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ABSTRACT

The objective of this study is to improve the characterization of satellite-derived atmospheric motion

vectors (AMVs) and their errors to guide developments in the use of AMVs in numerical weather prediction.

AMVs tend to exhibit considerable systematic and random errors that arise in the derivation or the in-

terpretation of AMVs as single-level point observations of wind. One difficulty in the study of AMV errors is

the scarcity of collocated observations of clouds and wind. This study uses instead a simulation framework:

geostationary imagery for Meteosat-8 is generated from a high-resolution simulation with the Weather Re-

search and Forecasting regional model, and AMVs are derived from sequences of these images. The forecast

model provides the ‘‘truth’’ with a sophisticated description of the atmosphere. The study considers infrared

and water vapor AMVs from cloudy scenes. This is the first part of a two-part paper, and it introduces the

framework and provides a first evaluation in terms of the brightness temperatures of the simulated images and

the derived AMVs. The simulated AMVs show a considerable global bias in the height assignment (60–

75 hPa) that is not observed in real AMVs. After removal of this bias, however, the statistics comparing the

simulated AMVs with the true model wind show characteristics that are similar to statistics comparing real

AMVs with short-range forecasts (speed bias and root-mean-square vector difference typically agree to

within 1m s21). This result suggests that the error in the simulated AMVs is comparable to or larger than that

in real AMVs. There is evidence for significant spatial, temporal, and vertical error correlations, with the

scales for the spatial error correlations being consistent with estimates for real data.

1. Introduction

Atmospheric motion vectors (AMVs) derived from

images from geostationary or polar satellites have long

been an established ingredient in global and regional

assimilation systems for numerical weather prediction

(NWP). At this time, AMVs largely provide the only

source of upper-level wind observations over the oce-

anic areas. The winds are derived by tracking targets

such as clouds or water-vapor structures across image

sequences (e.g., Nieman et al. 1997; Velden et al. 1997;

Schmetz et al. 1993; Holmlund 2000). An estimate of the

appropriate height or pressure level is also provided by

the wind producers, and this estimate is mostly based on

an estimate of the cloud top (for high-level winds) or the

cloud base (for low-level winds).

A good characterization of errors and biases is es-

sential for the near-optimal assimilation of any obser-

vation. AMVs tend to exhibit considerable systematic

errors and geographically varying quality, as shown in

comparisons with radiosonde ormodel data (e.g., Bormann

et al. 2002; Cotton and Forsythe 2012). In recent years,

further progress on the improved use of AMVs in as-

similation systems has been hampered, for instance, by

limited knowledge of the detailed error characteristics

(systematic and random) and the origin of these errors.
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Errors can arise in the wind derivation, for instance,

from the recognized difficulties of assigning an appro-

priate height, from incorrect tracking, and so on, but

they can also arise from the use of nonpassive tracers

in the tracking step or the interpretation of AMVs as

single-level point observations of wind (e.g., Velden and

Bedka 2009). Study of these aspects with real data is

often difficult because of a lack of detailed collocated

observations of both wind and clouds.

In the current study we use a simulation framework in

which AMVs are derived from synthetic satellite images

that are computed from an NWP model simulation.

Here, the model simulation serves as truth and provides

complete knowledge of the atmospheric structure that

led to the derived AMV field, including the detailed

distribution of clouds. Similar approaches have been

used in the past—for instance, to understand charac-

teristics of clear-sky water vapor winds (Kelly et al.

1998), to investigate some aspects of cloudy AMVs (von

Bremen 2008), or to test newAMValgorithms for future

satellite instruments (Wanzong et al. 2008). Our study

builds on exploratory work of von Bremen (2008), who

investigated AMVs derived from sequences of Meteo-

rological Satellite-8 (Meteosat-8) images simulated from

a 10-km-resolution forecast from the European Centre

forMedium-RangeWeather Forecasts (ECMWF) global

model over a 6-h period. The comparison of the derived

AMVs with the model truth showed that the simulated

AMVs exhibited a number of characteristics that are

commonly found in monitoring statistics of real AMVs

against short-range forecasts, thus showing the feasibility

of using a simulation framework to characterize AMVs.

The study that is presented here uses a higher-resolution

simulation obtained with a regional model over a 24-h

period, thereby significantly improving on the spatial

resolution and the length of the study period.

This paper is the first part of a two-part series of pa-

pers, and it introduces the simulation framework, as-

sesses the realism of the image simulations, and provides

a first analysis of the derived AMVs. The structure is as

follows: section 2 describes the main characteristics of

the model used in the simulation, the method used to

simulate the images, and the derivation system used to

produce AMVs from the simulated imagery. In section 3,

cloud structures from observed and simulated images

are compared to assess the realism of the simulated

imagery. Section 4 presents a statistical evaluation of

AMVs, interpreted as single-level point estimates of

wind, by comparing them with the model truth. This

analysis is followed by an analysis of the horizontal,

vertical, and temporal correlations of errors. Conclu-

sions are presented in the last section. The second paper

(Hernandez-Carrascal and Bormann 2014, hereinafter

Part II) focuses on observation-operator aspects, that is,

on the interpretation of AMVs.

2. Model data, simulated images, and AMV
derivation

a. WRF simulation

This study uses a simulation performedwith theWeather

Research and Forecasting (WRF) model, a compress-

ible nonhydrostatic regional NWP model described in

Skamarock et al. (2005). The simulation covers the 24-h

period starting at 0000 UTC 16 August 2006 and is de-

scribed in Otkin et al. (2009), who used it to generate

half-hourly synthetic geostationary imagery to study

WRF cloud fields and to prepare for future geosta-

tionary satellite instruments. The dataset was produced

with version 2.2, run over a domain covering the prime

Meteosat disk (within 658.88 latitude; see Fig. 1), with

a resolution that varies from 3 km at the equator to

1.7 km at the northern and southern boundaries. The

simulation employed 52 levels in the vertical direction,

with amodel top located at 28 hPa. TheWRFmodel was

initialized at 1800 UTC 15 August 2006 from 18 analyses
taken from theGlobalDataAssimilation System (GDAS).

At the time, the operational GDAS was run at a reso-

lution of T382 (’35 km), employing 6-hourly three-

dimensional variational data assimilation of a wide

range of conventional and satellite data. The study pe-

riod is covered through a 6–30-h WRF forecast; that is,

the spinup period allowed to develop finescale struc-

tures from the coarser-resolution initialization analysis

is 6 h. Full model output every 15min was available

during the study period.

FIG. 1. Domain of the WRF simulation, together with the cov-

erage of the Meteosat-8 disk considered in this study. Also shown

are the geographical areas for which statistics for the AMVs will be

presented later.

48 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 53



The WRF model includes various microphysical quan-

tities as prognostic variables. These are parameterized

using the Thompson et al. (2008) mixed-phase cloud

microphysics scheme. The simulation also employed

the Mellor–Yamada–Janji�c planetary boundary layer

scheme (Mellor and Yamada 1982). No cumulus pa-

rameterization was used, and any clouds were explicitly

predicted by the microphysics scheme. Given the grid

resolution, this means some small-scale convection is

absent from our simulations.

Given the size of the domain and the high spatial res-

olution, the generation of the WRF dataset required sig-

nificant computational resources, including 1.5 TByte of

physical memory and 87 000 CPU hours on the ‘‘cobalt’’

supercomputer at the University of Illinois.

b. Radiative transfer simulation

The Spinning Enhanced Visible and Infrared Imager

(SEVIRI) images for the WRF dataset were simulated

every 15min over the study period using version 9 of the

Radiative Transfer for the Television and Infrared Ob-

servation Satellite Operational Vertical Sounder pack-

age (RTTOV; Saunders et al. 2008), following Chevallier

and Kelly (2002). All infrared channels of SEVIRI were

simulated over the prime Meteosat disk (except for

areas north of 58.88N and south of 58.88S because of the

limited-area domain of the model simulation). Ocean

surface emissivities were modeled using the Infrared Sur-

face Emissivity Model (ISEM; Sherlock 1999), whereas

the land surface emissivity was set to 0.99 over moist

areas and 0.93 over dry land, with no variation by

channel. The WRF simulation was complemented with

data from a global simulation with the ECMWF system

above theWRFmodel top (28hPa). Tomimic the SEVIRI

viewing geometry, for each SEVIRI pixel, brightness

temperatures (BTs) were calculated from a weighted

spatial average of the relevant full-resolution atmospheric

model profiles and surface parameters. Instrument noise

has not been simulated for the images, because our aim is

to characterize the errors arising in the processing and the

interpretation of AMVs.

Cloud contributions in RTTOV are modeled through

a multistream scattering parameterization as described

in Matricardi (2005). The parameterization uses layer

values of cloud fraction, cloud liquid water, and cloud

ice. The ice water content is converted into a distribution

of the effective diameters of ice particles using the model

of McFarquhar et al. (2003), and the assumed shape of

the ice crystals is aggregates. TheWRF simulation output

provides detailed information on microphysical species,

but for the purpose of using RTTOV these were com-

bined into one liquid cloud category and one ice cloud

category, the latter being a combination of all ice

hydrometeors available from WRF (i.e., pristine ice,

snow, and graupel). These choices were found to give

the most realistic image simulations. Cloud fraction was

calculated from the spatial weighting of atmospheric

profiles, assuming a cloud fraction of 1 for each contrib-

uting model grid point at which some cloud is present.

c. AMV derivation

AMVs were derived by the European Organisa-

tion for the Exploitation of Meteorological Satellites

(EUMETSAT) from the simulated imagery by tracking

cloudy targets in SEVIRI’s 6.2-mm water vapor (WV)

channel and the 10.8-mm infrared (IR) channel. Clear-

sky winds orWVwinds derived from the 7.3-mmchannel

are not considered here.

TheAMVderivation uses a prototype derivation system

developed in preparation for Meteosat Third Genera-

tion imagery (Borde et al. 2011), with some differences

with respect to the one used by EUMETSAT operations

at the time (Schmetz et al. 1993; Holmlund 2000). The

starting point is a triplet of consecutive images, with an

interval of 15min between them. Cross correlation is

used for the tracking step, and the cross-correlation

contribution (CCC) method is used to determine the

pixels of the feature tracked and subsequently to assign

both height and horizontal location to eachmotion vector

(Borde and Oyama 2008). An estimate of the cloud-top

pressure for individual pixels within each tracked feature

is obtained from the cloud analysis (CLA) product. This

step makes use of atmospheric background information

of temperature and humidity, usually obtained from

a short-range forecast. In our case, the model truth was

used in this step, with the WRF simulation subsampled

3 hourly and to 0.258 spatial resolution, as required by

the EUMETSAT processing algorithm. Note that this

choice of background data eliminates errors arising from

forecast errors in the background data. An automatic

model-independent quality index (QI) is calculated for

each AMV, following Holmlund (1998).

3. Evaluation of image characteristics

As a first step, we will now analyze the characteristics

of the simulated images in comparison with observed

imagery. This is important to establish the realism of the

imagery, particularly in terms of the general distribution

of clouds and the effective resolution of the imagery,

as both will be affecting the AMV derivation. For the

purpose of this study, the quality of the forecast in the

traditional sense is relatively unimportant. It is not

necessary that the forecasts agree well with the observed

images for a given time and place; in particular, mis-

placements of weather systems in the forecasts are of no
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relevance. What is important is that the general ap-

pearance, effective spatial resolution, and variability

of cloud structures in the simulated imagery agree well

with the observed imagery.

a. Visual comparison of images

A visual comparison of simulated and observed im-

ages (see Fig. 2) provides a useful first impression about

cloud structures and some qualitative characteristics of

the two sets of images. At the end of the study period

(right columns), the simulated images show a generally

realistic level of spatial detail and cloud distributions.

Although some cloud systems are represented differ-

ently or misplaced in the simulations when compared

with the observations, they nevertheless appear rea-

sonable, even though the marine stratocumulus areas

seem somewhat too noisy (see the area of darker gray

shading to the west of Spain). At the beginning of the

study period the extent of cirrus clouds appears to be

overestimated and some clouds lack spatial variability.

A likely reason for these features is that the WRF sim-

ulation seems to be still developing finescale structures

during the early hours of our study period; that is, the 6-h

spinup allowed before our study period appears not to

FIG. 2. (top) WRF-simulated images and (bottom) observed satellite images (K) in the 10.8-mm band of SEVIRI, zoomed over the

eastern North Atlantic Ocean for (left) 0000 UTC 16 Aug and (right) 0000 UTC 17 Aug 2006 (i.e., respectively the beginning and the end

of the study period).
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be sufficient. Similar findings were reported by Otkin

et al. (2009) in their investigation of imagery derived

from this simulation. This situation affects the first 9–12h

of the study period, as further quantified below.

b. Frequency distributions of brightness temperatures

The frequency distributions of BTs suggest a compa-

rable distribution of cloud structures in the vertical

direction for the simulations and the observed imag-

ery (Figs. 3 and 4). The longwave infrared channels

(10.8–13.4mm) show a similar dynamic range and

similar shape of the histograms, with good agreement

in the positioning of the distribution maximum. Nev-

ertheless, some small differences are noticeable around

275 and 285K for the 10.8- and 12.0-mm channels,

possibly indicating slight differences in the morphology

of some low clouds. In addition, there is a very minor

underestimation in the frequency of occurrence for

the warmest BTs between 0800 and 1500 UTC in the

longwave window channels in the simulation (Fig. 4,

top row; note that the logarithmic color scale empha-

sizes this effect). This result is related to deficiencies in

FIG. 3. Frequency distributions (%) of brightness

temperatures for SEVIRI’s 6.2-, 7.3-, 10.8-, 12.0-, and

13.4-mm channels for the observed and the simulated

images. The bin size used is 2K. All of the time steps in

the study period, and all of the pixels with a satellite

zenith angle of less than 708, within the WRF latitude

range, have been taken into account in the statistics.
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the modeling of the surface emissivity and the diurnal

cycle of skin temperature in clear-sky regions over land.

Some adjustments in the BT distributions are noticeable

during the first 9–12 h of the study period (e.g., around

the 230–240-K BT range), related to the overestimation

of cirrus clouds during the spinup phase noted earlier

(Fig. 4).

For the water-vapor channels at 6.2 and 7.3mm, a cold

bias is apparent, in particular for the higher-peaking

6.2-mm channel, whereas the overall shapes of the BT

distribution curves are again similar for the simulated

and the observed images. A similar bias has been noted

in Otkin et al. (2009) with a different radiative transfer

model and linked to an overestimation of water vapor in

the upper troposphere in the initialization of the WRF

simulation. Such a bias is not present in similar statistics

obtained from ECMWF fields (not shown), further

suggesting that it is a feature of the WRF data, rather

than the radiative transfer model. As can be seen in

Fig. 4, the bias is strongest during the first 9–12 h of the

study period, as themodel adjusts tomore realistic levels

during its spinup phase.

c. Spatial and temporal variability

Maps of the standard deviation of the BT time series

show similar levels of temporal variability in the simulated

FIG. 4. Frequency distribution (%) of BTs for the (bottom) 6.2- and (top) 10.8-mm channels, as a function of the

time of day, for the (right) simulated images and (left) observed images. Statistics are shown for each time step,

based on all pixels with a satellite zenith angle of less than 708, within the latitude range of theWRFmodel. The bin

size is 2 K.
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and observed imagery (Fig. 5). This is also true for the

intertropical convergence zone even though some dif-

ferences in the location of the maxima are apparent. As

noted earlier, such location differences are of lesser

concern in this study.

The effective resolution or spatial variability of the

images has also been analyzed, because it is of relevance

to the success of the AMV tracking algorithm. The

measure of the effective resolution follows the approach

previously used by Chevallier and Kelly (2002), and it

is defined as follows: for each pixel, we determine the

smallest distance at which the correlation between the

time series of BTs of a given pixel and those of all nearby

pixels drops below a given threshold. That is, themeasure

quantifies the scales at which the BT shows significant

variability. After some experimentation we chose 0.9 as

the correlation threshold; lower values tend to lead to

larger estimates of the effective resolution but qualita-

tively similar results. Note that here the effective reso-

lution is calculated on a pixel-by-pixel basis over 1-day

time series of BTs, whereas Chevallier and Kelly (2002)

considered larger spatial averages over a much longer

period. Our estimates of the effective resolution are

therefore not comparable to those of Chevallier and

Kelly (2002).

Given that our time series are relatively short, we

found that the pixel-by-pixel estimates of the effective

resolution depend on the standard deviation of the BTs

for the given pixel over the study period. Pixels with low

standard deviations lead to unreliable estimates of the

effective resolution, because the calculation involves the

division by a value close to 0. We hence present our

results in terms of two-dimensional histograms of the

number of pixels exhibiting a certain standard deviation

and effective resolution, excluding cases with standard

deviations that are too low (Fig. 6).

The WRF images show effective resolution–standard

deviation relationships that compare well to those ob-

tained from the observed images (e.g., Fig. 6). Both

show effective resolution peaks in the two-dimensional

histograms around 10–15 km. This result further dem-

onstrates that the spatial variability of the clouds

FIG. 5. Standard deviation of the time series of BT (K) for the 6.2-mm channel from the (a) simulated imagery and

(b) observed imagery and for the 10.8-mm channel from the (c) simulations and (d) observed imagery. Only alternate

time steps have been selected for the time series, and only every eighth pixel is shown.
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represented in the simulated imagery is, overall, con-

sistent with the observed images, an important pre-

requisite for comparable feature tracking.

In summary, the simulated imagery agrees well with

characteristics of observed imagery, both in terms of the

general distribution of clouds and the effective spatial

resolution. Nevertheless, adjustments related to the spinup

of the simulation have been identified for the first 9–12 h

of the study period, and there is an indication of a bias

for upper-tropospheric humidity. Within this context, it

is worth mentioning that we have performed the same

analysis with a 10-km-resolution setup of the ECMWF

model, similar to that used in von Bremen (2008). This

analysis clearly revealed a lower effective resolution of

the simulated data when compared with observed im-

agery, as well as a very notable underestimation of low

brightness temperatures associated with high clouds

(not shown). We therefore think that this study provides

a significantly enhanced image simulation when com-

pared with that of von Bremen (2008).

4. Evaluation of single-level AMVs versus
model truth

Wenow present a comparison of the simulatedAMVs

with the model truth. This comparison follows the tra-

ditional interpretation of AMVs as single-level point

estimates of wind, as is currently standard practice in

NWP. To do so, the model wind is interpolated to the

AMV location and assigned pressure level by linear in-

terpolation of the model fields both horizontally and in

the vertical direction.

For comparison, we also provide statistics for AMVs

derived from observed images. Two different sets are

considered here: theAMVs derived with the EUMETSAT

prototype system used in this study and AMVs that

were derived operationally at EUMETSAT at the time

(16 August 2006). The former were unfortunately only

available for four time slots for our study period (0600,

1200, 1400, and 1800 UTC), allowing only a limited di-

rect assessment. The operational AMVs were available

hourly for the full day. The most notable difference

between the two derivation systems is the use of the

CCCmethod together with the CLA cloud-top pressure

in the prototype system (see also section 2c), whereas

a clustering scheme and a height assignment tailored to

AMVs were used in the operational system. For further

details on the operational EUMETSAT processing, the

reader is referred to Schmetz et al. (1993) andHolmlund

(2000).

The AMVs derived from observed images are

compared with short-range operational forecasts from

ECMWF’s global assimilation system. Note that the

comparison between the real AMVs and the ECMWF

short-range forecasts includes a component of fore-

cast error, whereas that component is eliminated by

design in the comparison between simulated winds

and the model truth. The comparison between AMVs

and the short-range forecasts are therefore expected

to show larger root-mean-square vector differences

(RMSVDs) than the comparison between the simu-

lated winds and the truth.

For all three datasets we only consider AMVs with

a model-independent QI . 80%, this threshold being

a common choice for monitoring AMVs (e.g., Cotton

and Forsythe 2012). The QI is calculated on the basis of

temporal and spatial consistency of the derived wind

field, as further described inHolmlund (1998). Although

FIG. 6. Two-dimensional histograms of the percentage of pixels with a given standard deviation of BTs/effective

resolution for the 6.2-mm channel for the (left) simulation results and (right) observed distribution.
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there are some differences in the calculation of the QI

provided in the datasets, the resulting statistics suggest

that the distribution of AMVs as a function of QI and

the general characteristics are consistent. A higher thresh-

old would show higher quality at the expense of a reduced

sample size.

The simulated winds show a considerable slow bias of

several meters per second at high andmidlevels over the

extratropics, as well as relatively high RMSVDs and

normalized RMSVDs (NRMSVDs), especially for the

IR winds (see Tables 1 and 2). While slow speed biases

at high levels in the extratropics are a common feature

with AMVs, the speed bias and the RMSVD for the

simulated data are larger than for the observed AMVs

from both derivation systems.

Further investigations show that these poorer sta-

tistics are largely due to a significant bias in the height

assignment for the simulated AMVs. This is very

clearly seen in Fig. 7, which summarizes comparisons

between the assigned pressure and the best-fit pressure

level (LBF) for the simulated and observed AMVs. To

calculate the best-fit pressure, each AMV is compared

with the entire model wind profile interpolated to the

AMV location, and the best-fit pressure is the tropo-

spheric pressure level with the lowest vector difference.

For the simulated AMVs there is a clear shift in the

histograms of the differences between the assigned

pressure and the LBF relative to the observed AMVs.

These statistics suggest that the bias in height as-

signment for the operational AMVs or the observed

TABLE 1. Summary statistics for high-level (100–400hPa)WVAMVs for the four time slots (0600, 1200, 1400, and 1800UTC), grouped

by Northern Hemisphere (NH), tropics (TR), and Southern Hemisphere (SH) as in Fig. 1. Results are shown for the WRF AMVs

(‘‘WRF,’’ in comparison with themodel truth), theWRFAMVs after the pressure adjustment (‘‘WRF bcor,’’ with a global pressure offset

of 60 hPa), andAMVs derived from observed images with the prototype system used in this study (‘‘Obs proto,’’ in comparison with short-

range forecasts) and from operations at the time (‘‘Obs ops,’’ also compared with short-range forecasts). Only winds with a model-

independent QI. 80%have been used, and outliers with a vector difference larger than 20m s21 have been removed. The statistics follow

the format proposed in Menzel (1996).

NH TR SH

WRF

WRF

bcor

Obs

proto

Obs

ops WRF

WRF

bcor

Obs

proto

Obs

ops WRF

WRF

bcor

Obs

proto

Obs

Ops

No. 1356 1242 1550 1844 2993 3105 2748 4183 3280 3177 3471 3434

Speed bias (m s21) 22.5 20.2 20.2 0.2 21.2 20.2 0.5 1.1 22.8 0.3 20.4 20.2

AMV speed (m s21) 21.6 21.9 25.7 22.7 13.7 14.0 14.5 12.7 38.5 38.2 42.2 40.3

RMSVD (m s21) 7.2 5.8 5.7 5.7 9.5 6.5 5.6 6.6 8.3 6.0 7.3 7.2

NRMSVD (ms21) 0.33 0.26 0.22 0.25 0.70 0.47 0.39 0.52 0.22 0.16 0.18 0.18

TABLE 2. As in Table 1, but for IR AMVs. The global pressure offset for the WRF bcor column is 75 hPa.

NH TR SH

WRF

WRF

bcor

Obs

proto

Obs

ops WRF

WRF

bcor

Obs

proto

Obs

ops WRF

WRF

bcor

Obs

proto

Obs

ops

High-level (100–400 hPa)

No. 1861 1664 1445 1577 3531 3700 2379 2924 3567 3550 3057 2623

Speed bias (m s21) 22.9 21.4 21.1 20.3 22.5 20.7 20.1 20.1 23.7 20.1 22.1 20.8

AMV speed (m s21) 19.5 19.9 23.6 21.3 11.8 12.1 13.5 11.4 36.7 36.7 38.9 37.6

RMSVD (m s21) 8.0 6.3 5.6 5.4 9.7 5.8 5.4 5.8 8.7 6.3 7.4 6.6

NRMSVD (ms21) 0.41 0.32 0.24 0.25 0.83 0.48 0.40 0.51 0.24 0.17 0.19 0.18

Midlevel (400–700hPa)

No. 411 504 338 280 1343 803 626 502 769 730 829 548

Speed bias (m s21) 23.8 21.5 22.9 20.4 1.4 0.44 1.5 1.2 26.0 23.3 23.7 22.5

AMV speed (m s21) 12.3 13.8 13.8 12.2 7.9 7.8 8.9 8.4 17.5 20.6 19.1 27.2

RMSVD (m s21) 6.8 6.3 6.4 4.5 6.5 5.6 5.8 4.4 10.0 8.6 8.4 7.4

NRMSVD (ms21) 0.55 0.46 0.46 0.37 0.83 0.72 0.65 0.53 0.57 0.42 0.44 0.27

Low level (.700 hPa)

No. 799 940 512 774 7634 7979 5099 5889 2784 3043 1446 2208

Speed bias (m s21) 20.3 20.5 0.1 0.3 1.5 0.0 0.3 0.1 0.0 20.4 0.1 0.3

AMV speed (m s21) 8.3 9.1 8.7 10.2 9.0 9.0 8.8 8.6 9.4 10.1 9.8 9.4

RMSVD (m s21) 3.4 2.8 3.1 2.8 4.8 2.5 3.7 3.3 4.5 3.2 3.4 2.5

NRMSVD (ms21) 0.41 0.31 0.35 0.27 0.54 0.28 0.42 0.39 0.47 0.31 0.35 0.26
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AMVs derived with the prototype system is small,

whereas there is a significant bias for the simulated

AMVs. Note that this bias is in relation to the LBF and

is not necessarily a bias in relation to the cloud top.

The widths of the distributions shown in Fig. 7 are

otherwise similar or slightly sharper for the simulated

AMVs, suggesting that, aside from the bias, the height

assignment for the simulated data is in line with the

observed AMVs.

The reasons for such a height-assignment bias are not

clear. It is likely the result of a number of factors, the

investigation of which is beyond the scope of this study.

The bias is likely to be linked to the upper-tropospheric

humidity bias noted earlier in the BT distributions for

the water vapor channels. The pressure bias may also be

due to small differences in the bias characteristics in the

simulated and observed images that are ignored in the

height-assignment algorithm used in this study. Short-

comings in the representation of clouds in the WRF

simulation or the radiative transfer calculationsmay also

contribute; for high-level AMVs, the realism of semi-

transparent clouds will be particularly important in this

respect.

To address the height-assignment bias, we consider

here a simple pressure bias correction, which corrects IR

and WV AMVs downward by 75 and 60 hPa, respec-

tively. These values have been derived from Fig. 7 and

are based on the median of the pressure and LBF

differences. Further investigations show that the median

values differ only slightly by geographical region and

level (approximately 610 hPa; not shown), and there-

fore we decided to use one global value that differs only

by channel. In the following, the adjusted pressure level

will also be used to allocate the AMV to the standard

pressure ranges used, for instance, in Tables 1 and 2. If

the reassigned pressure is below the WRF surface pres-

sure after the pressure bias correction, the AMV in

question is ignored. Note that Fig. 7 also suggests a small

bias for the observed AMVs with respect to the LBF of

around 5–20 hPa. This effect is considered to be small,

and we have not corrected for this bias in the observed

AMVs. This approach favors the simulated AMVs, for

which this bias has been removed. We have estimated

the effect of this situation to be less than 0.1–0.2m s21 in

terms of RMSVD and, at most, 0.5m s21 in terms of the

speed bias.

After the bias correction, the speed biases and the

RMSVDvalues are improved considerably, and now the

statistics from the simulated dataset and the observed

AMVs are more similar (Tables 1 and 2). For all levels

and regions considered, theRMSVDfor the bias-corrected

simulated AMVs against the model truth now either is

less than that for the real AMVs from the prototype

system monitored against short-range forecasts or is

within 1m s21. Speed biases for the bias-corrected sim-

ulatedAMVs are also within 1m s21 of the values for the

real AMVs derived either with the prototype or the

operational system.

For the real AMVs, the above statistics include a com-

ponent of forecast error (typically around 1–2.5m s21,

depending on level), whereas the statistics for the

simulated AMVs represent only the error in the AMVs.

This aspect has to be taken into account when compar-

ing the statistics for the simulated and the real AMVs.

It suggests that, while for some areas the errors in the

simulated AMVs are comparable to those for real AMVs

FIG. 7. Global histograms of the difference between the LBF and the originally assigned pressure (hPa) for (left) theWV and (right) the

IRAMVs. Solids lines show statistics for the simulatedAMVs, dotted lines are for the observedAMVs derivedwith the prototype system,

and dashed lines are for the operational AMVs. Note that the statistics for the observed AMVs derived with the prototype system are

based on the four time slots (0600, 1200, 1400, and 1800 UTC) only. The bin size is 10 hPa, and cases for which the LBF is associated with

a very broad minimum in the RMSVD and hence is poorly determined are excluded.
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(e.g., IR at low levels), for certain other regions and

levels the errors in the simulated AMVs are larger than

those for real AMVs (e.g., for IR AMVs at high levels

over theNorthernHemisphere). Note here that RMSVDs

against short-range forecasts frequently vary by around

62m s21 on daily time scales for high levels, primarily as

a result of geographical sampling of the AMVs. Within

this day-to-day variability of AMV quality, the statistics

suggest that the simulated AMVs reproduce general

characteristics of real AMVs, and the error statistics are

approaching those of real AMVs. The current simula-

tion study is therefore considered to be a useful bench-

mark to further investigate the characteristics of current

AMVs.

Comparing the statistics for the real AMVs from the

prototype system with those from operations highlights

the differences that arise from using a different deri-

vation algorithm, with the prototype system perform-

ing better than operations at the time in some areas and

performing worse in others (most notably low-level

AMVs).

Two-dimensional histograms of the AMV andmodel

wind speed and direction show that the distributions

after the bias correction are approximately symmetric

around the diagonal, and hence errors in speed and

direction in the AMVs are also approximately sym-

metric (Figs. 8 and 9). The simulated AMVs show a

somewhat higher tendency for outliers than do the

observed AMVs, both for speed and direction (see,

e.g., the cases of low AMV speed but large model wind

speed at high levels in Fig. 8). Note that such outliers

have been removed for the statistics presented in

Tables 1 and 2 for all datasets, by requiring the vector

difference to be within 20m s21 (approximately 3 times

the RMSVD for high and midlevels). This technique

ensures that the statistics are not dominated by a few

outliers; in the case of the bias-corrected simulated

AMVs this criterion typically rejects less than 2%

of the considered AMVs. Two-dimensional direc-

tion histograms reveal a tendency for the simulated

AMVs to favor certain directions. The feature is most

prominently seen for regions of low wind speed and

when selecting winds with a high QI (see, e.g., the

vertical striping in Fig. 9). The striping is not present

in the set of AMVs from operations. Further in-

vestigations suggest that this aspect is a feature of the

prototype AMV derivation system and is related to

the discretization of values for the u and y components

introduced through the pixel size of the image and the

time interval between images. Methods exist to min-

imize this effect, but they are ineffective in the pro-

totype system. Although the feature is suboptimal for

the prototype system, the monitoring statistics for the

prototype and the operational AMVs suggest that it is

not a major limitation (Tables 1 and 2).

To assess the impact of the spinup noted earlier for

the first 9–12 h of the study period, the presented sta-

tistics were also calculated separately for the first and

second halves of the study period. The differences for

the two periods are relatively small (global speed biases

and RMSVDs are within 0.5m s21, without clear pref-

erence for the first or second half), suggesting that the

spinup has only a small effect on the AMV quality

characteristics.

5. Error correlations for simulated AMVs

Error correlations between different AMVs are an

unavoidable feature, because errors in the height assign-

ment, the background data used in the winds derivation,

the interpretation of theAMVs, the quality control, or the

spatial representativeness may all be correlated spatially,

vertically, or temporally. For instance, Bormann et al.

(2003) investigated spatial error correlations in real

AMVs and found significant correlations on scales of

several hundreds of kilometers, with broader correla-

tions over the tropics than over the extratropics. Similar

findings have been reported by Berger et al. (2006) and

Bonavita and Torrisi (2006). To our knowledge, tem-

poral or vertical error correlations for real AMVs have

not yet been quantified.

Knowledge about error correlations is relevant to the

assimilation of AMVs, because the presence of error

correlations affects important data assimilation pa-

rameters such as the setting of observation errors and

data selection/thinning scales. The operational assimi-

lation of AMVs currently neglects error correlations

and instead uses spatial thinning (scales of 140 km at

ECMWF) and inflated observation errors. Liu and

Rabier (2002) showed that using data with correlated

errors too densely while assuming uncorrelated errors

can result in a worse analysis than when data are thinned.

They found optimal thinning scales given by separa-

tions at which the error correlations fall below 0.2.

Isaksen and Radn�oti (2010) developed methods to take

some of the effects of error correlations explicitly into

account in data assimilation and applied these to AMVs

with mixed success. Experimentation with error corre-

lations would be helped by a better specification of the

correlation scales, especially for vertical and temporal

error correlations.

a. Method

Here, we calculate spatial as well as temporal and

vertical error correlations from the simulated AMVs.

This calculation is straightforward in the simulation
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framework, because the differences between AMVs

and the model truth are readily available. As in the pre-

vious section, we treat the AMVs as single-level point

measurements. Given the significant height-assignment

bias discussed above, we use the simulated AMVs after

the pressure bias correction introduced in the previous

section. Also, throughout this investigation a QI thresh-

old of 80% has been applied to screen out poor-quality

FIG. 8. Two-dimensional histograms of AMV and model speed for high-level WV AMVs (100–400hPa), from

simulated imagery (top) before and (middle) after the pressure bias correction, as well as (bottom) fromoperations at

the time of the study period, for the (left) tropics and (right) Southern Hemisphere extratropics. The shading in-

dicates the fraction of AMVs (&) per 0.5m s21 bin relative to the number of AMVs in the considered region.
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AMVs, and outliers are removed by requiring a vector

difference of less than 20ms21.

The calculations are based on a set of pairs of differ-

ences between AMVs and the model truth. This set has

been produced by pairing up each simulated AMV with

all other available AMVs (subject to certain criteria; see

below). Spatial, temporal, and vertical error correlations

have been calculated by binning the AMV pairs into

suitable spatial, temporal, and vertical distance intervals.

For spatial correlations, only isotropic correlations are

considered here (i.e., those that depend only on the dis-

tance between the two pairs). Large-scale geographical

biases have been removed by subtracting the mean error

for each geographical region/layer shown. Table 3 shows

the criteria used to pair up and bin the AMVs to focus on

spatial, temporal, and vertical correlations.

As in Bormann et al. (2003), we will show only the

average between the correlations for the u and y com-

ponents, because they are most isotropic and most

relevant to NWP. For spatial error correlations, an

analytical function is fitted to the correlation relation-

ship, primarily to aid the comparison with results pre-

sented in Bormann et al. (2003). As in Bormann et al.

(2003), the chosen function is the second-order auto-

regressive (SOAR) function, with

R(r)5R0

�
11

r

L

�
e2r/L , (1)

where R0 indicates the proportion of the spatially cor-

related part of the error andL is a length scale. Note that

for the chosen functionR(L)5 2R0/e and not R0/e as for

many other correlation functions. The SOAR fit to the

correlation/distance relationship has been calculated by

minimizing the sum of the squared differences, weighted

by the number of AMV pairs available for each bin. The

value at zero distance is excluded, to allow for the pos-

sibility of a spatially uncorrelated error.

FIG. 9. Two-dimensional histograms of AMV and model direction for low-level IR AMVs (.700 hPa) from

simulated imagery (top left) before and (top right) after the pressure bias correction, as well as (bottom) from

operations at the time of the study period for the Southern Hemisphere extratropics. The shading indicates the

fraction of AMVs (&) per 28 bin relative to the number of AMVs in the considered region.

JANUARY 2014 BORMANN ET AL . 59



b. Results

There are significant spatial error correlations on scales

of several hundreds of kilometers for the IR AMVs as

well as the WVAMVs in the simulated dataset (Fig. 10).

The error correlation scales are broader in the tropics for

both types of winds (Table 4); for the IR winds, the error

correlation scales are shortest for the high-level winds.

We will now compare our results from the SOAR fit

with those presented for real data in Bormann et al.

(2003, their Tables 2 and 3). Note that R0 in Bormann

et al. (2003) represented the spatially correlated part of

AMV–radiosonde differences, whereas in our case it

gives the actual proportion of the spatially correlated

error, and therefore the two values should not be com-

pared. A strict comparison for L is also not possible,

because Bormann et al. (2003) used a whole year of

AMV data from all operational satellites at the time,

and values for Meteosat-8 are therefore not provided.

Also, we found that the fit of the SOAR function to the

correlation data for the simulated dataset is not always

as good as it is in Bormann et al. (2003). This result may

be an artifact of the limited sampling, or it might be that

the errors found here show a different spatial structure.

The length scales from the SOAR fit agree relatively

well with results presented in Bormann et al. (2003). Our

study suggests values for L of 110–220 km for high-level

winds in the extratropics as compared with values of

approximately 150–260 km for the real data and suggests

values of 200–310 km for the tropics as compared with

approximately 260–370 km for the real data. Overall,

there is a tendency for the error correlations from the

simulated AMVs to be sharper, possibly because cor-

relations due to errors in the short-range forecast used in

the height assignment are eliminated in our case or be-

cause of uncorrected overall height biases in the real

AMVs. The values for the spatially correlated part of the

error are typically ;2.5–3.5m s21 for high-level winds,

and the y component shows smaller spatially correlated

errors than the u component. The estimates of the spa-

tially correlated component are in the same range as

estimates provided in Bormann et al. (2003).

Note that the values for R0 indicate the presence

of a nonnegligible error that is spatially uncorrelated

(Table 4). Bormann et al. (2003) previously hypothe-

sized that the spatially correlated error dominates and

that the uncorrelated error is small. For the simulated

winds it appears that the spatially uncorrelated error

is of a comparable magnitude to the spatially corre-

lated one.

The simulated AMVs show notable temporal error

correlations, considering how often AMVs are typically

provided (every 1–3 h). The error correlations reach

values of 0.2 at ;4–8 h for high- and low-level winds

(Fig. 11). The midlevel winds exhibit the broadest tem-

poral error correlations, with error correlations reaching

0.2 at 8–18 h, and these coincide with broad spatial

error correlation scales as shown in Table 4. Similar to

the spatial error correlations, there are indications of

TABLE 3. Matching and binning parameters used to obtain the

error correlation data.

Type of

correlation Criteria to match pairs

Binning

interval

Spatial Temporal: same valid time; vertical:

less than 50 hPa apart

50 km

Vertical Temporal: same valid time; spatial:

less than 100 km apart

50 hPa

Temporal Spatial: less than 100km apart;

vertical: less than 50 hPa apart

½ h

FIG. 10. Spatial error correlations for the high-level simulated WV AMVs (100–400hPa; black solid lines) over the (left) Northern

Hemisphere extratropics, (center) tropics, and (right) Southern Hemisphere extratropics. Also shown are the fits of the SOAR function

(black dotted lines) and the number ofAMVpairs used in each distance separation bin [vertical bars (in thousands; see right-hand y axes)].
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a significant temporally uncorrelated error for all

levels considered. To our knowledge, these are the first

estimates of temporal error correlations for AMVs.

Vertical error correlations are shown in Fig. 12. Here,

we chose to combine the IR and WV winds to improve

the available sample size. Note that, because only one

AMV can be derived per segment from an image triplet

from the same channel, the vertical error correlations

are based on pairs of AMVs that are immediate neighbors

or originate from tracking the same cloud structure in

different channels. In the vertical direction, error cor-

relations reach values of 0.2 for separations of;100 hPa.

Again, these provide the first estimates of vertical error

correlations for AMVs.

The error correlation statistics have also been calcu-

lated for the AMVs at their original height assignment,

and in this case the correlated components of the error

are much larger, mostly by 40–100%. This result high-

lights how height-assignment biases can appear as a cor-

related error.

The above results suggest that error correlations are

also present if AMVs are expressed in terms of speed

and direction. All assimilation systems that we are aware

of assimilate AMVs in terms of the u and y components,

however, and therefore error correlations in terms of

speed and direction are not discussed here.

The estimates for error correlations presented here

are based on a single 24-h period and hence are based on

TABLE 4. Fitting parameters for the spatial error correlations obtained by fitting the SOAR function to the correlation data. Statistics

are based on the simulatedAMVs after adjusting for the pressure bias as described in the text. Also shown are scor and suncor, the spatially

correlated and uncorrelated parts of theAMVerror, for u and y, respectively. These have been obtained by partitioning the variance of the

differences between AMVs and model truth at zero separation using the estimate of R0. High, mid-, and low levels refer to the pressure

bands at 100–400, 400–700, and .700hPa, respectively.

IR winds WV winds

R0 L (km)

scor

(m s21)

suncor

(m s21)

R0 L (km)

scor

(m s21)

suncor

(m s21)

u y u y u y u y

NH High level 0.49 121 3.5 2.6 3.5 2.6 0.42 109 3.0 2.3 3.5 2.7

Midlevel 0.55 139 3.5 3.0 3.2 2.7 — — — — — —

Low level 0.45 139 1.3 1.2 1.4 1.3 — — — — — —

TR High level 0.35 185 2.6 2.2 3.5 3.0 0.43 308 3.2 2.7 3.7 3.1

Midlevel 0.62 302 3.1 3.0 2.4 2.3 — — — — — —

Low level 0.22 317 0.8 0.9 1.6 1.7 — — — — — —

SH High level 0.35 208 3.0 2.5 4.1 3.4 0.35 195 2.8 2.4 3.8 3.3

Midlevel 0.62 326 4.9 3.9 3.9 3.1 — — — — — —

Low level 0.22 316 1.1 0.9 2.1 1.8 — — — — — —

FIG. 11. Temporal error correlations for the simulated IR AMVs derived over the (left) Northern Hemisphere extratropics, (center)

tropics, and (right) SouthernHemisphere extratropics for low (.700 hPa; black solid lines), middle (400–700hPa; black dotted lines), and

high (100–400hPa; gray solid lines) levels. Note that the sample size of AMV pairs reduces almost linearly with time difference, given our

24-h study period.
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a relatively limited sample. Nevertheless, it is encour-

aging to see qualitative and quantitative agreement be-

tween our results and those for real data in terms of the

error correlation scales for spatial error correlations. It

suggests that the findings for the simulated data are

likely to provide some indication for the presence of

temporal and vertical error correlations in real AMVs,

at least in a qualitative sense. Such error correlations are

very difficult to obtain for real data, and the simulation

framework may well be the only practical way to shed

some light on these correlations.

6. Conclusions

This paper has presented the first part of a study

whose main objective is to improve the understanding

of the characteristics and origins of AMV errors, with

the aim to improve the use of AMVs in NWP. The study

uses a simulation framework that is based on AMVs

derived from sequences of geostationary images that

have been simulated from an integration of the WRF

regional model. This paper (Part I) has introduced the

simulation framework and given an initial analysis of the

characteristics of the simulated imagery and the result-

ing AMVs. There are four main findings:

1) The general distribution of clouds in the simulated

imagery appears to be realistic, with an effective

resolution that matches well that of the observed

imagery. Nevertheless, there is evidence that the

simulation is still in a spinup phase during the first

9–12 h of the study period, and upper-tropospheric

humidity appears to be overestimated.

2) The simulated AMVs exhibit a considerable height-

assignment bias of;60–75 hPa, which is significantly

larger than that for real AMVs. A bias correction for

the assigned pressure is considered to be necessary

for this simulated dataset.

3) When interpreted as single-level point estimates of

wind at the bias-corrected pressure, the simulated

AMVs when compared with the truth show charac-

teristics that are similar to comparisons between real

AMVs and short-range forecasts (e.g., speed biases

and RMSVDs are typically within 1m s21 for high-

level AMVs). Taking into account that errors in the

short-range forecasts contribute when comparing

AMVs and short-range forecasts, the statistics sug-

gest that the errors in the simulated AMVs are com-

parable to those for real AMVs over some areas and

are larger in others. The simulated AMVs show more

outliers than the real AMVs.

4) The simulated AMVs show significant horizontal,

temporal, and vertical error correlations when they

are interpreted as single-level values. The horizontal

error correlation scales obtained here agree well with

similar estimates from real AMVs, with nonnegli-

gible error correlations for distances of;200–300 km

in the extratropics and broader correlations in the

tropics. For temporal and vertical error correlations,

we find nonnegligible error correlations mostly in the

range of 4–8 h and 100 hPa, respectively, depending

on geographical region and level.

The current study serves as a benchmark for using

a simulation framework to study AMV characteristics

and errors. Such a simulation study is a very demanding

computational undertaking, given the requirement for

a high-resolution sophisticated atmospheric model, the

need to store full model output at high temporal sam-

pling with the associated handling of large amounts of

data, and the costs of the radiative transfer simulations

and the AMV derivation. It is hoped that future studies

FIG. 12. Vertical error correlations for IR and WV AMVs combined (black solid lines) over the (left) Northern Hemisphere extra-

tropics, (center) tropics, and (right) Southern Hemisphere extratropics. Also shown (as vertical bars) is the number of AMV pairs used in

each distance separation bin (in thousands; see right-hand y axes).
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can build on the results presented here and further refine

and improve the method and setups used. This study

shows that a simulation framework can reproduce char-

acteristics that are typically found in real AMVs, but it

also highlights current shortcomings and shows that some

errors in the simulated AMVs still appear to be larger

than those in observed AMVs.

Our experience shows that a careful analysis of every

step of the simulation is needed to interpret the results

from the simulation study, and many aspects of our

study still deserve further attention. Most notable is that

the simulation-specific height-assignment bias requires

further analysis in the future to relate it better to short-

comings in the WRF simulation, the radiative transfer

calculations, or the height-assignment algorithm. In this

study we investigated the realism of the simulated images

by focusing on the general distribution of clouds and the

effective resolution. Our experience suggests that this

approach should be extended to other aspects that may

affect the AMV derivation, such as the cloud optical

depth and the emissivity of the simulated clouds. The

finding that the errors in the simulated AMVs appear to

be larger than those in the observedAMVs in some areas

means that some care has to be taken when interpreting

the results from this study for real data. Also, the results

were obtained with a specific AMV derivation system,

and, given that there are differences between different

derivation systems, some of the characteristics foundmay

well differ for other derivation algorithms.

Nevertheless, the simulation framework allows the

study of aspects that are otherwise difficult or not pos-

sible because of the limited availability of collocated

observations of winds and clouds. Here, we have used

the simulation framework to provide the first estimates

of temporal and vertical error correlation scales. Such

error correlations are currently neglected in today’s as-

similation systems, and this fact may limit or penalize

the impact of the assimilated AMVs. The current esti-

mates provide guidance in this respect. Further investiga-

tions into the origin of the error correlations are possible

with the simulated dataset—for instance, by experiment-

ing with alternative AMV height interpretations.

This paper has used AMVs in the traditional way,

interpreting them as estimates of wind at a single level,

assumed to be the top of the tracked cloud structure.

In Part II, we explore alternative interpretations of

AMVs, making use of the detailed description of the

atmosphere available in the simulation framework,

including the known position of the tracked cloud in

the vertical dimension.
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