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Abstract 

A landslide database has been created for the Principality of Asturias, NW Spain: the 

BAPA (Base de datos de Argayos del Principado de Asturias – Principality of Asturias 

Landslide Database). Data collection is mainly performed through searching local 

newspaper archives. Moreover, a BAPA App and a BAPA website 

(http://geol.uniovi.es/BAPA) have been developed to obtain additional information 

from citizens and institutions. Presently, the dataset covers the period 1980–2015, 

recording 2063 individual landslides. The use of free cartographic servers, such as 

Google Maps, Google Street View and Iberpix (Government of Spain), combined with 

the spatial descriptions and pictures contained in the press news, makes it possible to 

assess different levels of spatial accuracy. In the database, 59% of the records show an 

exact spatial location, and 51% of the records provided accurate dates, showing the 

usefulness of press archives as temporal records. Thus, 32% of the landslides show the 
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highest spatial and temporal accuracy levels. The database also gathers information 

about the type and characteristics of the landslides, the triggering factors and the 

damage and costs caused. Field work was conducted to validate the methodology used 

in assessing the spatial location, temporal occurrence and characteristics of the 

landslides.  

 

Keywords: Landslide database, Press archives, Rainfall, Asturias. 

 

1. Introduction 

 

Landslides are local phenomena, usually linked to more conspicuous hazards, like 

intense rainfall, floods or earthquakes. For this reason, they have often been 

undervalued (Foster et al., 2012). However, landsliding is one of the most frequent and 

widespread natural hazards worldwide, causing considerable human and material losses 

each year (Petley, 2012; Papathoma-Köhle et al., 2015). Major efforts have been made 

to study the characteristics of landslides and assess their impact (Damm and Klose, 

2015) and for these purposes, a landslide database is of primary importance (Guzzetti et 

al., 2012; Van Den Eeckhaut and Hervás, 2012). 

 

Landslide databases, or digital landslide inventories, constitute a detailed registration of 

the distribution and characteristics of past landslides (Hervás, 2013). Although the 

contents and completeness of databases vary depending on their function (Damm and 

Klose, 2015), the stored dataset usually contains: (i) core attributes (ID number, 

location, occurrence date, and movement type), (ii) additional information (geometry, 

controlling and triggering factors, impacts, mitigation measures and costs) and (iii) 
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complementary data (illustrations, aerial photos and monitoring data) (Hervás, 2013). 

Thanks to geographical information systems (GIS), it is common to represent the spatial 

distribution of landslides using landslide inventory maps (Guzzetti et al., 2012). 

 

Depending on the information source used, these databases can be classified into two 

main categories (Guzzetti et al., 2000; Malamud et al., 2004; García-Urquia, 2014): (a) 

archive inventories, containing information obtained from archive sources (press, 

scientific literature, historical archives and previous inventories), and (b) 

geomorphological inventories, containing information obtained from geomorphological 

field work, aerial photo and satellite imagery interpretation or analysis of digital 

elevation models (DEMs). The first group usually offers better temporal information 

than the second, which provides more detailed data about genesis and geometry. In this 

way, archive inventories are essential in the temporal forecasting of landslides, while 

spatial information provided by geomorphological inventories is required for a spatial 

assessment of linked susceptibility, hazard or risk. In many cases, both types of sources 

are used to create a landslide database (Guzzetti et al., 2012). New technologies also 

constitute a rich source of information about landslides and other natural hazards 

through the use of free cartographic servers such as Google Earth (Van Den Eeckhaut et 

al., 2012), on-line report systems (Baum et al., 2014), web data mining (Battistini et al., 

2013) and social media such as Twitter (Pennington et al., 2015). 

 

The aim of this paper is to present a new landslide database developed for the Asturian 

region (NW Spain): the BAPA (Base de datos de Argayos del Principado de Asturias – 

Principality of Asturias Landslide Database). This database records data for the period 

1980–2015 based on press archives and reports from citizens and institutions. The main 
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goals of this paper are to: (i) describe in detail the methodology used for developing the 

BAPA, (ii) present the compiled information, (iii) discuss data accuracy, and (iv) 

analyse the spatial and temporal distribution of the dataset in relation to landslide 

conditioning and triggering factors for Asturias. 

 

2. Background 

 

There are some initiatives aimed at creating global landslide databases such as the EM-

DAT International Disaster Database (Guha-Sapir et al., 2014), the Global Landslide 

Database (Kirchbaum et al., 2010, 2015) and the DesInventar project (UNISDR, 2016). 

However, due to the local character of instability events, national and regional landslide 

databases usually provide more reliable and complete information (Damm and Klose, 

2015). In recent years, many of these inventories have been developed and enriched 

worldwide: Australia (Osuchowski, 2008), China (Liu et al., 2013), and especially in 

Europe, where Van Den Eeckhaut and Hervás (2012) summarized 24 national and 22 

regional databases. Many of them have undergone intense development since around 

2012, as in the cases of Germany (Damm and Klose, 2015), Slovenia (Komac and 

Hribernik, 2015), Great Britain (Pennington et al., 2015; Taylor et al., 2015) or the Alps 

(Wood et al., 2015). Some initiatives have also been developed within the Iberian 

Peninsula, where slope instabilities constitute important geomorphological hazards 

(Díaz de Terán et al., 1997), resulting in major social problems with estimated 

economic losses of 170 million euros per year (Spizzichino et al., 2010). The initiatives 

include (i) the MOVES Project from the IGME (Instituto Geológico y Minero de 

España – Geological Survey of Spain) to develop a national landslide database in Spain 

(Díez-Herrero et al., 2014); (ii) the natural hazard databases developed in Spain (Ayala 
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Carcedo, 1988), Portugal (Santos et al., 2014; Zêzere et al., 2014) and Andorra (Gallego 

et al., 2014), which include information about landslides; and (iii) three other regional 

landslide databases: the Northern Portugal Landslide Database – NPLD (Pereira et al., 

2014), the Landslide Database of the Southern Slopes of Sierra Nevada, Granada 

(Spain) (Irigaray et al., 2007; Jiménez-Perálvarez et al., 2011), and the Cataluña and 

Principality of Andorra landslide database – LLISCAT (Marco i Planells, 2007). 

 

The Cantabrian Range, which extends along the north coast of Spain, overlooking the 

Bay of Biscay, from the Basque Country in the east to Asturias in the west, is one of the 

areas most affected by landslide hazards (Ferrer Gijón, 1987; 1995) and consequential 

economic losses (Ayala et al., 1987) because of both geological and climatic conditions 

and high population density. Damage mainly affects communication infrastructures and, 

to a lesser degree, settlement areas. Existing estimations for the Asturias region (NW 

Spain) report 66 million euros per year as being the direct total cost of landslides 

(González Moradas and Lima de Montes, 2001). Despite the high landslide 

susceptibility of the area, only two regional landslide databases have been developed 

(Domínguez-Cuesta et al., 1999; San Millán Revuelta, 2015). Particularly notable is the 

landslide database developed in Asturias by using press archives of the regional 

newspapers, which allowed the first rainfall threshold for the occurrence of landslides in 

the Asturian region to be calculated (Domínguez-Cuesta et al., 1999; Francos Garrote, 

2011; Domínguez-Cuesta et al., 2012). 

 

3. Study area 
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The Principality of Asturias is an Autonomous Community in the NW of Spain with an 

area of ca. 10,600 km
2
. Bordered to the south by the Cantabrian Range and to the north 

by the Cantabrian Sea, the area constitutes an E–W trending strip of territory 

characterized by a mountainous relief, with its highest point (Torrecerredo Peak) rising 

to 2,648 m above sea level (Fig. 1A, B). Most of the population of Asturias is 

concentrated in and around the three major cities (Oviedo, Gijón and Avilés) and the 

coal mining area, all located in the centre of the region, while the most peripheral areas 

have a lower and largely dispersed population. 

 

The bedrock mainly consists of a wide range of folded and fractured Palaeozoic Rocks 

belonging to two zones within the Iberian Massif (Lotze, 1945): the Cantabrian Zone in 

the east (Alonso et al., 2009), with a significant presence of calcareous outcrops, and the 

West–Asturian Leonese Zone in the west (Marcos, 2004), with a predominance of 

siliceous materials affected by metamorphism (Fig. 1C). In the north and east of the 

region, this bedrock is covered by a discordant Mesozoic and Tertiary cover (Alonso et 

al., 1996). The elevation of the Cantabrian Range during the Alpine Orogeny together 

with the climatic factors conditioned the development of the actual relief through the 

operation of fluvial incision (Jiménez-Sánchez et al., 2014), karst processes (Ballesteros 

et al., 2015) and glacial activity (Rodríguez-Rodríguez et al., 2015) during the 

Quaternary. Together with fluvial and coastal processes, slope instabilities are the most 

widespread phenomena of the current geomorphological dynamics. Two generic words 

denote these instability events in the traditional Asturian dialect: argayo and fana. 

 

Domínguez-Cuesta et al. (1999; 2012) pointed to precipitation as the main triggering 

factor for landslides within the study area. The climate in Asturias is characterized by 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 7  
 

average annual temperature and precipitation of 13.3ºC and 960 mm (Oviedo weather 

station, 1981–2010) (AEMET, 2012), with maximum and minimum precipitation values 

in autumn and summer respectively. The average annual number of rainy days per year 

ranges from 4 (> 30 mm in 24 h) to 30 (> 10 mm in 24 h) and 123 (> 1 mm in 24 h) 

(Botey et al., 2013). Due to the orientation of the major geographical features (ranges 

and valleys), the proximity between the sea and the Cantabrian Range, and the 

prevailing winds, the orographic effect plays a predominant role in the rainfall 

distribution over the Asturian region (Arasti et al., 2002) (Fig. 1D). Two main 

precipitation patterns are frequent: (i) frontal rain associated with autumn and winter 

low pressure systems, or orographic rain due to northern maritime air masses, and (ii) 

brief episodes of heavy rainfall, due to strong instability of air masses during spring and 

early summer. 
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Fig. 1. Characteristics of the study area. A. Location of the main geographical features in the study area. 

B. Location of the study area. C. Bedrock lithology within the study area, modified from IGME (2004). 

D. Annual isohyet field within the study area, modified from Arasti et al. (2002). 
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4. Methodology 

 

4.1. Data collection, storage and validation 

 

4.1.1. Selection of data sources 

 

Data collection was mainly based on the review of press archives. La Nueva España is 

the most important regional newspaper, publishing six daily editions, each focussing on 

a different zones of Asturias. Due to its wide distribution and the increase in its news 

coverage from the single edition of the 1980s to the current six editions, this newspaper 

was selected as the main data source. A systematic review of the newspaper library of 

La Nueva España was carried out for the 1980–2015 period. Analogical archives 

between January 1980 and June 1995 had already been reviewed through visual 

examination by Domínguez-Cuesta et al. (1999), and they were converted into digital 

form during the present work. La Nueva España’s digital newspaper library was used to 

review digital archives for the period January 1995 to December 2015. This method was 

chosen instead of visual examination due to the need to review a large amount of 

newspapers from six different editions within a limited time. Previous experience with 

analogical archives allowed the selection of the used Spanish keywords: argayo, 

corrimiento, derrumbe, deslizamiento, desprendimiento, grieta, hundimiento, ladera, 

socavón, movimiento and avalancha. Six-months overlap between the analogue and 

digital periods of records (January 1995 to June 1995) were used to test the efficiency of 

the data mining through keywords, showing the same results as through visual 

examination. Once the news items containing at least one of the keywords were 

selected, a one-by-one visual review was performed to find false positives i.e., when the 
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keyword is used without relation to landslides; e.g. the word argayo frequently appears 

in brand names. Two more regional newspapers (El Comercio and La Voz de Asturias), 

together with other mass media (TV and radio), were also considered for the research. 

These sources were used to crosscheck or to complete the information about landslides 

previously identified from the main data source. 

 

The use of press archives has some limitations, since the information is biased towards 

instability events concerning people, infrastructures and human resources, 

underreporting those that do not cause impacts, occur in uninhabited areas or 

simultaneously with more conspicuous natural phenomena (Domínguez-Cuesta et al., 

1999; Carrara et al., 2003; Guzzetti and Tonelli, 2004; Taylor et al., 2015). For this 

reason, additional information sources, like reports from citizens and institutions 

(Natural Park Rangers, Guardia Civil–military corps that operate in rural zones, 

municipalities, and Autonomous Government) have been used to generate a more 

complete dataset. Initially, the BAPA website (www.geol.uniovi.es/BAPA/) was created 

to facilitate direct collaboration. Secondly, a BAPA App for Android was developed to 

take advantage of the widespread use of mobile phones, allowing people to submit geo-

located pictures and basic information about the observed landslides (available on 

Google Play through the keywords “bapa” and “argayo”). Finally, the BAPA Twitter 

and Facebook accounts, a leaflet and two informational videos were created to make the 

project better-known. The BAPA website has been operative since November 2013 and 

the BAPA App since April 2015. 
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4.1.2. Database structure 

 

The BAPA database was designed in Microsoft Access. A number is automatically 

assigned by the software to each entry in the database. Moreover, an ID number is 

manually assigned for each single landslide identified. This system was adopted for two 

reasons. (i) It is sometimes difficult to know whether several database entries refer to 

the same or to different landslides. In this way, the ID number may be modified if the 

gathering of new data changes the initial interpretation. (ii) The methodology avoids the 

mixing of data from different sources, which is not desirable even if all the information 

refers to the same landslide. Thus, several entries could be related to the same landslide 

and show the same ID number. 

 

Information extracted from raw data was synthesized in 105 different data fields.  When 

possible, drop-down lists (fields with some established options), checkboxes and pre-

defined date fields were used to minimize errors during data processing. Moreover, the 

original text concerning each type of data was also stored in specific fields of 

“References” within the database to preserve it unchanged, allowing its review in the 

future. Data were stored in three different formats: text, numeric and image (press 

archives in the PDF format and photographs in the JPEG format). 

 

Data fields can be grouped in 10 thematic blocks according to the type of information 

recorded: 
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1. Registration data: including the automatically assigned number for each entry, the 

manually assigned ID number for each landslide and a checkbox that indicates if an 

ID number is linked to one or more entries. 

2. Source: date of publication or receipt of the information, type and characteristics of 

the data source, data format (texts, picture, diagram/map) and information about the 

person or institution which sent the report. 

3. Spatial data: information about the location of the landslide, municipality, nearest 

town, spatial description, coordinates and road references. 

4. Temporal data: year, month, day and moment of the day or exact time of the 

landslide occurrence. 

5. Landslide data: type of landslide, qualitative-quantitative features, type of substratum 

(shallow deposit, bedrock and artificial deposit), type of slope (natural or artificial) 

and activity including recurrence. 

6. Triggers: data about the triggering factor of the landslide, natural or human-related, 

with special emphasis on the information about precipitation. 

7. Affected infrastructures: including motorway/road, track/path, railway, house, 

community facility, agricultural/industrial activity, water supply network, sewage 

network and electricity network. 

8. Damage and costs: type of damage (injuries/fatalities or material losses), direct and 

indirect effects, costs, presence and effectiveness of protection measures and 

subsequent actions. 

9. Accuracy: data accuracy assessment focused on three issues: temporal data, spatial 

data and landslide data. A numeric field to express the accuracy level was included 

for each of them. 
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10. Fieldwork-validation data: the date of the field work and the collected information 

including the on-site check of the location, time of occurrence and type of landslide, 

substratum and slope. 

 

4.1.3. Data processing, accuracy assessment and validation 

 

Concerning the usefulness of press archives and personal-institutional reports as 

landslide data sources, some authors agree that the accuracy of those data is conditioned 

by various factors, such as the perceptions and skills of different observers and the use 

of a non-scientific language, which introduce uncertainties (Ibsen and Brundsden, 1996; 

Domínguez-Cuesta et al., 1999; Zêzere et al., 2014). For this reason, it is necessary to 

establish some criteria during data processing which allow not only the classification of 

the information but also the assessment of its accuracy. In this work, particular 

emphasis was placed on the development of those criteria for the evaluation of the 

temporal and spatial data as well as the type and characteristics of the landslides. 

 

Despite the lack of information in some cases, a date for each landslide was always 

recorded and later evaluated. Depending on the availability of detailed temporal 

information, three date categories were defined: (i) exact date: e.g. “May 16, 1987” and 

“yesterday” (code in the database = 1); (ii) inferred date: e.g. “two days ago” and “last 

weekend” (code = 2); and (iii) estimated date: e.g. “a week/month ago” and “last year” 

(code = 3). Temporal information sometimes includes the exact time of occurrence, 

which was recorded in the corresponding field. More often, some reference to the 

moment of the day (morning, midday, afternoon, evening or night) when the landslide 

took place appears. To translate this timing information into a quantitative form, each 
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day was divided into four periods, taking into account the everyday use of these terms 

in Spain (e.g. the official end of the morning is 12 pm, but it is commonly considered 

that the morning lasts until the end of lunch time at 2 pm). To account for the seasonal 

variation in the length of the day, the four time ranges defined are different between the 

periods November–April (8 am to 2 pm, 2 pm to 7 pm, 7 pm to 0 am, and 0 am to 8 am) 

and May–October (7 am to 2 pm, 2 pm to 9 pm, 9 pm to 0 am, and 0 am to 7 am).  

  

The landslide mapping process was based on the spatial descriptions and photos or 

schemes provided by press archives and reports. Geo-location was carried out by using 

two free on-line cartographic servers: Google Maps-Google Street View and Iberpix 

(orthophotos and topographic maps server of Spain at www.ign.es/iberpix2/visor). 

UTM coordinates were defined for all the identified landslides according to the ETRS89 

projection coordinate system and later evaluated. Coordinates included in raw data were 

checked and converted to the ETRS89 datum. Depending on the precision of the 

available information, geo-location was performed on three scales: (i) location with 

exact coordinates (code = 1), supported by precise spatial descriptions and graphical 

information (associated with 25×25 cm cell size orthophotos equivalent to a 1:1,000 

scale); (ii) location with a low to medium level of uncertainty (100–500 m; code = 2), 

supported by incomplete descriptions or poor quality pictures (associated with 1:10,000 

scale maps); and (iii) location with a high level of uncertainty (> 500 m; code = 3), 

supported by very scarce general data (associated with 1:25,000 scale maps or greater). 

 

The landslide type was determined taking into account the available graphical 

information. On the basis of Cruden and Varnes’s (1996) classification, three categories 

were designed: “rockfall”, “slide”, and “flow”; and two more categories were added to 
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indicate precursory signs of a slope instability: “crack” and “subsidence/collapse”. The 

accuracy of the assigned type in each case was expressed with numbers: 1 = high 

(supported by high quality pictures or field work), and 2 = low (supported by low 

quality pictures). 

Field work was conducted to validate the dataset, allowing the review of (i) the location 

and characteristics of the recorded landslides (types of landslides, slopes and affected 

substratum), and (ii) the temporal data obtained by questioning to the inhabitants of the 

area. Ten per cent of the recorded locations were reviewed through on-site visits. Seven 

field work campaigns were performed in different areas to cover representative samples 

of the region: western coast, western mountains, central coast, central mountains, capital 

area, eastern coast and eastern mountains. During the campaigns, the local road network 

was followed, reviewing all the previously identified landslides located in the areas 

close to the selected route. 

 

4.2. Data analysis 

 

Basic queries to the BAPA database were used to perform the first analysis of the 

recorded dataset. Afterwards, the original Microsoft Access files were exported to 

Microsoft Excel and ArcGIS 9.3 to graphically display the results. Temporal variation 

of the number of records throughout the study period were estimated and interpreted 

following the methodology described by Guzzetti (2000) and Rossi et al. (2010). The 

number of landslides per day (Ls dy
-1

) and the gradient of the curve showing the 

cumulative number of reported landslides per year were used as proxies of the intensity 

of landsliding and the completeness of the database, respectively. The influence of the 

additional data sources was also considered (reports, BAPA website and BAPA App). 
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Spatial distribution of the landslides and its change with time were analysed in relation 

to some conditioning factors, such as geology and population density. Attention was 

also paid to interpretation of the variation of the spatial and temporal data accuracy 

levels from 1980 to 2015. Finally, to assess the reliability of the data about triggers, a 

preliminary analysis of the BAPA dataset together with monthly precipitation data 

series was conducted. As proposed by Pereira et al. (2014) and Damm and Klose 

(2015), the Pearson’s correlation coefficient was used to express the dependence 

between landslides and rainfall. Precipitation data series from 15 AEMET (Agencia 

Estatal de Meteorología – Spanish Meteorological Agency) weather stations, covering a 

period of 36 years (1980–2015), were used to calculate average monthly precipitation 

values for the region.  

 

5. Results 

  

As a result of data collection, 2073 individual landslides were identified with ID 

numbers and stored in the BAPA database. Almost all of them (2063) took place during 

1980–2015 and were selected as the study target dataset; the remaining 10 landslides are 

isolated records from the previous years and were excluded from the present analysis. 

Among the stored landslides, 241 were identified by using information from multiple 

sources; consequently, there is more than one entry within the database related to them. 

In the remaining 1822 cases, each entry refers to a single landslide. A total of 2379 

entries were entered into the database. About 88% of the extracted information (2106 

entries) came from the review of 7600 press archives of regional newspapers, radio and 

TV, and the remaining 12% (273 entries) came from 341 reports sent by individual 

citizens and institutions (Guardia Civil, Natural Park Rangers, Autonomous 
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Government and Municipalities) (Fig. 2). Information from reports is only available for 

years 2001–2015, while data from journalistic sources covers the whole period of study. 

La Nueva España newspaper was the most frequently used press source (1940 entries). 

Moreover, El Comercio and La Voz de Asturias newspapers (164 entries) together with 

the radio and TV (two entries) were used to crosscheck or complete the information 

about landslides previously identified from La Nueva España newspaper in 95% of the 

cases. Only in 5% of the cases, new landslides unreported in La Nueva España were 

identified. Most of data extracted from reports were obtained through direct personal 

communication (200 entries). The implementation of the BAPA website and the BAPA 

App allowed to collect some additional information (73 entries) from November 2013 

to December 2015. Data from reports allowed the identification of 235 landslides 

unreported in the journalistic sources. Finally, 223 landslides were visited in situ as a 

part of the validation process. 

 

 

Fig. 2. Information sources used for the identification of the collected landslides. 
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5.1. Characteristics of spatial data 

 

Fig. 3A represents the spatial distribution of the BAPA dataset within the territory of 

Asturias. The central area shows the highest density of records, followed by the eastern 

area, while the western area registers the lowest number of recorded instabilities. 

Moreover, 68% of the records (1402 landslides) are located along the regional road 

network. The landslides identified from press archives, radio and TV cover the whole 

study area. However, the dataset shows an irregular distribution; the municipalities 

which have more than 41 records are more numerous in the eastern area and the 

municipalities with more than 66 landslides are concentrated in the central area (Fig. 

3B). By contrast, the landslides from the reports show a more irregular distribution over 

the study area, with the highest concentration of records in a few scattered 

municipalities. Fig. 3C illustrates the density of landslides per municipality based on the 

whole BAPA dataset; two municipalities located in the central coastal area reached the 

highest values for this parameter, between 1.14 and 1.68 Ls km
-2

, and the other eight 

municipalities, located in the central and eastern areas of Asturias, had values between 

0.37 and 1.14 Ls km
-2

. A comparison between the density of landslides and the 

population density in each municipality (Fig. 3D) shows a high degree of coincidence 

between the two. The highest landslide densities also correspond to the locations of the 

offices of the newspaper La Nueva España, the main data source used in the present 

research. Finally, the BAPA dataset was divided into 6-year periods and the landslides 

that occurred during these intervals were plotted on individual maps (Fig. 4) to show the 

change in the spatial distribution during 1980–2015. The highest concentration of 

records is observed to be in the central area throughout the studied period. After 1992, 
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the number of landslides recorded in the peripheral areas of Asturias increases, 

especially in the eastern zone. It is only from 2004 that the number of recorded 

landslides increases in the western area; most of these data come from personal reports, 

the BAPA website and the BAPA App. 
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Fig. 3. Characteristics of the spatial data. A. Spatial distribution of the BAPA dataset throughout the 

Principality of Asturias. B. Comparison between the number of records from press archives per 

municipality (polygons) and records from reports (points). C. Landslide density for each municipality. D. 

Population density for each municipality and location of the offices of the newspaper La Nueva España 

(data from INE, 2015 and La Nueva España, LNE). 
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Fig. 4. Temporal change in landslide distribution based on the BAPA dataset during 1980-2015 within 

the Principality of Asturias. 

 

After the geo-location process, high spatial accuracy (level 1) was assigned to 1217 

landslides (59%); 491 landslides (24%) were assigned to medium accuracy (level 2) and 

the remaining 355 landslides (17%) to low accuracy (level 3). Fig. 5A shows the change 

in the spatial accuracy during the period 1980–2015. The number of records with the 

highest accuracy tends to increase significantly with time, while the numbers of records 

with the medium and low accuracy levels show a more moderate growth. Moreover, the 

records within each accuracy level show quite even distributions over the study area 

(Fig. 5B). 

 

A validation process through field work confirmed the initial assessment of the spatial 

accuracy in 83% of the visited landslides. In the remaining cases, field work led to an 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 22  
 

increase in the accuracy level (11%) or a decrease (6%) (Fig. 5C). Fig. 5D shows the 

percentage of initial spatial accuracy assessments that were confirmed during the 

validation process. High percentages of validated cases were reached for level 1 

(92.8%) and level 3 (79.3%), while that percentage decreases for level 2 (58.9%). About 

63% of the records with the highest accuracy include photos or schemes, while this 

share decreases drastically for those with medium or low accuracy (Fig. 5D). 
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Fig. 5. Analysis of spatial accuracy. A. Variation of the spatial accuracy over the study period. B. 

Distribution of the spatial accuracy over the study area. C. Total results of the validation process. D. 

Results of the validation process within the three established accuracy levels in relation to the availability 

of graphical information in database records shown by the line. 
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5.2. Characteristics of temporal data 

 

The number of landslides per day between 1980 and 2015 ranges from 0 to 62. During 

this period of 13,149 days, 992 days (7.54%) had at least one landslide, 61 days (0.46%) 

had 5 or more landslides, and 27 days (0.21%) had 10 or more landslides (Table 1). 

 

Table 1. Characteristics of the BAPA temporal dataset 

 

Fig. 6A represents the temporal distribution of the recorded landslides during 1980–

2015. The time series shows a long-term increase in the annual frequency of landslides, 

superimposed by strong annual fluctuations ranging from 1 to 262 landslides in a year, 

with an average of 57.3 landslides per year. Two cumulative curves show (i) the number 

of reported landslides from press archives, radio and TV, and (ii) the number of all 

reported landslides. Taking into account the slope changes observed in both curves in 

1990 and 2007, the dataset was divided into three periods. 1980–1990, 1991–2007 and 

Parameter Value  Unit Period Date 

Maximum number of landslides in a day 62  Ls dy
-1

 1980-2015 16/11/200

3 
Minimum number of landslides in a day 0  Ls dy

-1
 1980-2015 --- 

Number of days with landslide records ≥ 1 992  dy 1980-2015 --- 

Number of days with landslide records ≥ 5 61  dy 1980-2015 --- 

Number of days with landslide records ≥ 10 27  dy 1980-2015 --- 

Maximum number of landslides in a year 262  Ls yr
-1

 1980-2015 2013 

Minimum number of landslides in a year 1  Ls yr
-1

 1980-2015 1985 

Average number of total landslides per year 57.3  Ls yr
-1

 1980-2015 --- 

Gradient of the cumulative curve of reported 9.4  Ls yr
-1

 1980-1990 --- 

landslides from press, radio and TV 47.0  Ls yr
-1

 1991-2007 --- 

 105.7  Ls yr
-1

 2008-2015 --- 

Gradient of the cumulative curve of total 9.4  Ls yr
-1

 1980-1990 --- 

reported landslides 47.5  Ls yr
-1

 1991-2007 --- 

 136.6  Ls yr
-1

 2008-2015 --- 
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2008–2015. For each period, the gradient of the best-fit straight line, interpreted as the 

rate at which landslides were reported in Ls yr
-1

, was calculated for both cumulative 

curves (Table 1). The first time period covers 30.5% of the total time series (11 years) 

but only includes 6.4% of the total identified landslides (133 records from press, radio 

and TV), and the number of landslides per year is always above the average value of 

57.3 Ls yr
-1

 calculated for the study range. The second time period covers 47.2% of the 

studied range (17 years) and includes 39.3% of the total identified landslides (790 

records from press, radio and TV and 21 from reports), showing 4 years with a number 

of landslides per year over the average. The third and shortest time period, which 

corresponds to 22.3% of the time series (8 years), includes 54.32% of total landslides 

(884 records from press, radio and TV and 235 from reports), showing only one year 

with a number of landslides below the average. 
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Fig. 6. Characteristics of the temporal data. A. Temporal distribution of the recorded landslides during 

1980–2015. B. Variation of the temporal accuracy over the study period. C. Distribution of the temporal 

accuracy levels over the study area. 

 

Assessment of temporal accuracy over the BAPA dataset indicated that 1056 records 

(51%) were assigned to the maximum level of accuracy (level 1), 456 records (22%) to 

the medium level (level 2) and the remaining 551 landslides (27%) to the lower level 

(level 3). Within the highest accuracy level, the exact time of occurrence is known for 
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273 landslides and the moment of the day for 475 landslides. Fig. 6B shows the 

variation in the number of landslides within each of the levels of temporal accuracy for 

1980–2015. While the number of landslides within the temporal accuracy level 1 

increases in parallel with the increasing number of records during the study period, the 

number of landslides with the accuracy levels 2 and 3 present a more moderate growth, 

only showing a significant increase in the trend from 2008 to present. Fig. 6C shows a 

quite even distribution of the records for the three accuracy levels over the study area. 

Surveys conducted with the inhabitants of the area performed during the field validation 

process confirmed the date of occurrence in less than 1% of the cases. In the rest of the 

cases, no reliable information could be gathered. 

 

5.3. Characteristics of landslide properties  

 

The type of landslide was determined in 45% of the records (927 landslides): 26% were 

classified as rockfall, 11% as slide, 5% as flow and 3% showed some precursory sign of 

slope instability (subsidence/collapse or crack). This classification could not be 

performed in the remaining 55% (1136 landslides) (Fig. 7A). Affected materials could 

be determined in 37% of the records (759 landslides) and remained undetermined in 

63% (1304 landslides). Bedrock was affected in 12% of the cases, natural shallow 

deposits in 10%, 12% involved both bedrock and natural shallow deposits, and 3% 

involved materials of anthropic origin (heap deposits or fill material) (Fig. 7B). 

Moreover, 32% of the recorded landslides (655) took place in artificial slopes related to 

roads and other human infrastructures, while only 14% of them (293) occurred on 

natural slopes, and the type of slope remained undetermined in 54% of the landslides 

(1115) (Fig. 7C). Detailed qualitative data about the type of affected material or the size 
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of the landslides were available for 38% of the cases (782 landslides), and quantitative 

data related to the dimensions of the landslide or the volume of remobilized material 

were available only for 10% (208 landslides). Evidence of recurrence was recorded for 

208 landslides. Finally, data about the level of activity after the triggering of the slope 

instability were only recorded for 70 landslides. The validation process through field 

work confirmed the initial characterization of: (i) the type of instability in 78% of the 

records, (ii) the affected substratum in 73% of the records, and (iii) the affected slope in 

77% of the records. In the remaining cases, this initial information was modified using 

the data collected in situ (Fig. 7D). 

 

 

Fig. 7. Characteristics of the recorded landslides. A. Type of landslide. B. Type of substratum affected. C. 

Character of the slope. D. Results of the validation of previous data through field work. 

 

5.4. Triggering factors 

 

A total of 1455 records provided data about triggers: 83% of them were attributed to 

natural factors, 9% to anthropogenic factors, and 8% to both natural and anthropic 

factors; no data about triggers were available for the remaining 608 landslides. The 

stored information indicates that 1232 landslides were attributed to rainfall. 
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The comparison between the monthly landslide records gathered on the BAPA database 

for 1980–2015 and monthly precipitation data highlighted the cyclical fluctuations in 

the monthly frequency of landslides due to seasonal variations in precipitation; those 

fluctuations may be observed clearly after 2000 and are particularly well-defined since 

2012 (Fig. 8A). All the months with the highest landslide records coincide with high 

monthly rainfall values based on the moving average calculated for 5 months; the most 

remarkable cases are November 2008 (255 mm; 83 records), June 2010 (275 mm; 163 

records) and January–February 2013 (266+256 mm; 143 records) (Fig. 8A). However, 

not all the months with high rainfall values show a significant number of landslides, 

especially between 1980 and 1990. Correlation coefficients between precipitation and 

landslides calculated for 1980–1990 (R
2
 = 0.18), 1991–2007 (R

2
 = 0.30) and 2008–2015 

(R
2
 = 0.56) showed a positive correlation at a monthly scale, with increasing R

2
 values 

since 1980. Landslide distribution throughout the hydrological year is represented in 

Fig. 8B, showing a positive correlation (R
2
 = 0.62) between average monthly 

precipitation and total monthly landslide records for 1980–2015 (Fig. 8C). Landslides in 

Asturias mostly occur from October to April while their frequency decreases during the 

period from May to September. January is the month with the highest number of 

landslides (294) and July is the month with fewest records (46). Different landslide 

datasets were defined according to their natural or human triggering factors, and their 

distribution throughout the hydrological year was plotted in Fig. 8D. Additional 

correlation coefficients between average monthly precipitation and landslide records 

were calculated taking into account only the landslide dataset triggered by (i) natural 

causes (R
2
 = 0.59), (ii) rainfall (R

2
 = 0.60), and (iii) anthropogenic causes (R

2
 = 0.64) 

(Fig. 8E). 
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Fig. 8. Characterization of the relation between landslides and rainfall. A. Monthly distribution of the 

BAPA dataset during 1980–2015. B. Landslide distribution during the hydrological year. C. Correlation 

between total monthly landslide records and average monthly precipitation. D. Monthly distribution of the 

landslides during the hydrological year according to its triggering factor. E. Correlation between monthly 

landslide records with different triggering factors and average monthly precipitation. 
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5.5. Damage and costs 

 

At least 87% of the landslides gathered in the BAPA database (1801 records) produced 

some kind of damage (Fig. 9A), including 1762 landslides causing material losses 

(97.8%), 13 landslides causing injuries and fatalities (0.7%) and 26 landslides causing 

both material losses and injuries/fatalities (1.4%). Moreover, 58.6% of the landslides 

that caused material losses provoked direct effects (damage to property and 

infrastructures), 1.6% provoked indirect effects (road closures, people evacuated, 

suspension of the transport services or interruptions in the industrial production) and the 

remaining 39.8% caused both direct and indirect effects. Some kind of previous 

protection measure existed in 69 of the landslides that caused damage, although those 

measures were effective only in 14 of the cases. Landslides mainly affect the 

communications network: motorways and roads (72%), paths and pedestrian access 

(7%) and the railway network (3%), followed by damage to houses (6%) and to the 

water supply network (4%) (Fig. 9B). 

 

In many cases, remedying landslide damage implies large economic investments. An 

estimation of the costs was calculated by considering the information appearing in 

newspapers. Fig. 9C shows the frequency of different levels of repair expenditure, based 

on the budgeted costs of 135 instability events gathered in the BAPA dataset. When 

there were discrepancies between the amounts of the budget shown by different sources 

for the same landslide, the calculation was performed considering the highest one. The 

average repair expenditure per landslide is of 202,232 €. However, in 55% of the cases 

where data are available, the budgets are lower than 100,000 € and only two of them 

reach figures higher than 1,000,000 €. 
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Fig. 9. Damage and costs caused by the recorded landslides. A. Percentage of landslides causing damage, 

material losses or injuries/fatalities. B. Affected infrastructures. C. Amount of repair expenditure.
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6. Discussion 

 

The analysis of temporal distribution of the BAPA dataset pointed to a significant long-

term increase in the annual and monthly numbers of recorded landslides since 1980. 

Precipitation records for the same period show no equivalent incremental trend (Fig. 

8A). Thus, the main cause for this trend is not climatological. However, high 

precipitation values recorded in some recent wet years, such as 2008 (1448 mm) and 

2013 (1517 mm), may explain a short-lived increase in the number of landslides. 

Because 88% of data used came from press archives, radio and TV, the growth in the 

rate of reported landslides has been associated with the expansion of the regional 

journalistic sources. In relation to this, the scarcity of data during 1980–1990 was 

related to the limited number of editions of the regional newspapers; the availability of 

data increased between 1991 and 2007 with the progressive creation of specialized 

editions of La Nueva España for different zones in Asturias and the development of 

digital editions of the regional newspapers on the Internet. Furthermore, the emergence 

and wide use of Facebook and other social media since 2008 has increased the 

availability of information, which is then often reflected in the newspapers. 

 

With respect to the variation in availability of data in the press archives, the BAPA 

database shows a temporal bias towards more recent landslides, when more records with 

high temporal accuracy were gathered. The database may be considered reasonably 

complete for the period 2008–2015, as evidenced by the regular increase in the number 

of reported landslides with time at a rate of 105.7 Ls yr
-1

 (Fig. 6A). Such an increase is 

lower for 1991–2007 (47.0 Ls yr
-1

) and 1980–1990 (9.4 Ls yr
-1

), considered as 

relatively incomplete and highly incomplete, respectively. This fact explains the lack of 
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landslide records in some months with high accumulated precipitation values before 

2008. Additional landslide records collected from personal communications, together 

with the records reported from the BAPA website and the BAPA App, contributed to 

increasing the completeness of the database; considering these data, the rate at which 

landslides were reported increased to 136.6 Ls yr
-1

 after 2008. The improvement in the 

completeness of the dataset, together with the identification of 235 new landslides 

unreported by press archives, supports the usefulness of the collaboration with citizens 

and institutions to reduce the bias of the database. 

 

The proposed methodology of validation through field work did not prove to be useful 

in validating the accuracy of the temporal information. With a few exceptions, the 

people consulted could only remember the month or the year when the landslide took 

place. Only when the respondent suffered direct damages were data about the day or the 

hour of occurrence provided. In contrast, the systematic recording of data in the 

newspapers, published soon after the occurrence of landslides, preserved detailed 

temporal data. Thus, press archives are considered as the most reliable source of 

temporal information for the study area. 

 

Regarding the spatial distribution of the BAPA dataset, the high density of landslides 

recorded in some areas could be attributable to geological or geomorphological factors. 

For example, the presence of unstable cliffs and marine erosion along the coastline and 

the bedrock with highly altered materials in the central area (Figs. 1 and 3A). However, 

given the high proportion of data from newspapers, the observed landslide distribution 

is definitely not dependent on natural factors. This inference is consistent with some 

alignments of landslides plotted in the map (Fig. 3A), especially in the SW and S areas 
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of Asturias, along main roads. Observed correlations among the number of recorded 

landslides from press archives, radio and TV (Fig. 3B), landslide density (Fig. 3C) and 

population density (Fig. 3D) in each municipality also support this. In the central area, 

the greatest abundance of records seems to occur in the proximity of La Nueva España 

offices (Fig. 3D), allowing journalists to easily access the information. As usual in 

newspaper based landslide inventories, the BAPA database presents a bias towards 

populated and accessible areas (Zêzere et al, 2014; Taylor et al., 2015). For this reason, 

the resulting map may misrepresent the real landslide distribution in Asturias. Observed 

variations in the spatial distribution of the BAPA dataset (Fig. 4) also reflect the 

increase in information due to the expansion of the regional journalistic sources. From 

1980 to 1991, the existence of single editions of the regional newspapers in the major 

cities justifies the concentration of records in the central region of Asturias; the 

progressive creation of local editions of La Nueva España increases the number of 

reported landslides from press archives during the period 1992–2003; but only after 

2010 did the additional data from reports, the BAPA website and BAPA App provide a 

reasonably homogeneous distribution of landslides in the study area. 

 

Field work was proved to be very useful in validating the accuracy of the spatial 

information. Previously defined spatial accuracy levels were confirmed in 83% of the 

visited cases, which verified the high reliability of the information in the BAPA 

database and confirmed the usefulness of press archives and cartographic servers for 

identifying and locating landslide events. Fig. 5D shows the relationship between the 

availability of photos and the landslide record spatial accuracy level. A significant 

percentage (63%) of the records with the spatial accuracy level 1 was located thanks to 

the availability of graphical information availability, especially from Google Street 
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View. In contrast, less than 20% of the records with spatial accuracy levels 2 and 3 

included landslide photos. Regarding the validation process, the percentage of 

confirmations of the initial spatial accuracy assessment was higher for the records of 

level 1 (92.8%) and level 3 (79.3%) than for level 2 (58.9%). The abundant spatial 

information in the level 1 but not in the level 3 made it difficult to improve the spatial 

accuracy through a field visit. 

 

The widespread use of the traditional terms argayo and fana in Asturias, together with 

the journalistic use of the words slide, rockfall and flow as synonyms, makes it difficult 

to apply a genetic classification of the recorded landslides. Data about the substratum 

and the natural or artificial character of the affected slope is frequently uncertain due to 

the limited technical experience of the informants and journalists. Although photos 

included in press archives or reports are found to be a valuable source of genetic and 

geological information, they often show only a partial vision of the event so the 

geological and genetic characteristics could be defined in less than 50% of the cases. 

However, validation through field work proved the accuracy of those data in 75% of 

cases. Conversely, data about the size of the event, recurrence and level of activity are 

insufficient to allow any statistical examination. Finally, the scarcity of data for events 

occurring in natural slopes implies a bias towards slopes modified by human activities. 

 

High density of landslides does not correspond to high average annual rainfall at the 

regional scale (Figs. 1C and 3A). Conversely, the monthly landslide records and 

monthly precipitation are correlated, especially during the most complete period of the 

dataset (2008–2015) with R
2
 = 0.56 (Fig. 8A). A better correlation (R

2
 = 0.62) was 

obtained between average monthly precipitation and the total number of landslides per 
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month (Fig. 8B, C). Intense landslide activity from October to February is related to 

long rainfall episodes associated with major autumn and winter low pressure systems or 

persistent orographic rain due to the activity of northern maritime air masses. June 

shows an unusually large number of records in spite of the low average monthly 

precipitation (62 mm). The occurrence of brief periods of heavy rainfall, such as heavy 

convective precipitation and thunderstorms, is responsible for this. A particularly 

intense rainfall event took place in June 2010 (Fig. 8A): a quasi-stationary low pressure 

centre over the Cantabrian Sea and a mid-level cold air pool gave rise to strong thermal 

and dynamic instability; two short-lasting but heavy convective rainfall events between 

8 and 16 June triggered at least 164 landslides. Removing this outlier case, the 

correlation improves from R
2
 = 0.62 to 0.82. 

 

Journalists and citizens often provide unclear data concerning natural factors, such as 

rainfall, and tend to focus on problems with infrastructures (García-Urquia and 

Axelsson, 2014). However, a positive correlation between the number of natural 

landslides in the BAPA database and average monthly precipitation indicates that such 

data are still useful. Their correlation even increases from R
2
 = 0.59 to 0.60 if landslides 

due to factors other than rainfall, such as fluvial or coastal erosion, are removed. 

Finally, a positive correlation (R
2
 = 0.64) between average monthly precipitation and 

the number of landslides triggered by human factors was observed. This result 

highlights the influence of rainfall as a conditioning factor even for non-natural 

instability events. In summary, rainfall is the main triggering factor of landslides in 

Asturias, which agrees with previous research (Domínguez-Cuesta et al., 1999; Francos 

Garrote, 2011; Domínguez-Cuesta et al., 2012). However, more detailed analysis is 

needed in order to better characterize the role of rainfall. 
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While landslides producing personal injuries or fatalities are unusual in the study area, 

economic damage is often caused. However, the total expenditure by local and regional 

administrations on repair and maintenance work has not been officially reported in 

Asturias. Therefore, this analysis has made use of the most detailed available estimation 

of direct costs. A more realistic estimation of costs would require data about the indirect 

costs related to various aspects such as evacuation of people, suspension of transport 

services and interruptions of industrial production. 

 

7. Conclusions 

 

The BAPA database gathers information about 1828 landslides identified from press 

archives, radio and TV for the period 1980–2015, and 235 landslides from reports sent 

by citizens and institutions during 2001–2015. The use of additional data sources 

including personal communication, the BAPA website and the BAPA App was found to 

be useful in minimizing the bias caused by the use of journalistic information and 

improving the completeness of the database, especially since 2008. 

 

Field work was also confirmed to be useful to correctly locate landslides and assess the 

accuracy of spatial information from text descriptions and photos as well as online 

cartographic services, including Google Maps and Iberpix. Temporal data from press 

archives were found to be the most reliable source for Asturias, whereas questionnaire 

surveys to the inhabitants were not particularly useful to obtain accurate temporal 

information. Despite some scarcity and bias in the information, the BAPA database is 

suitable for performing preliminary analyses including cost estimations. 
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The positive correlation between monthly precipitation and the number of landslides, 

even for cases where human triggering factors played a role, confirmed the strong 

influence of rainfall on slope instability in the study area. A significant number of 

landslide records (654 records) show accurate spatial locations as well as temporal 

information about the occurrence on daily and hourly scales, making the data suitable 

for detailed correlations with climatic factors. 
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HIGHLIGHTS 

 

 BAPA is a new landslide database developed in Asturias (NW of Spain). 

 2063 landslides were recorded between January 1980 and December 2015. 

 Data comes from press archives and reports from citizens and institutions. 

 Spatio-temporal data accuracy is checked through cartographic servers and field 

work. 

 The database includes data about landslide characteristics, triggers, damage and 

costs. 

ACCEPTED MANUSCRIPT


