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RESUMEN

Se ha codificado una nueva formulacion del calculo espectral en el modelo HARMONIE para
grandes dominios. Dicha formulacion utiliza la proyeccion Mercator rotada y su factor de mapa
representado por una combinacion lineal de armoénicos de Fourier. El modelo de referencia
emplea el valor maximo de dicho factor de mapa sobre todo el area. La mejora, entre usar la
aproximacion de Fourier o el valor maximo del factor de mapa, aumenta con el tamafio del
dominio de integracion. En la parte espectral, se han introducido tres coeficientes de la serie de
cosenos de Fourier mediante el uso de una matriz multidiagonal simple. Se muestran los prime-
ros resultados de estas modificaciones en integraciones semi-Lagrangianas con largos pasos de
tiempo.

Palabras clave: Prediccion numérica del tiempo; métodos semi-Lagrangianos; modelos espec-
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ABSTRACT

For large domains, a new formulation of the spectral computation has been implemented in the
HARMONIE model. The formulation makes use of the rotated/tilted Mercator projection and of
its map factor represented by a linear combination of low-order Fourier harmonics. The refer-
ence model uses the maximum value of the map factor over the whole area. The improvement
between using the Fourier approximation or the maximum value of the map factor increases
with the size of the integration domain. In the spectral part, three coefficients of the Fourier
cosine series have been introduced through a simple diagonal multiplicative operator. The first
results of these modifications are presented for semi-Lagrangian integrations with long time-
steps.
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1. INTRODUCTION

The HARMONIE (Hirlam Aladin Regional/Meso-scale €@agational NWP In
Europe) model is being developed since 2005 asoaerative project between
ALADIN and HIRLAM consortia and will be used opematally for Numerical
Weather Prediction (NWP). Its main characteristaoe a spectral horizontal
formulation with a bi-Fourier function basis, a hystatic-pressure hybrid vertical
coordinate and a non-hydrostatic dynamical kernel.

The HARMONIE model works in a projected geomethe spectral part of the
equations is written in the transformed coordirgtg&tem while the grid-point part
is treated in the geographical coordinate systeel.€hoice of a conformal
geometrical transformation leads to a very simplationship between the rescaled

first-order differential operatoﬁ' and its geographical counterpﬂt
O=MD'

where M denotes the map factor (distance on thesfibamed sphere/distance on
the geographical sphere) at the considered location

In the semi-implicit scheme of the ALADIN modeletlvalue of the map factor
is a constant equal to its maximum value over tliegration domain (Bénard,
2003). This simplification seems to be legitimabe limited area models used in
small domains, in which the map factor remainselsthe unity. However, the
HARMONIE community leads towards the use of largendins and, in this case,
its values are greater than the unity. Thus, from dtability point of view, the
variability of this factor over the integration daim should be considered.

Yessad and Bénard (1996) make clear how to solsgthblem at the ARPEGE
global model by writing the map factor as a comtiomaof Legendre polynomials
of orders zero and one. In this case, the variatidrihe map factor are exactly and
entirely included in the first component of the apal formulation. The solution of
the Helmholtz equation yielded by the model cossist the inversion of a
pentadiagonal matrix for each zonal number and-ttap.

In order to apply the same method to the HARMONI&det, the formulation of
the map factor in this model should have a simpltem at the spectral space: linear
combination of low-order Fourier harmonics. Consagly, the mapping factor
dependency in the spectral part of the computatianse included by a simple extra
multi-diagonal multiplicative operator. This expEs should improve the
behaviour of the model when increasing the intémmatiomain and, at the same
time, the extra computation and memory cost shbeldgmall. An inconvenient of
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using this method is the requisite of knowing the mapping factor analytic form for
the different projections in the bi-Fourier spectral space (Voitus, 2004).

The aim of this paper is to show the analytical expression of the Mercator map
factor expanded as a Fourier series, to study the behaviour of this Fourier
approximation and to include it in the HARMONIE model. First, as starting point
of this study, the general expression of this map factor is presented. Second, the
authors have expanded this expression as a Fourier series and calculated its
coefficients analytically. In this way, the inconvenient explained previously is
removed, allowing their implementation in the HARMONIE model for the rotated
Mercator projection. Third, several comparative studies for different sizes of the
integration domain are showed. Fourth, first results with the new semi-implicit
scheme are presented and compared to the reference one. Finally, a short
conclusion of these points is given.

2. THE MERCATOR MAP FACTOR

For a Mercator projection, the expression of its map factor m in spherical
coordinates is:

1
m(4,¢)=— @)’

where @ is the latitude and A is the longitude. In cartesian coordinates (x,y) of
the plane:

m(x, y) = m(y) = cosh(yla),
: : L, L,
where a is the radius of the Earth and y e[—;y,j]. We define L, as the

product of a factor f by the radius of the Earth, a = 6371km.

As it can be seen, this map factor depends on the latitude only.

Besides, let us say that the choice of the Mercator projection has been made on
purpose, as its map factor expression (hyperbolic cosine) is one of the best suited
for developing a Fourier cosine series (Bénard, 2004).

3. FOURIER COEFFICIENTS OF THE MERCATOR MAP FACTOR

Taking into account that the term which appears at the discrete equations of the
model (Bénard, 2003) is the square of the map factor m*, the Fourier series
coefficients calculated are the first ones of this even function belonging to

oL L L L . o |
L [_Ty’?]; where [—Ty,?y] is the domain considered. It is known that for

any even function of L° in a bounded interval there is a Fourier cosine series
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converging to the function in that interval. As it has been already said, m® fulfills
these conditions. Consequently, there is a Fourier cosine series converging to m’

L
in Lz[—?v,%] . To be precise,

m*(y) = an + Zan COS(— y)dy,
n=1 y
with

L
4 ¢ 27m
a =—|%m cos(—y)dy, n=0,1,2,...
L JO (y)eos(——y)dy

y

These coefficients have been computated analytically by the authors. Because of
space, the detailed development of this calculation is included in the Appendix. Its
analytical computation provides the following values for the Fourier coefficients,
depending on the parameter f :

o_ﬁ(ef e’)+1

=D

a, Zﬁ(ef—e_f), n=1,2,.
2[(m)” + 7]

4. NUMERICAL TESTS

Two types of test are carried out in th1s section. The first one shows the
behaviour of the finite Fourier series of m” using different number of coefficients.
The second one analyses the effect of the integration domain size considering the
same Fourier truncation.

In the first test, two different comparisons are made Figures la, 2a and 3a show
the behaviour of the square map factor exact value, m”, through the domain versus
the Fourier truncations, m* . From these Figures, it can be seen that the more
coefficients of the Fourier series are considered, the closer to the exact value the
truncations are. Besides, it is remarkable the fact that the values of the map factor
increase towards the boundaries of the integration domain, taking the unity value in
the central part.

On the other hand, Figs. 1b, 2b and 3b display the con51derable and progresswe
improvement of usmg the Fourier approx1mat10ns to m” instead of the maximum
value approximation in the domain, m. . The size of the integration domain has
been normalized so that in the tests results for different values of L, can be
compared.
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Figure 1. On the left, the square of the exact value of the map factor, in dots, and the square
of the approximate value with coefficients: a,, a; and a,, in crosses. On the right, compari-
son of the Fourier approximation using coefficients: ay, a; and a,, in crosses, and the maxi-
mum approximation to the exact value, in dots. Ly=10050 km.
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Figure 2. On the left, the square of the exact value of the map factor, in dots, and the square
of the approximate value with coefficients: @, a;, a, and a3, in crosses. On the right, com-
parison of the Fourier approximation using coefficients: ay, a;, a, and a;, in crosses, and the
maximum approximation to the exact value, in dots. Ly=10050 km.
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Figure 3. On the left, the square of the exact value of the map factor, in dots, and the square
of the approximate value with coefficients: ay, a;, a, a; and a,, in crosses. On the right,
comparison of the Fourier approximation using coefficients: a,, a;, a,, a; and a,, in crosses,
and the maximum approximation to the exact value, in dots. Ly=10050 km.

In the second test, the effect of the integration domain size is examined on both
approximations to the exact value of m*: the Fourier truncation with three
coefficients and the square maximum value in the domain. To do this, four
different sizes are considered:

L, =8375km (f =1.3146), L, =6700km ( / =1.0516),
L, =5025km (f =0.7887 ) and L, =2512.5km (f = 0.3944)

Observing Figs. 1b and 4, it can be concluded that the greater the domain under
study is, the better the Fourier truncation approximation of the map factor is in
comparison with the maximum value approximation. However, when the size of
the integration domain is smaller than 5000 km, the maximum value over the map
factor area is a suitable approximation (Fig. 4d).
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Figure 4. Comparison of the Fourier approximation to the exact value using coefficients:
ay, a;and a,, in crosses, and the square maximum value approximation, in dots. a) Ly=8375
km, b) 6700 km, ¢) 5025 km and d) 2512.5 km.

5. FIRST RESULTS

Different test on the semi-Lagrangian integration have been submitted for the
new semi-implicit scheme and for the original one at time-steps of 120, 300 and
900 seconds. Large domains, close to 6000 km in latitude, have been used to check
the impact of the variable Mercator map factor.
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Flgure 5. On the left reference HARMONIE 48h forecast, with ﬁme step of 900 seconds
for the 850 hPa temperature field (in °C). Initial situation: 14 May 2009, 12 UTC. On the
right, reference HARMONIE analysis for 16 May 2009, 12 UTC.

Flgure 6. On the left new HARMONIE 48h forecast, w1th time-step of 900 seconds for the
850 hPa temperature field (in °C). Initial situation: 14 May 2009, 12 UTC. On the right,
new HARMONIE analysis for 16 May 2009, 12 UTC.
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Here, just the 850 hPa temperature field forecast after 48h for 900 second time-
steps is shown. Figure 5 contains the results for the reference model and Fig. 6
shows the new semi-implicit scheme.

Comparing the results, small numerical differences among the new and reference
schemes are found. Note that they specially appear at the central part of the do-
main.

Besides, it can be seen that both the reference and the modified scheme have
some numerical noise. On the other hand, the non-hydrostatic version of the modi-
fied model could generate instabilities, as non-hydrostatic schemes are much more
unstable in general. Following the steps of Yessad and Bénard (1996), the inclusion
of a new geometrical term at the horizontal diffusion expression is under study, as
it could solve both problems.

6. CONCLUSIONS

The main conclusions of this study can be summarized in the following points:

- The variability of the Mercator map factor should be considered for large
domains.

- The analytical formula for the coefficients of the Fourier series of the
rotated Mercator map factor has been obtained.

- The difference between using the Fourier approximation and the maximum
value respect to the exact value of the map factor increases with the size of
the integration domain.

- If the size of the integration domain is greater than 5000 km, the
adjustment of the map factor by the first three coefficients of the Fourier
series is much better than its maximum value over the area.

- The first results from the modified semi-implicit scheme look promissing:
more accurate than the obtained from the original one. However, further
work is being developed in relation to the horizontal diffusion in order to
ensure stability and to reduce noise in the fields.

7. ACKNOWLEDGEMENTS

Querida Elvira, cuando empecé a preparar este articulo, senti una especial emo-
cion y un recuerdo incontenible de hacerte llegar este sincero y modesto homenaje
que, sin embargo, sé que es imposible que pueda llenar los veinte afios de maravi-
llosa convivencia que tuve el honor de disfrutar contigo. {Como olvidar los afios en
que fui tu alumna? De ti aprendi, no solo sabiduria, sino también a valorar el es-
fuerzo por el estudio, lo cual me ha acompafiado en toda mi vida profesional; pero,
sobre todo, nunca podré olvidar la amistad con la que siempre me he sentido tan
honrada como agradecida. Una amistad que permanecera en lo mas profundo de mi
corazon: gracias por conocerte.

Fisica de la Tierra 113
2009,21 105-117



Introduction of a variable Mercator map factor-... 1. Martinez-Marco & I. Santos-Atienza

APPENDIX

The general expression of the Fourier coefficients of the map factor in the cosine
basis

2
cos(—ﬂny), n=0,1,2,...
Ly
is given by the formula:

y

L
4 2m
a=—|\*m cos(—y)dy, n=0,1.2,...
: Lyjo ()cos( = y)dy

where L, = fa.

In this appendix, we obtain a simple expression for the Fourier coefficients of
the Mercator map factor:

*n=0

L L b4 Y

N _47ye;+e_;2 B
ay =, cosh® ()dy = T R i

y

L 2y ry > L, 5
4 ¢+ Led e 9 42e% ¢ 1 2 = =
=__ |2 —__ 12 a a —
L .[O 2 dy L IO (e +e “ +2)dy
P 2 L L L
_ 1 z y =7y 1 z -2

a >~ a > v
—e ——e® +2y] _
Ly[2 2 Y-
Replacing L, by fa we get,

a 2
=—(=(e* —e “)+L)).
0 Ly(2( )+L,)

a4, =G (e —e )+ fa).

fa 2
Then
1 f -f
a,=—(e’ —e’)+1.
0 2f( )
e n>1
L, L, y
4 2/m 4 (= e‘+e 2m
a =—1/| 2cosh*(y)cos(=— y)dy = —]| 2 2 cos dy =
n Lyjo (eost =y Lyj()( y )V eosC
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2y 2y y oy L

i a a y 2y 2y
——I e’ te 4+2@e bos(zL y)dy——j (e? +e ¢ +2)cos(—y)dy

y y )

This integral is divided in three integrals, corresponding to each one of the
additions, respectively.

-
Ly 2y
(I)—j e cos(—y)dy
y
Applying integration by parts:
L L
L 2v :7y y
(H=["e" sen( T [ sen(—y)—e dy=
27m L, 2m L,
2y 1‘ i
- 2 g L Lot senC2 yyas
)’ }’
Using integration by parts again:
2y 2m fLy 2y nx y:iy f2 by 2y
1 e sen + e cos - e cos(——y)d
(D=lype senCmy) e oW 0] Ly
2y 2y 2y L 2
= 2m L, = 27l T 2m =3 f
= + e cos e cos )
; Y) 2n*n? (21127r2 (LV P (7rm)?
Then,
L .
1+ (i =221 Lo costm) L.
m 2m m m
And finally,
L
D=1 Lo - Lyype Ly,
2m m m m
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- (D)
Ly 2y

)= '[ e cos(—y)dy

}’

Applying also integration by parts:

2y :iy Ly 2%y
Sen(—ﬂny)] 2 J.Z Le a sen(z—ﬂny)dy.
y 0 m Ly
Using integration by parts again:
=
2y 2y L, 2 L 2y
2/m L, =2 2m  =r fP et
= ——2 e “cos(— )], 2 — 2e “ cos d
27zn L, Y) 2n’r? ( L, Mo (nm)* % ( L, )y
2y 2y Zy L 2
2/m /a, > 2, 2m -2 f
- e “cos e“cos— ).
Ly ) 2]’127[2 (27’l27[2 ( y y)]y 0 (727’1)2( )
Then, we obtain:
L
(D=L Lo+ Ly Ly
2m m m m
- (IT1)
Lastly,
by :Ly
(IIT) = j 2=
y
Replacing the expressions (I), (II) and (III) in a,, we deduce:
0, =51y L~y Lyas Ly
m m
a, = L( I —eT).
2((m)’ + f7)
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