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Introduction
Atmospheric variations may result from external forcing, 
but also naturally from internal interactions between 
components of the climate system. A closer inspection 
of the spatial structure of the atmospheric variability, 
in particular on seasonal and longer time-scales, shows 
that it occurs predominantly in preferred large-scale 
and geographically anchored spatial patterns, known as 
teleconnection patterns (TP).  TP can vary in intensity 
and position at seasonal, interannual and decadal time 
scales (Wallace and Gutzler, 1981; Trenberth et al., 1998; 
Quadrelli and Wallace, 2004). They are regional in nature 
and shaped by wave processes, reflecting zonal mean 
anomalies and connections via other components of the 
climate system, especially the ocean (Liu and Alexander, 
2007). Thus, TP are related to circulation types (Casado 
et al., 2008) and have an impact on other atmospheric 
surface variables such as temperature and precipitation.

Southwestern Europe, where the Iberian Peninsula is 
located, is mainly under the influence of the subtropical 
Azores high pressure system. This subtropical anticyclone 
exhibits meridional displacements along the seasonal 
cycle, inducing changes in the mean climatic conditions 
of this area.

The most important TP affecting the southwestern 
Europe is the North Atlantic Oscillation (NAO; Trigo et al., 
2002), which is associated with changes in the meridional 
gradient between the subpolar and subtropical pressure 
systems. NAO explains a large part of the precipitation 
variability over Europe, mainly in winter, in such a way 
that positive phases of this oscillation are associated with 
an increase of precipitation over northern Europe and a 
decrease towards the south-western European continent. 
NAO also affects temperature, winds and other variables 
impacting climate and society.  Apart from NAO, other TP 
affecting Europe are the East Atlantic/Western Russia 
(EA/WR), East Atlantic (EA) and Scandinavian (SCAND) 

patterns (García-Herrera and Barriopedro, 2017).

The atmosphere responds to other components of 
the climate system through excited Rossby waves and 
localized eddy–mean flow interactions, which can both 
result in regional teleconnection patterns (Liu and 
Alexander, 2007). Due to the large heat capacity of water 
when compared to the atmosphere, ocean subsurface can 
store energy for several months and release it later as 
latent and sensible heat fluxes which, in turn, can alter 
the global circulation of the atmosphere, triggering in 
this way, teleconnections. Sea surface temperature (SST) 
variability is used as a measure of the associated oceanic 
energy to be released. This is the basis of seasonal to 
decadal predictability (s2d). In particular, El Niño is 
the leading natural variability mode at global scale, 
determining most of the year-to-year global climate 
variability, including its impact on southwestern Europe 
(Brönnimann et al., 2007). Its Atlantic counterpart, 
with similar dynamics, is the Atlantic Niño, which is the 
main source of SST variability in the Tropical Atlantic at 
interannual time scales (Polo et al., 2008). Both, Atlantic 
and Pacific Niños are very much linked and cannot 
be considered as independent modes of variability 
(Rodriguez-Fonseca et al., 2009; Martín-Rey et al., 2014; 
Martín-Rey et al., 2015; Polo et al., 2015). Also, Tropical 
North Atlantic (TNA) variability cannot be isolated from 
ENSO (García-Serrano et al., 2017) and has a significant 
influence on the atmospheric circulation of the Atlantic-
European sector and in particular in the Iberian Peninsula 
in both early winter and spring (Rodríguez-Fonseca et al., 
2006). 

Climate models are generally able to simulate the gross 
features of many of the modes of variability, and to provide 
useful tools for understanding how they might change 
in the future (Müller and Roeckner, 2008; Handorf and 
Dethloff, 2009). The most recent IPCC report includes a 
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chapter devoted to the analysis of climate phenomena, 
in particular the main modes of variability, and their 
relationship with current and future regional climate 
(IPCC, AR5, Christensen et al., 2013). 

In the former CLIVAR-Spain assessment, Rodríguez-
Fonseca and Rodríguez-Puebla (2010) discussed the 
studies about atmospheric teleconnection patterns 
affecting the Iberian Peninsula, including possible 
predictability, with special emphasis in the NAO, and 
analyzing interactions with the ocean. Since then, a 
great progress has been made on the development of 
applications on subseasonal to decadal forecasts (s2s 
and s2d, Vitart et al., 2012). The availability of results 
from the Climate system Historical Forecasting Project 
(CHFP; Tompkins et al., 2017) and the Coupled Model 
Intercomparison Project (CMIP5), together with very 
active investigations in both operational and research 
communities, have improved and will continue to enhance 
our abilities to make skillful predictions and projections 
in the region. The present review collects most of the 
works dealing with TP affecting the Euro-Mediterranean 
region done from 2010, with special attention to internal 
vs. forced variability, predictability at different timescales 
and future projections.

Patterns affecting Southwestern Europe atmospheric 
variability and potential precursors
New studies have been done in the last years relating 
NAO with winter precipitation, winds and temperature, 
including extremes over the western Mediterranean 
region (Vicente-Serrano et al., 2009; Lorenzo et al., 2008; 
Jerez et al., 2013; Casanueva et al., 2014 Vicente-Serrano 
et al., 2009; Lorenzo et al., 2008). Also during this season, 
recent studies have found how positive phases of the NAO 
could act as precursors of explosive cyclones affecting 
Europe (Gómara et al., 2014).

Apart from NAO, recent studies point to combinations 
with other TP, as SCAND and EA, to explain climate 
variability in the region (Comas-Bru and MacDermott, 
2014). From a more regional perspective, patterns 
such as the Mediterranean Oscillation (MO) and the 
Western Mediterranean Oscillation (WeMO) (Martin 
Vide and López-Bustins, 2006; Vicente-Serrano et 
al, 2009; Lana et al., 2016) are also important in 
the description of the atmospheric variability of the 
southwestern Europe. Together with the NAO, the 
westerly index (Barriopedro et al., 2014), a measure 
of the frequency of westerly winds over the English 
Channel, have been found to explain the drought 
variability across Europe (Vicente-Serrano et al. 2016). 

In seasons other than winter, the NAO presents a less 
zonal structure due to the weakening of the extratropical 
jet, and other TP may be more influential on European 
climate (García-Herrera and Barriopedro, 2017). For 
example, during autumn, global atmospheric patterns 

project better on an EA-like pattern, whose structure 
and associated impacts depend on the background mean 
flow, therefore experiencing low-frequency oscillations. 
Thus, its annular structure has been active in the most 
recent decades, while a wave-4 pattern was dominant in 
the decades before (King et al., 2017). As compared to 
the winter NAO, the leading mode of variability in high-
summer (July-August), also known as the summer NAO, 
is more regional and shifted northwards. Different to the 
winter NAO, its largest impacts over the Iberian Peninsula 
are detected, although weak, in maximum temperatures 
(Favà et al., 2016).

There is a clear non-stationary relationship between 
the winter NAO and European precipitation 
(Hertig et al., 2015). Several hypotheses have been 
formulated to explain this non-stationarity, including 
modifications in the meridional pressure gradient 
(Zveryaev, 2006), North Atlantic air-sea dynamics 
and variability in the Atlantic Meridional Overturning 
Circulation (AMOC) (Walter and Graf, 2002; Gómara 
et al., 2016), solar activity (Gimeno et al., 2003) and 
variability in the NAO pressure centers (Haylock et 
al., 2007; Vicente-Serrano and Lopez-Moreno, 2008).

In winter, the NAO is also modulated by ENSO, whose 
teleconnections over Europe might involve both a 
tropospheric pathway and a stratospheric one (Butler 
et al., 2014). The persistence of the wintertime ENSO 
signal in the stratosphere and air-sea interactions in the 
North Atlantic allow the winter ENSO signal to persist 
until the following spring (Herceg-Bullick et al., 2017). 
In this season, although El Niño influence on the North 
Atlantic has been related to a negative phase of the 
NAO (Brönnimann et al., 2007; Vicente Serrano et al., 
2008, García-Serrano et al., 2011), this influence has 
been found to be non-stationary on time, depending on 
the slowly variant background of the ocean (Greatbach 
et al., 2004; Zanchettin et al., 2008; López-Parages and 
Rodriguez-Fonseca, 2012; López-Parages et al., 2015; 
López-Parages et al., 2016; King et al., 2017). In this way, 
the state of multidecadal variability of the north Atlantic 
SST determines the effectiveness of ENSO teleconnection. 
Moreover, two ENSO flavours have been reported, referred 
to as Eastern Pacific (EP) and Central Pacific (CP), with 
different winter teleconnections over Europe (Calvo et 
al., 2017). Their influence on southwestern Europe has 
also changed with time, being the EP warm events during 
negative Atlantic Multidecadal Oscillation (AMO) periods 
the combination with the largest impacts on European 
rainfall (López-Parages et al., 2016). Also, the Tropical 
North Atlantic region (TNA) has a significant influence 
on the atmospheric circulation in the Atlantic-European 
sector and in particular in the Iberian Peninsula in early 
winter and spring, also in relation to ENSO (Frankignoul 
et al., 2003; Rodríguez-Fonseca et al., 2016; King et al., 
2017).
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The impact of the Atlantic Niño decaying phase is mainly 
determined by the climatological jet stream’s position 
and intensity, showing an arching pattern over the North 
Atlantic region during summer–autumn, and a zonally 
oriented wave train during autumn–winter (García-
Serrano, 2011). Nevertheless, summer Atlantic Niño 
presents different impacts on summer Mediterranean 
climate depending on the state of the rest of the 
tropical oceans (Losada et al., 2012). Mediterranean 
SST anomalies also influence the Northern Hemisphere 
atmospheric circulation (García-Serrano et al., 2013; 
Sahin et al., 2015) affecting late summer temperatures.
 
Finally, at decadal time scales, the AMO (Ortiz Bevia et al., 
2016; Zampieri et al., 2017) has been found to influence 
the length of the summer in southern Europe (Peña-
Ortiz et al., 2015) and weather regimes at Mediterranean 
region in summer. Also, a coupling between Indian and 
southern European summer rainfall has been found after 
the late 1970s (Lin et al., 2017).

In addition to the ocean, other predictors are being 
defined for the better assessment of TP.  The stratosphere 
(Scaife, 2005; Palmeiro et al., 2017), the Madden Julian 
Oscillation (Cassou, 2008; Schwartz et al., 2017), Eurasian 
snow cover (Orsollini et al., 2016), and the Arctic sea-ice 
extension (García-Serrano et al., 2015) have been pointed 
out to be determinant for the correct assessment of 
predictability in the Euro-Atlantic sector at subseasonal 
timescales. 

Predictions and Future Projections
The evidence for potential seasonal predictions of the 
winter NAO has recently increased (Scaife et al., 2014; 
Athanasiadis et al., 2017), while a similar progress has 
not been achieved for other seasons or TP. Multiple 
studies have shown a potential for improved North 
Atlantic predictability at seasonal timescales based on 
two main predictors: ENSO and sudden stratospheric 
warming (SSW) events (Barriopedro and Calvo, 2014; 
Domeisen et al., 2015; Butler et al., 2016). 

There are suggestions of extended skillful predictions 
of the NAO one year ahead with two sources of skill for 
the second-winter forecasts: the climate variability in the 
tropical Pacific region and the effect of solar forcing on 
the stratospheric polar vortex strength (Dunstone et al., 
2016).

Multi-model decadal prediction exercises (Doblas-Reyes 
et al., 2013) have demonstrated the large potential for 
useful interannual-to-decadal prediction of European 
climate (Guemas et al., 2015; Lienert et al., 2017). The 
forecast information comes mainly from the warming 
trend in the case of temperature, but also from the AMO.

The Mediterranean is considered a ‘hot spot’ for climate 
change, due to the expected warming and drying of the 

region. While thermodynamically-induced changes due 
to greenhouse gases (GHG) forcing are robust, there 
are considerable uncertainties in the future projections 
of atmospheric circulation and variables related with 
dynamical processes, e.g., precipitation (Shepherd, 
2014), so that large ensemble simulations are essential to 
estimate the probabilistic distribution. Regarding future 
projections of TP, Gonzalez-Reviriego et al. (2014) have 
found a positive trend for the NAO and a negative trend 
for the SCAND pattern under future SRES A1B climate 
change scenario. This result is in line with recent multi-
model studies of NAO (Gillett and Fyfe, 2013) showing a 
small positive response of boreal winter NAO indices to 
GHG forcing. NAO will continue to influence precipitation 
and temperature in coming decades (López-Moreno 
et al., 2011), with the positive winter NAO trend in the 
future potentially leading to an increase in the frequency 
of dry conditions in the Iberian Peninsula. Moreover, as 
the simulations indicate a steady increase in temperature 
(see Serrano and Camino, this issue), winters classified 
as “cold” in the 21st century will be noticeably rarer 
compared with recent decades. 

Bladé et al. (2012a, 2012b) examined the future summer 
NAO trend in CMIP3 models. They found an overall 
positive trend, albeit with a large spread in magnitude, 
which accounts for a large fraction of the projected 
multi-model mean precipitation reduction in northwest 
Europe. These changes should also lead to modest 
precipitation increases in the Iberian Peninsula, where 
the observed correlation between the SNAO and summer 
precipitation is weakly positive, partially offsetting some 
of the thermodynamically-induced drying in the region.  
However, this effect is not captured by the CMIP3 models, 
because those models do not correctly represent the 
surface signatures of the summer NAO.

Climate regime shifts are projected under future scenarios 
including a strengthening and eastward extension of the 
North Atlantic storm track towards western Europe (Feng 
et al., 2014). The atmosphere-ocean coupling shapes 
distinct responses of Atlantic Niño under GHG forcing 
(Mohino and Losada, 2015) with uncertainties in ocean 
circulation changes accounting for much of the projected 
spread in storm tracks (Woollings et al., 2012). 

Regional future projections indicate a generalized 
increase of heatwaves and drought severity in the region 
(Jacob et al., 2014; Vicente-Serrano et al., 2014). Despite 
this, Atmospheric Rivers (ARs), which trigger intense 
precipitation and floods over continental areas, are 
projected to transport an increased amount of vertically 
integrated water vapor, producing extreme precipitation 
along the Atlantic European Coasts from the Iberian 
Peninsula to Scandinavia (Ramos et al., 2016). In relation 
to explosive cyclones, although most of them occur north 
of southwestern European region, abrupt southward 
shifts of the NAO, modulated by changes in the AMOC, 
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could lead to more frequent events over the subtropical 
European regions (Gómara et al., 2016).

Similarly to the last decades, in the 21st century, 
multidecadal fluctuations of the oceans are expected 
to act as a switch for global teleconnections, enhancing 
predictability during certain decades (López-Parages 
et al., 2015). In this way, the decadal variability that 
will accompany the projected forced changes in the 
Mediterranean region should be considered in the 
development of future climate outlooks (Mariotti et al., 
2015).
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