(WRF and HARMONIE models)

. Romàn-Cascon Univarlosromancasconafs
. INTRODUCTION
 more than 10 consecutive foggy days with different features thickess, persistence during the daytime, vertical extension, frit.
shallow foss) have been chosen due to to the previuusly checked special difificuly of models simulating this type of radiation togs.

$$
\begin{aligned}
& \text { WREMB } 3 . \text { Same as wRE-MP2 but with stomata resistance option=IEnis } \\
& \text {-Wre-MP4-> Same as WR-MPB but with less permeable soil (non-ineare effect) }
\end{aligned}
$$

Small changes in friction velocity $->$ control vertical extension of fog $(20-35 m)$.
Solar radiation (not shown) able to reach the rround due to shallow condition Solar radiation (not Shown) abbe to reach the eround due to shallow condition of fogs,
increase friction velocity and destabilize the PBL from suntise (no increase in wind speed). increase friction velocity and destabiiize the PBL from suntise (no increase in w
Mixing ration at lower layers mainly controlled by condensation/evaporation Ninixin ration at Iowerl layers ma
(formation/dissipation of fogs).
Mixing ratio at higher layers mainly controlled by turbulent mixing.
LU during nights and even during days (fogs can modified diurnal PBL)

 SAF NWC from EUMETSAT \rightarrow. Note . 1 d to perform spatial comparisons with model. The relative importance of land use and soil type can be checked for these shallow fogs, as well a s local influences.
spatially (see next poster 8707 (EGU2013-8474), Morales et al.).
Hee the inexistence of other low clouds (only fogs) before comparing. For this purpose, see animation of satellite, LW radiation, METAR reports...

7. CONCLUSIONS

STRONG SURFACE COOLING + LOW TURBULENCE -> STRONG THERMAL INVERSIONS -> SHALLOW FOGS ($10 \mathrm{~m}-35 \mathrm{~m}$) (models maikedy overestimaie nocturnal $2 m$ temperaur \rightarrow, The use of RUC land surface scheme in WRF obtained best results in LWC BUT through a WRONG overestimation of mixing ratio
LWC amounts at 10 m seems to be slightly sensible to changes in land surface processes (Noah Multi-physics) and to land use data-set
-FUTURE WORK - 1. More experiments focusing in combinations of turbulence and land-surface parameterizations. 2. SAL statistics for spatial comparisons

