

Downscaled Climate Change Projections over Spain: preliminary development

Project: Estimación de Incertidumbres en Proyecciones de Cambio Climático

Delegación Territorial de Andalucia, Ceuta y Melilla (Sevilla) Unidad de Estudios y Desarrollo Petra Ramos Calzado M^a Pilar Amblar Francés

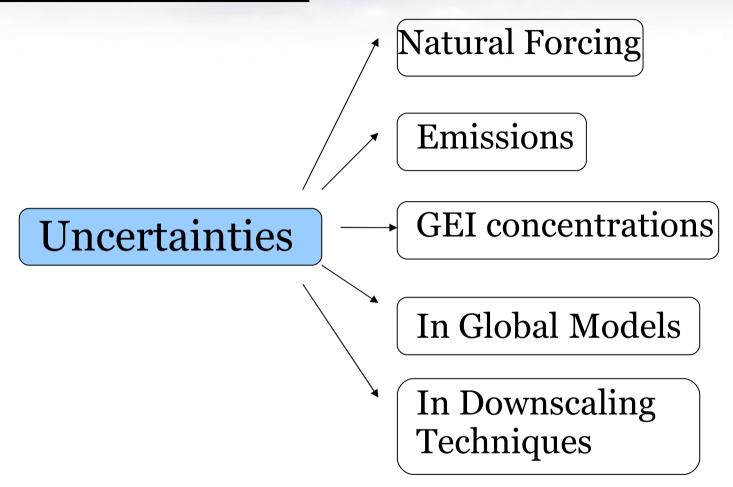
Index

- 1. Preliminary phase's objetives
- 2. Introduction
- 3. Method
- 4. Procedure
- 5. Data
- 6. Example
- 7. Comments
- 8. Future plans
- 9. Bibliography

1. Preliminary phase's objetives

- Analyze available information from Global Climate Models (GCM) in the Ensembles Project.
- Adapt this information for obtain downscaled climate change projections over Spain.

2. Introduction


- The climate change projections have uncertainties.

 These uncertainties can be described as cascade

 (MITCHELL y HULME, 1999) because these can
 be related themselves.
- Therefore we will use different Global Climate Models and scenarios.
- So that, the downscaled projections because inherit all the uncertainties affect them.
 - The most important uncertainties are:

2. Introduction

We use scenarios (with different features) and Global Climate Models for analyse some of these uncertainties.

3. Method

Downscaling techniques

- Statistical

- Spatial downscaling of daily predictor—predictand relations.
- Low computational need.

+ +- Dynamical

- Numerical model.
- High computational need.

Statistical DownScaling Model: SDSM

It is based on the lineal hypothesis, it means, the relation between predictor and predictand is lineal.

- -The predictor variables provide information concerning the large scale state of the atmosphere.
- The predictand variables describe conditions at the local scale and depend on predictor variables.

† In our case:

- -Predictor variables: the variables that we had downloaded from Global Climate Models.
- -Predictand variables: extreme temperatures and precipitations.

Acquired skills

- Wide knowledge about downscaling methods, climate models and scenarios.
- Learn bash commands for create script and two tools: *cdo* and *nco*.
- Automatize some procedures with previous tools.
- Learn to work in remote computer.
- Finally, will execute the next process

Calibration |

Validation

Projections

4. Procedure

- Analyze available information from the GCM: data and features' models.
- Select the predictor variables.
- Download the data files corresponding to each predictor variable.
- Design a strategy for work with the files and create some scripts for automatize some procedures.
- + +- Automatize procedures for obtain standardized data and then the series for Spain.

Select data

We are interested in:

- Daily data.
- + + Reference period: 1961-1990.
 - Projection period: 2010-2100 (general).
 - Variables in several levels (1000hPa, 850hPa,700hPa and 500hPa): temperature, specific humidity, meridional and zonal component of velocity of wind and geopotential height (?).
 - Surface Variables: pressure in sea level, maximum and minimum temperature (2m).

Remap data

- As the several Global Climate Models use different grids (between them).
- -We use the Reanalysis NCEP/NCAR for calibration our projections and their files have gaussian grid (with the cdo tools).
- So we need remap our data files (different models), according to one gaussian grid. For this, use a text file with the coordinates X and Y for each point from the gaussian grid.

Calculations to standardize

• To standardize data file, need to calculate(with cdo tools):

- The average: \bar{x}
- The standard deviation.

(for each variable and each year)

$$s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2}$$

- The anomaly: $\Delta = (x \bar{x})/\sigma$
- We have created a script with the corresponding
 commands to standardize.

5. Data

Ensembles Project

It has two lines of work: stream 1 and stream 2:

Ensembles stream1			Resolución	
Institución	Modelo	lat	long	
Beijing Climate Center, China Meteorological Administration	BCM2	64	128	
CNRM-CERFACS	CNRM-CM3	64	128	
Institute for Meteorology, Freie Universitaet Berlin	EGMAM	48	96	
Met. Office Hadley Center	HADGEM1	145	192	
Istituto Nazionale di Geofisica e Vulcanologia	INGVSX	160	320	
Inst. Piere Simon Laplace	IPSLCM4	72	96	
Max-Planck-Institut fuer Meteorologie (MD)	MPEH5	96	192	
Danish Meteorological Institute & Max Planck	DMIEH5	48	96	

Ensembles stream2			Resolución	
Institución	Modelo	lat	long	
Danish Meteorological Institute & Max Planck	DMIEH5C	48	96	
CNRM-CERFACS	CNRM-CM33	64	128	
Institute for Meteorology, Freie Universitaet Berlin	EGMAM2	48	96	
Met. Office Hadley Center	HADGEM2AO	144	192	
Met. Office Hadley Center	HADCM3C	73	96	
Inst. Piere Simon Laplace	IPSLCM4v2	143	144	
Max-Planck-Institut fuer Meteorologie (MD)	MPEH5C	48	96	

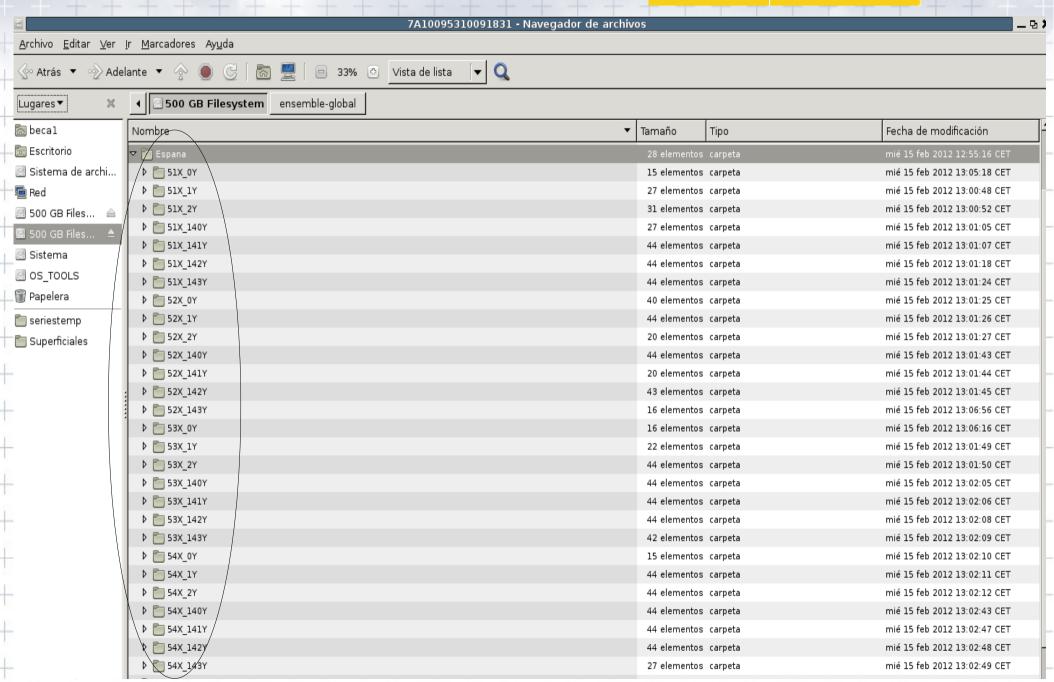
Scenarios

Scenario	Features
20C3M	It considers a increase of GEI in the same way than the emissions during s.XX. (Current climate).
SRES A1B	Quick economical growth and implementation of new and efficient technology. Low population growth. The environmental quality is not the most important.
SRES A2	Heterogeneous world,high population growth and low economical development.
SRES B1	Quick economical changes to a global society. Introduction of new and efficient technology.
E1	Mitigation scenario, which is based on a increment of radiative forcing 2,9 W/m².

Data for calibration: NCEP/NCAR Reanalysis 1 project

* The necp's grid is 2.5 degree x 2.5 degree global + grids (144 x 73), it means, gaussian. Therefore, it does not need to remap (again).

Data's volume


Model	Data	Standardized files	Spain Points (28)
Ensembles, stream 1	507 files 696,5GB	507 files (in course)	(in course)
Ensembles, stream 2	377 files 411,1GB	377 files (in course)	(in course) +
NCEP surface	150 files 2,15 GB	3 files 2,1 GB	23 files/point 112,2 MB
NCEP pressure levels	250 files 27,3GB	20 files 14,3 GB	+

We have:

MINISTERIO DE AGRICULTURA, ALIMENTACIÓN Y MEDIO AMBIENTE

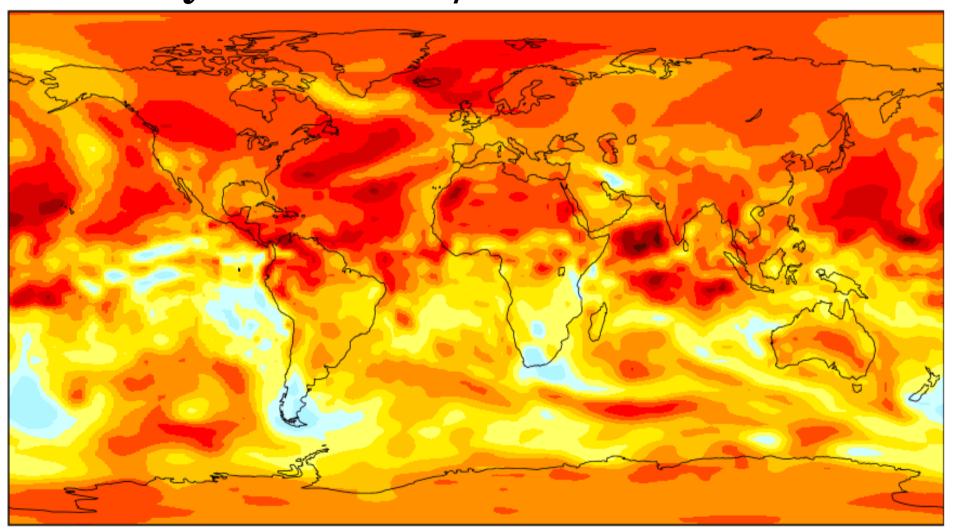
e2-DMIEH5C_SRA1B_hus700_51X_0Y_1961-2000.dat

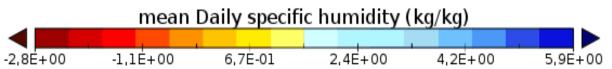
MINISTERIO DE AGRICULTURA, ALIMENTACIÓN Y MEDIO AMBIENTE

+++++++++	Nombre
▼ 151X 0Y	▼ 🛅 51X_0Y
D BCM2	▶
D CNCM3	D CNCM3
/ CNCM33	
♦ MIEH5C	→ m DMIEH5C
▶ EGMAM	e2-DMIEH5C_20C3M_hus500_51X_0Y_1961-2000.dat
▶ EGMAM2	= £2-DMIEH5C_20C3M_hus700_51X_0Y_1961-2000.dat
▶ madcm3	e2-DMIEH5C_20C3M_hus850_51X_0Y_1961-2000.dat
▶ madgem1	e2-DMIEH5C_20C3M_hus1000_51X_0Y_1961-2000.dat
▶ madgem2	e2-DMIEH5C_20C3M_psl_51X_0Y_1961-2000.dat
♦ 🛅 INGVSX	e2-DMIEH5C_20C3M_ta500_51X_0Y_1961-2000.dat
	e2-DMIEH5C_20C3M_ta700_51X_0Y_1961-2000.dat
\	e2-DMIEH5C_20C3M_ta850_51X_0Y_1961-2000.dat
MPEH5	e2-DMIEH5C_20C3M_ta1000_51X_0Y_1961-2000.dat
▶ MPEH5C	e2-DMIEH5C_20C3M_tasmax_51X_0Y_1961-2000.dat
	e2-DMIEH5C_20C3M_tasmin_51X_0Y_1961-2000.dat
▶ <u>151X_2Y</u>	e2-DMIEH5C_20C3M_ua500_51X_0Y_1961-2000.dat
▶ <u>1</u> 51X_140Y	e2-DMIEH5C_20C3M_ua700_51X_0Y_1961-2000.dat
▶ <u>151X_141Y</u>	e2-DMIEH5C_20C3M_ua850_51X_0Y_1961-2000.dat
▶ <u>1</u> 51X_142Y	e2-DMIEH5C_20C3M_ua1000_51X_0Y_1961-2000.dat
▶ <u>1</u> 51X_143Y	e2-DMIEH5C_20C3M_va500_51X_0Y_1961-2000.dat
▶ <u>1 52X_0Y</u>	e2-DMIEH5C_20C3M_va700_51X_0Y_1961-2000.dat
▶ <u>1 52X_1Y</u>	e2-DMIEH5C_20C3M_va850_51X_0Y_1961-2000.dat
▶ <u>1 52X_2Y</u>	e2-DMIEH5C_20C3M_val000_51X_0Y_1961-2000.dat
▶ <u>1 52X_140Y</u>	e2-DMIEH5C_20C3M_zg500_51X_0Y_1961-2000.dat
▶ <u>152X_141Y</u>	e2-DMIEH5C_20C3M_zg700_51X_0Y_1961-2000.dat
▶ <u>152X_142Y</u>	e2-DMIEH5C_20C3M_zg850_51X_0Y_1961-2000.dat
▶ 152X_143Y	= 2-DMIEH5C_20C3M_zg1000_51X_0Y_1961-2000.dat
▶ <u>1 53X_0Y</u>	e2-QMIEH5C_SRA1B_hus500_51X_0Y_1961-2008.dat
I № 1 53X 1Y	

- Finally the data file for each predictor variable has the next form:

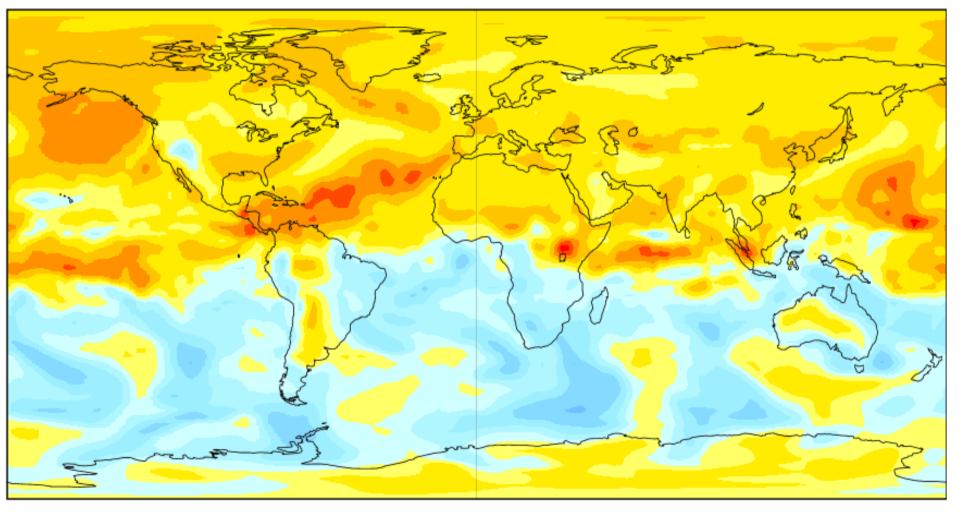
e2-DMIEH5C_20C3M_hu...51X_0Y_1961-2000.dat 💥 -0.59013 -1.30631 -1.34741 -0.69874 0.52297 -0.63742 -1.41637 -1.18580 0.35242 -0.66807 -1.20171 -0.92643 -1.28703 -1.17620 -0.53449 -0.32150 -0.67554 -0.63707 -0.94324 -0.88300 -1.33365 -1.53361 -0.83591 -1.16015 -1.51699 -1.33378 0.40364 -1.01061 -0.26172 -0.67887 0.70057 -0.69168 -1.65638 -0.79313

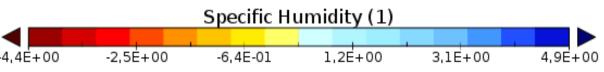




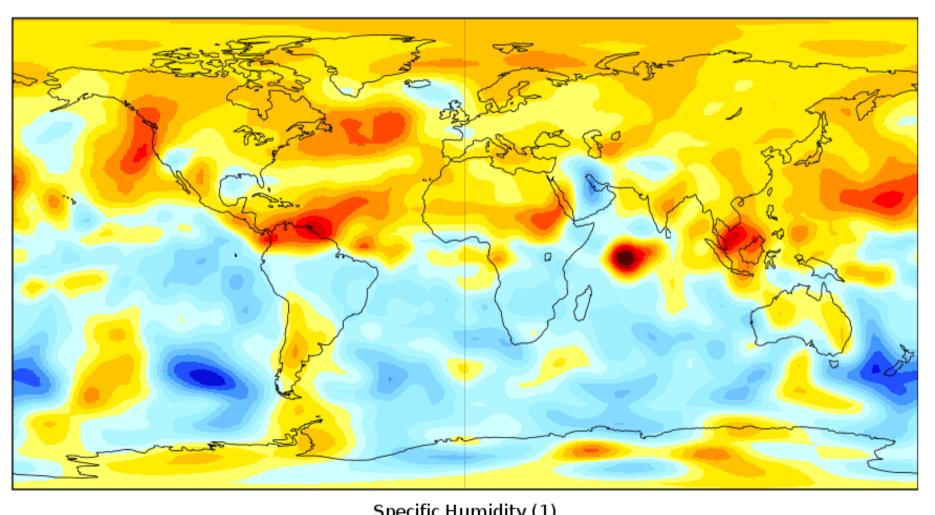
6. Example: Standardized data of variable specific humidity in level 1000 hPa with different models (23/3/1965)

Reanalysis NCEP/NCAR

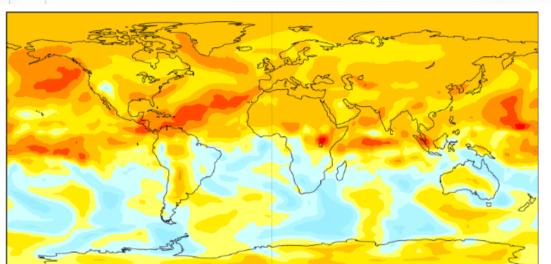


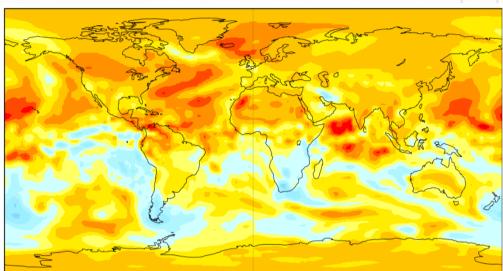


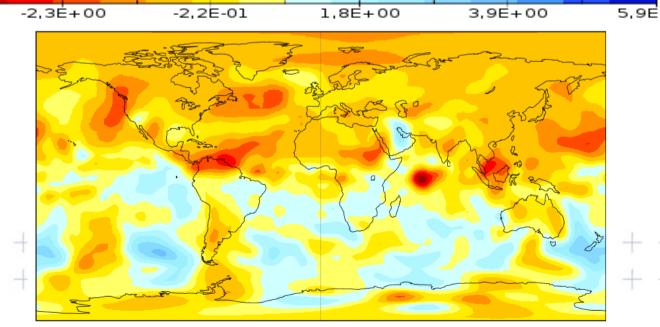
ENSEMBLES, stream1, model:CNCM3



ENSEMBLES, stream2, model:EGMAM2 and scenario: 20C3M


If we change the scale




CNCM3

Ncep

EGMAM2

Specific Humidity (1)

7. Comments

- There are more of thousand files with data, this suppose a big volume of data to work which needs space for save it and for analysis it.

+- It is important to select the correct period of time for reduce size of file and for work comfortably, but you must be very careful with select this period because each GCM use one calendar.

8. Future Plans

- Finish standardize and obtain Spain series.
- Identify cells with each meteorological station.
- Calibrate the models with Reanalysis NCEP/NCAR for each variable and for each climatological station.
- Obtain the climate change projections for extreme temperature and precipitation for each climatological station.
- Evaluate the projections' uncertainties.

9. Bibliography

- http://pcdi3.llnl.gov/esgcet/home.htm
- http://cera-www.dkrz.de/CERA/index.html
- http://www.grida.no/climate/ipcc_tar/wg1/pdf/TAR-13.PDf
- http://climate.envsci.rutgers.edu/GeoMIP/modelgroups.xls
- http://ensembles-eu.metoffice.com
- MITCHELL, T.D. y M. HULME (1999): Predicting regional climate change: living with uncertainty. Progress in Physical Geography.
- M.Brunet, M.J.Casado, M.Castro, P. Galán, J.A. López, J.M. Martín, A.Pastor, E. Petisco, P. Ramos, J. Ribalaygua, E. Rodríguez, I. Sanz, L. Torres, (2009):AEMet, GENERACIÓN DE ESCENARIOS REGIONALIZADOS ESPAÑA DE CAMBIO CLIMÁTICO PARA ESPAÑA.