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Abstract. The purpose of this paper is the verification
of a short-range ensemble prediction system (SREPS) built
with five different model physical process parameterization
schemes and two different initial conditions from global
models, allowing to construct several versions of the non-
hydrostatic mesoscale MM5 model for a 1-month period of
October 2006. From the SREPS, flow-dependent probabilis-
tic forecasts are provided by means of predictive probability
distributions over the Iberian Peninsula down to 10-km grid
spacing. In order to carry out the verification, 25 km grid
of observational precipitation records over Spain from the
Spanish Climatic Network has been used to evaluate the en-
semble accuracy together with the mean model performance
and forecast variability by means of comparisons between
such records and the ensemble forecasts. This verification
has been carried out upscaling the 10 km probabilistic fore-
cast to the observational data grid. Temporal evolution of
precipitation forecasts for spatial averaged ensemble mem-
bers and the ensemble mean is shown, illustrating the consis-
tency of the SREPS. Such evolutions summarize the SREPS
information, showing each of the members as well as the
ensemble mean evolutions. The Talagrand diagram derived
from the SREPS results shows underdispersion which indi-
cates some bias behaviour. The Relative Operating Charac-
teristic (ROC) curve shows a very outstanding area, indicat-
ing potential usefulness of the forecasting system. The fore-
cast probability and the mean observed frequency present
good agreement with the SREPS results close to the no-skill
line. Because the probability has a good reliability and a pos-
itive contribution to the brier skill score, a positive value of
this skill is obtained. Moreover, the probabilistic meteogram
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of the spatial daily mean precipitation values shows the range
of forecast values, providing discrete probability information
in different quantile intervals. The epsgram shows different
daily distributions, indicating the predictability of each day.

1 Introduction

Precipitation over the Iberian Peninsula has a strong seasonal
character. Particularly in some regions, over the eastern flank
of the Iberian Peninsula, the maximum seasonal precipita-
tion occurs in autumn or spring. The sparse summer rainfall
in most part of the Peninsula depends on local factors and is
mainly caused by convective storms associated with ground
heating, moisture content and upper instability (Sumner et
al., 2001; Valero et al., 2004). The occurrence and loca-
tion of heavy precipitation events can be improved by using
numerical weather forecasting in the short-range prediction
(Shuman, 1989). Although deterministic numerical models
are able to reasonably accurately give forecasts, unknown er-
ror sources remain, reducing the confidence of forecasters
in the simulated fields. Small errors or perturbations in the
model initial condition are amplified as the forecast period
grows, leading to noticeable differences in the forecast. So,
the generation of several predictions, based on slightly differ-
ent initial conditions with the same probability, can improve
the forecast (Leith, 1974; Hoffman and Kalnay, 1983; Toth
and Kalnay, 1997). An ensemble forecasting approach could
provide an improvement of the skill when comparing with an
individual deterministic one. At the same time, the ensem-
ble forecasting provides a measure of the forecast uncertainty
and of its reliability. The ensemble forecasting method aims
to predict the probability of future events as accurately as
possible (Epstein, 1969; Mullen and Baumhefner, 1988).
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In this work, a short-range ensemble prediction system,
based on a set of mesoscale models with different subgrid-
scale physic schemes and two different initial conditions,
is developed over the Iberian Peninsula. A ten members
short-range ensemble forecast system has been constructed
as a result of combining two different initial conditions from
global models and five different physics configurations of the
non-hydrostatic PSU/NCAR Mesoscale Model (MM5, ver-
sion 3). The ensemble simulations have been investigated
for precipitation field during October 2006. The quality and
value of precipitation forecasts have been evaluated against
observations of the Spanish Climatic Network. Additionally,
ensemble probability distribution functions for precipitation
will provide information on uncertainty of ensemble forecast.
Both spatial and probabilistic approaches will be used to ver-
ify both each individual ensemble member and the ensemble
mean evaluations.

The structure of the paper is as follows: Sects. 2 and 3
present a review of the constructed ensemble system with a
description of the model set-up perturbations used to gen-
erate the different ensemble members and the precipitation
dataset used to verify the ensemble precipitation forecasts,
respectively. The results of the ensemble system verification
in forecasting precipitation are examined in Sect. 4. Finally,
main conclusions of results are drawn in Sect. 5

2 Short-range ensemble prediction system

The non-hydrostatic Mesoscale Model (MM5, version 3), de-
veloped by the Pennsylvania State University-National Cen-
ter of Atmospheric Research (Anthes and Warner, 1978;
Grell et al., 1994) has been chosen in this study to gener-
ate a short-range EPS with five combinations of the model
parameterizations and different initial and boundary condi-
tions.

All the ensemble members use a terrain following theσ -
coordinate system with 30 vertical levels, enhancing the ver-
tical resolution in the lower troposphere in order to get a more
accurately representation of boundary layer processes. The
spatial coverage of the coarse domain, which comprises the
whole Iberian Peninsula as well as the most western side of
the Mediterranean basin, is covered with a 30-km horizontal
grid spacing. A 10-km grid covering the Iberian Peninsula
for the fine domain (Fig. 1a) is used to enhance the model
horizontal resolution. Fig. 1b shows the orography of the
inner grid of simulation. Depending on the model member,
time step has been chosen from 35 s till 240 s. The simu-
lations were generated two-way nesting between models do-
mains which allows flow between high-to-low resolution grid
effects, permitting a more realistic terrain features and at-
mospheric energy fluxes. Thus, two different sets of anal-
ysis and forecasts data bases have been used as initial and
boundary conditions to generate the ensemble members: the
ECMWF-IFS data from the European Centre for Medium-

Fig. 1. (a) Geographic coverage of the two domains (coarse and
fine) of the MM5 short-range ensemble simulations.(b) Fine do-
main corresponding with the Iberian Peninsula with the orography
of the model detailed.

Range Weather Forecast (ECMWF) Improved Forecast Sys-
tem (IFS) (0.5◦ ×0.5◦ grid spacing, 21 isobaric vertical lev-
els) and the NCEP data from National Center for Environ-
mental Predictions (NCEP) Global Forecast System (GFS)
(1.0◦

×1.0◦ grid spacing, 26 isobaric vertical levels). The se-
lected time period, October 2006, was simulated by means of
a daily single run (starting at 00:00 UTC) of each ensemble
member with a 36-h forecast horizon. On the other hand, the
24-h daily forecast precipitation has been estimated by us-
ing forecast data of 30-h minus forecast data of 6-h. There-
fore, area and forecast length were selected in order to avoid
boundary conditions effects, maintaining, at the same time,
the capability of generating probabilities.

Physical uncertainties were incorporated into the ensem-
ble by using different physical parameterization schemes.
Details of the physics used to build up the two sets of 5 dif-
ferent ensemble members are listed in Table 1. The differ-
ent model configurations chosen to create the physics ensem-
ble are built changing both convection and planetary bound-
ary layer parameterization schemes, generating plausible and
realistic solutions to the predictability problem (Wang and
Seaman, 1997). Two different convective parameterization
schemes besides the default scheme are used in the ensemble
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Table 1. Combinations of the MM5 parameterizations selected to generate the short-range ensemble prediction system.

to calculate moist convection effects on the domain: the
Betts-Miller parameterization scheme (Betts, 1986; Betts
and Miller, 1986) and the Kain-Fritsch scheme (Kain and
Fritsch, 1990). To incorporate Planetary Boundary Layer
(PBL) physical uncertainties, two PBL schemes in addition
to the default scheme have been chosen: Mellor-Yamada
Janjic (MYJ, Janjic and Zavisa, 1994) and Gayno-Seaman
scheme (Ballard et al., 1991; Shafran et al., 2000). On the
other hand, combinations of different physical model param-
eterizations (microphysic and land surface schemes) have
produced more disperse probability density functions, even
using the same model. Taking this into account and due to
compatibility restrictions between the several parameteriza-
tions, two microphysical schemes other than the default (Lin
et al., 1983; Tao and Simpson, 1993; Reisner et al., 1998) and
two land surface model schemes (Dudhia, 1996; Chen and
Dudhia, 2001) have been combined with the cumulus and
PBL schemes. All these parameterization combinations have
been chosen after several tests trying to capture the model
uncertainties on the processes related to generation, grow-
ing and deposition of water in the atmosphere, which finally
drives to the model forecasted precipitation.

3 Verification data base and skill scores

The quality and value of precipitation forecasts have been
evaluated against observations of the Spanish Climatic Net-
work. Comparisons between the ensemble system and ob-

servations provide an overview of the mean model perfor-
mance and forecast variability besides an evaluation of the
ensemble accuracy. In this paper, the data used for pre-
cipitation verification comes from a daily precipitation data
base derived from in-situ measurements coming from the
high-resolution station network of the Spanish Meteorologi-
cal Service (Agencia Estatal de Meteorologı́a, AEMET). The
AEMET Climatological Area has elaborated an Iberia daily
precipitation database by means of statistical spatial interpo-
lation of more than 4000 in-situ measurements onto a regular
grid. The purpose was to build a complete daily dataset nec-
essary as input of spatially distributed models and for under-
standing the climate variability at daily scale. All the in-situ
measurements of daily precipitation data from the Historical
Database of AEMET were extracted for the period 1 Jan-
uary 1961 to 31 December 2008, regardless of their time
coverage. Thus, the number of available stations depended
on the date. These stations, irregularly distributed over the
Iberian Peninsula and the Balearics, have provided good cov-
erage over the domain. In order to complete the observations
in Portugal, data from the European Climate Assessment &
Dataset project (ECA&D) were used.

The AEMET choses a 25 km regular grid because of the
space scale suitable needed for risk analysis models and for
climatic variability studies, including evaluation of climate
change impacts in Spain. The Kriging method was used
to interpolate daily precipitation. This interpolation tech-
nique preserves more variance than other methods such as
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the inverse distance weighting method (Shen et al., 2001).
This technique has the advantage of using the daily observed
available data in spite of variations on the number of sta-
tions. Moreover, this spatial interpolation tool has been used
extensively in software related to Geographical Information
Systems, allowing comparisons with databases from differ-
ent countries. All these considerations are outlined in the
European Cooperation in the Field of Scientific and Techni-
cal Research, (COST Action 719, The Use of GIS in Me-
teorology and Climatology) in which the AEMET has been
an active participant (Dyras et al., 2005). The precipitation
database has already been used by the authors in several stud-
ies to validate other new precipitation datasets (Sotillo et al.,
2006; Morata et al., 2008), giving both characterization of
the rainfall regime as well as an evaluation of the potential
improvement of such new precipitation database versus cur-
rent datasets. Further information about this precipitation
data set can be found in Luna and Almarza (2007).

In this paper, the time period to analyze the EPS perfor-
mance has been selected taking into account the observed
precipitation database of AEMET. Fig. 2a shows the evolu-
tion of the precipitation anomalies respect of the climato-
logical mean, in three different zones in the Iberian Penin-
sula (Morata, 2004) from 1991 to 2008. In the EPS gener-
ation, forecast data from the NCEP have been used, being
available from 2005. Therefore for verification purposes, the
biggest rainfall anomaly in the three areas corresponds to Oc-
tober 2006 as it can be seen in Fig. 2b. During the first part
of October 2006, several lows located at northwestern Iberia
with associated fronts affected the Iberian weather. Thus, the
nature of precipitation in the first part of the selected period,
that affected the western part of Iberia, was mainly of frontal
character. On the contrary, the rainfall of the last part of the
time period showed some convective characteristics due to
a through situated over North Algeria in juxtaposition with
a ridge at upper level involving the western Mediterranean
area.

In this paper, skill scores, both spatial and probabilistic,
will be used to assess the accuracy and skill of precipitation
forecasts. Standard verification methods based on a point by
point comparison such as bias or root mean square error are
used in this work over grid-point neighbourhoods of differ-
ent areas, defining a scale associated with the verification:
as scale increases, forecast and observational fields tend to
be subjected to a filtering process. The bias, defined as the
difference between a model-derived dataset and the observa-
tional data, and the time root mean square error have been
derived at single points and spatially averaged values of 24-h
precipitation over the grid have been subsequently computed.
In order to provide rainfall data at a resolution compatible
with the abovementioned observational data, a regular grid
of 25 km×25 km has been selected.

Taking into account verification probabilistic tools, a
more detailed way of analyzing the EPS spread is to con-
struct a rank histogram or the so called Talagrand diagram
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Fig. 2. Time evolution of precipitation anomalies in the Atlantic,
Cantabric and Mediterranean zones of Iberia:(a) from 1991 to
2008;(b) the year 2006.

(Talagrand et al., 1997). In a perfect forecast system, the ver-
ifying analysis is equally likely positioned between any two
ordered adjacent members, including cases when the analysis
lies outside the ensemble range on either side of the distribu-
tion. Firstly, for each location, the forecast values of all en-
semble members are sorted by increase order. Second, m+1
bins are made, m being the total number of ensemble mem-
bers (in our case m=10), with each bin representing the range
of nearby members. The first and last bins are representative
of the values lower than the smallest member and greater than
the largest member, respectively. The bins are examined, in
order to see if the observed data fall into a given bin. Gener-
ally, in a good ensemble forecast system, all members should
have equal ability to capture the observations, thus being the
Talagrand diagram flat.

A very useful and powerful way for assessing the ability of
probabilistic forecasts to discriminate dichotomous events is
the Relative Operating Characteristic or ROC (Swets, 1973;
Mason, 1982) based on contingency tables for different
thresholds. Using different thresholds as criteria, a set of dif-
ferent contingency tables can be constructed for a probabilis-
tic forecast that can range from 0%, representing an always
forecast event, to 100%, indicating a never forecast event.
Moreover, the ensemble forecast probabilistic performance
can be also evaluated following the difference between a
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forecast probability distribution and the observed probability
distribution, using the Brier score (Brier, 1950). The Brier
score can be decomposed on three sums (Murphy, 1993)
called reliability, resolution and uncertainty.

If the sample climatology is used, the Brier skill score can
be defined as:

BSS=
BSResolution−BSReliability

BSUncertainty
(1)

The different Brier skill score contributions can be repre-
sented on the attribute diagram. In this diagram, the curve
is the named reliability curve which shows the relationship
between the forecast probability and the observed frequency.
Actually, the reliability is the area between the diagonal line
(y=x) and the reliability curve, being a small area at initial
time and becoming larger later on. The resolution could be
defined as the ability of the forecast system in creating dif-
ferent probability distributions for different forecast values.
If the sample climatology is used as a forecasting system, the
forecast would not have resolution because it does not dis-
criminate at all between events and non-events. Thus, the fre-
quency of the forecasted event, obtained from the sample cli-
matology, is represented over the diagram as horizontal and
vertical lines labelled as “no resolution” lines. The bisectrix
line between the diagonal and “no resolution” line defines
the “no skill” line. Points between the “no skill” line and the
diagonal contribute positively to the Brier skill score. The
uncertainty is defined as the variability of the observations
and it is measured by the variance of the sample climatology.
The greater the uncertainty, the more difficult the forecast
will tend to be. The uncertainty is related with the observa-
tions and it is impossible to improve by the forecast system.
Another measurement related to the marginal distribution of
the forecasts is the sharpness which quantifies the ability of
the forecasts in deviating from the mean climatological value
for deterministic forecast or from climatological mean prob-
abilities for probabilistic forecasts. In a calibrated forecast,
sharpness is related to resolution, or ability of the forecast to
be sorted into subsamples where the verifying event is differ-
ent (Wilks, 1995).

Finally, another way to represent the ensemble variance is
used in this paper: the probabilistic meteogram or epsgram.
The ensemble system information can also be exposed on
box-and-whiskers plots, displaying the ensemble distribution
of the forecast. These plots are represented by rectangles or
boxes with upper and lower values corresponding to 75% and
25% percentiles, i.e., the corresponding third and first quar-
tiles, respectively; the forecast median is also depicted and
finally, the forecast extremes (95% and 5%) are represented
by the whiskers. Thus, the rectangle symbol with two addi-
tional vertical lines represent the dispersion of a variable for
the all members of the ensemble at a given time.
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Fig. 3. Temporal evolution of bias(a) and RMSE(b) for each en-
semble member and the ensemble mean of the total daily precipita-
tion, spatially averaged over the region. Units are in mm/m2. The
x-axis indicates the days of the period time.

4 Results

In this section the results associated with both spatial and
probabilistic verification methods are shown, assessing accu-
racy and skill of precipitation forecasts for the fine domain of
the simulations obtained from the 10-members ensemble for
October 2006. Figure 3 displays the mean bias and RMSE of
the 24-h precipitation over a regular grid (25 km×25 km) in
order to provide rainfall data at a resolution compatible with
the observational data.

The time evolution of both bias and RMSE is similar for
all ensemble members (Figs. 3a and b, respectively), show-
ing evidence of different behaviour over the study period. In
terms of the total daily precipitation, spatially averaged over
the region, positive bias can be noted throughout the event
period except for particular days with negative bias results
(Fig. 3a). The ensemble mean provides a good forecast when
it is compared with some ensemble members and the time pe-
riod is enough large (Grimit and Mass, 2002). In fact, in this
paper, the ensemble mean offers the best forecasts when it is
compared with any ensemble member used to build the EPS.
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the 10 ordered ensemble members at each grid points. Dashed line
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The departures in the different stages of the period could in-
dicate some rainfall over/underprediction. Large ranges in
the bias can suggest the existence of large variability in the
accumulated precipitation. Concerning the RMSE (Fig. 3b),
similar explanation can be stated, also highlighting great de-
partures in the final stages of the period and low RMSE val-
ues in the initial part of the study period.

As it is abovementioned in the previous section, in this
paper several skill scores for ensemble forecasts have been
used. The probabilities were calculated by equally weighting
each member of the system. Thus, each forecast model repre-
sents 1/10 of the total probability. In Fig. 4a the relationship
between the RMSE and the spread of the ensemble mean is
shown. Such relationship is quite close to the ideal diagonal
with a correlation value of 0.86 (corresponding with the line
regression displayed by the thick line). The ideal behaviour
corresponds with a coincidence with the y=x line (thin line),
indicating that forecast spread is appropriate to represent the
uncertainty by means of member spreading.

The Talagrand distribution is the histogram of frequencies
of the rank of the observed data within the forecast ensemble.
Although a rank histogram measures whether the observed
probability distribution is well represented by the ensemble,
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a flat Talagrand does not necessarily indicate a skilled fore-
cast. Nevertheless a good EPS should have a uniform distri-
bution, representing correctly the forecast uncertainty and the
observed data set uniformly be distributed among the ensem-
ble members. A distribution can present a∩-shaped, indicat-
ing a too large ensemble spread in which many observations
falling near the centre of the ensemble; on the contrary, if the
distribution presents itself slightly∪–shaped, some cases can
be over-represented, falling the verification outside the en-
semble and, other cases can be under-represented when veri-
fication is located in the ensemble centre. That is, a∪-shaped
would indicate ensemble spread too small with many obser-
vations falling outside the extremes of the ensemble. For
some parameters such∪-shape degenerates into an asym-
metric shape, indicating the presence of bias in the system
for such parameter. Thus, Fig. 4b shows an asymmetric dis-
tribution in which the first bin is the most frequent. There-
fore, the ensemble contains bias. Without bias correction,
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an overpopulation of the extreme ranks of the histogram can
be noted, suggesting with this asymmetric shape a bias be-
haviour. This situation can be made accurate by applying
statistical postprocesses with a bias correction and further
generation of a flatter histogram.

The ROC is considered as a measure of potential utility,
measuring ability of the forecast in discriminating between
two alternative outcomes: events and non-events (resolu-
tion). The closer the point is to the upper left corner in the
plot indicates a measure of the higher of the skill, giving the
area below the ROC curve a forecast skill measure. There-
fore, the ROC provides more information that can be sum-
marized in a single data, the area. The greater is the area
means the good system resolution. Although the Talagrand
diagram (Fig. 4b) showed bias as it has abovementioned, the
good ROC curve (Fig. 5a) tends to the upper left corner, in-
dicating the greater forecast quality of the system, that is, the
usefulness of the forecasting system. It is worth to note the
very outstanding area presented in the ROC curve, pointing
out again the good resolution of the EPS. On the other hand,
the attribute diagram measures how well the predicted prob-
abilities of an event correspond to their observed frequencies
(reliability). In this diagram, the observed frequency is plot-
ted against forecast probability for all probability categories,
indicating good reliability a line close to the diagonal. How-
ever, deviation from the diagonal points out conditional bias.
Thus, deviation below the diagonal represents too high fore-
cast probabilities; on the contrary, points above diagonal in-
dicate too low forecast probabilities. Points between the di-
agonal and “no skill” line have a positive contribution to the
BSS. The flatter the curve in the diagram, the less resolu-
tion it has. In this work, a good agreement between forecast
probability and the mean observed frequency can be noted
in the Fig. 5b in which the circle-line is close to the no-skill
line. Although some forecast probabilities, ranging from 20
to 50%, contribute negatively to the BSS due to them being
located below the no-skill line, the remainder probabilities
are in between the no-skill and the diagonal lines. On the
other hand, the sharpness values are shown in the Fig. 5b as
numbers over/below the diagram points, displaying the high-
est value in the 0% forecast probability. Since this probabil-
ity has a good reliability and a positive contribution to the
BSS, a positive value of 0.4054 of this skill can be obtained
(see Table 2). To avoid undersampling effects, works in ex-
tending this study to other larger samples are in progress.

Finally, the probabilistic meteogram, also called epsgram,
shows the ensemble distribution of the forecast, displaying
the information on box-and-whiskers plots. Usually, the en-
semble information exposed by the epsgram is relative to an
individual grid–point location, indicating the time evolution
of a parameter for all ensemble members and also pointing to
the spread by the range of forecast values. In this work, eps-
grams show the time evolution of the spatially mean daily
precipitation for the ensemble system (Fig. 6a) as well as
the evolution of the total daily precipitation, spatially aver-

Table 2. Brier Score, BS component values and Brier Skill Score
of precipitation over 5mm/24h threshold.

BS Reliability Resolution Uncertainty BSS
0.08048 0.009457 0.0643 0.1354 0.4054

aged over the region, for each ensemble member (Fig. 6b),
rather than the time evolution for all ensemble members at
an individual grid–point location. Figure 6a shows depar-
tures between the box plots, representing the dispersion of
the precipitation forecasts for the all members of the EPS at
the date of the time period. Great departures in the final part
of the time period and minimum ones in the initial part can
be noted, thus exhibiting a similar behaviour that the RMSE
evolution as it can be observed in Fig. 3b. The limit of the
upper (lower) vertical line represents the value of the high-
est (lowest) member. Except for the 10th, 13th, 15th an 24th
days, presenting outliers, there are not excessive variation in
the forecast values, suggesting confidence in the ensemble
system. Moreover, the evolution of the spatially averaged
observed precipitation (continuous line) is quite similar to
the time evolution of the spatially mean daily precipitation
for the ensemble system. On the other hand, the epsgram
evolution of each ensemble member (Fig. 6b) shows in gen-
eral a good agreement among them. Their median, first and
third quartile values are quite similar among the members,
indicating that most of the member forecasts present similar
behaviour throughout all the time period. Most of the fore-
cast higher extremes, represented by whiskers, present values
between 10–15 mm, except for the KEE and KGE members,
showing outlier values. Moreover, values of the mean and
the median of the spatially averaged observed precipitation
(dashed lines) maintain in the box plot values in all ensemble
members. In fact, the observed median is embraced between
the lower and the upper quartiles.

5 Conclusions

The purpose of this study is the verification of a short-range
ensemble prediction system (SREPS) built with five different
model physical process parameterization schemes and two
different initial conditions from global models, allowing to
construct several versions of the non-hydrostatic mesoscale
MM5 model for a 1-month period of October 2006. In order
to evaluate the ensemble accuracy, comparisons between en-
semble system forecasts and observations have been made,
providing an overview of the mean model performance and
forecast variability. The mean model performance and fore-
cast variability, together with the evaluation of the ensemble
accuracy have shown a good EPS performance.

Concerning the spatial verification scores, the temporal
evolution of the mean bias and rmse of the 24-h precipitation
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Fig. 6. Epsgram of the total daily precipitation, spatially averaged
over the region, for(a) the ensemble system for each day of the
period time with juxtaposition in solid line of the spatially averaged
observed precipitation;(b) each ensemble member cited in the x-
axis; dashed red and blue lines represent the mean and the median
of the spatially averaged observed precipitation. Units are in mm.

over a regular grid have shown similar evolution of the en-
semble simulations, excepting particular ensemble members
that have shown large departures. Different behaviour over
the study period has been also noticed with large departures
in the first and last stages of the period, while a quasi-zero
evolution during the central part of the time period is noticed.
Therefore, large variability in the accumulated precipitation
is exhibited when these large ranges are considered.

High spread-skill correlation values (> 0.86) for daily pre-
cipitation are noted, but with small spread values, indicating
that the EPS is affected by underdispersion. Moreover, such
underdispersive effect is noted in the Talagrand diagram dis-
tribution, indicating that the generated envelope forecasts are
not including the verifying observation. The Talagrand dia-
gram has shown an asymmetric distribution, pointing out the
presence of bias in the ensemble system.

Concerning verification probabilistic methods, the ROC
curve suggests a greater forecast quality of the EPS, with the
curve showing an evolution tending to the upper left corner,
i.e., pointing where there are no false alarms and only hits.
Such situation is indicative of the usefulness of the ensemble
system.

The attribute diagram shows some forecast probabilities
contribute negatively to the BSS due to the fact that they are

located below the no-skill line; the remaining probabilities
are in between the no-skill and the diagonal lines. The re-
sult of all these contributions lead to a positive value of BSS,
pointing out the skill of the system. To avoid undersampling
effects, works in extending this study to other larger samples
are in progress.

Epsgrams of each ensemble member have shown a good
agreement among them, with quartile values quite similar
among all members. Moreover, epsgrams inform about the
spread of the ensemble system. In this paper, departures be-
tween them throughout the time period are shown. This dis-
persion is mainly noted in the early and final stages of the
period, being coincident with the RMSE evolution. Thus,
those days presenting large errors will be coincident with
those days exhibiting big dispersion. The evolution of the
spatially averaged observed precipitation presents quite sim-
ilarity to the time evolution of the spatially mean daily pre-
cipitation for the ensemble system.
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