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Coastally-Trapped Disturbances caused by the 
Tramontane wind on the North-Western Mediterranean: 
Numerical study and Sensitivity to Short-wave Radiation 

Abstract 

The Tramontane-Cierzo wind system is a recurrent feature of the north-western 

Mediterranean basin in front of Catalan coast (NE Spain). Associated with this feature, northeast 

wind surges affect occasionally the coast and become a weather hazard for low-level aircraft 

operations, affecting for example the Barcelona international airport. This paper first reports these 

surges characterizing them as Coastal-Trapped Disturbances (CTDs). Climatological features are 

described, showing that CTDs occur frequently during the warm season and between the 

afternoon and evening. We classified CTDs related to two synoptic patterns related to the location 

of a mid-level tropospheric geopotential trough and the Iberian Peninsula: pattern A, with the 

trough crossing eastwards north Spain; and pattern B, with the trough over the Mediterranean, 

after crossing the Iberian Peninsula. To study the CTDs in detail, numerical simulations were 

conducted using the non-hydrostatic and convection-permitting NWP model HARMONIE-

AROME. Two cases, one for each synoptic pattern, were studied showing that CTDs generate in 

the discontinuity between cool outflows and warmer air progressing southward as a density 

current, trapped by the mountain ranges parallel to the coastline. Cool outflows may have two 

different sources: in Pattern A the origin of the cold air is the Tramontane itself, while in Pattern 

B convective outflows associated with storm downdrafts play this role. Both cases show 

similarities with CTDs studied on the California coast, showing an antitriptic and ageostrophic 

flow behind the CTD. An additional numerical sensitivity experiment was conducted by varying 

the short-wave radiation to explore the effects of diabatic warming on CTDs. It is demonstrated 

that a large warming influences on CTDs by enhancing the potential temperature gradient 
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between the density current and the environment modulating its intensity and speed. 

Keywords: coastal-trapped disturbances, low-level circulation, tramontane, sensitivity 

analysis, numerical simulation, HARMONIE-AROME, weather hazards, aeronautical hazards, 

western Mediterranean 

1. Introduction 

Coastal-Trapped Disturbances (CTDs) are a particular case of orographically trapped 

disturbances, defined as a lower atmosphere perturbation "laterally confined against a 

suitably large mountain barrier by Coriolis effects and, vertically, by stable stratification" 

(Reason, 1994). Typical CTD length scales are of the order of 1000 km alongshore and 100 

km cross-shore, a life span of 2 to 6 days, and their presence usually implies a wind field 

reverse and strengthening as well as fog and stratus (Reason and Steyn, 1990). CTDs have 

been studied in many regions worldwide where dominant atmospheric low-level circulation 

and geographical features favour their occurrence, such as the Pacific coast of North America, 

where they are referenced as coastally trapped wind reversals (CTWR) (e.g. Mass and 

Albright 1987; Nuss et al. 2000; Rahn and Parish 2008; Parish et al. 2015), South Africa (Gill, 

1977; Reason and Jury, 1990) and south-eastern Australia (Reason, Tory and Jackson, 1999) 

among others. 

In this paper, we examine mesoscale circulations in the North-Western Mediterranean 

basin with many similar features to classical CTDs but exhibiting shorter spatial and temporal 

scales than those previously mentioned. Specifically, Mediterranean CTDs examined have 

horizontal scales not larger than 200 km alongshore, 50 km cross-shore, the time span is of 

the order of a few hours instead of a few days, and they do not bring fog or low stratus. 

However, these events do produce a sudden change in the wind field direction and strength 



3 

 

which is hardly captured by operational NWP models, disturbing aeronautical takeoff and 

landing operations in coastal airports, as has been reported at the Barcelona international 

airport. Moreover, this study may contribute to a better understanding of low-level 

circulations of the region which play a crucial role in providing a source of moisture for 

heavy precipitation events as pointed out in recent case studies examined in the framework 

of the HyMeX programme - see for example Lee et al. (2017), Röhner et al. (2016) and Bouin 

et al. (2017), the last two dealing with the an extreme  event that holds the all-time record for 

4, 5 and 6h rainfall amounts (216 mm, 248 mm and 275 mm) as reported by Gonzalez and 

Bech (2017). 

The main aim of this paper is to provide an overview and description of Coastally-

Trapped Disturbances caused by the Tramontane wind on the North-Western Mediterranean 

to improve our understanding of the mechanisms involved in their formation and evolution. 

To accomplish these objectives, a background of regional wind-systems in the area of study, 

the Tramontane-Cierzo winds, is provided in Section 2 and a brief climatology of observed 

events is presented in Section 3. The HARMONIE-AROME NWP model used and the 

sensitivity experiments performed are described in Section 4. Section 5 presents and 

describes the evolution of two different simulated events. Finally, Section 6 compares the 

sensitivity of the surges to short-wave radiation. A brief summary and conclusions are 

presented in Section 7. 

2. Background and Area of study 

Tramontane-Cierzo wind system is the western part of Mistral-Tramontane wind 

system and takes place during synoptic north and north-western flow events over the North-

Western Mediterranean basin, when the incident flow characterized by a low Froude number 
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hits the north side of Pyrenees mountain range (Georgelin and Richard, 1996). This 400 km 

long west-east oriented range is a major sink of meridional momentum (Bessemoulin et al., 

1993) forcing the north and north-west low-level flow to go around both the west and east 

sides of the mountain range, progressing through two gaps: Ebro valley on the right-hand 

side of the flow direction (Cierzo wind) and the wide area between Pyrenees and Massif 

Central on the left-hand side (Tramontane wind) as shown in Figure 1a. These ducts favour 

an additional acceleration to both flows and canalize them towards the Mediterranean Sea. 

The interaction of the flow with the mountain barrier produces a perturbation in the surface 

pressure field at sub-synoptic scale (Bénech et al., 1998) that creates a mesoscale pressure 

dipole with a high-pressure system windward the Pyrenees mountain range and a low system 

leeward (Figure 1a). 

Tramontane-Cierzo wind system was widely studied during PYREX experiment 

(Bougeault et al., 1990, 1997; Genovés et al., 1994; Flamant and Pelon, 1996). Bénech et al. 

(1998) and Koffi et al. (1998) showed a flow asymmetry during northerly flows induced by 

the Coriolis effect which causes Tramontane to be stronger than Cierzo. Campins et al. (1995) 

studied the main structure of the Tramontane and found a low-level jet just below an inversion 

layer located around 1000 m in altitude. They also found that Tramontane was at first 

accelerated by the pressure gradient force but partially compensated by the frictional effect. 

When the Tramontane reaches the sea, the frictional effect abruptly drops off, the acceleration 

is enhanced and wind speed reaches its maximum intensity offshore over the Gulf of Lion 

(Vazquez, 1995; Georgelin and Richard, 1996). Once the wind acceleration reaches its 

maximum, the flow becomes inertial and is decelerated by the friction becoming a density 

current (Campins et al., 1995). Between the outflowing cold dry air of the Tramontane and 

the previously existing warm and moist Mediterranean air a cold-front is created.  
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Due to the Coriolis force Tramontane turns anticyclonically (Campins et al., 1995) 

forming a recurrent convergence line at the Catalonian northeast coast and Balearic Sea when 

it meets the relatively warm-dry Cierzo wind (Pascual and Callado, 2002) (Figure 1a).  This 

convergence line is not always static, and occasionally moves southward reaching Barcelona 

as a northeast (NE) surge, where the wind may get reinforced, changing suddenly of direction 

–from SW to NE– and speed, which can exceed 70 km h-1. This wind surge occurs sometimes 

with no significant cloudiness and becomes a weather hazard for aircrafts during the take-off 

and landing operations at the Barcelona airport (Gonzalez and Pascual, 2013). Aircraft pilots’ 

reports describe this phenomenon as a sudden change from tailwind to headwind between 

2000 and 3000 ft. when they land at the Barcelona airport from the south-west using the 

runway 07 (landing in direction 70º in order to land against the wind). 

In Catalonia there are two mountain ranges parallel to the coast (Figure 1c). Catalan 

Coastal Range is the nearest to the sea (less than 1 km away), and has a height scale of about 

300 m with the highest peaks between 600 and 750 m. Catalan Pre-Coastal Range is about 

20 km away from the sea, and is higher than the latter with a height scale of about 1000 m 

and the highest peaks over 1700 m. The main gap over both mountain ranges is the relatively 

narrow Llobregat river valley (about 10 km wide), located a few kilometres south-west of 

Barcelona. 

3.  Overview of NE surges at Barcelona 

We checked the observational database of AEMET (Spanish Meteorological Service) 

to characterize climatological aspects of relevant NE surges at Barcelona associated with 

Tramontane from 2010 to 2016. We selected the cases when the wind gusts at the AEMET 

surface station 0201D in Barcelona Meteorological Center exceeded 14 m s-1 (50 km h-1) 
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and, its direction was comprised between 20º and 100º (roughly NE). At the same time wind 

over Reus surface station, 100 km south of Barcelona, had to be blowing from directions 

between 180º and 360º (westerlies associated with the Cierzo) in order to filter synoptic 

eastern and north-eastern flows. Finally, a visual inspection of observational data 

(temperature, humidity and wind) at Barcelona station 0201D checking for the presence of a 

sudden air mass change allowed us to accept or reject each case individually. Notice that we 

have chosen 14 m s-1 gusts in Barcelona as a threshold to filter out weaker surges. 

Table 1 shows a list of the events occurred between 1 January 2010 and 1 December 

2016. Although Tramontane blows often in the cold season, when the synoptic circulation 

associated with the jet stream moves to a low latitudes, most episodes are comprised between 

March and October. This suggests a seasonal behaviour with a maximum centred in the warm 

season. Notice that NE surges are more common in spring or autumn than in summer, due to 

the seasonality of the Tramontane. Furthermore, Table 1 shows a preferred time of occurrence 

of the wind surges, with a maximum between the afternoon and the evening. Both facts 

suggest that land warming is a key ingredient in these surges as will be discussed in detail in 

Section 5. 

A qualitative analysis based in operational synoptic and mesoscale charts and satellite 

imagery allows us to classify NE surges into two main different synoptic patterns (shown at 

Table 1).  

 Pattern A is linked to a 500 hPa synoptic trough crossing north Spain with an 

associated surface cold front. When the front arrives at the Gulf of Lion, the cold 

surge spreads over the Balearic Sea forming a meso-alpha front that eventually 

reaches Barcelona. This pattern is often associated with a NE surge overrunning the 

well-established southwestern sea-breeze. 
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 Pattern B is associated with a synoptic trough that has already crossed Spain and is 

located over the Mediterranean Sea. Low level winds behind the trough flow from 

west or north-west. Tramontane blows directly towards the Mediterranean. We 

found that all cases in this pattern presented convective clouds with cool pools 

flowing out to the south forming a mesofront that eventually could reach Barcelona. 

On this pattern, NE surges often overruns the established western wind (associated 

with the Cierzo).  

Of the 28 events found from 2010 to 2016, there are four events (14%) that could not 

be classified into patterns A and B (events E01, E05, E09 and E1). Two representative events, 

one for each pattern, are studied in Section 4. 

4. Methodology 

4.1 NWP model description 

The HARMONIE-AROME (hereafter HARMONIE) meso-scale convection-

permitting non-hydrostatic NWP model (Bengtsson et al., 2017) has been used to simulate 

and investigate Tramontane-Cierzo system and CTDs in north-western Mediterranean coasts 

(see simulation domain in Figure 1b). HARMONIE is developed by the HIRLAM 

consortium and it is based on the ALADIN consortium AROME model (Seity et al., 2011) 

within the framework of the HIRLAM-ALADIN consortiums’ joint project. 

HARMONIE version 37h1.1 has been integrated on event simulations with 2.5 km 

horizontal resolution, 65 sigma-pressure hybrid vertical levels and an integration time step 

of 60 seconds. With this resolution is expected to simulate properly CTDs and their related 

meso-scale flows due to an accurately enough representation of the Pyrenees mountain 
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massif, the coastal mountain ranges and the coastline. Moreover, the area of the simulation 

is wide enough to include all mesoscale circulations related to Tramontane-Cierzo system. 

HARMONIE has been run on case studies up to 24 hours with outputs every hour taking 

boundary conditions hourly from the global ECMWF-IFS at T1279 (~ 16km). 

4.2 Sensitivity experiments 

HARMONIE sensitivity experiments of Tramontane-Cierzo system and CTDs due to 

diabatic heating have been done varying constant solar value (S) on Morcrette short-wave 

radiation scheme (ECMWF, 2015) called every 15 minutes. Several experiments with distinct 

S values have been investigated but only two relevant ones are shown in this paper: 

 SW06: where S is multiplied by a 0.6 factor decreasing its original value by 

40% and, 

 SW12: where S is multiplied by a 1.2 factor increasing its original value by 

20%. 

The results are discussed on Section 5. 

4.3 Analysis of the forcing mechanisms  

In order to estimate the dynamical force balance and to validate if the forcing 

mechanisms of the CTD in Barcelona are comparable to the CTWR studied by Rahn and 

Parish (2008), we computed each term of the horizontal equation of motion: 

𝜕𝑉

𝜕𝑡⏟
ACC

= −𝑉 ∙ ∇𝑉⏟    
𝐴𝐷𝑉

−∇Φ⏟
𝑃𝐺𝐹

−𝑓𝑘 × V⏟    
𝐶𝑂𝑅

+ 𝑅            (1) 

simulated by HARMONIE at 1000 hPa. The left-hand side of Equation 1 corresponds to the 

local acceleration of the horizontal wind (ACC), the first term on the right-hand side is the 
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horizontal advection of the wind (ADV), the second term is the pressure gradient force 

(PGF), the third term is the Coriolis force (COR), and the last term is the residual (R) that 

includes surface drag, turbulent mixing and the vertical advection of the wind. 

5. CTDs Case Studies  

To examine how CTDs evolve in the NW Mediterranean and to explore the forcing 

that reinforces the wind in the area of Barcelona we have studied in detail two cases, each 

one representative of each synoptic pattern presented in Section 2. To ensure the reliability 

of the forcing, we have chosen cases where Tramontane outflow and CTDs were well 

simulated by the model HARMONIE. 

5.1 Pattern A: 28 May 2013 

5.1.1 Synoptic setting 

Figure 2 shows the synoptic ECMWF analysis on 28 May 2013 at 12:00 UTC. At 500 

hPa pressure level (Figure 2a) there is a well-defined trough with a cold core over northern 

France, with its axis extended along northern Iberian Peninsula. The diffluent downstream 

section of the trough is located over NW Mediterranean, and a strong temperature gradient 

surpasses the Pyrenees from northwest to southeast. A temperature gradient along the 

Pyrenees and the Gulf of Lion is also evident at 850 hPa where a cold front is crossing (Figure 

2b). Behind the front, Tramontane-Cierzo system develops. A high sea level pressure (SLP) 

gradient between the high-pressure area around the Azores and the low-pressure area at the 

English Channel yields to a long and strong north-western flow over the Pyrenees. The 

synoptic SLP field is perturbed over the Pyrenees, where the characteristic mesoscale 

pressure dipole can be identified. 
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5.1.2 Mesoscale evolution 

Figure 3 shows the evolution of the episode using Meteosat Second Generation High 

Resolution Visible (MSG HRVIS) images and HARMONIE NWP model output. HRVIS 

(Figure 3a) images show at 12:00 UTC cloudy skies over a large portion of the North-Western 

Mediterranean, mostly inland, and open cells over the western Pyrenees associated with the 

cold air mass. Despite there are not many shadows since the sun is close to the zenith, some 

enhanced clouds with a rope shape can be observed. These enhanced clouds are placed where 

HARMONIE simulation shows a strong convergence zone (Figure 3b), most of them related 

to an abrupt change of pseudo-equivalent temperature that exceeds 10 K in few kilometres. 

Steep changes in pseudo-equivalent temperature (θep) are associated with air mass boundaries 

and rope shape convergence zones where these two air masses meet (Figure 3c). 

According to the HARMONIE simulation, three low level air masses collide into a Y 

shape convergence zone over Catalonia. Figure 4 shows 1000 hPa temperature and moisture 

content of each air mass at 16:00 UTC. Both variables define θep depicted at Figure 3e. 

Continuous shaded colours (temperature, moisture and θep fields in Figure 3 and Figure 4) 

highlight the abrupt changes at the air mass boundaries. Tramontane air mass (TrAM) is cold 

and dry with temperatures around 287 K and specific humidity widely below 7 g kg-1. This 

air mass is related with strong northern winds that make up the Tramontane. Cierzo air mass 

(CiAM) is very dry (below 4 g kg-1), and warm (293 K), especially downstream.  

As explained in Section 2, TrAM and CiAM have the same common source over the 

Atlantic Ocean and they form when the Atlantic air mass is forced to go around the Pyrenees. 

TrAM retains almost all its moisture by going across a flat and relatively low altitude zone. 

Conversely, CiAM loses almost all its moisture when crosses over mountains west of the 

Pyrenees and is diabatically heated during the daytime hours as it moves along the Ebro 
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valley (see Figure 3). At night, this air mass loses quickly its heat (not shown) following a 

diurnal cycle behaviour. The remaining air mass located over the Mediterranean Sea (Figure 

4) was already described by the pioneering work of Jansà (1959) who called it Mediterranean 

air mass (MedAM). MedAM is the most representative air mass during the warm season over 

the Mediterranean Sea when the air becomes relatively stagnated and is characterized by a 

large amount of low-level moisture with values exceeding 9 g km-1 and temperatures slightly 

higher than TrAM. Considering the buoyancy of the MedAM as zero, TrAM has negative 

buoyancy and CiAM positive buoyancy. Broadly, changes in moisture are greater than 

changes in temperature. This can be seen clearly at Figure 3 where TrAM and CiAM have 

low values of θep and, in contrast, MedAM presents large values. 

HRVIS in Figure 3d shows the advance of the TrAM boundary corresponding to the 

Tramontane outflow leading front, against MedAM and CiAM at 16:00 UTC. HARMONIE 

shows a thermal difference of about 3 °C between TrAM and MedAM in the alongshore 

cross-sections (Figure 5a) suggesting that flow is driven by the thermal contrast as a density 

current where TrAM acts as a cold pool spreading over the Mediterranean. From 16:00 UTC 

at the leading edge of the Tramontane, a strong wind surge next to the coast north of 

Barcelona can be seen. This surge is enhanced at the coast, and it weakens offshore like a 

classical CTD. Behind the Tramontane low level front, wind is strong and mainly oriented 

alongshore heading to southwest (Figure 3f). However, there is a weak on-shore component 

that can be related as the result of both the curvature effect of the Coriolis force (Campins et 

al., 1995) and the thermal up-slope flow over land. This small inland component is a key 

element in the generation of the CTDs. 

According to the observational data shown in Figure 6, NE surge reached Barcelona 

at 15:20 UTC. In few minutes, the wind shifted and intensified with a gust of 18.8 m s-1 (67.7 
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km h-1), and the temperature dropped 3.8 °C in 10 minutes and 6 °C in 30 minutes. However, 

the outflow simulated by HARMONIE at 16:00 UTC is located north of Barcelona, being 

the front delayed about 1 hour. Though there are some important differences such as the 

velocity of the front, HARMONIE reproduces quite well its movement. A comparison 

between simulated 1000 hPa winds and data from the Advanced Scatterometer (ASCAT) 

observations of METOP satellite passes at 20:24 and 21:10 UTC (not shown) also supports 

the consistency of the simulation with observational data. This suggests that HARMONIE is 

able to simulate the key forcing mechanisms of the event, although some of them might be 

underestimated. 

5.1.3 Cross section analysis 

The alongshore cross-section at 16:00 UTC in Figure 5a shows a large stratification 

over the outflow which has a clear density current structure. The head and the body of the 

density current reach approximately 850 hPa. The head can be identified in the HRVIS 

imagery as a rope cloud (Figure 3a,d) as a consequence of the forced lift while the strongly 

stratified capped environment does not allow strong updrafts over a deep layer. Due to the 

stratified stability, some Kelvin-Helmholtz waves are developed behind the front enhancing 

the turbulent mixing between the upper MedAM and the lower TrAM similarly to the 

numerical simulations described by Xu et al. (1996). 

Figures 3h and 3i show the interaction between the three air masses simulated by 

HARMONIE at 18:00 UTC, when the mesofront along the coast reaches CiAM. The outflow 

boundary increases its thermal difference to 5 K and the convergence intensifies. Figure 5c 

shows that CiAM, with lower buoyancy, is forced to overlay the front, increasing the static 

stability of the air column behind the head front, which leads to a reduction of the boundary 
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layer height and a buffering of the Kelvin-Helmholtz waves (see white arrow). By contrast, 

head wave deepens beyond 800 hPa, probably due to the environmental vertical shear that 

points in the direction of outflow motion (Xue, 2000). Notice that the perturbation in the 

wind field at 18:00 UTC (Figure 3i) extends towards the sea about 50 km, which 

approximately corresponds to the Rossby radius for this flow (Table 2) which is dynamically 

coherent with CTDs. 

Figure 5b shows the cross-shore A'B' section at 16:00 UTC before the arrival of the 

density current front, illustrating that MedAM is restricted to the bottom layer of the 

atmosphere over the sea with weak cross-shore wind. Inland, CiAM flows strongly offshore 

over the MedAM. At 18:00 UTC after the front crosses the A'B' section (Figure 5d) a MedAM 

thin layer (higher θep) remains between the less buoyant TrAM on the bottom and the more 

buoyant CiAM on the top. Behind the front, low level on-shore wind is blocked by the 

mountain, as suggested by the wind deceleration and the MBL step. 

In the last steps of the episode, the outflow front advances steadily until 20:00 UTC 

and then the wind speed suddenly drops. The front becomes stationary at 22:00 UTC around 

100 km south of Barcelona. It is worth to remark that θ and θep of CiAM, unlike TrAM and 

MedAM, drop in the afternoon a few degrees (not shown) as a response to the diabatic 

cooling associated with the diurnal cycle and the low moisture content of the air mass. As a 

result, there is a decrease in the thermal contrast, and therefore in the density difference of 

the boundary that weakens and may eventually stop the density current. 

5.1.4 Scale analysis 

An approximate calculation indicates a high static stability of the outflow with a 

Brunt-Väisälä frequency value (N) for the boundary layer approximately 1.5·10-2 s-1. A scale 
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analysis indicates the degree of blocking of the hydrodynamic regime by the topographic 

features: it is almost blocked by the Coastal Range – values of mountain Froude number (Fm) 

and Burger number (B) of 1.1 and 9, respectively, as seen in Table 2 –, and totally blocked 

by the Pre-Coastal Range – Fm ~ 0.3 and B ~ 15. Values for Coastal Range are close to the 

largest blocking response described by Overland and Bond (1995) that is, a stepped flow with 

a Fm ~ 1 and B > 1.  

5.1.5 Forcing analysis 

Figure 7a shows the motion equation terms at 16:00 UTC when the simulated front is 

still mature and has not reached Barcelona yet. The largest gradient on the height field and 

the convergent wind determines the front position. In the bottom left of the plot, where the 

CiAM is present, the advection term is dominant and is pointing eastwards. The residual term 

is opposed to advection and almost balances the flux. In the bottom right of the plot, 

corresponding to the MedAM, the balance of the wind is quasi-geostrophic (the PGF 

counterweights Coriolis force cancelling the acceleration). The edge of the outflow is mainly 

accelerated by the PGF towards the south-west due to the strong pressure gradient at the 

density current front. Advective and residual components compensate some PGF forcing. 

Behind the front, weak Coriolis force provides a small rotation onshore. Scale analysis of the 

Rossby number around 1 (V ~ 10 m s-1 and L ~ 100 km), suggests the rotational forces affect 

the flux to some extent.  

At 19:00 UTC (Figure 7b), behind the front, where the outflow is well-established, 

the balance within the TrAM becomes almost antitriptic (Schaefer and Doswell, 1980), with 

the residual balancing the PGF. This analysis suggests that forcings at low levels in this event 

are very similar to those in the CTWR studied by Rahn and Parish (2008), and therefore we 
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could conclude that motion is little scale-dependent and well described by a density current 

ageostrophic acceleration. 

5.2 Pattern B: 30 March 2013 

5.2.1 Synoptic setting 

Temperature and geopotential field analysis at 500 hPa on 30 Mar 2013 at 12:00 UTC 

(Figure 8a) shows a broad trough with its axis located eastward of the Iberian Peninsula. NW 

Mediterranean coast is therefore located below the upstream branch of the trough and 

eastward of a small ridge located west of Spain. The cold air advected by the trough creates 

the proper environment to support deep moist convection. At low levels (Figure 8b), relative 

high pressures southwest of Iberian Peninsula and the low located over the Genoa Gulf, 

generate a MSLP gradient leading the flow from Atlantic Ocean directly to Italy. The 

Tramontane-Cierzo wind system is already well developed over the NW Mediterranean as 

indicated by the associated meso-low leeward of the Pyrenees (Figure 8b). 

5.2.2 Mesoscale evolution 

The HARMONIE simulation sequence indicates that MedAM was removed from NW 

Mediterranean some hours before the onset of the event by the Cierzo and the Tramontane 

(not shown). The simulation is consistent with the wind field derived from ASCAT 

observations at 9:21 and 10:06 UTC (not shown). Unlike the previous event, there are not 

three well-defined air masses at 13:00 UTC (Figure 9). According to the low-level air features 

(Figure 10), air masses north and south of the Pyrenees are identified as TrAM and CiAM 

respectively. Cloudiness in TrAM allows us to differentiate it from CiAM in HRVIS at 13:00 

UTC (Figure 9a) being separated by a shear line (see the discussion by Jansá 1987). 

Close to the easternmost edge of Pyrenees, diurnal heating and low-level convergence 
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produced by the leeward meso-low released atmospheric convection. Inside the TrAM, the 

cool pool associated with several convective cells is evidenced by a disturbance in the 

pressure field coming out of the convective zone and progressing to the south (not shown). 

Those outflows cooled down low-level air near the convergence zone enhancing the thermal 

contrast with the CiAM. According to the simulation at 15:00 UTC (Figure 9e), when the 

temperature difference between the cold air mass and the CiAM achieves 5 K, the 

convergence line starts to advance south-westwards as a density current, showing a CDT at 

the coastal current edge (Figure 9f). 

At this stage, cold air in the density current is not directly related to the Tramontane 

since TrAM remains separated from the cool convective outflow of the storms. That is a 

significant difference with the previous case, since the source of the cold outflow on 28 May 

2013 is not convective. This makes this case more similar to the event studied by Gonzalez 

and Pascual (2013) (see Table 1), where a similar convective outflow was observed by radar 

affecting Barcelona airport as a CTD. Both cases have the same synoptic pattern defined as 

B at Section 2. 

Figure 9 d and g shows that this outflow takes place in clear air and no signal at 

HRVIS reveals its presence. Unfortunately, unlike earlier in the morning, there are no ASCAT 

observations available for the period when the CTD is developed so no further comparisons 

are possible. Therefore, we should relieve in instrumental observations to localize the outflow 

edge. As shown in Barcelona AWS (Figure 11), the outflow reached at 16:40 UTC when the 

wind suddenly changed from west to east-northeast as the mean wind speed increased. As a 

consequence of the outflow, the temperature dropped 5 °C in 40 minutes but wind gusts did 

not show a significant increase since previous western wind, the Cierzo stablished at 

Barcelona, was already gusty. On this occasion, unlike the 28 May 2013, the CTD simulated 
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by HARMONIE reached Barcelona slightly ahead of the observation time. 

5.2.3 Scale and Cross Sections analysis 

The scale analysis of this case shows a higher stability (N ~ 2·10-2 s-1) than the 

previous case. Parameters Fm and B are 0.8 and 12 respectively for the Coastal Range, and 

0.3 and 20 for Pre-Coastal Range (Table 2), providing the right environment for a large 

blocking response. These results, as well as similar cross-sections to the previous event (not 

shown), suggest that the convective outflow of this event has similar buoyancy features than 

Tramontane in the case of 28 May 2013. 

5.2.4 Forcing analysis 

The motion terms analysis (Figure 12) at 16:00 UTC when the simulated front reaches 

Barcelona, shows that outflow edge acceleration is mainly forced by PGF and advection. 

PGF provides the primarily alongshore forcing, while advection is directed onshore. As a 

result, the wind has some inland component primarily caused by the advection while Coriolis 

acceleration adds additional forcing. The onshore component slightly modifies the main 

along-shore balance that is slightly antitriptic. Part of the residual term opposes PGF and the 

other part is used to compensate some onshore forcing. On the whole, we can conclude that 

convection outflow plays the same role than Tramontane in the case of 28 May 2013, 

behaving as a density current driven by sharp differences of temperature and pressure. 

6. Sensibility of Mediterranean CTDs to diabatic heating 

In Section 2, we suggested a relation between diabatic warming and CTDs at NW 

Mediterranean, since they tend to occur in the warm season and between the afternoon and 

evening. In this section, we further explore this possibility by performing a sensitivity 
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analysis of the short-wave (SW) radiation, as a proxy of diabatic warming with the 

HARMONIE simulations, as described in Section 3. 

Figure 13 compares the SW12 experiment with the SW06 (increased vs. decreased 

SW radiation, see Section 3), on 30 Mar 2013 at 15:00 UTC (pattern B). The main features 

that change when diabatic forcing is modified are the intensity, the extension and the location 

of the main convergence zone associated with the CTD. Indeed, when the short-wave 

radiation is increased (SW12 experiment), CTD extends and accelerates, and when the short-

wave radiation is decreased (SW06 experiment), it has less extension and decelerates (see 

Figure 13c and 13d compared to Figure 9f, and Figure 13a and 13b compared to Figure 9e). 

This is not surprising since when the short-wave radiation is increased, the sensible heat on 

dry CiAM warms more than on TrAM. This yields to a greater temperature gradient between 

the outflow and the environment, that leads to an increase of the density current speed 

according to the idealized relation (Markowski and Richardson, 2010) 

𝑈𝑐 ~ √−
𝜃′

�̅�𝑣
𝑔𝐻 ,          (2) 

where 𝑈𝑐  is the speed of the density current, 𝜃′  is the density potential temperature 

perturbation at the surface, �̅�𝑣 is the mean virtual potential temperature of the environment, 

g is the gravity acceleration and H the depth of the outflow. 

This expression agrees with the fact that at night, when temperature of CiAM drops 

as a response to the diabatic cooling, the mesofront becomes stationary (not shown). So, the 

diabatic warming of the CiAM may dramatically impact on the ability of the CTDs to reach 

further south, in particular to the Barcelona airport. Hence, when the diabatic effects are low, 

the gradient of potential temperature between the outflow and the environment is reduced 
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and the movement of the CTD stops sooner. Indeed, in the SW06 experiment, the mesofront 

never reaches Barcelona (not shown). Similar results were obtained on 28 May 2013 (pattern 

A, not shown). This could explain why Mediterranean CTDs are more often in both the warm 

season and in the evening, when the diabatic forcing is larger. 

6. Concluding Remarks 

Every year, several NE wind surges associated with CTDs affect the NW 

Mediterranean area, causing potentially hazardous situations to low-level aircraft operations, 

affecting for example the Barcelona airport (Gonzalez and Pascual, 2013). In this paper, we 

first report these events as CTDs and show their main climatological and meteorological 

features.  

CTDs at NW Mediterranean take place when synoptic northern flow impinges air 

with low Froud number around the Pyrenees and is directed towards the Mediterranean 

generating the Tramontane-Cierzo wind system. Due to the meso-low developed leeward of 

the Pyrenees and the Coriolis effect, Tramontane tends to curve anticyclonically producing 

an on-shore component of the wind that can be eventually blocked by the orography if the 

buoyancy of the air mass is small. This air mass flows as a density current as it collides with 

a much warmer air mass with a higher buoyancy, like CiAM or MedAM. CTDs occurs when 

B > 1 and Fm ~ 1, described by Overland and Bond (1995) as the largest blocking response 

environment. The origin of the cool air mass may be the Tramontane itself or may have a 

convective origin and probably it depends on the synoptic framework. We have identified 

two different synoptic patterns producing CTDs: 

1. A mid-level geopotential trough with an associated surface front crossing north 

Iberian Peninsula in warm conditions. The cold surge over Gulf of Lion spreads 
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over the Mediterranean Sea into a meso-alpha front that tends to curve 

anticyclonically, converging with MedAM and CiAM. In this case there is no 

convection associated and TrAM acts as a density current overrunning the 

previously stablished sea-breeze. 

2. A mid-level geopotential trough has already crossed north Iberian Peninsula and 

has swept the MedAM away. Diurnal heating and low-level convergences in the 

easternmost edge of Pyrenees triggers convection. In this case, the cool outflow 

from storms enhances the thermal gradient with the CiAM generating a density 

current. The hazardous event at Barcelona airport studied by Gonzalez and 

Pascual (2013) is associated with this pattern. 

Their conceptual model is described in Figure 14. Although both cases have a very 

different cool air source, the interaction between the density current and the orography along 

the coastal range is similar, creating an antitriptic balance where the wind is accelerated 

ageostrophically. The mechanism that drives CTDs in NW Mediterranean is therefore quite 

similar to CTWR largely studied in the California coast (Rahn and Parish, 2008; Parish, Rahn 

and Leon, 2015), but the hazardous weather effects produced are different. Since CTDs in 

NW Mediterranean area establish a relatively cool and dry air over a warm sea, no low and 

thick stratus or fog are produced abundantly as in California CTWR cases, although the 

amount of cloudiness may increase. Instead, as we showed in this paper, the principal hazards 

are the sudden speed increase and direction shift of the wind, that may affect aeronautical 

operations, for example at the Barcelona airport. In addition, NE wind surges are associated 

with a dramatic drop of the temperature as well as a sudden increase of the humidity. This 

pattern occurs along the cold mesofront, but its effect is larger by the coast where the wind 

is locally accelerated, especially in the area of Barcelona, where gap effects due the Llobregat 
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river valley could play a role in this enhancement (see the discussion of valley influence on 

CTD at Reason et al. 2000).  

Through sensitivity of HARMONIE-AROME NWP model simulations we have 

shown that short-wave radiation warming CiAM largely influences on the CTD development 

and motion by increasing the potential temperature gradient between the density current and 

the environment air. This explains the annual and daily distribution in the climatology of the 

events with a maximum frequency in the warm season and between afternoon and evening. 
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Table 1. Climatology of NE surges exceeding 14 m s-1 (50 km h-1) at Barcelona between 2010 and 2016. 

Superindex (1) indicates the Gonzalez and Pascual (2013) case study and (2) show the cases studied in Section 4 (ES10 and 

ES13). 

ID 
Date Time 

Gust 

[m/s] 
Direction  

[deg] 
Synoptic 

Pattern 

ES01 17/10/2010 15:40:00 15.0 68 Other 

ES02 17/07/2011 11:30:00 16.3 83 A 

ES03 26/08/2011 18:40:00 15.3 95 A 

ES04 19/10/2011 21:00:00 14.1 76 A 

ES05 05/03/2012 16:20:00 15.7 74 Other 

ES06 19/04/2012 19:10:00 14.3 74 A 

ES07 (1) 12/06/2012 16:10:00 23.2 72 B 

ES08 21/06/2012 19:10:00 14.8 86 A 

ES09 24/02/2013 16:40:00 15.0 87 Other 

ES10 (2) 30/03/2013 17:10:00 15.6 81 B 

ES11 02/04/2013 16:50:00 15.5 69 B 

ES12 08/04/2013 17:00:00 14.4 77 B 

ES13 (2) 28/05/2013 15:20:00 18.8 69 A 

ES14 26/2/2014 18:00:00 15.2 73 B 

ES15 29/6/2014 19:10:00 14.7 87 B 

ES16 20/7/2014 18:10:00 17.0 81 B 

ES17 29/7/2014 14:10:00 20.2 84 B 

ES18 13/8/2014 09:40:00 15.8 86 A 

ES19 1/12/2014 00:30:00 15.7 84 Other 

ES20 15/5/2015 14:20:00 18.4 68 B 

ES21 15/8/2015 16:30:00 14.9 85 B 

ES22 24/8/2015 16:50:00 14.0 64 A 

ES23 2/3/2016 20:30:00 14.1 100 A 

ES24 23/4/2016 16:10:00 14.9 76 B 

ES25 22/5/2016 18:30:00 14.1 98 A 

ES26 29/5/2016 19:00:00 14.9 75 B 

ES27 17/9/2016 20:10:00 14.9 90 B 

ES28 25/9/2016 17:30:00 17.0 40 B 
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Table 2. Scale analysis for each case study, including the characteristic incident wind (U), the Brunt-Väisälä 

frequency (N), the mountain range characteristic height (H), and length (L), the mountain Froude number (Fm,) the Burger 

number (B) and the Rossby Radius(LR). 

 
Mountain 

Range 

U N H L Fm B LR 

Case study     UN-1H-1 HNf-1L-1 HNFmf-1 

 [ms-1] [s-1] [m] [m]     [m] 

28 May 2013 
Litoral 5 1.50E-02 300 5000 1.1 9.0 50000 

Prelitoral 5 1.50E-02 1000 10000 0.3 15.0 50000 

30 Mar 2013 
Litoral 5 2.00E-02 300 5000 0.8 12.0 50000 

Prelitoral 5 2.00E-02 1000 10000 0.3 20.0 50000 
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Figure 1. a) Area of study with the principal locations used in this paper and the conceptual model of the 

Tramontane-Cierzo System. Yellow arrows show the principal fluxes around the mountains. Red ‘A’ and blue ‘L’ indicate 

the orographic pressure dipole. Red dashed line indicates the recurrent convergence line. b) The domain used by the 

numerical simulation (in colours, showing the height) and the regions displayed in panels a) and c) (in red). c) Position of 

the Catalan Coastal Range (in green) and Pre-coastal Range (in violet). Red dots and black numbers show respectively the 

position and the height (in m) of the highest mountains for each Range. 

 

Figure 2. ECMWF synoptic analysis on 28 May 2013 at 12:00 UTC. a) Isohypses (solid lines, in gpm) and 

temperature (dotted, in °C) at 500 hPa. b) SLP (solid, in hPa) and temperature at 850 hPa (dotted, in °C). 

 

Figure 3. Evolution of the 28 May 2013 episode at 12:00, 16:00 and 18:00 UTC. Panels a, d, g show the MSG 

HRVIS images. Notice the mesofront as an enhanced cloud structure (marked with pink arrows). Panels b, e, h show the 

simulated pseudo-equivalent temperature (shaded colours in red), potential temperature (contour lines in black) and 

convergence zones over 0.3·10-3 s-1 (shaded in grey) at 1000 hPa. Panels c, f, i show the simulated wind direction (arrows, 

in black), speed (shaded colours in green) and geopotential height at 1000 hPa (contour lines in orange). Location of 

Barcelona is marked as a blue dot, and elevations over 1000 m according to the model ground are shaded in black. Cross-

sections depicted in Figure 5 are marked in panels e and h.. 

 

Figure 4. a) Potential Temperature and b) specific humidity simulated by HARMONIE at 16:00 UTC. Blue dot 

shows the location of Barcelona. Notice the large gradient at the boundaries of each air mass. 

 

Figure 5. Cross-sections of pseudo-equivalent temperature (shaded colours in red) and potential temperature 

(black contour lines) along the AB segments (panels a, c) and A’B’ segments (panels b, d) shown in Figure 3e, h at 16:00 

UTC and 18:00 UTC. 
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Figure 6. a) Temperature (red) and dew point (green), b) wind (yellow) and wind gust (brown) speed and, c) wind 

(yellow) and wind gust (brown) direction from 10-minutely instrumental observations at AEMET station 0201D in 

Barcelona on 28 May 2013. 

 

Figure 7. Wind barbs (black, in m s-1), 1000 hPa height contours (grey lines, in gpm) and vectors representing the 

terms in the momentum square (see legend) simulated by HARMONIE on 28 May 2013 at a) 16:00 UTC and b) 19:00 UTC. 

Red dotted line delimits the different airmasses labeled at the sides. The location of Barcelona is depicted as a red point. 

 

Figure 8. As in figure 2 but for 30 March 2013 at 12:00 UTC. 

 

Figure 9. As in Figure 8 but for 30 March 2013 at 13:00, 15:00 and 17:00 UTC. 

 

Figure 10. As in Figure 4 but for 30 March 2013 at 15:00 UTC. 

 

Figure 11. As in Figure 6 but for 30 March 2013. 

 

Figure 12. As in Figure 7 but for 30 March 2013 at 15:00 UTC. 

 

Figure 13. As in Figure 9e,f but for the experiment SW12 (panels a, c)  and the experiment SW06 (panels b, d). 

 

Figure 14. Conceptual model of the CTD in the NW Mediterranean coast showing the Tramontane air mass 

(TrAM), the Cierzo air mass (CiAM) the Mediterranean air mass (MedAM) and the orographic interaction area for a) 

Pattern A, and b) Pattern B. 


