as refer-
ence series in the absence of neighbouring stations; and
finally (c) creating a long-term quality-controlled and
homogenized DPWG dataset for the assessment and attribu-
tion of the variability of extremes across Australia for future
studies.

2 | DATA AND METHODS

2.1 | Observed DPWGs and metadata

The original dataset contains 706 DPWG series across
Australia spanning from 1 April 1939 until 31 December
2016. The long-term temporal coverage, the different spatial
density of stations across the country and throughout the
study period, and the fact that the DPWG series have not
been comprehensively quality controlled, homogenized and
analysed before, encouraged us to choose this AustralianT
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dataset as a suitable one to test the homogenization
approach presented herein. Observed DPWG data were
recorded and supplied by the Australian Bureau of Meteo-
rology (BoM; http://www.bom.gov.au/; last accessed
1 December 2018) at heights of ~10 m above the land sur-
face. DPWG data were measured by different types of ane-
mometers, with Dines pressure tube anemometers used until
the ~1980s and replaced with Synchrotac 706 rotating cup
anemometers in the Automatic Weather Stations (AWS)
installed in the last two to three decades (for details of
instruments, see Jakob, 2010; Cechet and Sanabria, 2012).
This general replacement is the major cause of inhomogene-
ities in the observed series (Jakob, 2010), with Synchrotac
anemometers showing a tendency towards to “overspeed”
compared to the Dines ones; i.e., the sensor´s inertia causes
the anemometer to continue spinning after the wind speed
has decreased (Gorman, 2004).

The BoM defines the observed DPWG data sets (in m/s)
as the highest fluctuation of wind speed recorded in 24 hr
(0000–0000 local time; local time in Australia ranges from
UTC + 8 in Western Australia to UTC + 10 in the eastern
states, with UTC + 11 in summer in some states; UTC:
Coordinated Universal Time), following the requirements
adopted by the World Meteorological Organization (WMO,
2017). The gust duration (i.e., measure of the duration of the
observed peak gust; Azorin-Molina et al., 2016) is estab-
lished as ~3 s as recommended by the WMO (1987). Prior
to the introduction of automatic weather stations, daily maxi-
mum wind gust was determined by visual inspection of auto-
graphic charts.

The first quality control applied to the raw DPWG data-
set consisted in removing all data with quality control flags
as “wrong,” “suspect” or “inconsistent” from the BoM
(i.e., 6,427 data; 0.17%), noting that DPWG data are not cur-
rently systematically quality controlled by the BoM (David
Sinclair, pers. comm.), with the flags that exist being part of
an ad hoc process, mostly based on identifying values that
exceed gross thresholds. Due to incomplete years at the
beginning of the DPWG series, our homogenization
approach focused on 1 January 1941 until 31 December
2016 (i.e., a 76-year period). After removing series having
less than 1,826 observations (i.e., 5 years) and 12 stations
located too far away to be useful as references (e.g., located
on islands), 548 DPWG series remained in the dataset.
Figure 1a displays the temporal evolution of DPWG data
availability, with three noteworthy steps: (a) a steady
increase up to around 100 series from 1941 till the 1980s;
(b) a stabilization or weak decline of series till 2000s; and
(c) an abrupt increase in 2003 up to >400 series due to the
installation of automatic weather stations capable of measur-
ing daily wind gusts. Automatic weather stations progres-
sively entered the Australian observing network from the
late 1980s onwards, yet the software used by most such

stations prior to 2003 was not capable of transmitting
DPWG data.

2.2 | Reanalysed wind speed data

A challenging feature for applying a relative homogeniza-
tion strategy was that relatively few wind observation sites
were available until the 2000s across Australia. Given this,
we evaluate the ability of gridded-reanalysis data to aid the
detection of break points in the observed DPWG dataset.
The National Centres for Environmental Prediction
(NCEP) and the National Centre for Atmospheric Research
(NCAR) Reanalysis (hereafter NCEP/NCAR reanalysis;
Kalnay et al., 1996) was chosen as McVicar et al. (2008)
documented that it most optimally captured Australian
wind speed observed climatology and trends, compared to
other reanalysis products. The 6-hourly u (zonal velocity in
m/s, that is, the component of the horizontal wind towards
east) and v (meridional velocity in m/s, that is, the compo-
nent of the horizontal wind towards north) components
from the global NCEP/NCAR reanalysis were downloaded
from the NOAA server: ftp://ftp.cdc.noaa.gov/Datasets/
ncep.reanalysis/surface_gauss/ (last accessed 1 December
2018). We created a land mask to select 245 grid-cells
across Australia, for which mean wind speeds (in m/s) were
computed from the u and v components at each grid cell,
and then the highest wind speeds of the four synoptic times
at 00:00, 06:00, 12:00, 18:00 hours UTC plus the 00:00 of
the following day were added to the dataset; the 00:00
value may be the maximum on either one or both of the
two consecutive days when not exceeded by any other
values. The assessment of the potential of spatial gridded
data in detecting break points in the observed dataset is
restricted to the NCEP/NCAR reanalysis time-period, that
is, 1948–2016 (69-years), with data from 791 daily series
in total: 245 reanalysis grid-cells plus 546 observed sta-
tions. The geographical distribution of the stations and cen-
tre points of the NCEP/NCAR reanalysis grid-cells across
Australia are shown in Figure 1b.

3 | AN APPROACH TO HOMOGENIZE
DPWG SERIES

3.1 | The Climatol package and overview of the
homogenization approach

Climatol (Guijarro, 2018) is an R (R Core Team, 2015)
package for homogenizing climate series and producing
automated products (e.g., homogenized time series) derived
from them. This package can be freely downloaded from
https://CRAN.R-project.org/package=climatol (last accessed
1 December 2018) and further information about the
documentation and improvements of the most recent version
can be found in http://www.climatol.eu/ (last accessed
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1 December 2018). Climatol strongly benefited from partici-
pating in the COST Action HOME activity and improved its
algorithms in its Version 2. In the last few years Climatol
has been widely applied to homogenize a variety of monthly
climate databases, particularly air temperature and precipita-
tion series (Guijarro, 2008, 2013a; Hernández et al., 2012
-at daily basis-; Luna et al., 2012; and Mamara et al., 2013),
but also wind speed (Azorin-Molina et al., 2018b) and
DPWG (Azorin-Molina et al., 2016). Due to the limitations
encountered by Azorin-Molina et al. (2016) related to the
interpolation of monthly corrections to daily series with a
positively skewed probability distribution such as wind,
in the following subsections we present a strategy that
advances DPWG homogenization. This further improvement
used the break points detected on the monthly scale to split
the daily series into their homogeneous subperiods, which
are then reconstructed by infilling all missing data with their
estimated values, as explained in Section 3.2.1 below. This
strategy was developed in Version 3.1 of the Climatol pack-
age (Guijarro, 2016).

Figure 2 is a flowchart summarizing the homogenization
procedure implemented in Climatol in which, after reading
the DPWG series and performing some initial checks and
calculation of means and standard deviations, three stages
follow: (a) detection of inhomogeneities by applying the
SNHT on stepped overlapping temporal windows, splitting
the most inhomogeneous series by the detected break points,
and repeating the process until all series appear homoge-
neous; (b) as in (a), but applying the SNHT to the entire
series (i.e., 1941–2016); and (c) generation of the final
homogeneous series by filling all missing data by weighted
ratios of nearby stations in the homogeneous subseries.

Finally, homogenization outputs from Climatol are delivered
in a R binary file containing the original and homogenized
series, a document with a wealth of diagnostic graphics, and
three text files with a log of the process plus lists of the cor-
rected outliers and break points. A detailed description of
this homogenization approach is given in the following
subsections.

3.2 | Description of the homogenization approach

3.2.1 | Series estimation from near neighbour data

Prior to the application of Stages 1–3, Climatol´s homogeni-
zation approach relies heavily on the estimation of complete
series from their nearest available data. This method was
adapted from Paulhus and Kohler's (1952) strategy to inter-
polate missing precipitation records to complete reports in
U. S. Weather Bureau bulletins. They simply divided the
precipitation values by the station precipitation mean and
estimated the missing values by averaging the closest three
values around the site to be interpolated. In this way, undo-
ing the normal-ratio estimations by multiplying by the mean
precipitation at each location yielded the interpolated precip-
itation values. This approach was chosen because it can be
applied even when neighbour series do not have any com-
mon period of observation, hence enabling the use of short
series that otherwise would have to be disregarded, and Cli-
matol extends the method by offering three data normaliza-
tion options being: (a) subtracting the mean; (b) dividing
by the mean (as in Paulhus and Kohler, 1952); and
(c) subtracting the mean and dividing by the standard devia-
tion. Therefore, the user can choose the most appropriate
normalization depending on the climatic variable studied,

FIGURE 1 Data characteristics: (a) the Bureau of Meteorology observed data availability over 1 January 1941 to 31 December 2016 for the 548 stations.
Dashed green line and dash red line show the desirable (5) and minimum (3) availability thresholds, respectively, for a reliable homogenization and quality
control of the series; (b) the locations of the 548 stations and centre points of the 245 NCEP/NCAR reanalysis grid cells (791 series in total) used here [Colour
figure can be viewed at wileyonlinelibrary.com]
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whether it has a limiting zero value and an L-shaped proba-
bility distribution (e.g., precipitation and wind; where case
(b) above is more appropriate) or bears a near-normal distri-
bution (e.g., air temperature and air pressure; where case
(c) or even (a) above are more suitable). Moreover, the num-
ber of reference series can be set by users, defaulting to
10 when building reference series and to 4 during the final
series reconstruction.

The main drawback of this method is the need for accu-
rate estimates of means and standard deviations for the full
time series (including days missing). An iterative approach
is used here to estimate these statistics. As missing data are
common in observational datasets, Climatol first computes
these statistical parameters from all available data in each
series and, after filling in the missing data with first-guess
estimations, means and standard deviations are calculated
again. Then, using these new means and standard deviations,
a second normalization of the series and missing data estima-
tion is performed, and the procedure is repeated (see
Figure 2) until the maximum difference between means from
the previous iteration becomes lower than a prescribed
threshold (half the precision of the data by default). The
default number of iterations is set to 999. All normalized
series can be estimated in this way from an (optionally
weighted) average of their available (at each time step) nor-
malized nearby data (i.e., up to 10 stations in Stages 1 and
2, and up to 4 in Stage 3), and the estimated series are used
to: (a) fill in the missing data of the observed series;

(b) compute series of spatial anomalies (observed data minus
Climatol estimations); and (c) calculate root mean square
errors (RMSE) of the Climatol estimations, which can serve
to compute confidence intervals for the homogenized series.
By default, no weighting is applied to estimate the series in
Stages 1 and 2, because nearby series may contain inhomo-
geneities, but in the final reconstruction of all series from the
homogeneous subperiods (Stage 3) neighbour data are
weighted by the inverse distance function:

1= 1+ d2=h2
� �

,

where d is the distance between the stations and h the dis-
tance at which the weight becomes 0.5. The parameter h,
expressed in km, can also be set by the user, defaulting
to 100.

3.2.2 | Splitting series into homogeneous subperiods (Stages
1–2) and fill in of missing data (Stage 3)

The estimated series are then used as references to obtain
series of anomalies (observed minus estimated values) on
which to detect outliers and changes in the average (break
points) by means of the well-established SNHT. The SNHT
test demonstrated good performance to detect break points
in the series (Guijarro, 2013b) defined by the highest differ-
ence of means before and after any time step, yet it could
give misleading results in the presence of more than one
inhomogeneity in the series (Begert et al., 2008; Rienzner
and Gandolfi, 2011). To minimize this possibility, the

FIGURE 2 Overview of the homogenization procedure in the Climatol package with the operations performed within each stage (Guijarro, 2018). Red
arrows show the progress from the main process (in blue) to the secondary one (in yellow). Shapes refer as follows: Rectangles (processes), parallelograms
(input/output data), and diamonds (conditional processes) [Colour figure can be viewed at wileyonlinelibrary.com]
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detection of shifts in the mean is performed in Stage 1 on
overlapping stepped temporal windows, followed by a Stage
2 in which the SNHT is applied to the entire series, as
intended by Alexandersson (1986). The statistic T measures
the inhomogeneity of a series in Alexandersson's SNHT (the
lower the T, the higher the homogeneity). After computing
T for all series, those with higher inhomogeneities are split
into two subseries in decreasing T order, as long as no refer-
ence series has been split in the same iteration with a similar
T value, and the procedure is repeated until the maximum T
value in all series is lower than a threshold, set to 25 by
default. This figure is conservative when compared to pub-
lished values of T, which lie around 12 and 15 for significant
levels of 0.05 and 0.01, respectively, and sample sizes over
10,000 (Khaliq and Ouarda, 2007), hence trying to avoid
false detections at the cost of letting pass the smaller inho-
mogeneities. However, these values were computed on
Monte Carlo ideal simulations, but in real series experience
shows that this test can give very different values depending
on the climatic variable studied, the degree of correlation
between the series and their temporal frequency (Guijarro,
2018). Therefore, the Climatol package lets the user adap-
tively set T thresholds after inspecting anomalies graphs and
histograms produced by a first run of the homogenization
function; in the package, and in the rest of this text, SNHT's
T statistic is referred simply as SNHT. The two break-point
detection stages (i.e., Stage 1 and 2) are followed by a Stage
3 devoted to fill in all missing data by replacing them with
their estimated values. Therefore, no correction is applied in
the two first stages, devoted only to detect the break-points
and split the series accordingly. Then, the missing data infill-
ing in Stage 3 builds complete series from every homoge-
neous subperiod without the need of computing correction
terms. In this case, the convergence criterion to halt the itera-
tive process of calculation of means is applied to the individ-
ual data rather than to the means. This procedure has proved
to give good results in some benchmarking comparisons
(Guijarro, 2011; and in the MULTITEST project http://
www.climatol.eu/MULTITEST/, last accessed 1 December
2018).

3.3 | Application of Climatol to the homogenization of
the DPWG series

As previously explained, the detection of break points in
daily series is compromised by the high variability of wind
gusts encountered at this fine timescale. To overcome this
issue, we first aggregated the observed DPWG series into
monthly time series for 1941–2016, on which Climatol was
applied using the normal ratio normalization (i.e., dividing
all values by their means, as previously explained in
Section 3.2.1). The same procedure was adopted after adding
the reanalysis series to the dataset, but as they begin in 1948,
homogenizations were performed for 1948–2016, also with

and without the NCEP/NCAR reference series. The results
of the homogenization are shown in Section 4.1.

The potential benefits of using reference series from the
NCEP/NCAR reanalysis were evaluated by calculating
mean correlations and distances between every single sta-
tion and their 4 and 10 closest references with a minimum
of 10 years of common data, with and without the support
of reanalysis data as reference. As these benefits are
expected to be higher when the density of observed series is
lower, mean correlations and distances were computed for
the whole common record of 1 January 1948 to
31 December 2016 (69 years) and also for three shorter
periods: (a) 1 January 1948 to 31 December 2002
(55 years); (b) 1 January 1948 to 31 December 1982
(35 years); and (c) 1 January 1948 to 31 December 1965
(18 years). The assessment of the added value of reanalysis
series in the homogenization of DPWG is described in
Section 4.2. Whilst the use of reanalysis series as a refer-
ence implicitly assumes their homogeneity, major inhomo-
geneities in reanalysis series typically coincide with major
changes in observation systems (Rienecker et al., 2011),
such as the widespread introduction of satellite data in the
late 1970s, and there are no such major changes known to
have a substantial effect in wind data around the 2003 break
points referred to in Section 4.2.

The detected break points were carefully checked against
the metadata from 35 stations selected to maximize the tem-
poral and spatial coverage (Figure 3). All metadata about
wind speed equipment history in these stations were
extracted from http://www.bom.gov.au/climate/data-
services/about-data-observations.shtml (last accessed
1 December 2018), where BoM offers abundant and out-
standing information about the location, data inventories,
site and skyline sketches at fixed times, and history of
changes in the instruments of any observatory, amongst
other observation details. These metadata are extensive from
1997 onwards, although they still only capture changes
proximal to the near vicinity (typically within 50–100 m) of
the observation site, whereas changes further away can be
important for wind speed, to a limited extent. They are much
more limited prior to 1997. The comparison of the break
points against real metadata is shown in Section 4.3.

Trends of the DPWG series before and after the homoge-
nization are difficult to compare using the complete
observed dataset, as most of the stations operated over a
short period. Therefore, we also limit the comparison of the
impact of the homogenization on the DPWG trends to the
35 selected series. This was evaluated by computing Ordi-
nary Least Squares (OLS; Wilks, 2011) linear adjustments
with time (independent variable or X axis) for: (a) the raw
series; (b) the homogenized series with and without the
NCEP/NCAR reanalysis references; and (c) the 35 NCEP/
NCAR reanalysis series of the closest grid-cell centres to the
locations of the 35 selected observatories. DPWG trends are
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expressed in metres per second per decade (m s−1 dec−1)
and the nonparametric correlation coefficient of Mann-Ken-
dall´s tau-b (Kendall and Gibbons, 1990) was used to assess
the statistical significance of linear trends at p < 0.05. The
assessment of trends between the raw and the homogenized
datasets was conducted for two periods: (a) 1948–2016; and
(b) 1971–2016, to quantify the impact of the density of
DPWG observations during the first decades on trends. The
comparison is described in Section 4.4.

Finally, comparison of all these results conducted to
choosing the most suitable lists of break points to use as
input to a last application of Climatol, this time to the origi-
nal DPWG series, to split them at the shift dates and proceed
to the reconstruction of all homogeneous subperiods.
Homogenized and complete DPWG were obtained by apply-
ing the infilling method implemented in Climatol. The final
series are presented in Section 4.5.

4 | RESULTS

4.1 | Homogenization of DPWG

Figure 4 shows an example of the homogenization of
DPWG series for station # 9789-Esperance (southwest of
Australia; location provided on Figure 3), with Figure 4a

displaying the detection of a break point with SNHT value =
40 in October 1989 (another split was found in a later itera-
tion in December 2009) and Figure 4b illustrating the recon-
struction of whole series from the three homogeneous
subperiods by the infilling procedure described above.

Along with this example, Figure 5 summarizes the num-
ber of splits applied to the DPWG series at the detected
break points, showing the split frequencies of the
1948–2016 homogenization without (Figure 5a) and with
(Figure 5b) the support of the NCEP/NCAR reanalysis refer-
ences. Both homogenizations coincide in detecting a maxi-
mum of break points (>40 splits) in 2011, also showing a
high frequency of splits between 2009 and 2012. However,
we found a secondary prominent maximum of break points
in 2003 (>40 splits) when NCEP/NCAR reanalysis refer-
ences are used, particularly during 2002–2005, which is
absent without using them. We carefully compared the
69 splits detected in 2010–2011 with the metadata of the sta-
tions, and 56 of them (i.e., 81.2% of break points) can be
explained by a change of automatic weather station type in
part of the network, from the Almos AWS to the Telmet
320. For instance, dates of the detected break points by
Climatol occurred in most cases within a month of the anno-
tated metadata. Yet no clear reason was found for the 2003
maximum detection when NCEP/NCAR references are used,

FIGURE 3 Location of the 35 Bureau of Meteorology operated stations used in the analysis. Names and Bureau of Meteorology station ID along with the
percentage of observations in the 1 January 1948 to 31 December 2016 (69 years) period are displayed. Darwin (14015) ceased operations on 24 December
1974 (due to cyclone Tracy) and recommenced in 1976 (after the station was re-built), Gove (14508) commenced records in 1986 and Weipa (27045) in 1994
[Colour figure can be viewed at wileyonlinelibrary.com]
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other than a sharp increment in the number of available data
(see Figure 1b) due to a change in the software that allowed
AWS to begin reporting DPWG data.

Table 2 displays the statistical summary of applying the
SNHT and RMSE metrics to the entire 548 DPWG dataset
for 1941–2016, and to the 546 DPWG series without and
with the use of the NCEP/NCAR references for 1948–2016.
The lower number of detected break points in the first
(1941–2016) homogenization compared to the second one
(1948–2016), whilst having two more series and seven more
years, is associated with the higher SNHT threshold (i.e., 30
instead of the default 25) applied to the overlapping stepped
windows in the Stage 1 of the homogenization approach to
avoid spurious break point detection at the extremes of the
windows. However, statistical summaries of the SNHT and
RMSE metrics do not much impact of these lower number
of break points when compared to the 1948–2016 homoge-
nization without the use of the NCEP/NCAR references. In
contrast, some differences are found when the NCEP/NCAR
references are used. For instance, the mean SNHT is lower
(i.e., 9.47 with NCEP/NCAR versus 8.59 without), which is
expected as DPWG series have been split more (i.e., 401
with NCEP/NCAR versus 384 without). Furthermore, the
RMSE of the estimations of the DPWG series when com-
pared to the observed values are also lower, which suggests
weaker correlations between the DPWG series and the rea-
nalysis series than with the nearest DPWG series, even in
case these series may be more far away.

4.2 | Assessment of the added value of NCEP/NCAR
reanalysis series

The use of the NCEP/NCAR reanalysis series as reference in
one of the tested homogenization approaches was to com-
pensate for the low correlation coefficients found between
sites in the DPWG dataset. Figure 6 shows a rapid degrada-
tion of correlation coefficients as distance increases, with
r values <0.5 at distances greater than 1,000 km, being even
nearly 0 or negatives for a high proportion of cases. How-
ever, Table 3 summarizes that correlation coefficients
between DPWG series and the NCEP/NCAR reanalysis ones
are consistently lower than with other DPWG series for all
combinations and periods. The only exception is the mean
correlation in the first 18 years (i.e., 1948–1965), but com-
puted with only four reference series (relatively far apart
compared to the much closer grid-cell outputs).

4.3 | Comparison with station metadata

In addition to having checked the metadata associated with
the 69 splits detected in 2010–2011 (see Section 4.1),
Figure 7 compares the dates of metadata related to changes
in wind instrumentation with break points detected in the
homogenization of the 35 selected series (see Figure 3 for
locations) with and without the support of the NCEP/NCAR
reanalysis references. The joint plot of metadata and break
point dates shows a general disagreement in both homogeni-
zation approaches, which can be attributed to the fact that
many changes in wind sensors do not necessarily introduce

FIGURE 4 Example of break point detection and correction at station #009789-Esperance located in Southwest Australia (see Figure 3). Part (a) shows the
standardized spatial anomalies are shown in blue bars, with the dashed red line marking the highest Standard Normal Homogeneity Test (SNHT) value
(40, labelled in black) in October 1989, where a first split was done. The green line informs about the distance to the nearest available daily peak wind gust
(DPWG) data amongst the series, and the orange line shows the number of references used (on the same logarithmic scale located at the bottom right). Part
(b) displays the series reconstruction (top) and correction factors (bottom) applied to the three homogeneous subperiods. Series are plotted as running annual
means (in the original km/hr units) to avoid overly noisy graphs, with original data in black and reconstructed series in different colours [Colour figure can be
viewed at wileyonlinelibrary.com]
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noticeable changes in the measurements (e.g., replacements
of masts, vanes or even cups anemometers of the same
brand). Furthermore, as noted in Section 3.3, metadata are
sparse prior to 1997, and not necessarily complete even after
that date. Therefore, comparison of break points with the
metadata of these 35 stations is of limited use for the
homogenizations.

4.4 | Comparison of DPWG trends

DPWG trends are assessed using the set of 35 long-term sta-
tions identified in Section 3.3 (and located in Figure 3).
Figure 8 displays the box plots of their OLS trends before
(raw series) and after the homogenization without and with
the support of NCEP/NCAR reanalysis series, also including
trends of the 35 NCEP/NCAR reanalysis grid-cell series clos-
est to the 35 selected stations. For the longest period
(i.e., 1948–2016; statistics in Table 4), the major result when
applying Climatol to homogenize the observed DPWG series
is the reduction in the range of site trends, ranging from

−0.648 to 0.405 m s−1 dec−1 (i.e., 1.053 m s−1 dec−1)
before the homogenization to −0.168 to 0.004 m s−1 dec−1

(i.e., 0.172 m s−1 dec−1) after applying it, hence increasing
the spatial consistency of those trends. In terms of the statisti-
cal significance of the reported DPWG trends, we also found
that after applying the homogenization there is an increase in
the number of stations showing negative trends, and the pro-
portion with significant negative trends, with 48.6% before
(37.1% significant at p < 0.05) and 97.1% after (77.1% sig-
nificant at p < 0.05) the homogenization; the opposite is true
for the site positive trends, with a lower percentage of sta-
tions and significance after applying the homogenization. In
fact, the declining trend of DPWG for the regional series is
larger in magnitude after (−0.073 m s−1 dec−1) than before
(−0.005 m s−1 dec−1) the homogenization. Furthermore, our
assessment of using the NCEP/NCAR reanalysis revealed a
strong impact on the magnitude of the reported DPWG
trends with both the homogenized series with reanalysis
(+0.040 m s−1 dec−1) and the 35 NCEP/NCAR reference

FIGURE 5 Number of splits per year applied in the homogenization of the daily peak wind gust (DPWG) series (a) without (1941–2016) and (b) with the
support of NCEP/NCAR reanalysis series (1948–2016). Note that the start year is different as these graphs are Climatol outputs from two homogenizations
covering different periods [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Number of detected break points (splits applied) and statistical summaries of the Standard Normal Homogeneity Test (SNHT) and root mean
square error (RMSE) metrics (in m/s) after the monthly homogenization of the daily peak wind gust (DPWG) series for 1941–2016, and for 1948–2016
without and with (*) the NCEP/NCAR reanalysis reference series

Time period Break points Parameter Min. Q1 Median Mean Q3 Max.

1941–2016 353 SNHT 0.90 4.70 8.00 9.69 13.25 42.20

RMSE 0.21 0.46 0.66 0.74 0.93 3.23

1948–2016 384 SNHT 0.90 4.50 7.70 9.47 12.70 48.30

RMSE 0.21 0.46 0.66 0.74 0.91 3.23

1948–2016* 401 SNHT 1.00 4.30 6.90 8.59 11.00 49.10

RMSE 0.19 0.53 0.75 0.83 1.06 3.22

Statistics refer to min. (minimum value), Q1 (first quartile), median, mean, Q3 (third quartile), and max. (maximum value) for the detected break points. RMSE are com-
puted for the estimated values, when original observations exist.
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series (+0.020 m s−1 dec−1) having an opposite positive ten-
dency of DPWG, with larger percentage of stations showing
positive and significant trends than negative ones. For the
shorter period (i.e., 1971–2016; statistics in Table 5), the
major finding is that differences in the mean trends between
the four datasets are lower compared to the longest
1948–2016 period; also showing a reduction in the range of
site trends for the homogenized DPWG data compared to the
raw one.

4.5 | Homogenized DPWG dataset across Australia

Results presented in the former sections suggest that the best
strategy to homogenize DPWG series is applying a homoge-
nization approach without the NCEP/NCAR reanalysis as
references. This is due to the strong influence of reanalysis
on the resultant homogenized series, positively biasing the
spatiotemporal variability of the resultant DPWG trends.
Therefore, the list of the 353 break points detected on the

monthly scale without the NCEP/NCAR references was pro-
vided to a last application of the Climatol package to:
(a) split original series at the shift dates; (b) reconstruct all
homogeneous subperiods; and (c) infill the DPWG series.
Our approach applying the Climatol V3.1 software resulted
in the first homogenized and complete DPWG dataset
(at daily basis) with 548 series across Australia spanning the
1941–2016 (76-years) period. Running annual means of
DPWG monthly averages for the homogenized dataset are
shown in Figure 9, together with the raw, homogenized with
and without the NCEP/NCAR reanalysis, and the NCEP/
NCAR reanalysis itself. It is noteworthy that prior to the
~1970s, large differences between the four datasets exist
(i.e., observations vs. reanalysis), which forces to different
long-term trends as shown in Table 4.

5 | DISCUSSION

Previously, homogenization of daily/monthly wind speed
series was assessed in five ways, being: (a) checking for a
good spatial consistency of trends of the resultant homoge-
nized series, which were also in agreement with trends esti-
mated from independent datasets (Wan et al., 2010);
(b) comparison of the detected break points with a list of sta-
tion relocations (Li et al., 2011); (c) increase of correlation
coefficients between candidate and reference series after
applying adjustments (Štěpánek et al., 2013); (d) confidence
in the reliability of reference series derived from reanalysis
or mesoscale climate model outputs (Azorin-Molina et al.,
2014); and (e) comparison of homogeneity test statistics
before and after the homogenization (Péliné-Németh et al.,
2014; Guijarro, 2015; Azorin-Molina et al., 2016). When
compared to the previous methodologies to homogenize
DPWG (see review in Table 1), the major advantages of our
approach using Version 3.1 of the R package Climatol are its
ability to: (a) automatically homogenize a large number of
series, including short-term ones; (b) use the closest refer-
ence series even though they do not have a common obser-
vation period with the candidate series or present missing
data; and (c) supply homogenized series, correcting

FIGURE 6 Scatter plot (correlogram) of the monthly correlation
coefficients versus distance (up to ~4,000 km) of a 100 sample of daily
peak wind gust (DPWG) series. Correlation coefficients were calculated
between the first differences of the DPWG series to minimize the influence
of inhomogeneities [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Mean correlation coefficients (r) and distances (in km) from the closest 4 and 10 references stations with a minimum of 10 years of common
observations in different periods, with and without reference series from the NCEP/NCAR reanalysis

Period Years No. of stations NCEP/NCAR

4 references 10 references

Mean r Mean dist. (in km) Mean r Mean dist. (in km)

1948–2016 69 139 With 0.575 108 0.546 180

Without 0.635 227 0.577 355

1948–2002 55 86 With 0.554 116 0.512 204

Without 0.580 291 0.517 463

1948–1982 35 58 With 0.547 122 0.513 215

Without 0.592 356 0.519 542

1948–1965 15 7 With 0.558 131 0.512 220

Without 0.501 626 0.532 1,244
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anomalous data (quality control by spatial coherence) and
filling in all the missing data. In this study, our novel strat-
egy has been tested using 548 stations across Australia

covering the 76-year 1941–2016 study period; with raw
DPWG series showing a diversity of spatiotemporal cover-
age and data characteristics.

The evaluation of the most suitable approaches to
homogenize raw observational series (in particular wind
speed and peak wind gusts) is challenging in climate
research, as true solutions are unknown by the homogeniza-
tion community, and only benchmarking exercises may
serve as a guidance; it thereby justifies, in a way, the differ-
ent approaches proposed in the last few years (e.g., Wan
et al., 2010; Azorin-Molina et al., 2014; Minola et al., 2016;
amongst others). In addition, metadata provide information
about when changes in instrumentation and observational
practices occurred that may produce measurement bias, yet
such metadata are often incomplete and can explain only
part of the detected inhomogeneities (Dunn et al., 2014). For
instance, in this study even in well documented and easily
accessible metadata, such as those provided by the Bureau
of Meteorology for Australia, quantifying the impact of
changes in the surroundings like new buildings or growing
trees or the cup anemometer working health (Azorin-Molina
et al., 2018c) is challenging. This is because not all metadata
produce break points in climate series, and/or not all meta-
data are reported, especially for older data. In particular,
wind observations can be affected by obstructions up to sev-
eral hundred metres from the observation site, and such dis-
tant influences are often not captured in metadata. Laapas
and Venäläinen (2017) found the same for wind speed data
in Finland, as less than half of the detected inhomogeneities
were verified by metadata. This means that homogenization
assessment methods solely based on metadata are not able to
be implemented herein. Metadata can be crucial for adjusting
shifts in series, particularly in cases where only a small num-
ber of well-documented stations are involved; this is the case
in a series of studies currently being conducted in
New Zealand for DPWG in Auckland and Wellington air-
ports (Safaei Pirooz et al., 2018). The main factor that has
affected the measurements in these cases at both stations is
the instrument and observing practice changeover in the
1990s. By using random process and linear system theory,
Safaei Pirooz and Flay (2018) proposed a set of gust-factor
ratios that converts the DPWG measurements of the former
recording system (Mark II Munro cup anemometer; gust
duration ~1 s) to an equivalent 3-s gust recorded by the new
anemometers (Vector A101 and Vaisala WAA151). This is a
clear example of the importance of reporting metadata for
climate studies.

Previous COST Action “HOME” (Venema et al., 2012)
and ongoing MULTITEST (Guijarro, 2016) method compar-
isons have focused their attention on monthly air tempera-
ture and precipitation series, and Killick (2016)
benchmarked daily air temperature series. Both climatic vari-
ables, that is, air temperature and precipitation, are com-
monly taken as paradigms of variables with quasi-normal

FIGURE 8 Box-and-whisker plots of daily peak wind gust (DPWG) trends
(in m s−1 dec−1) for all 35 selected stations computed from the original
(raw) series, the homogenized series without (Homog.) and with
(Homog. + NCEP/NCAR) reanalysis references, plus trends of the
35 NCEP/NCAR reference series drawn from the closest grid cell centre to
the selected series for two periods: (a) 1948–2016 (in yellow), and
(b) 1971–2016 (in light blue). The median (thick black line), the 25th, and
75th percentile ranges (boxes) are shown. The whiskers extend to the most
extreme data points that are no more than 1.5 times the interquartile range
from the box, with data outside these limits (outliers) being plotted as small
circles. Detailed statistics are provided in Tables 4 and 5 [Colour figure can
be viewed at wileyonlinelibrary.com]

FIGURE 7 Dates of the break points detected in the homogenizations of
the 35 selected stations with (green circles) and without (red circles) the
NCEP/NCAR references, plotted on reported metadata dates related to wind
instrumentation changes (blue crosses) [Colour figure can be viewed at
wileyonlinelibrary.com]
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and zero-limited L-shaped Probability Density Functions,
respectively (Venema et al., 2012). However, synthetic daily
wind databases and inhomogeneities introduced to use them
for benchmarking homogenization methods should be care-
fully prepared to reliably reproduce the inhomogeneities
found in real series around the world. Therefore, until this
benchmarking of wind data is undertaken, the approaches
summarized in Table 1 are the only ones available to assess
the homogenization of wind speed observations, with most
previous studies only applying basic quality controls.

As wind is highly variable in time and space, quality con-
trol and homogenization methods applicable for other climate
elements, such as the use of reference sites, may be inappro-
priate (Jakob, 2010). Azorin-Molina et al. (2014; pp. 3697)
stated “in areas of complex topography surrounded by
ocean/sea surfaces, wind is not solely driven by surface pres-
sure gradients (i.e., it is also governed by Earth´s surface
friction force), and the spatial dependency among observato-
ries can markedly degrade over short distances.” Recently,
the influence of network density on homogenization has been

FIGURE 9 Running annual means of daily peak wind gust (DPWG) monthly averages for raw, homogenized with and without the NCEP/NCAR reanalysis
across Australia for 1948–2016. The same for the NCEP/NCAR reanalysis but using the mean wind speed (i.e., with lower values compared to DPWG)
[Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 4 For all 35 selected stations the mean, maximum, minimum, and range of daily peak wind gust (DPWG) trends (all having units of m s−1 dec−1),
and % of positive and negative (and significant) stations with DPWG trends computed from the monthly aggregates of the original (raw) series and the
homogenized series with (Homog. + NCEP/NCAR) and without (Homog.) reanalysis references, plus trends of the 35 NCEP/NCAR reference series drawn
from the closest grid cell centres to the selected station locations. Statistics are reported for 1948–2016

Datasets
Mean
(m s−1 dec−1)

Max.
(m s−1 dec−1)

Min.
(m s−1 dec−1)

Range
(m s−1 dec−1)

+ trends
(% of 35)

+ and sig.
trends (% of 35)

− trends
(% of 35)

− and sig.
trends (% of 35)

Raw −0.005 0.405 −0.648 1.053 51.4 34.3 48.6 37.1

Homog. −0.073 0.004 −0.168 0.172 2.9 0.0 97.1 77.1

Homog. +
NCEP/NCAR

0.040 0.219 −0.126 0.345 71.4 45.7 28.6 8.6

NCEP/NCAR 0.020 0.147 −0.058 0.205 62.9 40.0 37.1 8.6

TABLE 5 As in Table 4, but for 1971–2016

Datasets
Mean
(m s−1 dec−1)

Max.
(m s−1 dec−1)

Min.
(m s−1 dec−1)

Range
(m s−1 dec−1)

+ trends
(% of 35)

+ and sig.
trends (% of 35)

− trends
(% of 35)

− and sig.
trends (% of 35)

Raw 0.039 0.442 −0.681 1.123 54.3 40.0 45.7 17.1

Homog. 0.006 0.148 −0.083 0.231 45.7 8.6 54.3 0.0

Homog. +
NCEP/NCAR

−0.011 0.272 −0.205 0.477 45.7 22.9 54.3 28.6

NCEP/NCAR −0.017 0.171 −0.102 0.273 22.9 11.4 77.1 25.7
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quantified (Gubler et al., 2017). For instance, for maximum
wind gusts, Brázdil et al. (2017) stated that spatial correlation
coefficients between stations decrease more strongly in rela-
tion to station distance rather than elevation and are higher
(i.e., better) in winter than in summer, although the seasonal
results are specific to their study area (the Czech Republic)
and could not be automatically assumed to apply in for exam-
ple, tropical or subtropical climate. For Australia, these fac-
tors come into play. Low correlations (i.e., typically r < 0.60)
effectively compromise the reliability of reference series. Yet
previous applications of Climatol (albeit using earlier ver-
sions) to the homogenization of wind series, it has been
shown that inhomogeneities can be detected despite such low
correlations (Azorin-Molina et al., 2016, 2018b). This is
because, in general, current homogenization procedures
detect changes in the mean, and errors in this parameter are
much lower than those of its individual components. In the
case of low correlations, missing data in the original series
will be infilled with estimated data that may suffer from sub-
stantial errors, but their probability distribution is expected to
be adjusted to the population characteristics, in the same
way as climate model projections try to predict climate rather
than day-to-day weather of the forthcoming decades
(IPCC, 2014).

The approach demonstrated here identifies trends in
monthly data first (using a three-stage iterative process to
infill missing records and identify break points in the time
series according to a moving window then whole of record
approach), then using the identified break points apply the
same approach to the daily time series to produce an homo-
geneous infilled daily time series. The results show that the
range of site trends have been substantially reduced, indicat-
ing that the homogenized records are potentially more reli-
able (assuming the homogenization procedure is robust).
Moreover, the procedure identifies a regional negative bias
an order of magnitude greater than otherwise found. This
discrepancy found between raw trends before the homogeni-
zation (i.e., −0.005 m s−1 dec−1) and after applying our
approach (i.e., −0.073 m s−1 dec−1) for 1948–2016, can be
due to the low density of observations at the beginning of
the series (1940s–1960s); e.g., trend differences between
raw (i.e., +0.039 m s−1 dec−1) and the homogenized
(i.e., +0.006 m s−1 dec−1) DPWG dataset are of lesser mag-
nitude for the recent 1971–2016 period (see Figure 8 and
Table 5).

In addition to the straight application to site data alone,
we also assessed the homogenization of DPWG series with
and without the support of reanalysis data (i.e., the NCEP/
NCAR reanalysis as reference). The results of the two
homogenization approaches have been compared by asses-
sing their residual SNHT and RMSE of the estimations of all
data from their closest reference series (i.e., neighbouring
stations or NCEP/NCAR reanalysis output). Comparison of
the break points with wind instrumentation metadata at

35 near-complete stations did not help determine which of
the two procedures was optimal. Their DPWG trends before
and after homogenization (Figure 8 / Table 4) showed the
expected reduction in the dispersion of their values if no rea-
nalysis had been used, with the NCEP/NCAR series show-
ing opposite positive trends in DPWG. These results,
together with the low correlations between DPWG series
and their closest NCEP/NCAR series, lead us to advocate
homogenization without use of the NCEP/NCAR reanalysis
output as supporting reference series. The poor performance
of the NCEP/NCAR series as reference is because reana-
lysed data represent space-averaged and time-averaged wind
speeds (i.e., instead of DPWGs), and the shortcomings in the
simulation of near-surface layer processes have pointed out
by for example, McVicar et al. (2008) and Pryor et al.
(2009). This allowed us to perform homogenization to the
entire 1941–2016 period (if the NCEP/NCAR reanalysis out-
put was deemed suitable, then homogenization could only
commence in 1948 from when these reanalysis outputs are
available). Therefore, the dates of the break points detected
with this procedure at monthly basis were used to split the
daily gust series, which are then homogenized without need-
ing the monthly corrections. The development of this
method produced a homogenized dataset of 548 DPWG
series with all their missing data infilled for the 76-year
1941–2016 period. The new DPWG database will undoubt-
edly help to better understand the spatiotemporal variability
in the frequency and magnitude of DPWG across Australia.
This enhanced understanding is important for several appli-
cations as mentioned in Section 1. Future work entails devel-
oping relationships between DPWG and average wind speed
with the aim of developing DPWG grids at the same daily
time step and 0.01� resolution as the already available
all-Australian daily average wind speed grids (McVicar
et al., 2008).

6 | SUMMARY AND CONCLUSION

The main conclusions of this study can be summarized as
follows:

1. The approach for DPWG homogenization is based on
the detection of break points on the monthly scale, the
splitting of the daily series into homogeneous subpe-
riods, and their homogenization without needing the
monthly corrections.

2. In spite of the low intersite correlations, the homogeni-
zation procedure implemented using Climatol Version
3.1 detected 353 break points in the 548 Australian
series with DPWG data for 1941–2016. This resulted in
an increase in the number of stations showing significant
negative trends, with the regional DPWG trend being
larger in magnitude after (−0.073 m s−1 dec−1) than
before (−0.005 m s−1 dec−1) the homogenization; and
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the range of site trends was significantly reduced indi-
cating increased reliability of estimated trends.

3. Correlations between the observed DPWG series
decrease strongly as the distance increases, but the use
of the NCEP/NCAR reanalysis series as references does
not address this issue adequately. This is because reana-
lysis series represent mean wind speed (both spatially
and temporally) instead of gust winds observed at a sta-
tion, and it is also related to the quality of the reanalysis.

4. The quality of the detection of break points in DPWG
time series cannot be only based on the availability of
metadata. Only a small proportion of the detected break
points are supported by metadata because not all meta-
data necessarily produce a shift in the mean, and not all
relevant metadata are reported (especially in the early
decades). However, metadata served to support the reli-
ability of the Climatol in detecting 69 shifts in
2010–2011, supporting the use of this approach in iden-
tifying these inhomogeneities.

5. This study has produced the first quality-controlled,
homogenized, and large (548 series) DPWG dataset that
will serve for assessing long-term variability and trends
of this extreme weather-related hazard across Australia
for 1941–2016, with direct implications for many socio-
economic and environmental applications.
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