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1 Introduction 
 
Balances among analysed meteorological variables in the data assimilation process can be effectively 
introduced by means of the well-known method of variational constraints (VC) [1], [2], [3]. In the case 
of the ALADIN-NH dynamics, its semi-implicit linear system for the non-hydrostatic fully 
compressible Euler equations (SI) appears as a convenient way of giving a precise definition to these 
constraints. This approach is non-statistical and in principle flow-dependent. Non-isotropic and non-
homogeneous aspects in the analysis increments cannot however be fully introduced by these 
constraints because SI deals only with rotation invariants and the base-state used in its formulation is 
one at rest and on a flat orography. The spatial structure in the analysis will then come only from the 
spatial structure of the observation increments forcing. In this respect, the situation is similar to the 
current ALADIN 3D-Var algorithm [4], although now these restrictions stem not from assumptions on 
the statistical properties of the model error fields, but from the definition of the SI itself. A new 
interesting feature of this method is the integration in the analysis algorithm of the vertical velocity 
field, which clearly must be important in convection permitting NWP. Another main point is that SI is 
a time-step forward operator, and this property gives to this algorithm a nudging-like functionality 
making it well suited for DA continuous-in-time, also an indispensable feature for NWP of 
intrinsically short-time predictability weather. 
 
SI can be solved using Greens functions (GF) [5]. Because of the assumptions behind its formulation, 
SI can be reduced to an ODE boundary value problem whose GF is easy to calculate and permits the 
solution to be found by quadratures. This GF algorithm has the appealing feature of doing the 
mathematics very transparent (in particular the treatment of upper and lower boundary conditions), 
avoids staggering along the vertical and also goes around the problem of the algebraic constraints 
among discrete local and non-local operators. In this work this GF method is pursued further and it is 
shown that the analysis with variational constraints can be found by a similar numerical algorithm, 
although now involving GFs for higher order operators. 
 
VC has been tested in three different contexts. First it is applied to increments obtained from the 
alignment of radial wind HARMONIE-AROME fields with Doppler radar pseudo-images employing 
a position error correction algorithm known as Field Alignment (FA) [6]. This FA is a fully flow-
dependent algorithm, but it introduces imbalances which have a detrimental impact in subsequent 
forecasts. VC can effectively reduce these imbalances. The VC method was conceived with this first 
application in mind, in the scope of the development of new NWP tools for Now-Casting (NWP-
NWC). Second, it is applied to LETKF analysis [7] generated from a small ensemble. The lack of 
overlap in observations used by the analysis in neighbouring points causes discontinuities in the 
analysed fields that VC can filter according to the dynamics described by SI. Third, a comparison 
between VC and the statistical balances implemented in the current 3D-Var algorithm [8] was 
conducted in order to get a first estimate of the impact of this new approach, in particular of including 
in the initialization the vertical wind. 
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2 Variational Constraints for ALADIN-NH Dynamics 
 
In the spirit of the GF algorithm, we will consider the minimization of a functional J on functions of a 
given degree of smoothness in the vertical coordinate ξ and see whether or not the problem can be 
solved in this framework. Let as usual J consist of an observation forcing term and a constraint, 
weighted by wo and wc respectively: 
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where the upper index k indicates that the problem is stated in wavenumber space. The module bars ‖·‖ 
come in because the x’s are complex numbers. M stands here for the SI system, it encodes the set of 
constraints and is a real operator, what makes the introduction of these complex module bars 
unnecessary after all (M does not mix real and imaginary parts of xk). This conclusion is apparent from 
simple inspection of Eq2.1, but in case of non correspondence between model and obs spaces (i.e. 
when an obs operator is necessary) it takes some algebra to conclude that it is also possible to dispense 
with the complex module bar notation (see [9]). The symbol “●” is introduced to keep in mind a subtle 
difference with the similarly looking 3D-Var cost function, where one would write xb instead of x●. M 
is a time-step advancing operator, x● and xb correspond then to model states at different times 
(differing by one time step). In principle the weights wo and/or wc could vary along the ξ coordinate, 
but this would complicate the calculation of the GF used by the numerical method that it is wanted to 
show in this paper. Therefore it is not considered here. Also these weights could take different values 
for different wavenumbers, this does not really complicate things, but at this stage it is considered a 
refinement of secondary importance. Therefore the weights wo and wc are just two real numbers and 
their ratio (w = wo/wc) is the only free parameter in the scheme. 
 

One first obstacle in the calculation proposed in Eq2.1, is the determination of xo
k

 .The problem arises 
because the observation fields will unavoidably be irregularly distributed in space and display void 
areas. To go around this difficulty let us restrict to an incremental formulation of the problem, that is, 
search for a solution in the vicinity of the background xb 

 
the last equation follows because the background is, of course, balanced. The difference field d does 
not have holes and it can readily be DFT transformed back and forth. Dropping the k upper index, 
Eq2.1 becomes: 
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The condition that the increments Δx are balanced is seen to translate into the condition that they 
belong to the kernel of M, but in this weak-constraint approach, this condition will only be 
approximately satisfied. Take now functional variations of J (δJ) and disregard the boundary terms that 
results in the calculation. This can be done because we leave the values of Δx and ∂Δx at the top and 
bottom boundaries out of the data assimilation problem, they will not be considered as control 
variables, that is, take δΔx=δ(∂Δx)=0 on the boundaries (which does not mean that Δx=∂Δx=0 there 
necessarily, they can be given other values if non-homogeneous BC are specified, see below). 
Equating to zero the first variation gives 
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where M+ is the adjoint of M with regard to the inner product used in the definition of J. It turns out 
that this problem can be reduced to an ODE boundary value problem which can be solved with 
homogeneous or non-homogeneous boundary conditions (BC) on Δx by means of the corresponding 
GF (see [9] for a detailed derivation of this result). 
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2.1 Formulation of the Balances 
 
The SI system consists of set of linear equations with local and non-local vertical operators. The non-
local operators arise because it is written in a mass-based vertical coordinate [12]. By decoupling the 
different horizontal wavenumbers, it becomes a very efficient time-stepping algorithm. Different 
formulations of it have been considered depending on the choice of prognostics. These formulations 
are all consistent within the linear approximation of the so-called “state equation” and geopotential 
equation (i.e. they can be transformed into each other by using Eq2.6 below). It is very convenient to 
go to non-dimensional variables by using the scales for T, πs and the time-step Δt, and also to use a 
“depth ξ” coordinate (runs downwards from 0 to ξ, see [5],[9] for all details). The choice in this work 
is the GEO-GW formulation, which after time discretization and before vertical discretization reads 
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The time step Δt includes numerical factors that depend on the choice of the time discretization 
scheme. The primed variables denote the perturbation (i.e. departure from base-state). For the wind (D 
and gw) they actually are the full variable as the base-state is at rest. The differentiation and 
integration operators are ∂, S[ ] and N [ ]=S [ ] (ξ=ξ ). In this notation, the state equation and 
geopotential equation read ([9]) 
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With PD the pressure departure ( PD= ln(p/π), p=total pressure, π=”hydrostatic pressure” ) and G[ ] 
another integration operator. In Eq2.5 two different T scales are employed, and their ratio is denoted 
as χ. This duplicity of T scales is considered here because it has been reported that it has impact on the 
stability of the vertical finite differences (FD) numeric scheme [10]. In fact, χ=1/5 in the FD solver 
implemented in the HARMONIE-AROME system and used for this work.  
 
As mentioned in the introduction, Eq2.5 can be reduced to an ODE boundary value problem. A 
vertical discretization based on splines is used for this porpoise [5] 
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This re-arrangement of the equations can be referred to as M[xb + Δx] in Eq2.3 notation. It needs to be 
complemented with BC on Δgw (or perhaps on ∂Δgw or both) at ξ=0 and ξ=ξ . It is interesting to see 
that, because of the relation indicated in Eq2.7 as (*), the double T-scaling has no effect on the free-
mode unbounded spectrum of M, obtained by setting M[x]=0 with periodic BC (e.g. gw(0)=gw(ξ)=0).    
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2.2 A Numerical Solution to VC using GF  
 
Eq2.7 shows a set of five constraints that are implied in SI. Of the five prognostics (gw, D ,T, πs, Ψ), 
the last one Ψ will hardly ever be accessible to observations. As the equation of state Eq2.6 shows, it 
is closely connected to PD, a variable that is defined by a rather arbitrary partition of the total true 
pressure p. As in addition to this it also happens that leaving this Ψ-constraint out of the common 
treatment of the other four greatly simplifies the mathematics of the problem, we will consider just the 
set of the first four (vertical velocity, horizontal divergence, T-compressibility and surface pressure 
tendency). With χ=1 we can write for M and its adjoint M+ 
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where β=R/cv  , γ=cp/cv , K2 defined in Eq2.5 and 
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with BT meaning “boundary term”. As explained above, the BT vanish because the BC are not 
considered control variables. The adjoints of the integral operators can be found by application of the 
defining property of adjoints (i.e. <O+X,Y> = <X,OY> ). At difference to the local operators L or ∂, 
these non-local operators do not give boundary terms (see [9] for all details). 
 
With these ingredients, it happens that Eq2.4 leads to another ODE boundary value problem as it 
happened for M (Eq2.7). However, now the operator involved is of 4th order instead of 2nd order 
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The Fo´s on the r.h.s denote functions of the differences between observations and background for the 
corresponding variable (d = xo - xb ), which are functions of ξ . They also depend on the relative 
weights “w” between obs forcing terms and constraints. It is possible to keep the possibility of these 
weights being different for each constraint      
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and the 4th operator for which we have to find the GF is ( λ  is defined in Eq2.7 ) 
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and as boundary conditions for the analysis increments Δgw we choose (non-homogeneous BC can 
also be incorporated if wanted).  
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The last term on the r.h.s of Eq2.10 is the obs forcing due to surface pressure increments. It shows up 
as proportional to a quantity N[ΔD] that at the time of performing quadratures with Oξ

-1 (i.e. GF) is 
still unknown. However, this unknown is not a function of ξ, is just a number, and the quadratures can 
be carried out without more trouble giving us back a solution parametrized by this quantity N[ΔD].  
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This remaining d.o.f is fixed by performing the calculation N[ ] on the second constraint with the 
solution found as in Eq2.14. How to do this accurately is also shown in [9]. It is then straightforward 
to substitute back in the rest of the constraints and so obtain finally the complete VC solution. 
 
Eq2.11 shows that the analysed vertical velocity field (and therefore all the other analysed fields) is 
given by the ob - fg increments low-pass and high-pass filtered (K2 dependency of the coefficients). 
These filters are not defined at will (aside from the values arbitrarily given to the weights “w”), but 
determined by SI. The vertical structure of the ob - fg increments (∂ dependency of the coefficients) 
also enters in the determination of the analysis. Horizontal and vertical structure of the analysis are 
then intertwined as dictated by SI.               
 
The determination of the GF for the problem Eq2.12, Eq2.13 is one key element in this scheme. The 
high amount of symmetry in the problem (only even powers of ∂, constant coefficients and 
hermiticity) makes it an accessible one, and makes also the whole scheme practical. The solution is 
worked out in [9]. Some examples of the GF kernels are shown in figure 1. 
 
 

  
Figure 1 Aspect of the GF kernels for the problem Eq2.12, Eq2.13 corresponding to horizontal scales of 10 km 

(left) and 100km (right) with w=1 and HIRLAM 65-levels (only 1,3,5,etc…shown). The x-axis runs 
top-down (left-right) along the ξ coordinate. The max value ξ (about 4.5) corresponds to SI 
parameters T*=270K, χ=1 and πs

*=1000hPa. These kernels are positive, show vertical spread 
dependent on the horizontal scale and they are also symmetric in the sense that GF(x,y)=GF(y,x). 
This last property cannot be captured in this 1-D plot, where the dependency on the first argument 
of the GF that corresponds to the HIRLAM level is not displayed. 
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The different properties of the GF kernels described in the caption of Figure 1 are also those of a 
covariance matrix. In fact, it is not difficult to establish analogies between this scheme and the 
standard 3D-Var that clearly suggest that it is possible to think of the GF as a covariance function for 
the vertical velocity [9].  
 

3 Tests of the Variational Constraints Method 
 

3.1  Tests with Synthetic Observations 
 
Two HARMONIE-AROME runs are prepared for a period of two days (2013/12/05-06) over a domain 
800x800xL65 at nominal horizontal resolution of 2.5 Km. The runs setup are identical (defaults 
v40h1.1) except for the use of boundary conditions. The reference run or “truth” employs ECMWF 
analysis (“analysis_only” strategy), while the experiment is nested to closest in time ECMWF 
forecasts (“simulate_operational” strategy). The reference cycles every 6 hours (coincident with 
availability of ECMWF analyses), and generates forecasts every hour up to six hours, just what is 
necessary to carry over information from one cycle to the next, while the experiment operates in a 
similar configuration but with a shorter 1 hour cycle. No data assimilation is done for any run. For the 
run acting as truth, we pick up the +3H forecast from cycle 2013/12/05 12 UTC (12 hours after 
beginning of the experiment), and extract a cube 100x100xL[15-55] situated about the (400,400) 
point. Fields of wind, vertical divergence, temperature, surface pressure and pressure departure are 
read off the FA file and compared with their counterparts for the 2013/12/05 14 UTC +1H experiment 
forecast. The differences (ref-exp) provide the experimenter with “d-fields” (xo–xb) for horizontal 
divergence, vertical wind, temperature, surface pressure and pressure departure. We can now make use 
of these fields to study the congruence between analysed increments by the VC method and “true” 
increments. For instance, we can compare analysed and “ref-exp” vertical wind increments if we input 
horizontal divergence “ref-exp” increments to the VC algorithm. In other words, to what extent VC is 
able to reconstruct vertical motions from horizontal divergence information? Other similar tests can be 
carried out.  
 
The tests are satisfactory albeit some mismatch in magnitude is found. For instance, Figure 2 shows 
that the analysed vertical velocity increments (contours) are in good agreement with those expected 
(shaded) when synthetic HD observations are utilised (i.e. in Eq2.10 notation Fo

gw = Fo
T = Fo

π =0,  
Fo

HD= (ref-exp) ). The plot on the left is for w=1 and that on the right w=10. The bigger the value of w, 
the tighter the fit to obs as expected. However, the plot on the left also indicates that the analysed w 
fields come out about one order of magnitude smaller than expected. Due to linearity, is not difficult to 
introduce an overall scale in the scheme that achieves an impressive match between actual and 
expected results (plot on the right includes this scale correction). However, this “fine-tuning” resource 
might not give in practice better verification scores (preliminary results in fact point in this direction). 
The method should be able to “nudge” towards the right magnitude by frequent updates. One question 
naturally arises here, is this disparity due to the rather different numerics employed in the VC analysis 
and in the forecast?  
 
Figure 3 shows on the left the correspondence between horizontal divergence and vertical divergence 
for analysed fields. On the right, the counterpart for the reference is displayed. This reference is 
obtained by plotting the VD and HD fields from a +3H forecast. The almost exact out-of-phase 
relation between these two fields is striking. The analysed fields clearly keep this balance! 
 
Figure 4 illustrates which is the situation for pressure departure PD. This field is analysed from the 
vertical momentum equation and indeed there is a clear connection between PD and vertical velocity 
W. However, again a mismatch in magnitude between analysed PD increments and those expected 
(shaded) is apparent. The mismatch is about one order of magnitude, analysed fields now bigger than 
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reference. Also the analysed PD lacks some fine scale features. This may be due to how the vertical 
momentum equation is integrated. Again, also the different numerics employed may be responsible for 
this mismatch.   
 

 
 

Figure 2 Analysed vertical velocity W from horizontal divergence data HD by means of VC. Left w=1, contours 
are about 10-1smaller than shaded values (colour scale on plot). Right w=10, contours capture 
more structure from the shaded field. The plot on the right includes an overall scale correction 
which makes agreement between “exp” and “ref” truly remarkable. 

 

 
 

Figure 3 Analysed fields of VD and HD (left) keep the out-of-phase relation that these fields have in mature 
forecasts (right). Shaded is for HD and contour for VD in both plots.  
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Figure 4 On the left an example of Analysed PD (contour) and W fields (shaded). The pattern shows a clear 
connection between both, as dictated by the vertical momentum equation. On the right the same PD 
field displayed on the shaded PD reference. Qualitative agreement is good, but there is a mismatch 
in magnitude of about one order of magnitude, with analysed PD bigger than reference PD. 

 

3.2 Tests with Model Fields Aligned with Radar Pseudo-Images 
 
If we add a third HARMONIE-AROME run to the previous set of simulations, identical in 
configuration to the 1-hour cycle run, but with the only difference that we assimilate in this new run 
Doppler Wind (DOW) radar pseudo-images by means of the field-alignment (FA) technique, we 
obtain a dataset that can be used to check the impact of assimilating these pseudo-images on short-
range HARMONIE-AROME forecasts. We can call these three simulations NAT, TW0 and TW1 
respectively. The procedure goes then as follows. From NAT we produce radar pseudo-images of 
reflectivity and DOW, although only the last ones will be used. The location and scan elevations 
correspond to a fictitious radar at 400,400 with two elevations at 0.5 and 1.5. We utilize these images 
to correct +1H forecasts in TW1 for 20 consecutive hourly cycles (2013/12/05 15UTC – 2013/12/06 
23 UTC). We also use these pseudo-images as verification data for +1H forecasts by computing DOW 
differences (NAT-TW0) and (NAT-TW1) for that period. 
 
The FA technique and some experiments with it have been presented elsewhere [11]. The alignment 
process generates imbalances that can be ameliorated if they are “up-scaled” with the covariance 
matrix B [11]. In this new test, the up-scaling is substituted by the VC method. Figure 5 (left) shows, 
somewhat disappointingly, that most of the impact is gone by the first hour. This could be due to FA 
corrections moving fast out of the radar range and therefore not showing up in the verification. In fact, 
the area chosen was swept by very strong winds (about 30-40 m/s) during most of the experiment 
period. In the figure one can indeed identify a dependency of the impact with mean error magnitude 
(first cases of the series show better impact). Also, it turns out that VC is by itself not able to spread 
increments significantly in the horizontal (Figure 5 right). VC is mostly about vertical dynamics and 
balances. It is expected that further enhancements of the algorithm to deal with this problem will 
improve its performance. 
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Figure 5 On the left, the impact on 1H forecasts of assimilating DOW data by FA technique, plus additional 

balancing with the VC method (w=5) is shown. The green curve corresponds to (NAT-TW1)0 for all 
the cases included in the experiment. This parameter is DOW averaged for each elevation. As two 
elevations are considered, the total number of cases is 20x2.The blue curve is (NAT-TW1)+1 and the 
red curve is (NAT-TW0) for the same time (i.e. null impact). When the blue curve reaches the red 
one, the impact has either dissipated or moved away of the radar range. On the right, a vertical cut 
showing the balanced increments of horizontal divergence (shaded), vertical velocity (white 
contours) and T (red contours).     

3.3 VC as filter for LETKF Analyses 
 
The Local Ensemble Transform Kalman Filter (LETKF) is an efficient ensemble-based variant of the 
Kalman Filter algorithm [7]. As pointed out in [7], localization may imply the need for some balancing 
before using these analyses as initial conditions. The goal of this test is to check whether VC can be 
used in an effective way for this task. A small 10 member ensemble generated by the SLAF method is 
used to run a 3H assimilation cycle LETKF experiment during a period of ten days (2012/09/20-
2012/09/30). The domain is 576 x 480 x L65 big at a nominal horizontal resolution of 2.5Km. Only 
conventional in-situ observations were utilized (~103 obs/cycle). As the focus is on upper-air analyses, 
no surface data assimilation was done. To measure the impact on balance in the first hours of the 
forecast, a surface pressure tendency metric was used. Standard verification of mean-ensemble 
forecast and ensemble RMSE and Spread for lead times up to 12H were also carried out.   
 
First we compare the surface pressure tendency evolution for a forecast initialized with the mean 
LETKF analysis xa, and that initialized with this same analysis filtered as follows 
 
(xa )* = xb + VC [ xa - xb ]  Eq 3.3.1  
 
Where the second term on the r.h.s denotes the application of the VC scheme to the (mean) analysis 
increments. In the notation of Eq2.10, we then have Fo

D , Fo
T , Fo

π  given by LETKF (mean) increments 
and Fo

w = 0 (as our LETKF does not consider analysis of vertical velocity). In Figure 6 the result of 
this test is shown. The difference between the green and red lines indicates that indeed in this case 
localization has produced imbalances. The red line corresponds to an integration started from a 3H 
forecast and it marks the “0-noise” situation. The thin blue, purple and cyan lines correspond to runs 
initiated from filtered analysis with VC for three different w parameter values, 10, 5 and 1 
respectively, that is, with increasing weight for the variational constraints. The case w=1 achieves 
reasonably good performance, while the other two cases show poor results. This problem has been 
traced down to the analysis of pressure departure (PD) and the issue of mismatch in order of 
magnitude between forecasted PD fields and VC analysed PD fields mentioned above. In the 
following results, an ad-hoc PD dumping factor (~1/10) has been used to minimize these oscillations 
in pressure tendency for big values of w. 
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With respect to forecast verification, the skill of the mean forecast is equivalent with and without VC 
as far as the standard verification method can tell (not shown). Also in the standard verification of the 
mean forecast, there was no evidence that the scaled version of VC gives better scores than the no 
scaled version (not shown). To assess the impact on ensemble RMSE and Spread, an experiment with 
VC filter applied to all ensemble members was conducted and the results compared to those obtained 
with a non-filtered ensemble or “raw” ensemble. 
 
(xa(i) )* = xb + VC [ xa(i) - xb ]   i=1,2,…,10 
 
As one would expect, in general the filtered ensemble has less spread, but this decrease in spread does 
not produce worse RMSE scores. Figure 7 picks up two verifications to illustrate this discussion. On 
the left we have the verification for surface pressure. It is noticeable that the peak in spread for +1H 
forecast is reduced by VC. The aspect of the curve “spread vs. forecast range” casts doubts about this 
spread being spurious. It is clear then that VC has in this case been able to filter noise rather than 
removing genuine uncertainty measure. On the right, the verification for wind speed at 10m is shown. 
Here the spread vs. lead time curves are smooth but the one for the filtered case shows a clear increase 
with forecast range, as one would expect if uncertainty builds up as forecast develops in time. This 
increase is not seen in the “raw” case, where spread remains at a nearly constant value during the 
whole integration. As mentioned, RMSE scores are indistinguishable. In these experiments it was 
found that results with w=10 are to be preferred to smaller values of w, if there is much concern with 
the loss of spread. 
 
 
 
 
 

 
 

Figure 6 On the left evolution at time step resolution of a surface pressure tendency based metric. The green 
line corresponds to a run with mean LETKF analysis as IC, the red one is for the same case but 
with a 3H forecast as IC. Imbalances are present in the LETKF analysis. The thin lines correspond 
to this LETKF analysis filtered by VC for three different values of w (see text). On the right a snap-
shot of the Ps analysis as produced by LETKF (shaded) and after VC filtered (contours). 
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Figure 7 Ensemble RMSE and Spread vs forecast range for the experiment whose settings are presented in the 

text. Left surface pressure, right wind speed at 10m. See text. 

 

3.4 Comparison between VC and 3D-VAR Statistical Balances 
 
The last test in this first set of investigations on the issue of VC for DA in ALADIN-NH dynamics, 
aims at comparing the performance of these VC constraints versus the statistical balances encoded in 
the current 3D-VAR algorithm [8]. To this end, experiments for the same period, domain, assimilation 
cycle (3H), and observation usage as those employed in the LETKF test were performed. The control 
now is a standard 3D-VAR, while the experiments consist of univariate 3D-VAR followed by analysis 
increments filtered by VC to account for inter-dependencies among analysed variables, that is, 
processed as indicated by Eq 3.3.1 but now with xa denoting one univariate 3D-VAR analysis instead 
of one (mean) LETKF analysis. Different values and options for the VC “tunable parameters” were 
considered (i.e. w weight, scale vs. no scaled, etc…).  The following two panels, and the text at the 
foot, summarize the results obtained in this exercise. 
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Figure 8 Some verification scores for the VC vs StatBal comparison. This set of plots corresponds to a 
“minimal VC tuning” with all the active w’s (i.e. for HD, T and πs) equal to 1 (green lines) or 10 
(blue lines). The red lines are for CNTL (3D-VAR with StatBal). On the first row we have T2m and 
mslp. VC degrades these scores, with a tighter fit to increments (w=10) being closer to CNTL. The 
middle row corresponds to near surface wind (error vs lead time left and Kuiper Skill Score by 
thresholds to the right). Here the impact can be judged as neutral. The bottom row is for Cloud 
Cover (Kuiper Skill Score by thresholds) on the left and 3hours precipitation intensity (also Kuiper 
Skill Score by thresholds) on the right. Most constrained experiment (w=1) gives now somewhat 
better scores. In all cases the “no-scaled” version is shown. The “scaled” version turns out to give 
equivalent results (not shown)    
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 Figure 9 This panel has the same lay out as the previous figure (#8). In this instance the verification scores 

correspond to “Fine-tuned VC”, where weights for T and πs are now given a big value (w=100), 
and w for HD equal to 1 (green lines) or 10 (blue lines). In this experiment, VC was applied to 
analysis increments with StatBal also incorporated. The red line again corresponds to CNTL 
(again, 3D-VAR with StatBal). The deterioration in T2m and πs is now gone, and there is virtually no 
change for near surface wind. The interesting point in this case is the improvement in cloud cover 
and 3H precipitation intensity, with still the strong constrained case (w=1 vs. w=10) giving the best 
results. One would like to conclude that this improvement is caused by inclusion of vertical velocity 
in the analysis.  

 

4 Conclusions 
 
The SI equations define dynamic relations among several variables that can be used in DA. A new 
algorithm that implements this idea is given by the solution to a variational (weakly) constrained 
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problem. The solution is obtained using Greens Functions. The SI system is a time-step forward 
operator, and this property gives to this new algorithm a nudging-like functionality, which makes it 
well suited for “continuous-in-time” DA. It also brings to the DA process the vertical velocity and PD 
fields.  
 
A first implementation of this method has demonstrated its capacity to provide good equilibrium 
among horizontal and vertical momentum analysed fields. However, some mismatch in magnitude 
between analysed and forecast vertical velocity and PD fields has been observed. This will be the 
object of more investigation. 
 
The method has also demonstrated its potential to improve vertical balances of assimilated wind fields 
generated by FA with radar DOW pseudo-images. First results so far can however be surely enhanced 
with further treatment of the FA increments (horizontal up-scaling).     
 
First experiments with the LETKF DA algorithm (3h DA cycle, only conv-obs) have shown that this 
algorithm can filter spurious oscillations in the surface pressure tendency field. At difference with 
other digital filters, the filter design is almost completely dictated by the SI dynamics. On the other 
hand, standard verification scores show a clear reduction in ensemble spread. Although this result is to 
be expected, there is no simultaneous reduction in ensemble error and stochastic verification scores in 
consequence are not completely favourable. Also, first results with 3D-VAR do not show big gains 
with respect to the statistical balances method. All these tests however, have been done with 3 hours 
DA cycles and small amount of observations, conditions where initialization issues do not manifest in 
the foreground. Also the rather different numerical techniques employed in VC analysis and forecasts 
must clearly bias the results towards the wrong side. The introduction of some ad-hoc tuneable 
parameters helps to improve the verification scores.  
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