

COST 733 - WG4: Applications of weather type classifications

Demuzere, M. (WG4 chair), Fleig, A.K., Philipp, A.

Prudhomme, C. (vice-chair), Ustrnul, Z., Bardossy, A., Bertalanic, R., Bogucka, M., Cahynova, M., Caian, M., Casado, M.J., Frei, C., Georgescu, F., Godlowska, J., Kassomenos, P., Latinov, L., Pastor, M.A., Pianko-Kluczynska, K., Pongracz, R., Schiemann, R., Sepp, M., Stefan, S., Tallaksen, L., Tomaszewska, A.M.

WG4 within COST733?

WG1: Existing methods and applications (finished!)					
Ļ	\downarrow	Ļ			
WG2: Implementation and development of weather types classification methods	WG3: Comparison of selected weather types classifications	WG4 : Testing methods for various applications			
- Selection of dedicated application	ns (done)				
- Collection/development of applic	ation software (in progress)				
- Performance of the selected applied by WG2 (in progress)	cations using available weather typ	pe data including those provided			
- Comparison of the application re	sults with using different weather t	ype methods (<mark>in progress</mark>)			
- Final assessment of the results an	d uncertainties (end of action)				
- Presentation and release of result progress)	s to the other WGs and the interest	ed scientific community (in			
Decomposed are differentianed for a	(a, a, b, a, b) and (a, b)				

- Recommend specifications for a new (common) method to WG2 (in progress)

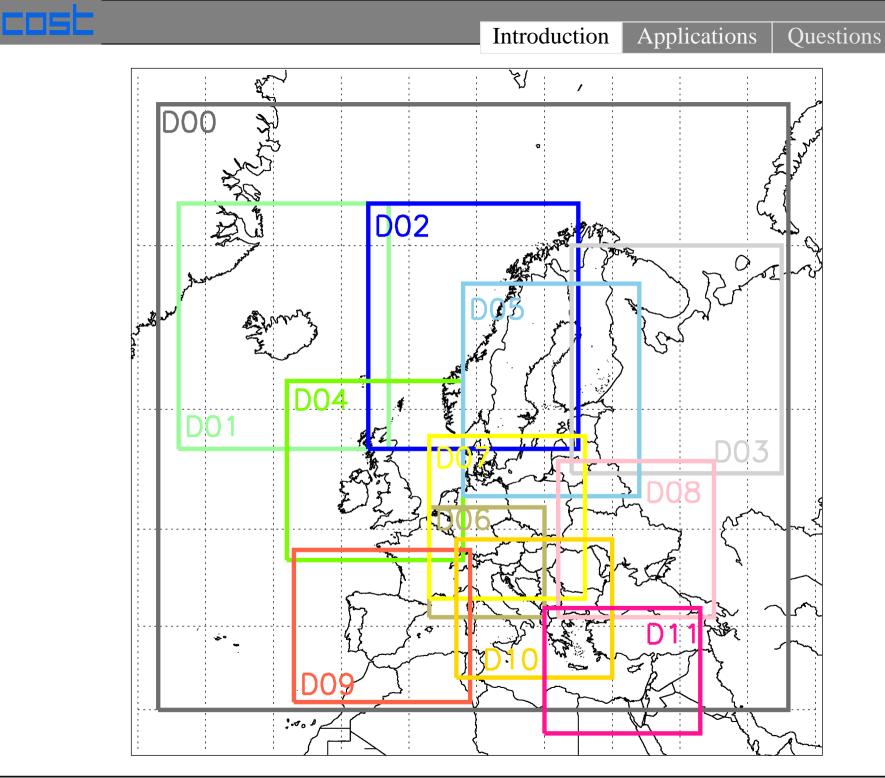
EGU, Vienna (Austria), 20-24th April 2009

Status of the COST733 catalogue

WG2: Implementation and development of weather types classification methods

The COST733cat catalogue has the following 6 primary features:

1. Input parameter/level: MLSP, GPH1000-500 (U, V, T)


 \rightarrow <u>fixed</u> for one variant of each method: ERA40 MSLP

2. Temporal configuration:

 \rightarrow <u>fixed</u>: ERA40-period (09/1957-08/2002), full year, daily 12Z

3. Spatial domain:

 \rightarrow <u>fixed</u>: 12 unified domains of varying scale

Outlook

EGU, Vienna (Austria), 20-24th April 2009

4. Number of types: varying between 4 and 43 types

 \rightarrow <u>fixed</u>: for 3 variants of each method: 9, 18, 27 (±2)

5. Distance measure (similarity between patterns):

→ <u>variable</u>: Euclidean distance, correlation, PC-loadings, PC-scores

6. Method:

 \rightarrow <u>Variable</u>, and can be grouped as follows:

□ Subjective (for comparison only)

□ THRESholds (mostly based on wind strength/directions)

□ PCA based (key patterns explaining maximum of covariance)

□ LEADer algorithm (key patterns by maximum of similar patterns)

□ Optimization algorithms - OPT

Automated & scalable methods

1.) CKMEANSK-means (most different days as seeds)OPTEnke et al.2.) EZ850/ESLPLeader algorithmLEADErpicum et al.3.) GWTObjectified Gros-Weather-TypesTHRESBeck4.) KHLeader algorithm using Kirchofer scoreLEADKirchofer5.) LITADVE/LITTCThreshold based advectionTHRESLitinski6.) LUNDLeader algorithm and assignmentLEADLund7.) LWT2Objectivized Lamb weather types (Jenk./Coll.)THRESJames8.) NNWNeural Networkds (SOMs) 2000 epochsOPTMichaelides et al.9.) P27PCA basedPCAKruzinga10.) PCACAK-means CA of PC-scores (hierachical CA seeds)OPTRasilla Alvarez11.) PCAXTRUsing extreme s-mode PC-scoresPCAEsteban12.) PCAXTRKMK-means (using PCAXTR seeds)OPTPetisco13.) PETISCOK-means (using precipitation relevant seeds)OPTPhilipp14.) SANDRASimulated Annealing & diversified RAndomisation CAOPTPhilipp15.) SANDRASSANDRA cluster analysis using 3-day sequencesOPTPhilipp16.) TPCAUsing oblique rotated t-mode PCA loadingsPCAHuth17.) WLKDWD wetterlagenklassification (incl. T, humidity)THRESDittmann et al.				
3.) GWTObjectified Gros-Weather-TypesTHRESBeck4.) KHLeader algorithm using Kirchofer scoreLEADKirchofer5.) LITADVE/LITTCThreshold based advectionTHRESLitinski6.) LUNDLeader algorithm and assignmentLEADLund7.) LWT2Objectivized Lamb weather types (Jenk./Coll.)THRESJames8.) NNWNeural Networkds (SOMs) 2000 epochsOPTMichaelides et al.9.) P27PCA basedPCAKruzinga10.) PCACAK-means CA of PC-scores (hierachical CA seeds)OPTRasilla Alvarez11.) PCAXTRUsing extreme s-mode PC-scoresPCAEsteban12.) PCAXTRKMK-means (using PCAXTR seeds)OPTEsteban13.) PETISCOK-means (using precipitation relevant seeds)OPTPetisco14.) SANDRASimulated Annealing & diversified RAndomisation CAOPTPhilipp15.) SANDRASSANDRA cluster analysis using 3-day sequencesOPTPhilipp16.) TPCAUsing oblique rotated t-mode PCA loadingsPCAHuth	1.) CKMEANS	K-means (most different days as seeds)	OPT	Enke et al.
4.) KHLeader algorithm using Kirchofer scoreLEADKirchofer5.) LITADVE/LITTCThreshold based advectionTHRESLitinski6.) LUNDLeader algorithm and assignmentLEADLund7.) LWT2Objectivized Lamb weather types (Jenk./Coll.)THRESJames8.) NNWNeural Networkds (SOMs) 2000 epochsOPTMichaelides et al.9.) P27PCA basedPCAKruzinga10.) PCACAK-means CA of PC-scores (hierachical CA seeds)OPTRasilla Alvarez11.) PCAXTRUsing extreme s-mode PC-scoresPCAEsteban12.) PCAXTRKMK-means (using PCAXTR seeds)OPTPetisco13.) PETISCOK-means (using precipitation relevant seeds)OPTPetisco14.) SANDRASimulated Annealing & diversified RAndomisation CAOPTPhilipp15.) SANDRASSANDRA cluster analysis using 3-day sequencesOPTPhilipp16.) TPCAUsing oblique rotated t-mode PCA loadingsPCAHuth	2.) EZ850/ESLP	Leader algorithm	LEAD	Erpicum et al.
5.) LITADVE/LITTCThreshold based advectionTHRESLitinski6.) LUNDLeader algorithm and assignmentLEADLund7.) LWT2Objectivized Lamb weather types (Jenk./Coll.)THRESJames8.) NNWNeural Networkds (SOMs) 2000 epochsOPTMichaelides et al.9.) P27PCA basedPCAKruzinga10.) PCACAK-means CA of PC-scores (hierachical CA seeds)OPTRasilla Alvarez11.) PCAXTRUsing extreme s-mode PC-scoresPCAEsteban12.) PCAXTRKMK-means (using PCAXTR seeds)OPTPetisco13.) PETISCOK-means (using precipitation relevant seeds)OPTPetisco14.) SANDRASimulated Annealing & diversified RAndomisation CAOPTPhilipp15.) SANDRASSANDRA cluster analysis using 3-day sequencesOPTPhilipp16.) TPCAUsing oblique rotated t-mode PCA loadingsPCAHuth	3.) GWT	Objectified Gros-Weather-Types	THRES	Beck
6.) LUNDLeader algorithm and assignmentLEADLund7.) LWT2Objectivized Lamb weather types (Jenk./Coll.)THRESJames8.) NNWNeural Networkds (SOMs) 2000 epochsOPTMichaelides et al.9.) P27PCA basedPCAKruzinga10.) PCACAK-means CA of PC-scores (hierachical CA seeds)OPTRasilla Alvarez11.) PCAXTRUsing extreme s-mode PC-scoresPCAEsteban12.) PCAXTRKMK-means (using PCAXTR seeds)OPTEsteban13.) PETISCOK-means (using precipitation relevant seeds)OPTPetisco14.) SANDRASimulated Annealing & diversified RAndomisation CAOPTPhilipp15.) SANDRASSANDRA cluster analysis using 3-day sequencesOPTPhilipp16.) TPCAUsing oblique rotated t-mode PCA loadingsPCAHuth	4.) KH	Leader algorithm using Kirchofer score	LEAD	Kirchofer
7.) LWT2Objectivized Lamb weather types (Jenk./Coll.)THRESJames8.) NNWNeural Networkds (SOMs) 2000 epochsOPTMichaelides et al.9.) P27PCA basedPCAKruzinga10.) PCACAK-means CA of PC-scores (hierachical CA seeds)OPTRasilla Alvarez11.) PCAXTRUsing extreme s-mode PC-scoresPCAEsteban12.) PCAXTRKMK-means (using PCAXTR seeds)OPTEsteban13.) PETISCOK-means (using precipitation relevant seeds)OPTPetisco14.) SANDRASimulated Annealing & diversified RAndomisation CAOPTPhilipp15.) SANDRASSANDRA cluster analysis using 3-day sequencesOPTPhilipp16.) TPCAUsing oblique rotated t-mode PCA loadingsPCAHuth	5.) LITADVE/LITTC	Threshold based advection	THRES	Litinski
8.) NNWNeural Networkds (SOMs) 2000 epochsOPTMichaelides et al.9.) P27PCA basedPCAKruzinga10.) PCACAK-means CA of PC-scores (hierachical CA seeds)OPTRasilla Alvarez11.) PCAXTRUsing extreme s-mode PC-scoresPCAEsteban12.) PCAXTRKMK-means (using PCAXTR seeds)OPTEsteban13.) PETISCOK-means (using precipitation relevant seeds)OPTPetisco14.) SANDRASimulated Annealing & diversified RAndomisation CAOPTPhilipp15.) SANDRASSANDRA cluster analysis using 3-day sequencesOPTPhilipp16.) TPCAUsing oblique rotated t-mode PCA loadingsPCAHuth	6.) LUND	Leader algorithm and assignment	LEAD	Lund
9.) P27PCA basedPCAKruzinga10.) PCACAK-means CA of PC-scores (hierachical CA seeds)OPTRasilla Alvarez11.) PCAXTRUsing extreme s-mode PC-scoresPCAEsteban12.) PCAXTRKMK-means (using PCAXTR seeds)OPTEsteban13.) PETISCOK-means (using precipitation relevant seeds)OPTPetisco14.) SANDRASimulated Annealing & diversified RAndomisation CAOPTPhilipp15.) SANDRASSANDRA cluster analysis using 3-day sequencesOPTPhilipp16.) TPCAUsing oblique rotated t-mode PCA loadingsPCAHuth	7.) LWT2	Objectivized Lamb weather types (Jenk./Coll.)	THRES	James
10.) PCACAK-means CA of PC-scores (hierachical CA seeds)OPTRasilla Alvarez11.) PCAXTRUsing extreme s-mode PC-scoresPCAEsteban12.) PCAXTRKMK-means (using PCAXTR seeds)OPTEsteban13.) PETISCOK-means (using precipitation relevant seeds)OPTPetisco14.) SANDRASimulated Annealing & diversified RAndomisation CAOPTPhilipp15.) SANDRASSANDRA cluster analysis using 3-day sequencesOPTPhilipp16.) TPCAUsing oblique rotated t-mode PCA loadingsPCAHuth	8.) NNW	Neural Networkds (SOMs) 2000 epochs	OPT	Michaelides et al.
11.) PCAXTRUsing extreme s-mode PC-scoresPCAEsteban12.) PCAXTRKMK-means (using PCAXTR seeds)OPTEsteban13.) PETISCOK-means (using precipitation relevant seeds)OPTPetisco14.) SANDRASimulated Annealing & diversified RAndomisation CAOPTPhilipp15.) SANDRASSANDRA cluster analysis using 3-day sequencesOPTPhilipp16.) TPCAUsing oblique rotated t-mode PCA loadingsPCAHuth	9.) P27	PCA based	PCA	Kruzinga
12.) PCAXTRKMK-means (using PCAXTR seeds)OPTEsteban13.) PETISCOK-means (using precipitation relevant seeds)OPTPetisco14.) SANDRASimulated Annealing & diversified RAndomisation CAOPTPhilipp15.) SANDRASSANDRA cluster analysis using 3-day sequencesOPTPhilipp16.) TPCAUsing oblique rotated t-mode PCA loadingsPCAHuth	10.) PCACA	K-means CA of PC-scores (hierachical CA seeds)	OPT	Rasilla Alvarez
13.) PETISCOK-means (using precipitation relevant seeds)OPTPetisco14.) SANDRASimulated Annealing & diversified RAndomisation CAOPTPhilipp15.) SANDRASSANDRA cluster analysis using 3-day sequencesOPTPhilipp16.) TPCAUsing oblique rotated t-mode PCA loadingsPCAHuth	11.) PCAXTR	Using extreme s-mode PC-scores	PCA	Esteban
14.) SANDRASimulated Annealing & diversified RAndomisation CAOPTPhilipp15.) SANDRASSANDRA cluster analysis using 3-day sequencesOPTPhilipp16.) TPCAUsing oblique rotated t-mode PCA loadingsPCAHuth	12.) PCAXTRKM	K-means (using PCAXTR seeds)	OPT	Esteban
15.) SANDRASSANDRA cluster analysis using 3-day sequencesOPTPhilipp16.) TPCAUsing oblique rotated t-mode PCA loadingsPCAHuth	13.) PETISCO	K-means (using precipitation relevant seeds)	OPT	Petisco
16.) TPCAUsing oblique rotated t-mode PCA loadingsPCAHuth	14.) SANDRA	Simulated Annealing & diversified RAndomisation CA	OPT	Philipp
	15.) SANDRAS	SANDRA cluster analysis using 3-day sequences	OPT	Philipp
17.) WLKDWD wetterlagenklassification (incl. T, humidity)THRESDittmann et al.	16.) TPCA	Using oblique rotated t-mode PCA loadings	PCA	Huth
	17.) WLK	DWD wetterlagenklassification (incl. T, humidity)	THRES	Dittmann et al.

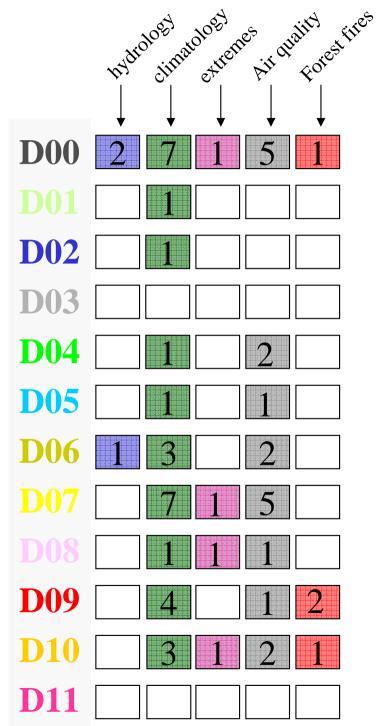
Subjective & non-scalable methods (used for comparison)

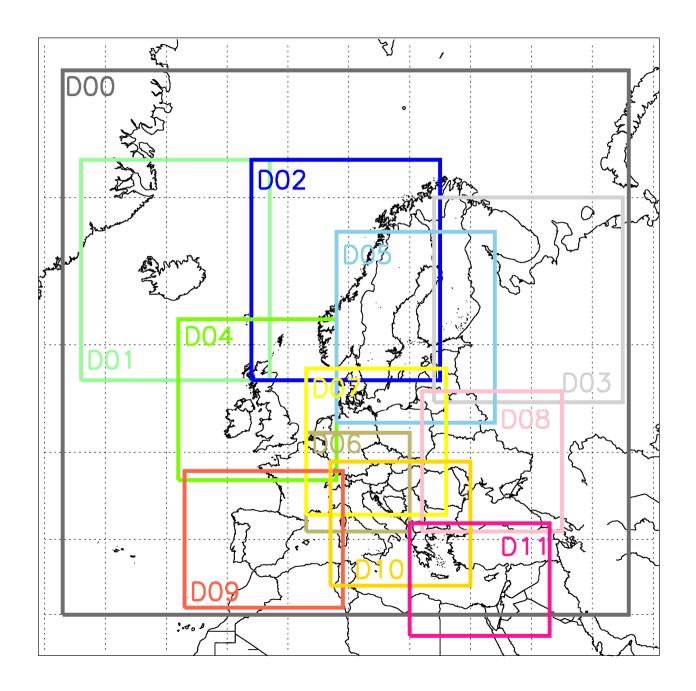
1.) HBGWL, HBGWT	Subjective Hess/Brezowsky Groswetterlagen/Types
2.) OGWL, OGWLSLP	Objectivized HBGWL
3.) PECZELY	Subjective Hungarian
4.) PERRET	Subjective Swiss
5.) SCHUEPP	Partly subjective Swiss
6.) ZAMG	Non-scalable Austrian

Source, Philipp, A., ECAC, 2008

In general, 5 subgroups are formed within WG4, dealing with different types of applications for different geographical regions:

□ Hydrology


□ Climatology


□ Extreme events (e.g. hazards)

□ Air quality

□ Forest fires

In the end, the goal of WG4 is to provide guidelines on the use of the classification software for specific applications and regions of interest.

In this respect, we try to answer some key questions, e.g.:

□ Does the classification benefit from other variables to be classified?

□ Are there any differences in between seasons?

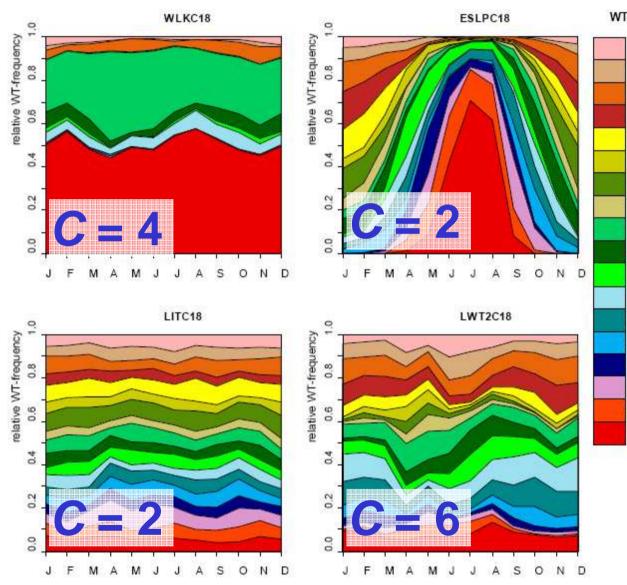
□ Should sequencing be included in the classification?

Does the domain size (and location) matter?

Other variables to be included / classified? Fr - HS5.15 – 11h30

Associations between weather types (WTs) and hydrological drought (A.K. Fleig)

Method	Input variables	Number of WTs	С
OGWL	SLP, Z500	29	6
OGWL	SLP	29	3
SANDRAS	Z925, Z500	30	3
SANDRAS	SLP	27	2
P27	Z500	27	3
P27	SLP	27	5
NNW	Z500	20	2
NNW	SLP	18	2
WLKC	Z925, Z500, U/V700, PW	40	6
WLKC	Z925, Z500, U/V700	28	5
HBGWL	SLP, Z500	29	1
PERRET	various	31	4
SCHUEEPP	SLP, Z500	40	4
ZAMG	various	43	4


- Comparison of 73 classifications on domain00
- 1964 2001
- Correlation between the
 - cumulative frequencies of drought supporting WTs
 - number of regional drought days (16/4 -15/10)
 - in six regions in Danmark and Great Britain.
- Performance measure: *C* = number of regions with significant correlation (0-6)
- Only four methods could directly be compared for different input variables
- Input from two pressure levels might be preferable to SLP data only;
- \rightarrow Z500 alone is not better.
- Also most other classifications with input from two pressure levels performed better than WTCs with same number of WTs: (≥ 26 WTs: average C = 3.2)

Iimited results, but using input from two pressure levels might be interessting for further classification developments within COST733.

Role of seasonality?

Normal monthly weather type frequencies (A. Fleig)

The distribution of WT occurances varies between the classifications with the same number of WTs;

• one extreme:

13

11

10

9

6

few WTs dominating throughout the year or one season;

• other extreme:

uniform distribution between all WTs throughout the year;

best performing classifications:

 some seasonality in WT occurances, but
 no dominace of a single WT.

Outlook

□ Construct guidelines on the use of the classification software for specific applications and regions of interest.

□ Further extend our analysis concerning the importance of spatial scales, seasonality, multi-level data, sequencing...

□ Possible testing of the classification software on other types of applications, e.g. circulation-type dependent model evaluation

Additional Information

 \Box COST733 on the web:

- <a>www.cost733.org (official website)
- <u>http://geo21.geo.uni-augsburg.de/cost733wiki/</u> (unofficial website)

□ Classification software (fortran code) will be made available under a GNU GPL License

□ Training school on circulation typing methods and applications is planned for next autumn 2009 / spring 2010? Please check website for more up-to-date information!