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Abstract 40 
According to the Intergovernmental Panel on Climate Change (IPCC), Northern Chile will be one of the 41 
most affected territories by changes in the atmospheric dynamics in next years. These climate change effects 42 
will be noticed in several ways, and temperatures will be one of the most sensitive variables to these 43 
changes, and with high importance because of their relationship with the hydrological cycle in one of the 44 
most arid regions in the world. Extreme temperatures of 77 observatories have been analysed by the 45 
calculation of 14 indices and their temporal trends. Also, the relationship of these indices between them, 46 
between observatories, with elevation and latitude has been taken into consideration, while they imply 47 
significant differences of the behaviour of the analysed indices. The results showed general warming trends 48 
but with particular differences depending on the behaviour of minimum temperatures. Examining the 49 
relationship between the indices and elevation, it appears that this variable has more implications in 50 
minimum temperatures. The analysis showed significant correlations also between the indices and latitude, 51 
agreeing with not evident general warming trends in the intertropical area of Northern Chile. Considering 52 
the different behaviours of the trends and their relationships with latitude and elevations, it has to be 53 
analysed in the future the possible existing relations with the spatial and temporal changes in the 54 
hydrological cycle such as precipitations. 55 
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1. Introduction 60 
Temperatures show a spatial distribution dependent on multiple factors. This is evidenced according to the 61 
temporal variability shown in observed data in regions with homogeneous climates (Maraun et al. 2017). 62 
Daily and annual variability in temperatures respond to natural cycles, day / night and summer / winter 63 
respectively, but extremes in temperatures may have severe effects on human activities and health, and 64 
have been previously observed (Trenberth et al. 2007; IPCC 2013). 65 
Effects of extreme temperatures can influence several environmental aspects, like crop growth, agro 66 
ecological regionalization and food supply (Ye et al. 2013, Tian et al. 2017). Extreme temperatures over 67 
critical thresholds may also cause a rise in the incidence of mortality (Keellings and Waylen 2012). The 68 
hydrological cycle is also affected by natural cycles, more intense precipitation can modify a river’s regime, 69 
ground humidity and evapotranspiration balances (Labat et al. 2004, Zhai et al. 2005, Guan et al. 2015, 70 
Donat et al. 2016). According to observations, global warming across the 20th Century,  has been 71 
demonstrated by a large number of studies in different regions worldwide, at different scales, globally (Vose 72 
et al. 2005) and local (Caloiero 2016). 73 
The behaviour of extreme temperatures have been widely studied in the last recent years in several regions 74 
in the world (Abatan et al. 2017; Caloiero et al. 2017; Gabaldón-Leal et al. 2017; Salman et al. 2017, Rahimi 75 
and Hejabi 2017). Benefits of studying extreme temperatures instead of mean temperatures have been 76 
demonstrated (Villarini et al. 2017). In South America, these studies are fewer, and concern mostly the 77 
south of the continent (Berman et al. 2013; Jacques-Coper and Brönniman 2014). In Peru, a recent study 78 
has been published using a monthly gridded data set of maximum and minimum temperatures in order to 79 
identify significant trends over the last 50 years (Vicente-Serrano et al. 2017). The results showed that 80 
maximum air temperatures increased in summer but decreased in winter, with a clear elevation-warming 81 
dependency, with the strongest warming recorded at highly elevated sites, but for minimum temperatures 82 
trends, this dependency is weakened, showing lower magnitudes of warming trends or even cooling trends. 83 
Arid regions are consequently more sensitive to global warming (Donat et al. 2016) as its affects may have 84 
more severe implications to natural processes and economic systems. If global warming modifies the 85 
hydrological cycle in Northern Chile (17°S - 29°S) (Held and Soden 2006), it could further affect the on-86 
going drought conditions (Sarricolea and Romero 2015, Sarricolea et al. 2017). This area faces a rising 87 
water demand scenario associated with the economic development of the country, as well as the increase 88 
of population in urban areas, and more especially to mining activities in the Atacama Desert. This activity 89 
provides Chile high economic benefits. Important mining projects have been developed in the area in recent 90 
years, intensifying water demands and creating high competitiveness with other economic activities such 91 
as the traditional ranching in high areas or agriculture located in coastal valleys (Sarricolea and Romero 92 
2015). It is generally accepted that this detected observed warming has an anthropogenic origin 93 
(Barkhordarian et al. 2017). 94 
But the last few years have shown a slowdown in warming trends which is not totally explained (Karl et al. 95 
2015): some authors say that the sensitivity of the climate system has been overestimated (Otto et al. 2013), 96 
others (Cowtan and Way 2014) affirm that it is explained by the lack of observations in areas where there 97 
is not a good density of meteorological stations, or even explained by changes in solar activity and in 98 
tropospheric and stratospheric aerosols in the last decade (Solomon et al. 2011, Santer et al. 2014). 99 
However, evidence suggests that the energy surplus has been kept in the oceans (Meehl et al. 2011, Guemas 100 
et al. 2013), particularly in the Equatorial Pacific (Kosaka and Xie 2013) related to the Pacific Decadal 101 
Oscillation (PDO) cold phase and the strengthening of the trade winds (Trenberth and Fasullo 2013, 102 
England et al. 2014, Meehl et al. 2014). 103 
Despite this, there is no other region in the world where this warming slowdown is so evident that in the 104 
coast of northern Chile (Vuille et al. 2015) and its high elevated areas (Bennett et al. 2016), where 105 
temperature has experienced a fall of 0.20 ºC /decade in the last 20-30 years (Falvey and Garreaud 2009, 106 
Schulz et al. 2012) after a significant rise during the first part of the 20th Century (Rosenblüth et al. 1997). 107 
This cooling was partially explained by changes in the PDO and the further intensification of the South 108 
Pacific High (SPH) and the cold water upwelling streams beneath the thermocline, which would normally 109 
cool down the region (Falvey and Garreaud 2009). Despite this, Andean glaciers keep retreating (Rabatel 110 
et al. 2013, Durán-Alarcón et al. 2015), so new reanalysis of the data have been undertaken in some of the 111 
Andes regions (Schauwecker et al. 2014). 112 
Meanwhile, temperature across the tropical Pacific west coast (Perú and Ecuador) rose to maximum values 113 
in the second half of the 20th Century (Marengo et al. 2011). Other studies at a regional scale showed 114 
significant warming trends at the same time in the Andes of Peru (Lavado Casimiro et al. 2013, Salzmann 115 
et al. 2013, Schauwecker et al. 2017), Bolivia (Seiler et al. 2013) and Colombia (Poveda and Pineda 2009). 116 
Despite this, it has been demonstrated that this slowdown in the general warming trends between 2002 and 117 
2014 is contemporary with an acceleration of ice melting, suggesting a redistribution of heat within the 118 
atmosphere-ocean-cryosphere system (Berger et al. 2017). Consequently, it seems that some differences 119 
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exist between observed temperatures trends in the inter-tropical areas and the mid-latitudes ones, and 120 
between the continents warming far from the coasts and the cooling of the oceans. It is still uncertain if the 121 
recent anomalous cooling affects only the mid-latitudes of the Pacific coast of South America or its effects 122 
extend to tropical regions too. More ancient studies (Vuille and Bradley 2000) do not detect this cooling, 123 
due because the 20th Century data were used, not including the cooling period. Simulated results according 124 
to CMIP model show significant changes into warming at the end of the 21st Century for neighbour areas 125 
in Bolivia (Thibeault et al. 2010). 126 
Observations of climate variables in high areas are not very frequent (Beniston et al. 1997), but Northern 127 
Chile has a significant number of meteorological stations in areas located over 2,000 m.a.s.l. (Figure 1). In 128 
South America, some studies have analysed the behaviour of precipitations at high altitudes, as mentioned 129 
above. But similar projects have been developed in similar areas in the world, linked to the analysis of the 130 
behaviour of mountain glaciers and snow cover. Those studies have mainly focused on the Tibetan Plateau 131 
(Liang et al. 2014, Cai et al. 2016, Shen et al. 2017, Kattel and Yao 2018), Middle-East (Parak et al. 2015, 132 
Rahimi and Hejabi 2017) and Central Asia (Feng et al. 2017, Shrestha et al. 2017). All these studies agree 133 
and indicate general warming trends. These high mountain systems cover about one-fifth of the Earth’s 134 
continental areas and are all inhabited to a greater or lesser extent except for Antarctica (Beniston et al. 135 
1997). These systems also provide direct support for close of the 10% of the world’s population. The exhibit 136 
within short horizontal distances, climatic regimes which are similar to those of widely separated latitudinal 137 
belts; they consequently are very interesting to study areas, in the way they represent such different 138 
responses to climate change effects. Hence the importance of having a good quality database of observed 139 
data. 140 
A similar study has been carried out in Central Chile (Burger et al. 2018), to the south of the area of interest 141 
of the present work. In this case, only two observations were considered above 2,000 m.a.s.l. Significant 142 
positive trends in mean annual temperature between 1979 and 2015 are identified at valley sites, but trends 143 
are non-significant at all other stations. Significant positive trends in annual maximum temperature are 144 
found at most of the observatories except in high areas in the Andes and the coastal stations, with a 145 
significant maximum temperature cooling trend recorded on the coast around 30°S. In contrast, annual 146 
minimum temperature exhibits significant warming only in metropolitan areas, while valley stations at a 147 
range of latitudes show significant cooling trends, with non-significant trends in minimum temperature 148 
recorded at remaining stations. There is a general pattern of maximum temperatures rising faster than 149 
minimum temperatures at valley sites outside metropolitan areas, significantly increasing daily temperature 150 
amplitude. In contrast, on the coast, the decreasing trend of maximum temperature has resulted in a decrease 151 
in daily temperature range. 152 
The aim of this study was to obtain a good quality database of observed data in the study area. After that, 153 
we analyse the trends of maximum and minimum daily temperatures and to consider the magnitude and the 154 
spatial distribution of the extremes in Northern Chile for the period 1966-2015 and according to 14 indices 155 
proposed by the Expert Team on Climate Change Detections Indices (ETCCDI) (Zhang et al. 2011). We 156 
also aim to review the relationship of these trends between them, of each meteorological station with each 157 
other, and also with altitude and latitude in the region. This will allow us to see if the effects of these two 158 
geographic components show any general warming trends or are modified or not by other factors. It also 159 
aims to identify if the changing temperatures of the region are sensitive to the complex orography where it 160 
is not yet well-determined so it can inform policymakers and hydrologists in their decisions concerning 161 
water supplies in an area where water represents a very scarce resource. 162 
This work presents in the first place the techniques used to obtain good quality datasets, and after that the 163 
analysis of the spatial behaviour of well-known indices based on extreme temperatures, which provides 164 
more accurate information about this atmospheric variable, traditionally analysed through mean values. 165 
Identify regional variations of these observed temperatures is of high interest, especially in a region with a 166 
very complex orography and very elevated areas. This study presents a description of the used data and the 167 
methods carried out through the study, another section with the obtained results and their comparison with 168 
other studies, and a final section with the main conclusions. 169 
 170 
2. Data and methods 171 
Data and analysis were based on 77 meteorological observatories pertaining to the Chilean Meteorological 172 
Direction (DMC) and the Water General Direction (DGA) both in Northern Chile, located as shown in 173 
Figure 1. 174 
Data were gathered for the period 1950-2015, but their availability along this period is very varied among 175 
the stations, ranging from 1 to 99 %. Fig. 2 shows the data coverage individually (2a) and globally (2b). 176 
Temperatures also exhibit a great variation in the 77 series, with mean values (calculated on the raw series) 177 
ranging from 1.1 to 20.1 Celsius. 178 
 179 
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 180 
Fig. 1. Location of selected observatories. 181 
 182 
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 183 
Fig. 2. Data availability in the 77 series (a) and overall (b). Dashed green and red lines show desirable and 184 
minimum availability thresholds for a reliable homogenization and quality control of the series. 185 
 186 
2.1. Homogenization and quality control 187 
The quality control and homogenization was performed by means of the R package Climatol version 3.0 188 
(Guijarro 2016). The procedure consists in estimating all data (whether measured or missing) in every series 189 
by a weighted or plain average of the closest available data, in normalized form, at each time step. 190 
Normalization allows to minimize problems due to spatial variability in means and standard deviations 191 
caused by different elevations and other topographic factors. A first problem is the difficulty of computing 192 
means and standard deviations for the whole period of study when series are not complete, which is often 193 
the case. Therefore, series are first normalized with their available data; missing data are estimated after 194 
this first normalization, and new means and standard deviations are then computed for the completed series. 195 
This process is repeated until the maximum difference in means from the previous iteration is lower than 196 
half the resolution of the data (0.05 °C in our case), because any further improvement would not modify 197 
the rounded results. Quality control is performed along these iterations by comparing the observed and the 198 
estimated values, both in normalized form, and deleting those differing more than a prescribed number of 199 
standard deviations. By default, the rejection threshold is set to five standard deviations, which may be 200 
appropriate for monthly temperatures, but not for other variables or time resolutions. Therefore, the user of 201 
the package is advised to set this threshold subjectively after looking at the histogram of anomalies of an 202 
exploratory run (Guijarro 2018). Many users would prefer to use an objective criterion to set the threshold, 203 
such as choosing a level of significance, but this is also a subjective decision, and significant levels would 204 
differ depending on the studied climatic element, time resolution and cross-correlation between the series. 205 
All this complexity is avoided by letting the users decide which parts of the tails of the anomalies 206 
distribution should be rejected and allowing them to choose different upper and lower thresholds when the 207 
probability distribution of the variable shows a clear skewness. 208 
Homogeneity is then tested in each observed series by means of the Standard Normal Homogeneity Test 209 
(SNHT, Alexandersson 1986), which computes a test for differences of means before and after every point 210 
of a series and reports the maximum value reached and its location. This test is applied on the differences 211 
between the observed series and its estimated series, previously calculated from data at nearby stations, 212 
both in normalized form. 213 
The most inhomogeneous series are then split at the points where SNHT reaches their maximum values, 214 
transferring data to new "daughter" series which are assigned the same coordinates as their original series. 215 
No series is split when a reference series has also been split, and hence the homogenization is also carried 216 
out through an iterative process until no SNHT value is higher than a pre-set threshold. Note that after every 217 
splitting iteration all series means and standard deviations must be recalculated and new quality control 218 
performed. Therefore, this very simple methodology increases its complexity through different stages of 219 
nested iterative processes, which are performed in an automated way. In a first stage, SNHT is applied on 220 
stepped overlapping temporal windows in order to avoid possible masking effects of more than one big 221 
inhomogeneity in the series. Then, SNHT is computed on the whole series, and finally, a third stage is 222 
devoted to the last in-filling of all missing data in all series (original and derived). Up to 10 reference data 223 
were averaged in the first two stages, and only 4 in the last one, this time weighting them by an inverse 224 
function of distance. 225 
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Thresholds for outlier rejection and inhomogeneity detection vary depending on the studied climatic 226 
element, the time resolution of the series and the station density combined with the spatial climate 227 
variability. Therefore, although a default value of SNHT=25 is set in the software, the user can choose 228 
appropriate thresholds by inspecting histograms yielded in a first exploratory application of the package. 229 
The high variability of daily series lowers the power of detection of inhomogeneities (Szentimrey 2013), 230 
and therefore it is advised to perform this process on the monthly aggregates, as was done in our study. 231 
Then, the list of the dates of the detected break-points was used to adjust the daily series by splitting them 232 
at those time steps and reconstructing complete series from every homogeneous subperiod by the missing 233 
data in-filling procedure. These analysis were applied to the period 1950-2015, but as the station density in 234 
the first years was very low, only results for 1966-2015 were retained for the rest of the study. 235 
 236 
2.2 Temperature indices 237 
All the temperature indices were calculated from the homogenized daily series. In a first place, the annual 238 
values of maximum and minimum temperatures for each observatory was determined. After that, the mean 239 
value for every year was calculated, and then the anomalies were computed to define TXMean and 240 
TNMean, defined as the indicators of absolute extreme temperature anomalies evolution for the period 241 
1966-2015. 242 
In a second place, we considered a series of indices defined by Frich et al. (2002) that later became known 243 
as the ETCCDI indices, and which were based on the indices proposed that same year by the European 244 
Climate Assessment (ECA) (Klein Tank et al. 2002) to analyse trends in the second half of the 20th century. 245 
These ETCCDI indices were selected in order to handle a wide variety of climates. For this study, a 246 
selection of 14 of the 29 ETCCDI indices will be applied (Table 1). These indices are applicable to most 247 
global climates and can be compared between different regions in the world. 248 
 249 
Table 1: Extreme temperature indices used. Source: Extracted and modified from Klein Tank et al. (2002). 250 
Index Name Definition Units 

TXx Tmax Max Monthly maximum value of daily maximum temperature °C 

TNx Tmin Max Monthly maximum value of daily minimum temperature °C 

TXn Tmax Min Monthly minimum value of daily maximum temperature °C 

TNn Tmin Min Monthly minimum value of daily minimum temperature °C 

TN10p Cold nights Annual count of daily minimum temperature < 10th 

percentile 

days 

TX10p Cold days Annual count of daily maximum temperature < 10th 

percentile 

days 

TN90p Warm nights Annual count of daily minimum temperature > 90th 

percentile 

days 

TX90p Warm days Annual count of daily maximum temperature > 90th 

percentile 

days 

DTR Diurnal temperature 

range 

Monthly mean difference between daily maximum and 

minimum temperature 

°C 

FD0 Frost days Annual account of daily minimum temperature < 0º C days 

SU25 Summer days Annual count of daily maximum temperature > 25º C days 

TR20 Tropical nights Annual count of daily minimum temperature >20°C days 

WSDI Warm spell duration 

indicator 

Annual account of at least six consecutive days of 

maximum temperature > 90th percentile 

days 

CSDI Cold spell duration 

indicator 

Annual account of at least six consecutive days of 

minimum temperature < 10th percentile 

days 

 251 
Some of these indices (TXx, TNx, TXn, and TNn) measure the maximum or minimum daily temperature 252 
on an annual basis. Doing this, we are able to evaluate the evolution of the maximum and minimum 253 
temperatures both in the cold and warm season. Other indices allow calculations of the number of days a 254 
year when specific fixed value thresholds are exceeded or refer to a base climatic period. Nevertheless, 255 
indices based on percentile thresholds (TN10p, TX10p, TN90p, TX90p, WSDI and CSDI) are preferable 256 
when making spatial comparisons of extremes due to possible differences in temperature distribution 257 
samples when using day-count indices with fixed thresholds across large areas. For example, sustained heat 258 
in mid-latitude climates could be well indicated by counting the number of days with a minimum 259 
temperature above 20°C (TR20); on the contrary, in low latitudes, where minimum temperatures on most 260 
summer nights are above this threshold, the variability in the annual number of nights with temperatures 261 
above 20°C is determined by the conditions in spring and autumn. Furthermore, an index such as the 262 
number of summer days with maximum temperatures over 25°C (SU25) can indicate abnormally warm 263 
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conditions in normally temperate climates, where the average maximum summer temperature is around 264 
18°C (Zhang et al. 2011). 265 
The determination of the extreme values was performed with R, and the scripts used are available as 266 
supplementary material. 267 
In order to determine the possible existence of temporal trends in the monthly maxima, minima, and 268 
extreme indices, the series of average monthly and extreme daily temperatures are analysed, and their 269 
statistical significance is determined by the Mann-Kendall non-parametric test (MK) (Mann 1945; Kendall 270 
1962). The test has been widely used in the analysis of hydro-meteorological time series (Cai et al. 2017; 271 
Caloiero et al. 2017; Liang et al. 2017; Tao et al. 2014). The MK statistic is obtained as follows: 272 
 273 
S = ∑ ∑ sgn(xj − xi)

n
j=i+1

n−1
i=1         (1) 274 

 275 
(xj − xi) = z          (2) 276 
 277 

sgn(z) = {

1 if (z) ≥ 0

0 if (z) = 0

−1 if (z) ≤ 0

         (3) 278 

 279 
Where n is the dimension of the series and xj and xi are the annual values, respectively, in the years j and i, 280 
with j > i. For n > 10, given that xi is an independent and randomly ordered series, the statistic S follows a 281 
normal distribution whose mean is equal to 0, and the variance is provided by: 282 
 283 
Var(S) = [n(n − 1)(2n + 5)∑ tii(i − 1)(2i + 5)

n
i=1 ] 18⁄      (4) 284 

 285 
Where ti represents a margin of error of i. 286 
The standardized statistical test ZMK follows a standard normal distribution, and is represented by: 287 
 288 

ZMK =

{
 

 
S−1

√Var(S)
 if S > 0

0 if S = 0
S+1

√Var(S)
 if S < 0

         (5) 289 

 290 
Using a two-tailed test, if ZMK is greater than Z (α⁄2), with a significance level α, then it is possible to reject 291 
the null hypothesis and the trend can be considered significant. At the 10% significance level, the null 292 
hypothesis of no trend is rejected if |Z|>1.645. 293 
To estimate the magnitude of the slope we use the nonparametric Sen slope estimator (Sen 1968). This 294 
approach involves computing the slopes for all temporally ordered pairs of data points and then calculating 295 
the median of these slopes as an estimate of the overall slope (Salmi et al. 2002). Since Sen’s slope is not 296 
greatly affected by single data errors or outliers and missing values are also allowed, it is more rigorous 297 
than the commonly used regression slopes and thus provides a realistic measure of the trends in the time 298 
series. Sen’s method can be used in cases where the trend can be assumed to be linear. This means that f(t) 299 
is equal to 300 
 301 
𝑓(𝑡) = 𝑄𝑡 + 𝐵          (6) 302 
 303 
where f(t) is a continuous monotonic increasing or decreasing function of time, Q is the slope and B is a 304 
constant. To obtain the slope estimate Q in Eq. (6) we first calculate the slopes of all data value pairs 305 
 306 

𝑄𝑖 =
𝑥𝑗−𝑥𝑘

𝑗−𝑘
          (7) 307 

 308 
in which j>k. A positive value of Qi indicates an increasing trend whereas a negative value indicates a 309 
decreasing trend. If there are n values xj in the time series we get as many as 𝑁 = 𝑛(𝑛 − 𝑙)/2 slope 310 
estimates Qi. The Sen’s estimator of slope is the median of these N values of Qi. The N values of Qi are 311 
ranked from the smallest to the largest and the Sen’s estimator is 312 
 313 

𝑄 = {

𝑄[(𝑁+1)/2] 𝑖𝑓 𝑁 𝑖𝑠 𝑜𝑑𝑑
𝑄
[
𝑁
2
]
+𝑄

[
(𝑁+2)
2 ]

2
 𝑖𝑓 𝑁 𝑖𝑠 𝑒𝑣𝑒𝑛

        (8) 314 
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 315 
The Q sign denotes data trend reflection, while its value indicates the steepness of the trend. To determine 316 
whether the median slope is statistically different from zero, one should obtain the confidence interval of 317 
Q at specific probability. The confidence interval about the time slope can be computed as follows: 318 
 319 

𝐶𝛼 = 𝑍1−𝛼/2√𝑉𝑎𝑟(𝑆)         (9) 320 
 321 
where Var(S) is same defined as the variance in MK test and Z1-α/2 is obtained from the standard normal 322 
distribution table. In this study, we calculated the confidence interval at α = 0.1. 323 
Then 𝑀1 = (𝑁 − 𝐶𝑎)/2 and 𝑀2 = (𝑁 + 𝐶𝑎)/2 are computed. The lower and upper limits of the confidence 324 
interval, Qmin and Qmax, are the M1th largest and the (M2 + 1) the largest of the N ordered slope estimates 325 
Qi. The slope Q is statistically different from zero if the two limits (Qmin and Qmax) have the same sign. To 326 
obtain an estimate of B in Eq. (6) the n values of differences xi-Qti are calculated. Their median of these 327 
values gives an estimate of B. Estimates for the constant B of lines of the 90% confidence interval are 328 
calculated by a similar procedure (Salmi et al. 2002). 329 
 330 
3. Results and discussion 331 
3.1. Homogenization and quality control 332 
Figures 3a and 3b show the histograms of final SNHT values after the homogenization of the monthly 333 
averages of maximum temperatures over SNHT=50 and of daily maximum temperature anomalies. Outliers 334 
of more than 10 standard deviations (in red) were deleted and in-filled at the end of the process. Decisions 335 
about outlier rejections and shifts in the mean corrections are always driven by choosing a balance between 336 
detection failures (type I errors) and false alarms (type II errors). The threshold for SNHT (50) is a 337 
conservative figure trying to avoid as many false detections as possible while disregarding a moderate 338 
number of small shifts in the mean. As to the threshold chosen for outlier rejection, 10 standard deviations 339 
may seem a very high figure, but daily data variability in an area of complex orography is very high, and 340 
false rejections should be mostly avoided when series will be used for extreme values analysis. Ideally, 341 
both rejected data and detected shifts should be confirmed with the help of metadata, but these are generally 342 
very scarce, if not absent. Even with this high threshold, some rejected data could correspond to real 343 
extreme values, and should be reinstated in the series if its validity is confirmed, but it is better to remove 344 
them in the homogenization process to avoid local rare phenomena to be taken as references to in-fill 345 
missing data of other series in the data-set. 346 
Figure 4 shows an example of detection of a shift in the mean (with SNHT=62) in a monthly series and the 347 
adjustment of its corresponding daily series. A complete reconstruction of the two homogeneous subperiods 348 
are performed, with correction terms of around 2 °C, but with a clear seasonal variation.  349 
Monthly aggregates of the maximum temperatures appeared more homogeneous (31 break-points detected) 350 
than their minimum monthly aggregates (58 break-points), and 22 and 5 outliers of more than 10 standard 351 
deviations were deleted in maximum and minimum temperatures, respectively.  352 
Series adjusted backwards from the last homogeneous subperiods were used for the subsequent analysis of 353 
the variability of temperature in the region. 354 
 355 

 356 
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Fig. 3. a) Histogram of maximum SNHT values in all monthly means of maximum temperature series after 357 
homogenizing those exceeding SNHT=50. b) Histogram of daily maximum temperature anomalies; in red, 358 
rejected data with anomalies higher than 10 standard deviations. 359 
 360 

 361 
Fig. 4. a) Example of detection of a shift in the mean with SNHT=62. Distances to the closest data at each 362 
time step and number of references used are shown in green and orange respectively. b) Adjustment of the 363 
detected inhomogeneity: complete reconstruction of the two homogeneous subperiods are shown in red and 364 
green (top), with observed values in black. (Running annual means are plotted to reduce the noise of the 365 
figure, and hence observed data are plotted only when no missing data are present). The bottom graphs 366 
show the correction terms applied to every data in both subseries. Note that due to the reduced number of 367 
available data, only values from 1966 are used in this study. 368 
 369 
3.2. Temporal variability of trends in TXMean and TNMean 370 
TXMean and TNMean were calculated, and their temporal evolution between 1966 and 2015 are shown in 371 
Figure 5. The statistics of trend based on the Sen slope estimate applied to the annual time series indicate 372 
asymmetric trends of maximum temperature (TXMean) and minimum temperature (TNMean). In the first 373 
case, non-significant positive trends were identified, with a Sen slope estimate of 0.007 (0.007ºC/year), 374 
meanwhile minimum temperature indicator showed a Sen slope estimate of 0.071 (0.071ºC/year) with a 375 
high significance level (>99.9%). These results agree with those identified in other studies that claim that 376 
the identified rise of mean temperatures was due to rise in minimum temperatures, and not so evident rise 377 
of maximum temperatures (IPCC 2013; Vose et al. 2005; Vuille et al. 2015). 378 
 379 
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 380 
Fig. 5. Time series and trend of a) TXMean and b) TNMean anomalies 381 
 382 
3.3. Spatial behaviour of extreme temperatures indices 383 
To provide better understanding of trends in extreme temperature indices, their statistical significance is 384 
assessed at the 90% confidence level employing the MK trend test. Sign and significance of the trends are 385 
shown in Figure 6. The percentage of the absolute minima (TNn) show the highest number of positive and 386 
significant trends (87%), followed by the TXn index (57%). This result agrees with those identified by Tao 387 
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et al. (2014) in other regions in the world. In contrast, relative indices based on minimum temperatures 388 
(TN10p and TN90p) show negative and significative signs or even not significative trends. Absolute 389 
maximum indices (TXx and TXn) show positive and significant trends in an important number of stations, 390 
but more evident in lower maxima (35% and 57% respectively). Meanwhile, the highest minima TNx show 391 
a high number of negative and significant trends (65%) and only a few stations with positive trends (4%). 392 
Relative indices based on maximum temperatures (TX10p and TX90p) show different: while lower 393 
maximum temperatures show 70% of negative trends (TX10p), higher maximum temperatures (TX90p) 394 
show 40% of positive and significative trends and a 14% of negative trends. DTR shows almost 20% of 395 
positive trends, which means that in these stations maximum temperatures rose significantly more than 396 
minimum temperatures, since minimum values of minimum temperatures showed a significant increase in 397 
more than 85% of the stations. Frost days (FD0) showed significative negative trends in 28% of stations, 398 
and positive and significative trends in 16% stations. SU25 shows 40% of positive and significative trends, 399 
and 9% of negative and significative trends. Tropical nights (TR20) shows a significant negative trend un 400 
4% of the stations, and no significant trend is recorded at any stations for WSDI, which means that sustained 401 
warm episodes have experienced no changes. At least, CSDI, cold sustained events, shows negative and 402 
significant trends in 82% of the stations, and no positive trends. 403 
 404 
 405 

 406 
Fig. 6. Trends of the temperature indices (% of stations): TXx (Tmax Max), TNx (Tmin Max), TXn (Tmax 407 
Min), TNn (Tmin Min), TN10p (cold nights), TX10p (cold days), TN90p (warm nights), TX90p (warm 408 
days), DTR (diurnal temperature range), FD0 (frost days), SU25 (summer days), TR20 (tropical nights), 409 
WSDI (warm spell duration indicator), CSDI (cold spell duration indicator) 410 
 411 
Figure 7 shows the spatial distribution of the identified trends of extreme temperatures. The indices TXx, 412 
TNx, TXn and TNn, are shown in Figures 7a, 7b, 7c and 7d, respectively, and represent variations on 413 
punctual intensity of daily extremes. The most evident warming according to the maximum temperatures 414 
is seen in the southern area while referring to the TXx index meaning that highest maximum temperatures 415 
are more sensitive to global warming in this area, while the TXn index was more obvious in the area north 416 
of to the Tropic of Capricorn. Both indices show different trends, TXx was positive and significant at 24 417 
stations, negative and significant trends at 11 stations, and the rest with no significant trends; TXn showed 418 
44 positive and significant trends and 7 negative and significant trends. According to TXx, station 67 419 
showed a positive significant trend of +1.08ºC /decade, the highest recorded value for this index, and TXn 420 
shows a +1.15ºC /decade in station 49. An important observation was that intense negative significant trends 421 
have been recorded at stations 73 and 62, reaching -1.29 and -1.28ºC / decade respectively for TXn. The 422 
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minimum temperatures show a more homogeneous behaviour represented here by TNx and TNn, where 423 
there was a general decline in the TNx index but a clear increase in TNn for the whole area was evident. 424 
Maximum values of minimum temperatures have decreased in the inter-tropical area of Northern Chile, 425 
even reaching on average -1.67ºC / decade at station 31. The lowest minimum temperatures have increased 426 
0.73ºC / decade by mean, reaching 1.85ºC / decade at station 34. But the highest warming values of the 4 427 
absolute indices was reached in the TNn index, where 21 stations registered trends higher than +1ºC / 428 
decade, reaching +1.85ºC / decade at station 34, and being located the most of these stations in the northern 429 
area of the study region. TNn does not show any negative and significant trends. These results agree with 430 
those presented in the IPCC (2013), which refer to the observed warming in mean temperatures was mainly 431 
due to an increase in minimum temperatures. They also agree with other close regions (Seiler et al. 2013; 432 
Vicente-Serrano et al. 2017; Burger et al. 2018). The recent slowdown in the warming rhythms is not well 433 
evidenced, possibly due to the fact that most of the study period was limited to the 20th Century. 434 
When we looked at the extreme percentile-based indices (Figures 7e, 7f, 7g and 7h), the trend analysis of 435 
TN10p, TX10p, TN90p and TX90p show more negative trends for the first three indices. In fact, TN10p 436 
shows a significant negative trend at 73 stations, with a rate of -16.25 days / decade in station 36, and 437 
TX10p shows negative trends at 60 stations, with a rate reaching -15 days / decade at stations 15 and 20, as 438 
the most evident changes. TN90p index only shows two significant and positive trends, but 54 negative 439 
trends, with a highest intensity of -5.63 days / decade. On the other hand, TX90p presents 30 positive trends 440 
and 10 negative trends, values ranging from -6.14 to 10 days / decade. There are positive trends found in 441 
the whole study area, but the negative trends seem to be located specifically in the northern area. These 442 
results agree with the general warming tendencies identified for neighbour regions (Vuille et al. 2015). 443 
The analysis of the DTR index (Figure 7i) shows 15 stations with a positive significant trend and only one 444 
with a negative trend. The positive trends are located from the centre of the study area southward, with a 445 
maximum rate of +0.5ºC / decade. This trend reflects the similar findings previously detected in the 446 
literature. In fact, some studies found significant decreasing DTR trends, because of a faster warming in 447 
minimum temperatures than in maximum temperatures, while other analyses of DTR fluctuations at a 448 
global scale are evidenced by a large increasing trend caused by an opposite behaviour (Vose et al. 2005; 449 
Guan et al. 2015). For example, frost days (FD0) show 22 stations with negative and significant trends, 450 
mainly located in the central area, around the Tropic of Capricorn (Figure 7j), and 11 stations with positive 451 
and significant trends, showing rates ranging from -15.56 days / decade to +15 days / decade. Major positive 452 
trends can be identified in 29 stations for summer days (SU 25, Figure 7k), with intensities reaching +15.7 453 
days / decade, but in the North, a negative and non-significant trend dominates, with rates of -16.7 days / 454 
decade. These results agree with Falvey and Garreaud (2009), and with Burger et al. (2018), where some 455 
cooling trends were identified for some mean monthly temperatures in the continent. The tropical nights 456 
index TR20 (Figure 7l) shows a high number of non-significant trends because of the lack of days which 457 
accomplished this condition. Only two stations recorded significant negative trends, -3.8 and -4.2 days / 458 
decade on the northern coast of the study area, agreeing with other studies identifying the tropical coast of 459 
South America was conforming to a general trend of slowing down of the warming rhythms (Vuille et al. 460 
2015). 461 
The WSD Index denotes an increasing trend at 23 stations (Figure 7m), with a maximum of +5.13 days / 462 
decade detected for station 82, and it identifies 10 negative trends, with a loss of +4.5 days / decade, mainly 463 
in the North of the study area. This agrees with similar trends detected in Parak et al. (2015) for high 464 
elevated areas. On the contrary, the results obtained for the cold spell duration indicator CSDI (Figure 7n) 465 
shows a very evident negative behaviour for 40 stations, located in the centre and a major part of the study 466 
area, with rates reaching -5.9 days / decade, disaccording with the results of Rahimi and Hejabi (2017), 467 
where no significant trends of this index where identified. 468 
The trend analysis of extreme temperature indices in Northern Chile show an evident increase in intensity 469 
of warmer extremes but not so evident in its frequency and a less notable increasing trend or more balanced 470 
rates for the colder extremes. These results partially agree with those presented in the most recent IPCC 471 
analysis (IPCC 2013), where a major part of land areas are likely to have experienced decreases in cold 472 
extreme indices and increases in warm extreme indices. When compared to more regional studies, the trends 473 
identified agree with those found in neighbour regions (Thibeault et al. 2010, Seiler et al. 2013). 474 
 475 
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 476 
Fig. 7. Spatial distribution of the different extreme temperatures indices significant trends: a. TXx, b. TNx, 477 
c. TXn, d. TNn, e. TN10p, f. TX10p, g. TN90p, h. TX90p, i. DTR, j. FD0, k. SU25, l. TR20, m. WSDI and 478 
n. CSDI (significance level: 90%) 479 
 480 
Table 2 shows the correlation between the 14 indices used in this study. TXx is significantly correlated to 481 
all indices except for TN90p, FD0 and WSDI. The highest r Pearson’s values are found in TX10p (0.75), 482 
TX90p (0.90) and SU25 (0.64), being those three indices directly related to the behaviour of the highest 483 
maxima. Negative and significant correlations are found with TXn (-0.39) and TNn (-0.23). This could 484 
explain the positive trends detected for some stations for the DTR index. TNx index shows high positive 485 
and significative correlations with TN10p (0.78) and CSDI (0.70), explained because those three indices 486 
are based on the maximum values of minimum temperatures. TNx show high negative and significative 487 
correlations with TXn (-0.60) and TNn (-0.83). The trends shown in the minimum values of maxima and 488 
minimum values of minima explains this change in the relationship. TXn index is positively correlated with 489 
TNn (0.57), showing a similar evolution of lowest minimum and maximum temperatures. It is negatively 490 
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correlated with TN10p (-0.57), TX10p (-0.55) and CSDI (-0.60). TNn is significant and negatively 491 
correlated with TN10p (-0.70) and with CSDI (-0.65). This is explained because of the rise of lowest 492 
minimum temperatures, and TN10p and CSDI are showing the regression of the persistence of cold events. 493 
TN10p is highly correlated to TX10p (0.51), TX90p (0.55) and CSDI (0.90), showing the general trend into 494 
more warm climate. TX10p shows a high positive correlation with TX90p (0.71), SU25 (0.70) and TR20 495 
(0.57), all indices linked to warming trends. TX90p is highly correlated to SU25 (0.60), both linked to the 496 
behaviour of highest maximum temperatures. Finally, SU25 is positively correlated to TR20 (0.51), 497 
explaining the relationship between this two indices, if maximum temperatures are higher, minimum 498 
temperatures do not fall as much as they tend to do. 499 
 500 
Table 2. R-Pearson’s correlation coefficient between indices. The significant correlations (p<0.1) are 501 
coloured in blue: TXx (Tmax Max), TNx (Tmin Max), TXn (Tmax Min), TNn (Tmin Min), TN10p (cold 502 
nights), TX10p (cold days), TN90p (warm nights), TX90p (warm days), DTR (diurnal temperature range), 503 
FD0 (frost days), SU25 (summer days), TR20 (tropical nights), CSDI (cold spell duration indicator) 504 

 TXx TNx TXn TNn TN10p TX10p TN90p TX90p DTR FD0 SU25 TR20 

CSDI 0.35 0.70 -0.60 -0.65 0.90 0.39 0.31 0.39 0.28 -0.09 0.20 -0,04 

TR20 0.42 -0.09 -0.14 0.11 -0.01 0.57 -0.08 0.41 0.12 -0.03 0.51 

 

 

SU25 0.64 0.22 -0.22 -0.06 0.29 0.70 0.02 0.64 0.46 -0.16 

 

FD0 -0.07 -0.24 0.15 0.15 -0.15 -0.12 -0.21 -0.03 0.07 

 

DTR 0.30 0.15 -0.11 -0.13 0.33 0.28 0.03 0.44 

 

TX90p 0.90 0.40 -0.38 -0.21 0.55 0.71 0.12 

 

TN90p 0.10 0.48 -0.17 -0.36 0.36 0.05 

 

TX10p 0.75 0.34 -0.55 -0.26 0.51 

 
 

TN10p 0.51 0.78 -0.57 -0.70 

 

TNn -0.23 -0.83 0.57 

 
TXn -0.39 -0.60 

 TNx 0.39  

Figure 8 shows the correlation of the trend in each meteorological station with each other for each index 505 
calculated in this study. Blue tones show positive correlations of each index for each meteorological station, 506 
ordered by latitude. Red colours show a negative correlation, expressing changes in the trends between 507 
stations. TNx, TNn, TN10p, TX10p, TN90p, DTR and CSDI indices show homogenous behaviours. TR20 508 
shows many null correlations, linked to the stations with no days with minimum temperature over 20ºC in 509 
the whole study period. TXx, TXn and TX90p indices show some shifts in the trends in the stations located 510 
between 20ºS and 22ºS, identifying a region with a special behaviour of maximum temperatures. FD0 show 511 
also some shifts in the trends, without any clear spatial distribution pattern, more linked to the location of 512 
the observatories in high elevated areas or close to the coast. SU25 index shows clear changes also in the 513 
stations between 21ºS and 23ºS, determining that between these latitudes, there is not a significant number 514 
of stations located at high elevated areas, so maximum daily temperatures are able to rise to higher values. 515 
WSDI index shows low shifts in the northern part of the study area.  516 
 517 



15 
 

 518 
Fig. 8. Correlation between meteorological stations for each index: TXx (Tmax Max), TNx (Tmin Max), 519 
TXn (Tmax Min), TNn (Tmin Min), TN10p (cold nights), TX10p (cold days), TN90p (warm nights), 520 
TX90p (warm days), DTR (diurnal temperature range), FD0 (frost days), SU25 (summer days), TR20 521 
(tropical nights), WSDI (warm spell duration indicator), CSDI (cold spell duration indicator) 522 
 523 
3.4. The relationship between temporal trends of indices with elevation and latitude 524 
The different extreme temperature indices show widely varying R-Pearson’s correlations with altitude and 525 
latitude (Table 3). 526 
 527 
Table 3. R-Pearson’s correlation coefficient between indices and altitude and latitude. The significant 528 
correlations (p<0.1) are coloured in blue: TXx (Tmax Max), TNx (Tmin Max), TXn (Tmax Min), TNn 529 
(Tmin Min), TN10p (cold nights), TX10p (cold days), TN90p (warm nights), TX90p (warm days), DTR 530 
(diurnal temperature range), FD0 (frost days), SU25 (summer days), TR20 (tropical nights), WSDI (warm 531 
spell duration indicator), CSDI (cold spell duration indicator) 532 

Index Altitude Latitude 

TXx -0.08 -0.55 

TNx -0.38 -0.32 

TXn 0.15 0.11 

TNn 0.40 0.21 

TN10p -0.32 -0.45 

TX10p -0.03 -0.40 

TN90p -0.20 -0.23 
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TX90p -0.14 -0.65 

DTR -0.30 -0.61 

FD0 -0.01 0.07 

SU25 -0.06 -0.56 

TR20 0.25 -0.09 

WSDI 0.00 -0.54 

CSDI -0.26 -0.25 

 533 
Figure 9 shows the temporal trends of extreme temperature indices and the elevations of the selected 534 
observatories from sea level (in meters). Some indices do not show any relationship with elevation, as can 535 
be seen for TXx and TXn (Figures 9a and 9c), but others such as minimum temperatures do show a clear 536 
relationship with TNx and TNn, with r Pearson coefficients of -0.38 and 0.40 respectively (Figures 9b and 537 
9d). The TNx index shows more intense negative rates in higher elevated areas, over 2,500 m.a.s.l., and 538 
TNn show higher rates over 2,000 m.a.s.l. This agrees with similar trends observed in Vuille et al. (2015). 539 
In general, frequency variations of TX10p and TX90p were found to be lower than that of TN10p and 540 
TN90p, which were also correlated with the elevation (Figures 9e, 9f, 9g and 9h), and which was in 541 
agreement with the findings at Berman et al. (2013) and at Kattel and Yao (2018). Most stations had 542 
increasing trends of DTR (Figure 9i), with a significant r Pearson correlation of -0.30. This was likely due 543 
to the increasing trend of maximum temperatures, being sharper than that of minimum temperatures. At 544 
lower elevations, the effect of cloud cover on temperature pushes the trend of DTR towards positive values. 545 
FD0 index do not show a significant trend, observatories in high and low altitudes have positive and 546 
negative trends, so there is no evidence of a most sharply decreasing frequency of frost days at higher 547 
elevations (Figure 9j). Figure 9k shows the SU25 index, which has a generally increasing trend at most 548 
stations, however a few stations had a decreasing trend, such as those at the higher elevations, which tended 549 
to have a lower increase in SU25. Some of the negative trends of TR20, with a significant correlation of 550 
0.25, are located in high elevated areas (Figure 9l), which agrees with Bennet et al. (2016) and can 551 
contribute to the ice melting identified in Schauwecker et al. (2014), Durán-Alarcón et al. (2015) and Berger 552 
et al. (2017). WSDI (Figure 9m) do not show a significant correlation with the elevation, but CSDI (Figure 553 
9n) shows mostly a negative trend, which is related with the behaviour of the previous indices like TNn 554 
and TN10p (-0.26). 555 
As mentioned, the latitudinal development of Northern Chile, ranges from 17º S to 29ºS, which allows a 556 
good visualization of the behaviour of different atmospheric variables in a wide latitudinal range over a 557 
relatively small territory. In this section, the relationship between temporal trends of indices and latitude 558 
was subjected to an analysis similar to the one conducted for elevation (Figure 10). According to Table 2, 559 
TXx and TNx (Figures 10a and 10b) show significant negative correlations with latitude (-0.55 and -0.32 560 
respectively), which means that the more distance the stations are from the Equator, the more the decreasing 561 
trend rate is evident. The contrary happens with TNn, where less tropical stations show higher trend rates 562 
(Figure 10d). A similar pattern is observed according to percentile indices (Figures 10e, 10f, 10g and 10h). 563 
DTR shows a significant negative correlation with the latitude (Figure 10i), the same as SU25 (Figure 10k), 564 
with higher increases in the close-to-mid latitudes stations rather than inter-tropical ones (-0.61 and -0.56 565 
respectively). The rise in warm episodes (WSDI) are more evident at high latitudes stations than at low 566 
latitudes (Figure 10m), which is evidenced by a significant negative correlation coefficient of -0.54. At 567 
higher latitudes, a general trend for warming is evidenced more by a decrease of persistent cold events, as 568 
shown in Figure 10n. These results disagree with those shown by Falvey and Garreaud (2009), since the 569 
global descent of warming rhythms may also be felt at the tropical coasts of South America, and agree 570 
partially with those presented by Karl et al. (2015), explained by linkage with the negative phase of the 571 
PDO. These findings could also be related to the sea surface temperatures of the Southeast Pacific (Kosaka 572 
and Xie 2013) but this outside the scope of this research. 573 
 574 
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 575 
Fig. 9. The extreme temperature indices in relation to the elevation of stations 576 
 577 
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 578 
Fig. 10. The extreme temperature indices in relation to the latitude of stations 579 
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 580 
4. Conclusions 581 
For a good study of temperature trends, a homogenization work is needed. In this case, for northern Chile, 582 
we were able to obtain 77 time series of daily maximum and minimum temperatures between 1966 and 583 
2015. 584 
General warming trends are evident in most of the planetary regions, and Northern Chile is not an exception 585 
to this, as it has been observed in several studies. This warming trends are linked in this case with the very 586 
evident rise of minimum temperatures. Maximum temperatures do not experiment a significative rise. But 587 
when using ETCDDI indices about extreme temperatures and focusing on regional scales, some particular 588 
behaviour of concrete stations may overcome. According to the maximum temperatures, the TXx and TXn 589 
indices show North-South differences, but both trends mark a warming behaviour, higher than 1ºC / decade 590 
depending on the observatory. However, in some observatories, the maximum values of minimum 591 
temperatures have decreased, mainly in the inter-tropical areas of Northern Chile, even reaching rates more 592 
intense than -1.5ºC / decade. According to percentile-based indices, the warming trends are not so evident 593 
in both minimum and maximum temperatures. The DTR index mainly shows significant positive trends 594 
(only one negative), which do not match with the general idea that global warming was mainly induced by 595 
rises in minimum temperatures, which is contrary to the results obtained here. The same happens with FD0, 596 
exhibiting more frequent frost days nowadays than in the mid-20th Century in several observatories in the 597 
north. Warm persistent events have decreased in the north also, but have increased in the centre and south 598 
of the study area. Cold persistent events show a very evident retreat over the whole territory. For each index, 599 
each meteorological station has a similar behaviour with each other, but for maximum temperature indices 600 
it tends to appear a latitudinal range between 20ºS and 22ºS where this behaviour is shifted. Altitude and 601 
latitude appear as two geographic variables strongly affecting extreme temperature indexes, while altitude 602 
more affects the minimum temperature based indices than maximum temperatures. On the other hand, 603 
latitude affects all indices in similar ways.  604 
Generally, warming trends have been identified in the study area, but with some exceptions depending on 605 
the behaviour of the minimum temperature. However, the heterogeneity of temporal trends of indices and 606 
the multitude of factors affecting the high elevation means is yet to be determined. Therefore the exact 607 
mechanism influencing the variability of temporal trends of indices cannot be generalized across the entire 608 
area. The lack of a dense network of stations limits understanding how the elevation–warming trend 609 
relationships and therefore predicting the future patterns of these trends. Therefore, more stations are 610 
required to expand this study. Moreover, different responses of extreme temperatures have been identified 611 
depending on latitude and/or elevation, which evidences the effect of the region’s complex orography in 612 
temperatures and therefor in climate. This needs to be considered to develop realistic and efficient policies 613 
concerning water management. This study will permit a more thorough analysis to better understand how 614 
general warming trends behalf on a region with a very complex orography and with regional and local 615 
particularities. Also will allow in future studies to determine how climate change impacts on the regional 616 
hydrological cycle so it will be possible to provide better tools to improve water management in arid areas 617 
of the region. Derived values from this investigation could be useful to more accurately quantify the 618 
temperature range for glacier-hydro-climatic and ecological modelling in the future. 619 
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TNxScript: R script to determine the extreme temperature values needed to calculate the TNx trends 631 
TXnScript: R script to determine the extreme temperature values needed to calculate the TXn trends 632 
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TN10pScript: R script to determine the number of days at the 10th percentile of minimum temperatures 634 
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needed to calculate the TX10p trends 637 
TN90pScript: R script to determine the number of days at the 90th percentile of minimum temperatures 638 
needed to calculate the TN90p trends 639 
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TX90pScript: R script to determine the number of days at the 90th percentile of maximum temperatures 640 
needed to calculate the TN90p trends 641 
DTRScript: R script to calculate the monthly mean difference between daily maximum and minimum 642 
temperature to determine the DTR trends 643 
FD0Script: R script to define the annual account of daily minimum temperature below 0º C to determine 644 
the FD0 trends 645 
SU25Script: R script to define the annual account of daily maximum temperature above 25º C to determine 646 
the SU25 trends 647 
TR20Script: R script to define the annual account of daily minimum temperature above 20º C to determine 648 
the TR20 trends 649 
WSDIScript: R script to count annually the number of events of at least six consecutive days of maximum 650 
temperature > 90th percentile 651 
CSDIScript: R script to count annually the number of events of at least six consecutive days of minimum 652 
temperature < 10th percentile 653 
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