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Abstract 15 

In this study, we revise the index that quantifies the North African Dipole Intensity (NAFDI), 16 

and explain its relationship with the Saharan Heat Low (SHL) and mid-latitude Rossby 17 

waves. We find outstanding similarities of meteorological patterns associated with the 18 

positive NAFDI and the SHL West-phase on the one hand, and with the negative NAFDI and 19 

the SHL East-Phase, on the other hand. We introduce the daily NAFDI index and the daily 20 

SHL West-East Displacement Index (SHLWEDI). The Pearson correlation coefficient 21 

between the daily SHLWEDI 1-day lagged and the daily NAFDI for the period 1980-2013 20 22 

June – 17 September is fairly high (r = 0.77). The correlation reduces to 0.69 if the 23 

SHLWEDI is not lagged. We observe that the SHL West-phase is significantly more frequent 24 

than the SHL East-phase, and that the SHL is more intense during its East-phase. We find 25 

positive aerosol optical depth (AOD) anomalies in the Western Sahara during positive NAFDI 26 

/ SHL West-phase, and negative AOD anomalies in the central and eastern Sahara during 27 

negative NAFDI / SHL East-phase. A significant positive (negative) NE-SW axis AOD 28 
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anomaly over the Subtropical North Atlantic for positive (negative) NAFDI is found. 1 

Remarkable patterns of positive (negative) AOD anomalies over the tropical Atlantic and the 2 

Central-Western Mediterranean during negative (positive) NAFDI are observed. The impact 3 

of mid-latitude Rossby waves on NAFDI variations depends on both the amplitude and phase 4 

of the Rossby wave at 200-300 hPa, which is quantified in this study by the daily Zonal Wind 5 

Anomaly at 300 hPa over South Morocco (ZWA300), and the penetration of the Rossby wave 6 

into the lower troposphere, quantified by the daily Omega at 500 hPa over Northwest Algeria 7 

(O500). The correlation of both ZWA300 and O500 with NAFDI is significant: 0.48 and 0.53, 8 

respectively, when we apply 5-day running means to the time series before calculating the 9 

correlation coefficients, and increases to 0.66 when a multi-linear regression is performed. 10 

The results suggest that ZWA300 drives almost one day in advance the NAFDI, whereas 11 

O500 might be ahead respect to NAFDI less than 12 hours. The power spectra of the NAFDI, 12 

SHL, ZWA300 and O500 times series in the intermediate time scale range (between 10 and 13 

30 days) show 10 especially intense NAFDI spectral peaks, most of them also present in the 14 

SHLWEDI spectrum, finding that for many of the NAFDI/SHLWEDI peaks there is 15 

associated an O500 and/or ZWA300 peak. Our results indicate that the modes of oscillation of 16 

both the NAFDI and the SHL are driven by those mid-latitudes Rossby waves that go deep 17 

enough into the lower troposphere imposing their perturbation to the background 18 

meteorological fields. A comprehensive top-down conceptual model is introduced to explain 19 

the relationships between the NAFDI, the SHL and the mid-latitude Rossby waves and their 20 

impact in dust mobilization and transport in Northern Africa. 21 

 22 

1 Introduction 23 

Northern Africa, and specifically the Sahara desert, is the largest and most active dust source 24 

in the world (Ginoux et al., 2004, 2012; Huneeus et al., 2011). There are numerous studies 25 

dealing with mineral dust transport from the Sahara to the North Atlantic within the Saharan 26 

Air Layer (SAL) (e.g., Prospero and Carlson, 1997; Engelstaedter and Washington, 2007; 27 

Haywood et al., 2008, Ben-Ami et al., 2009; Adams et al., 2012; Prospero et al., 2014; Ridley 28 

et al., 2014) and its impacts on remote regions, i.e. the Caribbean, and the Americas (Perry et 29 

al., 1997; Prospero, 1999; Prospero and Lamb, 2003; Chiapello et al., 2005). The impact of 30 

Saharan dust over the Mediterranean has also been subject of numerous papers in recent years 31 

(e.g., Moulin et al., 1998; Kubilay et al., 2003; Pérez et al., 2006; Gerasopoulos et al., 2006; 32 
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Basart et al., 2009; Jilbert et al., 2010; Salvador et al., 2014; Marconi et al., 2014)  addressing 1 

its impact on air quality (Rodríguez et al., 2001; Escudero et al., 2007a; 2007b; Querol et al., 2 

2009), and ocean fertilization (Guerzoni et al., 1999; Gallisai et al., 2012; Ravelo-Pérez et al., 3 

2016). However, dust transport over the North Atlantic and Mediterranean has been 4 

approached independently in most of the studies, disregarding the fact that the large pressure 5 

centres that modulate dust transport to both regions are basically the same. Both the Saharan 6 

heat low (SHL), widely analyzed in recent years (e.g. Lavaysse et al., 2009; 2010a; 2010b; 7 

2011; 2013; 2015; Chauvin et al.; 2010), and the North African anticyclone (Rodríguez et al., 8 

2015) are pressure centres whose variations in intensity, position and extension are key 9 

factors for activating dust emissions and transport to the North Atlantic and Mediterranean. 10 

In the last years a great effort has been made to explain the most important dust mobilization 11 

mesoscale baroclinic processes driven, somehow, by the SHL. Among them, we could 12 

highlight the following mechanisms: dry boundary layer convection (Engelstaedter and 13 

Washington, 2007; Lavaysse et al., 2010a, and references therein), density currents (Marsham 14 

et al., 2008, and references therein; Schepanski et al., 2009; Chaboureau et al., 2016), low-15 

level jets (LLJ) (Knippertz, 2008; Schepanski et al., 2009; Fiedler et al., 2013), strong winds 16 

and high turbulence associated to the Intertropical Convergence Zone (ITCZ) (Flamant et al., 17 

2007; Bou Karam et al., 2008; Canut et al., 2010), and African easterly waves (AEWs) (Jones 18 

et al., 2003; Knippertz and Todd, 2010). However, although there is general agreement on the 19 

fact that changes in intensity and position of SHL play an important role in the atmospheric 20 

regional dust recirculation through the activation of the mesoscale baroclinic processes listed 21 

above, little is known about the physical processes that determine the variability in the 22 

position and intensity of the SHL. It is generally accepted that dust mobilization is mainly 23 

controlled by soil characteristics, surface conditions and surface wind speed. Dry soil 24 

conditions can be assumed as constant in central hyper-arid Sahara. Therefore, the main factor 25 

that modulates the activation of the multiple dust sources present in this region is the low-26 

level wind variability. 27 

Chauvin et al. (2010) found a relation between mid-latitude Rossby waves and the 28 

longitudinal position of the SHL. However, they did not explain the underlying physical 29 

mechanisms behind this relation. Applying Fourier Analysis to the linearized barotropic 30 

vorticity equation for a constant-density atmosphere, with a constant zonal flow, it is 31 

straightforward to obtain the dispersion relation for the free barotropic Rossby waves (e.g., 32 

Holton, 1992). However, the propagation of Rossby waves in the real atmosphere is a much 33 
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more complex issue. According to Pedlosky (1987), in the vertically stratified real 1 

atmosphere, a Rossby wave may be considered as barotropic if it has the same structure 2 

throughout the vertical column, except that the amplitude is affected by an exponential factor 3 

depending on height. These considerations apply for a static atmosphere or with a constant 4 

zonal velocity (Pedlosky, 1987). The use of more realistic models that consider a zonal 5 

background flow depending on latitude and height makes the calculation of Rossby waves 6 

much more complex since it requires solving numerically an eigenvalue problem of ordinary 7 

or partial differential equations with specific boundary conditions. The forced barotropic 8 

vorticity equation has been often used in the literature to study the longitudinal propagation of 9 

Rossby waves in the upper troposphere (e.g., Charney and Eliassen, 1949; Hoskins and 10 

Ambrizzi, 1993; Ambrizzi et al., 1995). Sometimes the Wentzel–Kramers–Brillouin (WKB) 11 

method has been used to try to understand, at least qualitatively, the behaviour observed in 12 

complex models and in reanalysis (e.g., Hoskins and Karoly, 1981; Karoly and Hoskins, 13 

1982; Karoly, 1983; Hoskins and Ambrizzi, 1993; Petoukhov et al., 2013). Hsu and Lin 14 

(1992), Hoskins and Ambrizzi (1993), and Ambrizzi et al. (1995) showed that in the Northern 15 

Hemisphere there are waveguides for the propagation of Rossby waves in the upper 16 

troposphere. The propagation of Rossby waves through the North Atlantic and North African 17 

waveguide and the longitudinal position of the SHL are related each other according to 18 

Chauvin et al. (2010). 19 

In this study, we start from the results obtained by Rodríguez et al. (2015) regarding the so-20 

called North African Dipole Intensity (NAFDI). The NAFDI is the difference of geopotential 21 

height anomalies averaged over the subtropics and the tropics close to the Atlantic coast. 22 

Rodríguez et al. (2015) analyzed the relationship between the NAFDI and dust export to the 23 

Atlantic in August by using 28-year measurement data of in-situ dust concentrations at Izaña 24 

Observatory and satellite - TOMS and OMI Aerosol Index based - dust retrievals. 25 

The major objectives of the present study are: 1) review the definition of the NAFDI index 26 

and assess the results obtained by Rodríguez et al. (2015) using complementary spatial fields 27 

of Aerosol Optical Depth (AOD) from MODIS retrievals and MACC (Monitoring 28 

Atmospheric Composition and Climate) reanalysis, and extending the analysis to every month 29 

of the summertime (June-August); 2) explore the role played by the NAFDI in dust transport 30 

to the Mediterranean basin, and its impact on dust source activation over the Sahara; 3) 31 

determine and analyse the physical mechanisms that link the NAFDI and the SHL on a daily 32 
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basis, and 4) analyse the variations of Rossby waves (amplitude and phase) in the North-East 1 

Atlantic, identifying on a daily basis the physical mechanisms by which these waves  2 

modulate the NAFDI variations and hence, the SHL phases. 3 

In Section 2, the observational and reanalysis datasets used in the study are described. The 4 

main results and discussion are tackled in Section 3: review of the NAFDI definition, dust 5 

transport and meteorological patterns associated with the NAFDI phases, and physical 6 

relationship between the NAFDI, the SHL and mid-latitude Rossby waves. Finally, in Section 7 

4, the conclusions and the schematic conceptual model from hemispheric to meso-scale 8 

atmospheric mechanisms driving dust transport over Northern Africa are presented. 9 

 10 

2 Data and methodology 11 

2.1 MACC reanalysis 12 

The 10-year MACC reanalysis for 2003–2012 (Innes et al., 2013) has been used in this study. 13 

The MACC reanalysis data can be downloaded from the European Centre for Medium-Range 14 

Weather Forecasts (ECMWF) at http://apps.ecmwf.int/datasets/data/macc-15 

reanalysis/levtype=sfc/. In this study, we have used daily averages of AOD at 550 nm 16 

computed from the MACC data at 06, 09, 12, 15 and 18 UTC in the period 2003-01-01 to 17 

2012-12-31. 18 

A detailed description of the initial implementation of the aerosol modules for this reanalysis 19 

is given in Morcrette et al. (2009) for the modelling part, and in Benedetti et al. (2009) for the 20 

assimilation part. The physical parameterizations for the aerosol processes are modelled using 21 

the LOA/LMD-Z model (Boucher et al., 2002; Reddy et al., 2005). However, some 22 

modifications to the original schemes were introduced over the years (Morcrette et al., 2011). 23 

Five types of tropospheric aerosols are considered in the model: sea-salt, mineral dust, 24 

organic and black carbon, and sulphate aerosols. The MACC reanalysis was run at T255L60, 25 

which is an approximate 78 km × 78 km horizontal resolution with 60 vertical levels. Dust is 26 

treated as a chemically non-reactive component, which is externally mixed like all other 27 

aerosols in the MACC model. The data assimilation system used to produce the MACC 28 

reanalysis is based on a 2010 release of the ECMWF Integrated Forecasting System (IFS) 29 

(Cy36r1). The system includes a 4-dimensional variational analysis (4D-Var) with a 12-hour 30 

analysis window for O3, CO, NO2, SO2, HCHO, and aerosols. 31 
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The output of the MACC reanalysis has been validated by the MACC-II VAL sub-project and 1 

the latest information has been reported by Eskes et al., 2014. The MACC reanalysis has 2 

already been used in several aerosol studies including mineral dust (e.g. Bellouin et al., 2013; 3 

Inness et al., 2013; Cesnulyte et al., 2014; Cuevas et al., 2015; Eskes et al., 2015). 4 

2.2 Satellite (MODIS and MISR) data 5 

The MODerate resolution Imaging Spectrometer (MODIS) onboard the NASA EOS (Earth 6 

Observing System) Terra and Aqua satellites (Salomonson et al., 1989) provides aerosol 7 

properties over both land (Kaufman et al., 1997) and ocean (Tanré et al., 1997) with a near-8 

daily global coverage.  9 

In this study we have used AOD-500 nm monthly averages for the period 2003-01-01 to 10 

2012-12-31 from the MODIS Collection 6 atmosphere aerosol products available in the 11 

NASA LADS ftp server (ftp://ladsweb.nascom.nasa.gov/allData/6/). MODIS Collection 6 12 

includes a merged product, which uses Deep Blue (DB) retrievals to fill in gaps in the Dark 13 

Target/ocean (DT) dataset, with extended coverage to vegetated surfaces, as well as bright 14 

land, and improved surface reflectance models, aerosol optical models, and cloud screening, 15 

and simplified quality assurance flags (Hsu et al., 2013; Sayer et at., 2013). The new features 16 

of Collection 6 are especially important for our study since much of the geographic domain 17 

we use in our analysis covers North Africa, a region in which we have to identify both dust 18 

transport and dust sources over surfaces of high reflectivity on which the AOD retrieval is 19 

difficult.  20 

Multi-angle Imaging Spectro Radiometer (MISR) instrument, flying aboard the NASA Earth 21 

Observing System's Terra satellite (http://www-misr.jpl.nasa.gov/), gets a global coverage 22 

every 9 days with revisit time between 2 and 9 days depending on latitude. MISR can retrieve 23 

aerosol properties over bright desert areas due to its unique capability of multi-wavelength 24 

observations at forward and backward directions (Kahn el al., 2010). According to Kahn et al. 25 

(2010), between 70 and 75% of the MISR AOD retrievals differ less than 0.05, or 20% from 26 

the corresponding AERONET ones. 27 

In section 3.3 we have used monthly-averaged values of the MODIS daily merged AOD 28 

product (MYD08_M3_V6), and MISR monthly AOD at 555nm (MIL3MAE_V4), for the 29 

period 2003-2012, produced with the Giovanni online data system, developed and maintained 30 

by the NASA GES DISC (http://giovanni.gsfc.nasa.gov/). 31 
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2.3 ERA-Interim Reanalysis 1 

ERA-Interim is the latest global atmospheric reanalysis produced by the ECMWF, extending 2 

from 1979 to present. ERA-Interim is based on a 2006 release of the IFS (Cy31r2). As the 3 

MACC reanalysis, it is run at a T255L60 resolution. The system includes a 4-dimensional 4 

variational analysis (4D-Var) with a 12-hour analysis window. A detailed description of 5 

ERA-Interim Reanalysis is given in Dee et al. (2011). 6 

In this study we have used daily-averaged fields of temperature, wind, and geopotential height 7 

at standard levels from 1000 to 500 hPa in the period 2003-01-01 to 2012-12-31. 8 

2.4 NCEP/NCAR Reanalysis 9 

The NCEP/NCAR Reanalysis Project is a joint project between the National Centers for 10 

Environmental Prediction (NCEP) and the National Center for Atmospheric Research 11 

(NCAR). A description of the NCEP/NCAR reanalysis can be found in (Kalnay et al., 1996). 12 

In this study we have used NCEP/NCAR daily and monthly-averaged data with a spatial 13 

resolution of 2.5° latitude x 2.5° longitude, in the period 1980-2013. No fundamental 14 

differences have been found in our analysis when using NCEP/NCAR reanalysis or ERA-15 

Interim Reanalysis. So, we have used the latter, which has a better spatial resolution, in plots 16 

and results focused on Northern Africa linked to AOD outputs from MACC and MODIS 17 

retrievals. However, for larger geographical scales and for computing correlations and 18 

regressions between NAFDI and other atmospheric parameters we have used the user-friendly 19 

NCEP/NCAR reanalysis web page interface (http://www.esrl.noaa.gov/psd/products/) for 20 

reasons of easiness and efficiency in calculations. 21 

2.5 Hysplit trajectories 22 

Two sets of daily 48-hour-long air back-trajectories beginning at 12:00 UTC, with a 1-hour 23 

time resolution, were computed using the Hybrid Single Particle Lagrangian Integrated 24 

Trajectory Model (HYSPLIT) version 4.0 (Stein et al., 2015). The arrival points were set at 25 

30ºN 15ºW 700 hPa (subtropical North Atlantic) and  37ºN, 4ºE 700 hPa (Western 26 

Mediterranean), for each of the two sets, respectively. 27 
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Daily backward trajectories were calculated for the summer months (June, July and August) 1 

in the period 2003-2012. Wind fields from the NCEP/NCAR reanalysis meteorological data 2 

set (Kalnay et al. 1996) were used. The vertical model velocity was used.  3 

The percentage of backward trajectories that passed over North Africa was calculated for each 4 

month, and for each summer, in the 2003-2012 period, distinguishing between NAFDI 5 

positive and negative phases. In order to calculate this percentage, we calculated the fraction 6 

of time that each backward trajectory resides in the geographic sector bounded by the 7 

parallels 20°N and 36°N, and the meridians 18°W and 50°E, using a similar approach to that 8 

used by Alonso-Pérez et al. (2007) for calculating the Saharan Index. When that fraction of 9 

time is 25% or greater, the associated backward trajectory is flagged as influenced by African 10 

air masses, and its starting day is considered as potentially affected by the African CBL. 11 

 12 

3 Results and discussion 13 

3.1 A review and some remarks on the NAFDI definition 14 

The definition of NAFDI introduced by Rodríguez et al. (2015) was made with the aim to 15 

analyze dust transport from the Sahara to the North Atlantic Ocean. Thus, the points chosen to 16 

calculate the geopotential height derivative anomaly at 700 hPa were selected over Morocco 17 

and Mali, almost along the same meridian (around 7ºW). Since the scope of the present study 18 

covers a much larger region, we have proceeded to revise the definition of the index that 19 

quantifies NAFDI. 20 

We have computed the correlation map between the geopotential height at 700 hPa over the 21 

selected point over Morocco and the geopotential height field at the same level (Figure 1a). 22 

This figure shows that the geopotential heights over the two regions (over Morocco and Mali) 23 

used to define the NAFDI correlate positively, and therefore, their variations are not 24 

completely independent. Moreover, the associated regression plot (Figure 1b) shows a pattern 25 

of isolines similar to that of the correlation plot. This isoline pattern indicates that the 26 

geostrophic wind anomaly has not only a westward component, but also a significant 27 

northerly component. For these reasons we have decided to improve slightly the definition of 28 

the NAFDI index by selecting the meridional point at the same latitude of that chosen by 29 

Rodríguez et al. (2015) but shifted eastwards symmetrically to the Greenwich meridian, 30 

specifically at 5°-7.5ºE (North Nigeria) instead of 6°-8ºW. Notice that with the new 31 
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definition, the correlation between the 700 hPa geopotential at the selected points is zero 1 

(Figure 1a), that is, the geopotential variations are independent. As shown in the correlation 2 

maps between the geopotential height at 700 hPa and both the NAFDI index defined by 3 

Rodríguez et al (2015) (Figure 1c) and the improved NAFDI index for the latter (Figure 1d), 4 

there is a higher correlation on the northernmost point and more negative correlations in the 5 

tropical belt. Moreover, the geopotential height derivative anomaly that the improved NAFDI 6 

index provides is calculated along a line that is perpendicular to the geostrophic wind 7 

anomaly and crosses the core of the SHL, where dust is lifted-up. Further information 8 

supporting these facts is provided in Sections 3.2 and 3.3. The corresponding regression plot 9 

between the improved NAFDI and the geopotential height at 700 hPa for August months is 10 

shown in Supplement S1. 11 

The total dust concentrations (dustT) measured at the Izaña Atmospheric Observatory in 12 

August months and the NAFDI time series from 1987 to 2014  present indeed a Pearson 13 

correlation coefficient (r) of 0.67 when using the original NAFDI index definition (Rodríguez 14 

et al., 2015), whereas r = 0.72 when using the improved NAFDI index. These results indicate 15 

that the outstanding results from Rodríguez et al. (2015) might be even better by using this 16 

improved index. The improved NAFDI index will be referred to as the NAFDI From now on, 17 

replacing that established by Rodríguez et al. (2015). The monthly NAFDI values for the 18 

period 1948-2015 are available at http://izana.aemet.es/dataseries/. In this study the NAFDI is 19 

used for grouping and averaging spatial distributions of AOD from both MODIS retrievals 20 

and MACC reanalysis and some atmospheric parameters related with atmospheric mineral 21 

dust exportation from North Africa to the Mediterranean and the subtropical Atlantic. 22 

Specifically, we use monthly average values of the NAFDI for June, July and August in 23 

different time periods within the longest used period 1980-2013. These summer months are 24 

classified, in turn, into three groups: positive NAFDI (> +0.4), negative NAFDI (< -0.4) and 25 

neutral NAFDI (values between -0.4 and +0.4). This classification is used to group different 26 

values of atmospheric parameters described below. The NAFDI values corresponding to June, 27 

July and August for each year of the period 2003-2012 are shown in Supplement S2. 28 

We have also calculated a daily NAFDI for 20 June - 17 September that will be used in 29 

Sections 3.3 and 3.4 to discuss the relationship between the NAFDI, the SHL and mid-latitude 30 

Rossby waves. The Daily-NAFDI has been calculated as follows:  31 

       
 

  
      

             
               Equation 1 32 
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where, 1 

-    
  is the NCEP Reanalysis daily mean geopotential height at 700hPa in central 2 

Morocco region (30°N, 5°W) for day ‘i’. 3 

-    
  is the NCEP Reanalysis daily mean geopotential height at 700hPa in North 4 

Nigeria region (12.5°N, 5°E) for day ‘i’   5 

- <  > indicates average of the geopotential for the considered day (i) of the year 6 

during the reference period 1981-2010, and subsequent application of a 29-day 7 

running mean to the average, in order to remove the small residual random 8 

component. 9 

3.2 Dust transport and meteorological patterns associated with the NAFDI 10 

phases 11 

The MODIS AOD anomalies for summer months (June, July and August) with positive and 12 

negative NAFDI phases in the period 2003-2012 are shown in Figure 2.  13 

Large patterns of AOD anomalies, associated to long-range transport of dust out of Northern 14 

Africa, are remarkable. First, we detect a significant positive AOD anomaly that follows a 15 

ENE-WSW axis on the subtropical Atlantic under positive NAFDI, which agrees with a 16 

positive anomaly of easterly winds between 925 and 700 hPa under positive NAFDI (see 17 

Supplement S3), and with results of Rodríguez et al. (2015) using NCEP reanalysis wind data 18 

for August in the period 1987-2014. Our results also confirm, and extend its validity to the 19 

whole summer period, the relationship between the NAFDI and averaged TOMS and OMI AI 20 

data averaged over the so called Subtropical North Atlantic (SNA) found by Rodríguez et al. 21 

(2015). This positive (negative) AOD anomaly on the subtropical Atlantic during positive 22 

(negative) NAFDI is very small in June, and increases considerably in July and August 23 

(Figure 2). A second remarkable pattern is the positive AOD anomaly observed over the 24 

tropical Atlantic during negative NAFDI (the opposite under the positive phase). In this case, 25 

the anomaly is stronger in June than in July and August. The third major contrast between the 26 

AOD patterns in the two phases of NAFDI is found on the Central-Western Mediterranean, 27 

where positive (negative) AOD anomalies occur during negative (positive) NAFDI. This 28 

pattern is especially clear in June, the summer month in which dust intrusions in the Central-29 

Western Mediterranean are more frequent (Marconi et al., 2014). 30 
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We must highlight the fact that we find months with both positive and negative NAFDI 1 

values in the summer period of the same year, but the AOD-anomalies patterns found in 2 

months with the same phase of NAFDI are the same regardless of their time location within 3 

the summer season. This suggests that there are some well-defined dust-transport patterns on 4 

these regions, which are basically modulated by the NAFDI, and therefore by the North 5 

African high, beyond dust transport modulation over the subtropical North Atlantic reported 6 

by Rodríguez et al. (2015). 7 

Additionally, there are AOD anomalies over Northern Africa. Figure 2 shows positive AOD 8 

anomalies in or near North African dust source regions, especially over Algeria and Libya, 9 

and to a lesser extent over Niger, Egypt, Sudan, and the Sahel region during negative NAFDI 10 

months, which become regions with negative AOD anomalies for positive NAFDI months. 11 

Note also that the first transport pattern mentioned previously extends inland with less 12 

intensity over all the subtropical West coast of Northern Africa. We suggest, therefore, that 13 

the NAFDI might also modulate, somehow, numerous mesoscale processes that, in turn, 14 

activate dust sources in these regions. 15 

Complementarily, we have also calculated the AOD anomalies from MACC reanalysis for the 16 

two phases of the NAFDI, during the same period (2003-2012), for the same months of 17 

summer, and in the same way as the AOD anomalies from MODIS were calculated (Figure 18 

3). The results, in general and ignoring small-scale details, are very similar to those obtained 19 

with MODIS. In both cases, the same structures for the most intense AOD anomalies are 20 

observed for each phase of the NAFDI although in the MACC case they are remarkably 21 

smoothed. In Supplement S4, averaged AOD anomalies from MODIS and MACC for 22 

summers with positive and negative NAFDI phases in the period 2003-2012 are shown. 23 

The summer period in the Sahel region coincides with the rainy season with frequent dust 24 

emitted by wet mesoscale convective events (Marticorena et al., 2010) associated to the 25 

monsoon, which are not well captured by MACC (Cuevas et al., 2014). This is especially 26 

clear during positive NAFDI, while during negative NAFDI, MACC captures dust in the 27 

Sahel region what requires further analysis which is out of the scope of this paper. 28 

In spite of the significant limitations of the MACC reanalysis, due to its relatively low 29 

resolution and the fact that convective processes and other mesoscale atmospheric processes 30 

are not parameterized, it provides important information that helps us to interpret the 31 

structures found in the AOD anomalies. 32 
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The relatively good agreement between MODIS and MACC reanalysis at large scale, both on 1 

sea and land, tell us that these AOD-anomaly structures are basically modulated by 2 

atmospheric drivers operating at synoptic scale because, otherwise, the MACC reanalysis 3 

would not have been able to reproduce them. It is noted that the ECMWF IFS uses external 4 

data of aerosol optical depth at 550 nm retrieved from MODIS (Level 2, collection 5) 5 

instruments on board of Terra and Aqua satellites, which are assimilated into the model. 6 

However, MODIS AOD assimilation has not been applied over highly reflective surfaces, 7 

such as deserts where there is no sufficient contrast to discern the aerosol signal. In our case, a 8 

good agreement between MODIS Deep blue AOD and MACC reanalysis AOD is also 9 

observed over desert areas where no MODIS AOD data is assimilated. Moreover, the 10 

agreement between MODIS and MACC reanalysis confirms the suitability of MACC for 11 

climatological studies, like the present one. 12 

The fact that AOD positive anomalies over the subtropical North Atlantic correspond 13 

systematically with dust free conditions over the Mediterranean basin, and vice versa, 14 

indicates that the dust transport processes over both regions are modulated by the same 15 

pressure systems which activate mineral dust advection towards one or another region as if it 16 

were a three-port two-position valve. 17 

The ECMWF reanalysis monthly mean wind fields at 700 hPa (Figure 4) , which is the level 18 

at which the most effective dust transport into the North Atlantic occurs (Rodríguez et al., 19 

2015), show for positive NAFDI stronger NE/NNE winds over a band extending over central 20 

Algeria, northern Mauritania and Western Sahara that prolongs into the subtropical North 21 

Atlantic. This is consistent with the positive AOD anomaly observed by MODIS (Figure 2) 22 

and provided by MACC (Figure 3). On the other hand, for negative NAFDI we observe 23 

stronger Westerlies over the Mediterranean and increased air flow from Northern Africa 24 

towards western and central Mediterranean. In order to confirm and quantify this distinct air 25 

mass transport depending on the NAFDI phase, we have computed the HYSPLIT daily 26 

backward trajectories with arrival points  30ºN 15ºW 700 hPa (North Atlantic) and  37ºN, 4ºE 27 

700 hPa (Western Mediterranean) for the period 2003-2012. For each day, we have flagged 28 

the air mass at a destination point as potentially affected by the African CBL, if the 29 

corresponding backward trajectory has travelled at least during 12 hours above the African 30 

continent (i.e., fraction of time  25%). The corresponding daily statistics of African air 31 

masses at the Subtropical North Atlantic and the Western Mediterranean are expressed in 32 
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Table 1 as monthly-mean relative frequencies for June, July and August for the period 2003-1 

2012, and for each NAFDI phase. 2 

Table 1. Monthly averaged frequency of “African air masses” arriving to the subtropical 3 

North Atlantic and the Western Mediterranean for June, July and August and positive and 4 

negative NAFDI based on daily HYSPLIT backwards trajectories ending at 30ºN 15ºW 700 5 

hPa (subtropical North Atlantic) and 37ºN, 4ºE 700 hPa (Western Mediterranean) for the 6 

period 2002-2013. 7 

Month and 

NAFDI phase 

Frequency (%) 

Subtropical 

North Atlantic  

Frequency (%) 

Western 

Mediterranean  

June NAFDI + 15.0 45.0 

June NAFDI - 3.3 67.8 

July NAFDI + 31.6 67.1 

July NAFDI - 24.2 74.2 

August NAFDI + 34.4 49.5 

August NAFDI - 12.9 65.6 

 8 

In the subtropical North Atlantic the frequency of African air masses is between 7.4% and 9 

21.5% higher during positive NAFDI than under negative NAFDI, while in the Western 10 

Mediterranean it happens just the opposite, finding higher frequency of African air masses 11 

during negative NAFDI (between 7.1% and 22.8% higher). 12 

These patterns of African air masses transport into the North Atlantic with positive NAFDI, 13 

and to the central / western Mediterranean with negative NAFDI are consistent over time as 14 

we can see from the correlation maps between NAFDI and 700 hPa zonal (for the Atlantic) 15 

and meridional (for the Mediterranean) wind components for the period 1980-2013 (see 16 

Supplement S5). Quite similar correlations are found in the longer period 1948-2013 (not 17 

shown here). 18 

The ECMWF zonal wind longitude-height cross-section along the 28°N parallel (Figure 5), 19 

just over the Canary Islands, where Rodríguez et al. (2015) observed maximum dust 20 
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concentration under positive NAFDI, shows that in June there exists a vertical column above 1 

the coast of Africa in which dominates the Westerly wind component (positive values), 2 

preventing the transport of potentially dust-laden air from the African CBL to the Atlantic in 3 

both phases of the NAFDI. However, in July and August the situation is quite different: while 4 

for negative NAFDI we find a similar zonal wind-pattern than for June, for positive NAFDI 5 

the zonal wind component, between 900 and 700 hPa, becomes Easterly (negative values), 6 

allowing the transport of Saharan air masses over the North Atlantic. In fact, the NAFDI acts 7 

as a valve controller that closes or opens the air passage in Westward direction. In July and 8 

August, the Central Western Sahara (CWS) is characterized by strong and frequent mineral 9 

dust storms and by a deep CBL that favours the vertical mixing and the accumulation of lifted 10 

dust till heights of around 6 km (Cuesta et al., 2009; Guirado et al, 2014). So, the positive 11 

NAFDI pattern favours dust-laden African air masses transport over the subtropical North 12 

Atlantic. This is due largely to the weakening of the eastern branch of the Azores anticyclone 13 

during positive NAFDI (compared with negative NAFDI), as discussed below, which 14 

virtually disappears between 10° and 20° W at 700 hPa (Figure 5). 15 

In the central-western Mediterranean the meridional wind latitude-height cross-section along 16 

the 9°E meridian indicates the opposite situation. For positive NAFDI there is a clear 17 

preponderance of the Northerly wind component (above the 900 hPa level) inhibiting the 18 

entry of African air masses into the Mediterranean. However, for negative NAFDI there is a 19 

strong Southerly wind component in June, and to a lesser extent, the same situation occurs in 20 

July and August, indicating a higher probability of dust intrusions into the Mediterranean 21 

(Figure 6). The Southerly wind component is observed over the boundary layer (above 900 22 

hPa level), in agreement with other studies (e.g. Marconi et al., 2014) and found at higher 23 

altitudes as we move northward (from 900 to 500 hPa) in good agreement with results of 24 

Mona et al. (2006) who found that dust layer extended from 2.5 to 5.9 km height over south 25 

Italy using lidar measurements. For this reason, in-situ PM10 (particulate matter with particles 26 

smaller than 10 microns in diameter) stations are not always sensitivity enough for mineral 27 

dust transport into the Mediterranean basin.  28 

After obtaining these results, the question is: which are the 700 hPa pressure patterns 29 

associated with this dual behaviour corresponding to positive and negative NAFDI? We have 30 

found that in June it does not exist, indeed, significant differences between the 700 hPa 31 

geopotential patterns associated to the two phases of NAFDI (Figure 7). However, in July and 32 
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August we observe a marked difference. In the negative NAFDI phase a strong NE-SW 1 

trough axis extending over the Atlantic to the west of Europe and North Africa is observed. 2 

This trough separates further the Azores anticyclone from the North African anticyclone, 3 

displacing the latter to positions further East over the continent, and causing the Azores 4 

anticyclone to elongate slightly to the NE. On the contrary, in the positive NAFDI phase, the 5 

centres of both anticyclones strengthens and are closer, giving the impression that both merge 6 

into a single large anticyclone extending along much of the Atlantic and North Africa. It is 7 

worthy to emphasize here that the so-called Saharan or North African high is a distinct high 8 

system independent of the Azores North Atlantic anticyclone.  9 

The 700 hPa geopotential height pattern found during negative NAFDI, characterized by a 10 

strong anticyclone over Algeria and a deep trough west of Europe, is exactly the 700 hPa 11 

geopotential pattern established by Varga et al. (2014) to explain the Saharan dust intrusions 12 

in the Western and Central Mediterranean. This is also the same pattern found by Gkikas et al. 13 

(2015) in their Cluster 2, which accounts for 51% of all desert aerosol intrusions in the whole 14 

Mediterranean basin. We can therefore say that the NAFDI modulates the main 15 

meteorological pattern causing mineral dust from the Sahara to the Central and Western 16 

Mediterranean, found in previous studies. 17 

The deep trough we see over the eastern North Atlantic with negative NAFDI is not an 18 

exclusive feature of this level. We have calculated correlation maps between NAFDI and the 19 

geopotential heights at different levels between 1000 and 200 hPa, which show for July and 20 

August quite similar correlation patterns at 850, 700, 500 and 200 hPa (Supplement S6), and 21 

even footprints of those patterns at 1000 hPa, suggesting that the NAFDI variations might be  22 

governed by mid-latitude barotropic Rossby waves. These results aimed us to dedicate a sub-23 

section (3.4) to the causal relationship between Rossby waves and the NAFDI. 24 

 25 

3.3 Relationship between NAFDI and the Saharan Heat Low (SHL) and its 26 

impact on meso-scale dust sources 27 

SHL is the denomination given to the West African Heat Low (WAHL) when is located over 28 

the Western Sahara desert (between the Hoggar and the Atlas mountains) during summertime 29 

(from 20 June till 17 September). The SHL is characterized by high surface air temperature 30 

and low surface pressure (a thermal low) with a broad low-level cyclonic circulation and a 31 
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mid-level anticyclonic circulation above (the mid-level thermal high associated to the low-1 

level thermal low) centred around 5°W-25°N (Lavaysse et al., 2009; Wang et al., 2015). 2 

In our analysis we find spatial patterns of some meteorological variables for each phase of the 3 

NAFDI, which closely resemble those found  in previous studies of the SHL West and East 4 

phases. The most remarkable are: 1) the relative position and extension of the Azores 5 

anticyclone during NAFDI positive and negative phases (Figure 7) shows some similarities 6 

with the Chauvin et al. (2010) description: a large extension over Europe during the SHL 7 

West-phase, and a retreat to its subtropical Atlantic position during the SHL East-phase ; 2) 8 

the positive (negative) 1000 hPa temperature anomaly over Morocco and Western Sahara 9 

during positive (negative) NAFDI (Figure 8) is very similar to the warm (cold) anomaly over 10 

Morocco during the SHL West- (East-) phase reported by Chauvin et al. (2010); 3) the 11 

stronger Etesian and northerly low level winds over Libya found, mainly in July and August 12 

(850 hPa), during positive NAFDI and the larger entrance of northerly low-level winds into 13 

the interior of Western Sahara during negative NAFDI (Figure 9) correspond to the increased 14 

ventilation over Libya observed during SHL West-phase, and with an increased ventilation 15 

over Morocco and Western Sahara during SHL East-phase, respectively (Chauvin et al., 2010, 16 

Roehrig et al., 2011). These striking similarities in meteorological patterns between the 17 

positive NAFDI and SHL West-phase, on the one hand, and between the negative NAFDI and 18 

SHL East-Phase, on the other hand, suggest us that there should be a close relationship 19 

between the NAFDI and the SHL position. This relationship is analyzed, physically 20 

explained, and quantified below. 21 

The WAHL location is defined by Lavaysse et al. (2009) in terms of the low-level 22 

atmospheric thickness (LLAT) between 925 and 700 hPa. They computed the LLAT for each 23 

point of the domain (20°W-30°E, 0°-40°N) and day (06:00 UTC) using re-analysis fields 24 

(ECMWF ERA-40). The LLAT is proportional to the mean temperature (where the 25 

integration is performed over the vertical variable Log[p]) of the air located between both 26 

pressure levels.  The authors identified the location of the WAHL as that of the 10% upper 27 

values in the daily probability distribution of LLAT in the mentioned domain. As stated 28 

before, during the period 20 June - 17 September of each year, the WAHL is located over the 29 

Sahara and is called SHL. Using an EOF (Empirical Orthogonal Function) analysis performed 30 

only over areas detected and tracked as SHL during the season, Lavaysse et al. (2013) 31 

quantified the West-East displacement (called “pulsation” by these authors) of the SHL (see 32 
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Fig. 5c and 5d in Lavaysse et al. (2013)), being the frequencies of pulsation higher than 1/25 1 

day
-1

. However, as far as we know, the atmospheric processes that produce these pulsations 2 

have not yet been explained in detail. 3 

To understand the causes of the SHL pulsations we have to bear in mind the fact that above 4 

the SHL (centred ~20°-22°N), is located the Saharan high, which is actually slightly displaced 5 

to the north with respect to the SHL with its centre at ~ 25ºN (Chen, 2005). The shifts and 6 

intensity of this mid-level anticyclone are driven, as we have seen, by NAFDI. Below we 7 

explain that the temporal evolution of the NAFDI and the West-East displacement of the SHL 8 

are physically connected, corresponding positive NAFDI to West SHL displacement, and 9 

negative NAFDI to East SHL displacement.  10 

In order to prove this relationship, and using the NCEP reanalysis for the period 1980-2013, 11 

we define the daily SHL West-East Displacement Index (SHLWEDI) as: 12 

 )()(  EEWW TTTTSHLWEDI    Equation 2 13 

where TW is the air temperature at 850 hPa, 25°N and 12.5°W, TE is the air temperature at 850 14 

hPa, 20°N and 7.5°E, and < > indicates averaging of the temperature of the considered day of 15 

the year for the reference period 1981-2010 and subsequent application of a 29-day running 16 

mean to the averages in order to remove the small residual random component. These 17 

geographical points have been selected using the locations of the maximum and minimum of 18 

the dipolar pattern that corresponds to the EOF of the SHL location obtained by Lavaysse et 19 

al. (2013) (see their Fig. 5c). The Pearson correlation coefficient between the daily 20 

SHLWEDI and the daily NAFDI for the period 1980-2013 20 June – 17 September is 0.69, 21 

which is quite high. In case only the daily western temperature anomaly is considered when 22 

computing the correlation with the daily NAFDI, it takes the value 0.67. This is due to the 23 

high anti-correlation between the western and eastern temperature anomalies (the correlation 24 

coefficient between the daily SHLWEDI and the western temperature anomaly is 0.91). We 25 

have also computed approximately the Pearson correlation coefficients between the daily 26 

SHLWEDI and the eigenvalue time series (ERA-I) plotted in Fig. 6c of Lavaysse et al. (2013) 27 

for the period 2007-2011 20 June – 17 September, obtaining a correlation of -0.74 (the 28 

negative sign is due to the fact that the Lavaysse’s eigenvalue is positive for SHL East 29 

displacement whereas SHLWEDI is positive for SHL West displacement).  30 

 31 
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Figure 9 shows the mean wind speed and vector fields at 850 hPa for the three summer 1 

months with positive and negative NAFDI (similar results are observed for the 925 hPa fields; 2 

see Supplement S7). For negative NAFDI, the air arriving to the subtropical 10-20º W stripe 3 

comes from more northerly latitude in the North Atlantic and follows a more meridional 4 

direction than for positive NAFDI. This means the air arriving to this region under negative 5 

NAFDI is colder, what results in a negative advection of geopotential thickness. Since the 6 

absolute value of the thickness advection is maximum in the 10°-20º W stripe (due to the 7 

relative maximum in the meridional wind), a NE-SW through separating the Atlantic and 8 

North African highs at 700 hPa is generated, experiencing the latter a slightly eastward shift 9 

(see Figure 7). This meteorological pattern favours hot air from the SHL being transported to 10 

the Mediterranean at this 700 hPa level. When there is a transition from a negative to a 11 

positive NAFDI, the meridional negative advection of geopotential thickness strongly 12 

decreases in absolute value and the two highs at 700 hPa approach one another. The North 13 

African high transports hot air from above the SHL towards the west, acting in this western 14 

region like an upper barrier for thermal convection, which therefore heats a shallower depth of 15 

the lower troposphere, and thereby increases the temperature in this region. This makes the 16 

SHL and the coupled thermal high at 700 hPa to propagate westwards and to approach the 17 

Azores high. The intense ageostrophic wind component at 700 hPa (which is due to the fact 18 

that this pressure level is within a deep North African CBL) allows upper SAL air masses 19 

arrive till the region of influence of the Azores high, where these air masses are transported by 20 

the geostrophic wind into the North Atlantic region. The advection of hot Saharan air across 21 

the subtropical North Atlantic also contributes to increase the geopotentical thickness of the 22 

region located between the Azores and North Africa highs, merging them into an apparent 23 

single 700 hPa anticyclone extended across much of the North Atlantic and North Africa. 24 

Figure 8 shows the anomaly of temperature at 1000 hPa in June, July and August for positive 25 

and negative NAFDI. The associated West-East displacement of the SHL is evident. For 26 

negative NAFDI, the Atlantic low-level cool northerly wind arriving to North Africa in the 27 

10°-20º W stripe contributes also to cool the surface and keep the SHL in its East position 28 

(see Supplement S7). The anomalies of LLAT for positive and negative NAFDI confirm these 29 

results (see Supplement S8). 30 

Once provided a physical explanation to the relationship between NAFDI and the SHL, we 31 

assess numerically the causality of this relationship computing the Pearson correlation 32 
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coefficient with time lag between the daily SHLWEDI and the daily NAFDI for the 1980-1 

2013 summer period (from 20 June to 17 September). Time-lag correlation coefficients are 2 

shown in Table 2. The maximum correlation coefficient (0.77) is obtained when the 3 

SHLWEDI is lagged one day after the NAFDI (Figure 10). This confirms numerically that 4 

NAFDI drives the SHL displacement. The correlation is even higher (0.80) if the correlation 5 

is performed between the daily SHLWEDI and 3-day backward-running-mean NAFDI since 6 

this account for the persistence in time of the driver. The simple visual inspection of Figure 7 

10 indicates that the plotted points are asymmetrical distributed with a higher number of cases 8 

for both NAFDI and 1-day-lagged SHLWEDI positive values, and a larger variation range 9 

when both indexes are negative, thus confirming visually the findings detailed in the next 10 

paragraph.   11 

 12 

Table 2. Pearson correlation coefficient with time lag between the daily SHLWEDI and the 13 

daily NAFDI for the summer period 20 June – 17 September and for the years 1980-2013. 14 

The column “Time lag” indicates the lag of the SHLWEDI after the NAFDI.  15 

 16 

Time lag (days) Pearson Correlation 

3 0.550 

2 0.704 

1 0.770 

0 0.688 

-1 0.497 

 17 

We have calculated the frequency distribution of the daily SHLWEDI and the NAFDI. For 18 

the NAFDI, the mean is 0.118 and the standard deviation 2.67, whereas for the SHLWEDI, 19 

the mean is 0.131 and the standard deviation 3.15.  The index means are slightly larger than 20 

zero instead of being equal to zero because of the application of a 29-day running mean to the 21 

reference averages (see equations 1 and 2, respectively). We have observed that the SHL 22 

West-phase (positive NAFDI) is significantly more frequent than the SHL East-phase 23 

(negative NAFDI), especially for values of the index significantly different from zero (e.g., a 24 
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departure from zero larger than a half of the standard deviation), as the statistics summary of 1 

the frequency distribution of the daily SHLWEDI and NAFDI shows in Table 3. This implies 2 

that the SHL East-phase (negative NAFDI) is usually more intense in absolute value (but less 3 

frequent) than the SHL West-phase (positive NAFDI), since the indexes have been defined 4 

using anomalies. Note that the frequencies of both indexes are very similar to each other, thus 5 

confirming the close relationship between them. 6 

 7 

Table 3. Probability to have a value for the index (daily SHLWEDI or NAFDI) meeting the 8 

indicated condition (first column) for the reference period 1981-2010, 20 June – 17 9 

September. For the SHLWEDI, the Index Mean=0.131 and standard deviation= 3.15; whereas 10 

for the NAFDI, the Index Mean=0.118 and Sigma=2.67.    11 

Condition on the Index SHLWEDI NAFDI 

<  – Sigma/2 25.5% 26.2% 

< Index Mean – Sigma/2 26.5% 27.0% 

<0 43.0% 43.2% 

< Index Mean 44.4% 45.4% 

> 0 57.0% 56.9% 

> Index Mean 55.6% 54.6% 

> Sigma/2 35.3% 34.6% 

> Index Mean + Sigma/2 33.5% 32.7% 

 12 

We have found that the SHLWEDI values associated to the East-phase (negative NAFDI) are 13 

usually larger in absolute value (but less frequent) than those SHLWEDI values associated to 14 

the West-phase (positive NAFDI). This seems to be contradictory with the findings of 15 

Lavaysse et al. (2010a), that is, just the opposite. We think the Lavaysse et al. (2010a) 16 

statistics might be slightly biased because: 1) they selected a domain where the occurrence 17 

probability of the SHL cumulated over the period they considered exceeds 75%; 2) days when 18 

the centre of the SHL was not located in that area were discarded; 3) they used the same 19 

definition of SHL centre as Lavaysse et al. (2009), according to which (see their Fig. 8-b), the 20 
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centre of the SHL is indeed located on the East side of the region with maximum WAHL 1 

occurrence frequency, minimum geopotential height, and containing the centre of the SHL 2 

cyclonic circulation. All these facts together suggest that, likely, a higher number of days with 3 

East SHL displacement than days with West SHL displacement were discarded by Lavaysse 4 

et al. (2010a). In the Supplement S9 we present statistics that point out that the SHL is indeed 5 

more intense during its East-phase, using a definition of intensity equivalent to that of 6 

Lavaysse et al. (2010a). Note that this does not imply necessarily that the SHL in its West 7 

position is weaker (according to its effect in the surrounding geographical area) than in its 8 

East position, but that the concept of SHL intensity does need to be revised and improved. We 9 

present latter in this subsection new ideas concerning the concept of SHL intensity and 10 

propose an improved definition for it. 11 

A dipolar structure associated to the SHL position appears markedly when we correlate 12 

monthly values of NAFDI with NCEP-NCAR Renalysis 850 hPa Omega fields for the period 13 

1980-2013 in July and August (Figure 11).  A positive NAFDI (West SHL phase) produces a 14 

negative Omega anomaly on the West and a positive Omega anomaly on the East. This is 15 

probably due to the displacement of the SHL and its associated centre of net upward air 16 

transport (i.e., the forced secondary circulation associated to boundary layer pumping; e.g., 17 

see Holton, 1992), likely being produced the latter through a vertical imbalance in the thermal 18 

convection mass transport. 19 

The onset of the SHL (and associated few-day delayed West African Monsoon onset; see 20 

Lavaysee et al. (2009) for the definition of these terms) might likely be triggered when the 21 

CBL achieves enough depth in the WAHL. This probably allows an increase and very 22 

efficient maintenance of the WAHL secondary circulation (convergence in the lower level 23 

low and divergence in the upper level high) that would increase the intensity of the thermal 24 

low, and therefore the intensity of the associated low-level cyclonic circulation (and probably 25 

also the monsoon wind intensity). Lavaysee et al. (2009) found that just after the SHL onset, 26 

the WAHL detection threshold decreases suddenly. We suggest the following explanation: the 27 

secondary circulation increases suddenly just after the SHL onset; this secondary circulation 28 

transports very efficiently air and heat (by advection) toward the centre of the SHL where 29 

they are lifted up till around 700 hPa, and then transported toward the Atlantic or 30 

Mediterranean. This mechanism cools a bit the surrounding area of the SHL, hence 31 

decreasing the WAHL detection threshold.  32 
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Lavaysse et al. (2010a) and Lavaysee et al. (2015) use the low-level atmospheric thickness as 1 

a proxy for the intensity of the SHL. However, we think the absolute thickness has not all the 2 

information concerning the intensity of the SHL. Northern Africa in summer has a mean 3 

surface air temperature higher in its central part than in its western part. This fact may lead 4 

systematically to higher low-level atmospheric thickness during the SHL East-phase. On the 5 

other hand, the SHL is a thermal low, and what defines a thermal low is the increase in 6 

temperature (and resulting: relative minimum in surface pressure and low-level cyclonic 7 

circulation) relative to the temperature of the surrounding geographical area.  Therefore, we 8 

think the concept of SHL intensity might be significantly improved by defining the SHL 9 

intensity as the difference between the mean value of the low-level geopotential thickness 10 

within the SHL and the mean value of this field around the SHL area. 11 

We know that dust sources in the Sahara region coincide with endorheic basins, of which 12 

there is a great number in this vast region (Ashpole and Washington, 2013; Ginoux et al., 13 

2012). These dust sources are largely activated by low-level jets (LLJs) embedded in both the 14 

Harmattan flow and the south-westerly West African monsoon (WAM) flow (Allen et al., 15 

2013; Fiedler et al., 2013; Marsham et al., 2013; Cowie et al., 2104). These flows are, in turn, 16 

modulated by the SHL displacements and intensity changes (i.e. Lavaysee et al., 2010; 17 

Couvreux et al., 2010), which are modulated by the NAFDI variations as we have seen.  18 

The AOD anomalies plots show that under negative NAFDI (SHL East-phase), a significant 19 

increase of dust all over the Sahara is observed, except in the westernmost part, with a 20 

maximum in large part of Algeria and the Sahel belt (Figure 2), while the opposite happens 21 

with positive NAFDI. Wind anomaly maps at 925 hPa (Supplement S7) indicate that there is a 22 

significant W-SW axis anomaly in southern and central Algeria during negative NAFDI, 23 

which closely resembles the wind anomaly found by Ashpole and Washington (2013) 24 

precisely in the scenario referred to as HIGHDUST. This anomaly means a weakening and 25 

retraction of the Harmattan and a strengthened West African monsoon (WAM) inflow. On the 26 

contrary, we find strong positive AOD anomalies over the CWS hot spot (centred around 27 

19°N, 5°W) analyzed by Knippertz et al. (2010) during positive NAFDI (SHL West-phase). 28 

Focusing on specific dust source areas, Ashpole and Washington (2013) performed a 29 

thorough analysis in two regions of the CWS: the Mali-Algeria-Niger border triple-point (TP) 30 

and the Mali-Algeria border (MAB). They found that when dust occurs near the TP, the SHL 31 

tends to be located in central/southern Algeria (East-Phase of the SHL) while when dust is in 32 
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the MAB region the SHL shows a strong preference for being located in western-most 1 

Algeria, northwest Mali, and northern Mauritania (SHL West-phase). This is exactly what we 2 

find: higher AOD in MAB for positive NAFDI (SHL West-Phase), what agrees Rodríguez et 3 

al. (2015) who reported significant dust activation in the region referred to as Subtropical 4 

Saharan Stripe (SSS) under positive NAFDI, and much higher AOD in TP during negative 5 

NAFDI (SHL East-Phase). In order to confirm the latter, we have calculated the AOD 6 

monthly averages for the August months of the period 2003-2012 in a region centred in the 7 

TP (5°W-15°E, 15°-25°N) that covers northern Mali, the southern third of Algeria, and 8 

northern Niger. We observe, from two independent satellite sensors (MODIS and MISR) data 9 

sets (Figure 12), that years with more negative NAFDI values show increased AOD, while the 10 

opposite occurs for months with more positive NAFDI values. 11 

According to Roehrig et al. (2011), during SHL East-phase events (negative NAFDI) the 12 

eastern part of the SHL is intensified favouring convection reinforcement over Chad and 13 

Sudan. The MODIS AOD anomalies (Figure 2) indicate a clear AOD increase in these 14 

regions of eastern Sahel during negative NAFDI for June and July, although not in August. 15 

The generally good agreement with previous results in the literature indicates that changes in 16 

NAFDI also modulate largely the activation / deactivation of dust sources in the central 17 

Sahara, and not just dust transport at regional-synoptic scale.  18 

 19 

3.4 Relationship between NAFDI and Rossby waves 20 

Roehrig et al. (2011) reported that the Azores anticyclone is largely impacted by the passage 21 

of a Rossby wave during the East-phase of the SHL, relating the changes of the structure of 22 

the Azores anticyclone with the enhanced (weakened) ventilation they observed during the 23 

SHL East-phase (West-phase), as indicated in section 3.3. However, these authors did not 24 

enter to explain the causal relationship between Rossby waves and phase changes of the SHL.  25 

Chauvin et al. (2010) performed an EOF analysis of the NCEP2 850-hPa potential 26 

temperature in a rectangular domain containing part of North Africa. The first EOF they 27 

obtained (28% of the variance) resembles SAL intrusions into the Atlantic and Mediterranean, 28 

though they did not mention this explicitly since they focused on the SHL modes of intra-29 

seasonal variability. Then, they performed a Complex EOF analysis and used the first 30 

eigenvalue to construct time-lag composites of the 1979-2007 NCEP meteorological fields as 31 
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follows: 1) they identified 113 (115) significant maxima of the West- (East-) phase for this 1 

period; 2) for each phase they computed mean fields (for the days of maximum phase, and for 2 

several time lags respect to the days of maximum phase); 3) finally, they computed and 3 

plotted composite fields consisting in the difference of the two phase fields (West-phase 4 

minus East-phase), for the different time lags. Figures 5 and 7 from Chauvin et al. (2010) are 5 

particularly relevant for the present work, since they show the composite fields for horizontal 6 

wind vector, at both 850 hPa and 200 hPa, as well as potential temperature for 850 hPa and 7 

geopotential height for 200 hPa, from lag minus 6 days till plus 4 days. They indicated the 8 

observed pattern showed a clear Rossby wave signature.  9 

We add the following comments to the interesting results of Chauvin et al. (2010). The 10 

Rossby wave pattern shown by them, in fact, represents the difference of a Rossby wave and 11 

the same Rossby wave after applying to it a pi-radian phase shift. Moreover, the wind patterns 12 

at 850 and 200 hPa are quite similar each other. This suggests the Rossby wave is barotropic. 13 

Those figures what show, in fact, is a Rossby wave packet that propagates from West to East 14 

with a group velocity much larger than its phase velocity. This is typical of barotropic free 15 

Rossby waves with the meridional and longitudinal wave numbers that the carrier of this 16 

wave packet has (e.g., Holton, 1992). 17 

According to Chauvin et al. (2010) the arrival to Southern-Western Europe of Rossby waves 18 

propagating along the Northern Hemisphere upper troposphere waveguide drives, somehow, 19 

the phases of the SHL. In the previous subsection, we have shown that the NAFDI drives the 20 

SHL phases, and that the NAFDI is driven by variations in the lower-troposphere wind field 21 

at synoptic scale. Here, we show that these synoptic variations are driven by the arrival of 22 

mid-latitude free barotropic Rossby waves, through the upper troposphere, that impose its 23 

dynamical structure (perturbed wind and geopotential fields) as a perturbation that is added to 24 

the state of the lower troposphere. However, the influence of a free barotropic Rossby wave 25 

will not only depend on its amplitude in the upper troposphere but also on its capacity to go 26 

deep into the lower troposphere. An essential feature of the atmosphere at the considered 27 

latitudes and altitudes is the dependence on height of the zonal flow (thermal wind). This will 28 

affect the free barotropic Rossby waves since their local phase speed and group velocity 29 

depend on the zonal flow velocity. Therefore, the resulting differential advection of vorticity 30 

in the different pressure levels (due to the fact that the local phase speed is different for each 31 
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level) will produce vertical motions that will keep the quasi-geostrophic balance (e.g., Holton, 1 

1992).  2 

Geisler and Dickinson (1975) considered a vertically isothermal atmosphere with a realistic 3 

vertical wind shear, and computed external Rossby modes (these are the equivalent to the free 4 

barotropic Rossby waves that hold for an atmosphere with no vertical wind shear). In the 5 

Supplement S10 we provide some analytical relations, obtain an equation that describes the 6 

Omega field associated to this wave in terms of the Geisler and Dickinson eigenvector, and 7 

prove with NCEP time series there is an empirical relation between the Omega amplitude at 8 

500 hPa (at 2.5° E and 32.5° N, Northeast Algeria) and the vertical shear of the zonal flow. 9 

Based on those results, we use the Omega at 500 hPa as a tracer of the capacity of the free 10 

barotropic Rossby wave to go deep in the lower troposphere. We select the 500 hPa level 11 

because it is between the lower and upper troposphere. Lower levels might be sensitive to the 12 

SHL feedback (unwanted effect) whereas higher levels might not be very sensitive to the 13 

vertical wind shear in the middle and lower troposphere. The selected geographical location 14 

corresponds to a relative maximum in the correlation (around 0.6) between omega at 500 hPa 15 

and the monthly NAFDI for August months of the period 1980-2013 (see Figure S11-8 of 16 

Supplement S11). Chauvin et al. (2010) pointed out the existence of an anomalous 17 

northeasterly subsidence in this region (see their Fig. 10b) associated to the Rossby wave, but 18 

they did not explain the origin and the implications of this subsidence anomaly. Note that the 19 

Geisler and Dickinson (1975) background zonal flow does not have latitudinal dependence, 20 

and therefore does not account for the latitudinal waveguide phenomenon. Accounting for 21 

both types of background dependences (in latitude and height) simultaneously (not done in 22 

the literature, according to our knowledge) will probably make the frequency spectrum of the 23 

Rossby wave eigenvectors much more complex and rich. For a particular vertical wind shear 24 

distribution, there might be also differences in the vertical distribution of the eigenvector 25 

amplitude depending on the frequency and the longitudinal wave-number of the eigenvector. 26 

These arguments are used latter in this section to interpret the power spectra of some time 27 

series.          28 

We have computed NCEP monthly correlation and regression plots between the zonal (and 29 

meridional) wind at different pressure levels (all the NCEP reanalysis levels between 70 and 30 

925 hPa) and the monthly NAFDI for August months of the period 1980-2013 (see 31 

Supplement S6). The wave pattern observed is very similar to that observed by Chauvin et al. 32 
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(2010) in a broad range of levels. The maximum correlation (between -0.8 and -0.9) in 1 

absolute value observed at the upper levels takes place for the zonal wind at 300 hPa, 10°W, 2 

30°N. Using the corresponding regression plots, we have obtained at this point (or near 3 

neighbourhood, since there is a small tilt in the vertical direction) the amplitude of the wave at 4 

each pressure level, shown in Figure 13 For reference, the vertical distribution of the 5 

amplitude for pure free barotropic Rossby waves in an isothermal atmosphere with a uniform 6 

zonal flow (each function has been normalized relative to its maximum amplitude) is also 7 

shown in Figure 13 This figure indicates that the Rossby wave that drives the NAFDI 8 

variations goes deeper in the lower troposphere than the pure free barotropic Rossby wave. In 9 

the Supplement S12 we show that the vertical structure of the Rossby wave that drives the 10 

NAFDI variations is very similar to the vertical structure of the external Rossby wave of 11 

Geisler and Dickinson (1975) with “effective wavenumber” 10.8.  12 

The vertical structure of an external Rossby wave is very sensitive to the actual vertical 13 

profile of the horizontal wind. Therefore, the impact of the Rossby wave on NAFDI variations 14 

should not only depend on the amplitude and phase of the Rossby wave at 200-300 hPa, but 15 

also on the penetration of the Rossby wave into the lower troposphere. To quantify the former 16 

we use the daily NCEP Zonal Wind Anomaly at 300 hPa over South Morocco (10°W and 17 

30°N) multiplied by -1, denoted as ZWA300, whereas to quantify the latter we use the daily 18 

NCEP Omega at 500 hPa over Northwest Algeria (2.5° E, 32.5° N), denoted as O500. Note 19 

that we do not use the anomaly for Omega, but the full value. For the period 1980-2013 20 20 

June – 17 September, the mean value of O500 is 0.00347 Pa s
-1

 (probably due to the subsident 21 

subtropical branch of the Hadley circulation) whereas the standard deviation is 0.0492 Pa s
-1

 22 

(much larger than the mean value). However, ZWA300 is an anomaly respect to the 29-day-23 

running-mean average daily value for the period of reference 1981-2010 (as in the daily 24 

NAFDI and SHLWEDI definitions). 25 

Table 4 shows the Pearson correlation coefficient between the daily ZWA300, O500 and 26 

NAFDI (also for some time lags as well as 5-day running means). The results led to the 27 

following conclusions: 1) the correlation of both ZWA300 and O500 with NAFDI is 28 

significant; 2) the correlation between ZWA300 and O500 is low but not negligible (these two 29 

facts together indicate that ZWA300 and O500 are quasi-independent indexes that take into 30 

account different aspects of the Rossby wave in agreement with our previous discussion); 3) it 31 

seems that ZWA300 drives almost one day in advance the value of NAFDI, whereas O500 32 
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might be ahead respect to NAFDI less than 12 hours, which agrees what is shown in Figures 5 1 

and 7 of Chauvin et al. (2010): a Rossby wave-packet comes from the Northwest Atlantic and 2 

approaches Northern Africa days before a maximum in the SHL displacement is achieved, 3 

reaching the centre of the wave-packet Northern Africa when that maximum is achieved ; 4) 4 

when applying 5-day running means to the time series before computing the correlation 5 

coefficients, they increase significantly (because of the removal of part of the “noise” due to 6 

synoptic signal). When performing a multilinear least-square regression of daily NAFDI as 7 

function of ZWA300 and O500, a linear correlation of 0.533 is obtained (0.656 for 5-day 8 

running means). Supplement S13 provides more details about these regressions.  9 

 10 

Table 4. Pearson correlation coefficient between the indicated daily time series (some of them 11 

lagged). “if 5drm” indicates that the correlation coefficient in case a 5-day running mean is 12 

applied to both daily time series. 13 

 14 

Correlation between ZWA300 O500 

ZWA300   

O500 0.105 (if 5drm: 0.205)  

O500 lagged 1 day 0.159  

NAFDI lagged 1 day  0.309 

NAFDI 0.363 (if 5drm: 0.483) 0.426 (if 5drm: 0.534) 

NAFDI lagged 1 day 0.386 0.395 

NAFDI lagged 2 days 0.342  

 15 

We have computed the power spectra of the daily NAFDI, SHLWEDI, ZWA300 and O500 16 

time series for the period 20 June -17 September 1980-2013 using Fast Fourier Transform 17 

(e.g., Press et al., 1994), after padding with zeros till complete 4096 elements in each time 18 

series (i.e., the nearest larger power of 2). In Supplement S14, a plot of the NAFDI power 19 

spectrum is presented. The overall structure of the NAFDI, SHLWEDI, ZWA300 and O500 20 

power spectra is quite similar (not shown). Grosso modo, the spectral power decreases as 21 
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frequency increases, but there are peaks superposed to this trend. Supplement S14 also 1 

contains a table (Table S14) that shows the distribution of spectral power in the different 2 

frequency ranges. We consider the following ranges of time scales (and assign a name to each 3 

range): 1) long time scales (period larger than 30 days); 2) intermediate time scales (period 4 

between 10 and 30 days); 3) sub-intermediate time scales (period between 5 and 10 days); 4) 5 

short time scales (period smaller than 5 days).  6 

The intermediate time scale range is considered as the range of the Rossby waves (e.g., 7 

Ambrizzi et al., 1995). The Rossby wave pattern identified by Chauvin et al. (2010) has a 8 

period of 15 days approximately, but the spectrum they obtained has signal in all the 9 

intermediate time scale range. We have reconstructed our 4 time series using only the Fourier 10 

components of the intermediate range (i.e., application of a band-pass filter), and computed 11 

the Pearson correlation between these filtered time series. The correlations are quite similar to 12 

those previously obtained for the no-filtered time series, except for NAFDI vs. O500 that have 13 

a correlation between them of 0.49 for the filtered daily time series whereas the correlation is 14 

0.43 for the no-filtered daily time series. This rather high correlation (0.49) confirms that the 15 

influence of O500 on NAFDI operates in the time scales of the Rossby waves. 16 

In Supplement S14, Figure S14-2, the power spectra of the 4 time series in the intermediate 17 

range are plotted, showing the following main facts: 1) the 10 more intense NAFDI spectral 18 

peaks have periods of 30.0, 27.7, 26.1, 23.7, 21.6, 18.1, 15.6, 15.1, 14.1 and 13.7 days, but 19 

there are many other spectral peaks (the spectrum shown by Chauvin et al. (2010) in their 20 

Figure 4 for their first eigenvalue of SHL variability, has a poorer resolution); 2) most of the 21 

intense peaks appear also in the SHLWEDI power spectrum; 3) for many of the 22 

NAFDI/SHLWEDI peaks, there is associated an O500 and/or ZWA300 peak. That is, the 23 

modes of oscillation of the NAFDI and the SHL are driven by mid-latitude Rossby waves of 24 

different characteristics. For example, a similar impact is produced by a Rossby wave very 25 

intense in the upper troposphere but that does not penetrate very deep in the lower 26 

troposphere, than by a Rossby wave not very strong in the upper troposphere but that 27 

penetrate very deep in the lower troposphere. Only those Rossby waves that impose a 28 

significant perturbation in the lower troposphere are able to drive the NAFDI, and 29 

consequently the SHL displacement. 30 

In this study we do not address the modulation that mid-term and long-term climate 31 

oscillations might introduce on the interactions between Rossby waves, NAFDI, SHL and 32 
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dust export, since it is out of the scope of the present paper. Long-term analysis (1950-2013) 1 

on relationships between Saharan dust export over the North Atlantic and the main climate 2 

indexes is tackled in the complementary study García et al. (2016). 3 

 4 

4 Summary and conclusions. A comprehensive top-down atmospheric 5 

conceptual model: from hemispheric to meso-scale atmospheric 6 

mechanisms driving dust mobilization and transport over Northern Africa 7 

In this study, we have revised and improved the definition of the NAFDI by selecting a new 8 

meridional point. This revision was motivated by the fact that the geopotential heights over 9 

the two regions used to define the former NAFDI correlate positively, and therefore, their 10 

variations are not completely independent. The “improved NAFDI” index shows a higher 11 

correlation range with the geopotential height at 700 hPa. Moreover, the geopotential height 12 

derivative anomaly that the improved NAFDI provides is calculated along a line that is 13 

perpendicular to the geostrophic wind anomaly and crosses the core of the SHL. As a result, 14 

the total dust concentrations measured at the Izaña Atmospheric Observatory in August 15 

months (from 1987 to 2014) and the NAFDI time series for that period show a better Pearson 16 

correlation coefficient between them when using the improved NAFDI (0.72 instead of the 17 

value 0.67 that is obtained when using the original NAFDI definition). The monthly NAFDI 18 

values for the period 1948-2015 are available at http://izana.aemet.es/dataseries/. 19 

Three large patterns of MODIS AOD anomalies over dust transport regions out of northern 20 

Africa (North Atlantic and the Mediterranean) are found for each month and phase of the 21 

NAFDI. First, we observe a significant positive (negative) NE-SW axis AOD anomaly over 22 

the Subtropical North Atlantic for positive (negative) NAFDI. A second notable pattern is the 23 

positive (negative) AOD anomaly over the tropical Atlantic during negative (positive) 24 

NAFDI, and a third remarkable positive (negative) AOD anomaly pattern is found over 25 

Central-Western Mediterranean under negative (positive) NAFDI. When using MACC 26 

reanalysis, we obtain the same striking patterns of AOD anomalies, although remarkably 27 

smoothed. We highlight the fact that every summer we find months with both positive and 28 

negative NAFDI values, but the AOD-anomalies patterns found in the months with the same 29 

NAFDI phase are the same regardless of the considered month. This suggests that there are 30 

some well-defined dust-transport patterns on these regions, which are basically modulated by 31 

the NAFDI. As a secondary result we note that the fairly good agreement between MODIS 32 
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and MACC reanalysis confirms the suitability of MACC for climatological studies, like the 1 

present one. 2 

We have found outstanding similarities in the meteorological patterns associated with the 3 

positive NAFDI and the SHL West-phase, on the one hand, and with the negative NAFDI and 4 

SHL East-Phase, on the other hand, suggesting a close relationship between the NAFDI and 5 

the SHL. This relationship has been physically explained, and quantified in the present study. 6 

In order to assess this close relationship, we first introduced two new indexes: the daily 7 

NAFDI index (instead of monthly), and the daily SHL West-East Displacement Index 8 

(SHLWEDI). The Pearson correlation coefficient between the daily SHLWEDI and the daily 9 

NAFDI for the period 1980-2013 20 June – 17 September (there are 3,060 data pairs) is fairly 10 

high (0.69). Moreover, the correlation coefficient increases to 0.77 when the SHLWEDI is 11 

lagged one day after the NAFDI, and the correlation is maximized (0.80) when the correlation 12 

is performed between the daily SHLWEDI and the 3-day backward-running-mean NAFDI 13 

since this account for the persistence in time of the driver. The physical explanation to the 14 

relationship between the NAFDI and the SHL is summarized at the end of this section 15 

through a conceptual model. 16 

We have found that the SHL West-phase is significantly more frequent than the SHL East-17 

phase, implying that the SHL East-phase is usually more intense in absolute value, but less 18 

frequent, than the SHL West-phase. We have confirmed that the SHL is indeed more intense 19 

during its East-phase using a simplified definition of intensity equivalent to that of Lavaysse 20 

et al. (2010a). So, we think the concept of SHL intensity might be significantly improved by 21 

defining the SHL intensity as the difference between the mean value of the low-level 22 

geopotential thickness (700-925 hPa) within the SHL and the mean value of this field around 23 

the SHL area. 24 

A dipolar structure associated to the SHL position appears markedly when we correlate 25 

monthly values of NAFDI with NCEP Reanalysis 850 hPa Omega fields for the period 1980-26 

2013 in July and August. This is probably due to the displacement of the SHL and its 27 

associated centre of net upward air transport, likely being produced the latter through a 28 

vertical imbalance in the thermal convection mass transport. 29 

Concerning the onset of the SHL, it might likely be triggered when the CBL achieves enough 30 

depth in the WAHL. This probably allows an enhancement and very efficient maintenance of 31 

the WAHL secondary circulation (convergence in the lower level low and divergence in the 32 
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upper level high) that would increase the intensity of the thermal low, and therefore the 1 

intensity of the associated low-level cyclonic circulation, and probably also the monsoon 2 

wind intensity. The increase of the secondary circulation just after the onset of the SHL might 3 

act as cooling mechanism of the surrounding area of the SHL, decreasing then the WAHL 4 

detection threshold. 5 

Positive AOD anomalies in the west Sahara during positive NAFDI / SHL West-phase, and 6 

positive AOD anomalies in the central and eastern Sahara during negative NAFDI / SHL 7 

East-phase, have been found. This is consistent with the fact that a large part of the mesoscale 8 

baroclinic mechanisms that produce dust mobilization are associated with SHL displacements 9 

and intensity changes. Thus, it seems that NAFDI also modulates largely the activation / 10 

deactivation of dust sources in the Sahara, and not just the dust transport out of northern 11 

Africa at regional-synoptic scale.  12 

We have found that the NAFDI is driven by variations in the lower-troposphere wind field at 13 

synoptic scale, which is driven, in turn, by the arrival of mid-latitude free barotropic Rossby 14 

waves that impose their perturbed wind and geopotential fields to the state of the lower 15 

troposphere. The impact of a Rossby wave on NAFDI variations depends on both the 16 

amplitude and phase of the Rossby wave at 200-300 hPa, which is quantified in this study by 17 

the daily NCEP Zonal Wind Anomaly at 300 hPa over South Morocco (10°W and 30°N) 18 

(ZWA300), and the penetration of the Rossby wave into the lower troposphere, quantified by 19 

the daily NCEP Omega at 500 hPa over Northwest Algeria (2.5° E, 32.5° N) (O500). We have 20 

proved that there is an empirical relation between the Omega amplitude at 500 hPa and the 21 

vertical shear of the zonal flow. The correlation of both ZWA300 and O500 with NAFDI is 22 

significant: 0.48 and 0.53, respectively, when we apply a 5-day running mean to the time 23 

series before calculating the correlation coefficients, and the correlation increases to 0.66 24 

when performing a multi-linear regression. These numbers remain large when a 10-30 day 25 

band-pass filter is applied to the time series. The results suggest that ZWA300 drives almost 26 

one day in advance the value of NAFDI, whereas O500 might be ahead respect to NAFDI less 27 

than 12 hours. 28 

We have computed the power spectra of the daily NAFDI, SHLWEDI, ZWA300 and O500 29 

time series for the period 20 June -17 September 1980-2013 using Fast Fourier Transform. 30 

The NAFDI power spectrum shows in the intermediate time scale range (between 10 and 30 31 

days; considered as the time scale range of the Rossby waves) 10 intense spectral peaks with 32 
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centres ranging from 13.7 to 30 days (additionally to other less intense peaks). Most of these 1 

intense peaks also appear in the SHLWEDI spectrum, and for many of the NAFDI/SHLWEDI 2 

peaks there is associated an O500 and/or ZWA300 peak. These results indicate that the modes 3 

of oscillation of both the NAFDI and the SHL are driven by mid-latitudes Rossby waves 4 

propagating through the North Atlantic and North African waveguide, but only those Rossby 5 

waves that go deep enough into the lower troposphere to impose their structure as a 6 

significant perturbation superposed to the background. 7 

The close physical interactions between mid-latitude Rossby waves, NAFDI and SHL phases, 8 

and their impact on dust mobilization in the Sahara and its transport out of Africa, are briefly 9 

summarized in the following comprehensive top-down conceptual model, which is 10 

schematized in Figure 14. 11 

1. Here we start the sequence assuming an initial positive NAFDI (SHL West-phase) in which 12 

the North African high at 700 hPa transports hot air from above the SHL towards the 13 

subtropical North Atlantic. The Azores and North African highs at 700 hPa are very close 14 

each other. The intense ageostrophic wind component at 700 hPa (this level is within the 15 

CBL) allows upper SAL air masses arrive till the region of influence of the Azores high, 16 

which transports dust-laden air masses westwards over the North Atlantic. The advection of 17 

hot Saharan air across the subtropical North Atlantic also contributes to increase the 18 

geopotential thickness of the region located between the Azores and North Africa highs, 19 

merging them into an apparent single 700 hPa anticyclone extended across much of the North 20 

Atlantic and North Africa. During positive NAFDI (SHL West-phase) we observe strong 21 

positive AOD anomalies over the CWS hot spot (centred around 19°N, 5°W) and on the 22 

Subtropical Saharan Stripe. This is consistent with a more intense low-level cyclonic 23 

circulation in Western Sahara associated to the SHL in its West-phase. 24 

2. When a free barotropic Rossby wave propagating through the North Atlantic and North 25 

African waveguide produces an intense enough Northerly wind component in the upper 26 

troposphere over the subtropical 10-20º W stripe, and the structure of this Rossby perturbation 27 

goes deep enough into the lower troposphere, we find advection of colder air from northern 28 

latitudes into the subtropical 10-20º W stripe lower troposphere, what results in a negative 29 

advection of geopotential thickness, causing a NE-SW axis through in the 700 hPa 30 

geopotential height which separates the Azores and North African highs at 700 hPa 31 

experiencing the latter a slightly eastward shift. At the same time, the Rossby wave imposes a 32 
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positive zonal wind anomaly over Northern Africa, advecting the mid-level SAL toward the 1 

East. This shift toward the East favours heating over the easternmost position of the SHL, 2 

causing its eastward shift around one day later. The persistence of the NE-SW axis through in 3 

the whole troposphere and the subsequent displacement of the SHL to the East contribute also 4 

to cool the surface in the western part and keep the SHL in its East position. Under negative 5 

NAFDI (SHL East-phase) we find a significant increase of dust over the Sahara, except in its 6 

westernmost part where we observe negative AOD anomalies, with a maximum in large part 7 

of Algeria and the Sahel belt. Much higher AOD in the Mali-Algeria-Niger border is found in 8 

this scenario, and dust is transported into the Western-central Mediterranean.   9 

3. When a free barotropic Rossby wave produces an intense enough Southerly wind 10 

component in the upper troposphere over the subtropical 10-20º W stripe, and the structure of 11 

this Rossby perturbation goes deep enough into the lower troposphere decreasing 12 

substantially the strong meridional flow of cold air present in the lower troposphere (due to 13 

the East branch of the Azores high) the deep through is considerably weakened. At the same 14 

time, the Rossby wave imposes a negative zonal wind anomaly over Northern Africa, 15 

advecting the mid-level SAL toward the West. The North African high at 700 hPa shifts back 16 

to its westernmost position starting the cycle again. 17 

In summary, we have demonstrated that the SHL position is modulated by the NAFDI, and 18 

that the latter is modulated by mid-latitude Rossby waves. The phases of the NAFDI and the 19 

SHL drive dust mobilization in different parts of the Sahara and define the transport of 20 

mineral dust outside Africa through certain prevalent pathways. 21 
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 1 

Figure 1. NCEP monthly correlation and regression plots for August months of the period 2 

1980-2013: a) correlation between the geopotential height at 700 hPa over Morocco and the 3 

geopotential height field at 700 hPa; b) regression between the geopotential height at 700 hPa 4 

over Morocco and the geopotential height field at 700 hPa; c) correlation between the former 5 

NAFDI and the geopotential height field at 700 hPa; and d) correlation between the improved 6 

NAFDI and the geopotential height field at 700 hPa. 7 
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 1 

Figure 2. Averaged AOD anomalies from combined MODIS Dark-Target and Deep-Blue 2 

AOD at 550 nm for summer months (June, July and August) with positive and negative 3 

NAFDI phases, in the period 2003-2012. These plots were obtained by averaging the AOD 4 

anomalies for each month and each phase of the NAFDI.  5 
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 1 

Figure 3. Averaged AOD anomalies from MACC reanalysis AOD at 550 nm for summer 2 

months (June, July and August) with positive and negative NAFDI phases, in the period 3 

2003-2012. These plots were obtained by averaging the AOD anomalies for each month and 4 

each phase of the NAFDI.  5 
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 1 

 2 

Figure 4. Monthly averages of ECMWF wind vector and speed at 700 hPa for summer 3 

months (June, July and August) with positive and negative NAFDI phases, in the period 4 

2003-2012.  5 
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 1 

Figure 5. Monthly means of ECMWF zonal wind height-longitude cross-sections along the 2 

28°N parallel (Subtropical North Atlantic and Western Sahara) for June, July, and August 3 

(2003-2012), and for negative (a, c, and e) and positive (b, d, and f) NAFDI, respectively. 4 
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 1 

Figure 6. Monthly means of ECMWF meridional wind height-latitude cross-sections along 2 

the 9°E meridian (Central-West Mediterranean and Northern Africa) for June, July, and 3 

August (2003-2012), and for negative (a, c, and e) and positive (b, d, and f) NAFDI, 4 

respectively. 5 
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 1 

Figure 7. Monthly averages of ECMWF geopotential height at 700 hPa for summer months 2 

(June, July and August) with positive and negative NAFDI phases, in the period 2003-2012.  3 
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 1 

Figure 8. Monthly averages of ECMWF temperature anomalies at 1000 hPa for summer 2 

months (June, July and August) with positive and negative NAFDI phases, in the period 3 

2003-2012.  4 
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 2 

Figure 9. Monthly averages of ECMWF wind vector and speed at 850 hPa for summer 3 

months (June, July and August) with positive and negative NAFDI phases, in the period 4 

2003-2012.  5 
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 1 

Figure 10. Daily NAFDI vs Daily SHLWEDI 1-day lag for 20 June – 16 September 1980-2 

2013. 3 
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 1 

Figure 11. Correlation plots between NAFDI and Omega at 850 hPa for July (upper panel) 2 

and August (lower panel) for the period 1980-2013. 3 
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 1 

Figure 12. AOD monthly means for August months in the period 2003-2012, from MODIS 2 

and MISR data over the 15º-25ºN / 5ºW-15ºE region in central west Sahara. The straight lines 3 

represent least-square fits to the monthly means. 4 
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 1 

Figure 13. Vertical profile of the normalized amplitude for a pure free barotropic Rossby 2 

wave (in an isothermal atmosphere with a uniform zonal flow) and for the real Rossby wave 3 

that drives the NAFDI variations. 4 
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 2 

Figure 14. Scheme of the comprehensive top-down atmospheric conceptual model: from 3 

hemispheric to mesoscale atmospheric mechanisms driving dust mobilization and transport 4 

over Northern Africa. 5 
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