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A B S T R A C T
Numerical weather prediction (NWP) models (including mesoscale) have limitations when it comes to dealing with
severe weather events because extreme weather is highly unpredictable, even in the short range. A probabilistic forecast
based on an ensemble of slightly different model runs may help to address this issue. Among other ensemble techniques,
Multimodel ensemble prediction systems (EPSs) are proving to be useful for adding probabilistic value to mesoscale
deterministic models. A Multimodel Short Range Ensemble Prediction System (SREPS) focused on forecasting the
weather up to 72 h has been developed at the Spanish Meteorological Service (AEMET). The system uses five different
limited area models (LAMs), namely HIRLAM (HIRLAM Consortium), HRM (DWD), the UM (UKMO), MM5
(PSU/NCAR) and COSMO (COSMO Consortium). These models run with initial and boundary conditions provided
by five different global deterministic models, namely IFS (ECMWF), UM (UKMO), GME (DWD), GFS (NCEP) and
CMC (MSC). AEMET-SREPS (AE) validation on the large-scale flow, using ECMWF analysis, shows a consistent and
slightly underdispersive system. For surface parameters, the system shows high skill forecasting binary events. 24-h
precipitation probabilistic forecasts are verified using an up-scaling grid of observations from European high-resolution
precipitation networks, and compared with ECMWF-EPS (EC).

1. Introduction

From the dynamical point of view the atmosphere is a chaotic
non-linear system. This fact implies that, even if a quasi-perfect
numerical weather prediction (NWP) model were initialized
with quasi-perfect initial conditions, the forecast would cease
to be valid within a finite time interval (Lorenz, 1963). The
lack of atmospheric predictability is due to the non-linear am-
plification, as the forecast period lengthens, of small errors in
both the initial conditions and in the NWP models formulation.
This intrinsic deficiency in the atmospheric predictability can
be found at a wide range of time and space scales, including
the mesoscale. A single NWP model being initialized with a
single initial condition only provides one forecast of the future
atmospheric state, and it has been largely proved that generating
several predictions based on slightly different initial conditions
and model configurations can improve the forecast (e.g. Hou
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et al., 2001). The improvement comes with a probabilistic rep-
resentation of the atmospheric forecasts, which in turn comes
usually from an equally likely set of deterministic forecasts or
ensemble of forecasts.

A variety of approaches are used to generate an ensemble pre-
diction system (EPS) from deterministic numerical models, most
of them sample both initial state and model uncertainties. One of
the first proposed techniques to sample initial state uncertainty
consists in the use of Monte Carlo methods to construct multiple
random initial conditions for feeding models. This technique was
proposed by Leith (1974), Hollingsworth (1980) and Mullen and
Baumhefner (1989) among others. Hoffman and Kalnay (1983)
proposed a time-lagged averaged forecast using forecasts from
lagged starting times as members, as an alternative technique,
which has led to some expertise (Ebisuzaki and Kalnay, 1991).
More recent approaches are based on generating dynamically
constrained perturbations. Bred vectors (e.g. Toth and Kalnay,
1993, 1997) and singular vectors (e.g. Buizza and Palmer, 1995,
1997; Hamill et al., 2000) are two of the main methods of intro-
ducing perturbations into the subspace of fastest growing errors.
Houtekamer et al. (1996) developed the idea of obtaining a better
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PREDICTABILITY OF SHORT-RANGE FORECASTING 551

representation of initial conditions by using a set of assimilation
cycles and perturbing the observations with random errors in
each of them. The Ensemble Transform Kalman Filter (ETKF)
technique (Bishop et al., 2001; Wang and Bishop, 2003) provides
a framework to assimilate observations and estimate the effect of
observations on forecast error covariance. This technique scales
the ensemble perturbations according to the observation errors
and the computation is done at much lower cost compared to,
for example, the singular vectors.

NWP model errors are another main source of weather fore-
cast uncertainty. Generating EPS by altering the model parame-
terization of subgrid-scale physical processes (e.g. Houtekamer
et al., 1996; Andersson et al., 1998; Stensrud et al., 1998) or
using stochastic physics methods (Buizza et al., 1999) may help
to take into account model errors. The multimodel technique
is another way of sampling model uncertainties using differ-
ent numerical models to generate an EPS. The SAMEX (Hou
et al., 2001), UKMO Test of Poor Man’s EPS (Arribas et al.,
2005) and DEMETER (Palmer et al., 2004) projects have shown
that this technique can be useful for both short-range and sea-
sonal forecasting. Boundary conditions, an additional source of
uncertainty, must be considered when using limited area mod-
els (LAMs). When an EPS is built using a LAM, both lateral
boundary conditions (LBCs) and initial conditions give their
contribution to the spread and skill of the system (Clark et al.,
2008).

Medium-range forecast uncertainties in mid-latitudes are
qualitatively related to baroclinic instability (Buizza and Palmer,
1995) whereas short-range forecast uncertainties have more
physical processes involved and therefore are more difficult to
characterize. Uncertainties can indeed grow critically in the short
range at a wide range of spatial scales due to different kind of
atmospheric instabilities such as baroclinic, inertial and poten-
tial instabilities (Emanuel, 1979; Roebber and Reuter, 2002;
Zhang, 2005; Hohenegger and Schär, 2007). Though the first
arising EPS were global medium-long-range systems, short-
range EPS have shown to be of potential use in early warn-
ings and severe weather events of quick growth. For instance,
floods (Bright and Mullen, 2002; Hacker et al., 2003) and wind
gales (Leslie and Speer, 1998) or tornadoes (Stensrud and Weiss
2002).

National Centers for Environmental Prediction (NCEP) was
the first operational meteorological centre in developing a short-
range ensemble, using the multimodel approach with two LAMs
and boundary conditions from the NCEP medium-range global
ensemble (Tracton et al., 1998; Stensrud et al., 1999). Bred
vectors (Toth and Kalnay, 1993) are used to take into account
the uncertainty in the initial and boundary conditions, whereas
model uncertainty is addressed by using different parameteriza-
tion schemes.

The United Kingdom Meteorological Office (UKMO) has
developed the MOGREPS short-range ensemble (Bowler et al.,
2008), which consists of global and regional ensembles with the

global ensemble providing initial and boundary conditions to the
regional ensemble. The ETKF technique (Bishop et al., 2001)
is applied to construct perturbations for the initial conditions
(Bowler and Mylne, 2009; Bowler et al., 2009). Model error is
represented by applying stochastic perturbations to the model,
mainly to the parameterized model physics.

The COSMO-LEPS ensemble (Marsigli et al., 2004, 2008)
uses the ECMWF-EPS (EC hereafter) (Molteni et al., 1996;
Palmer et al., 1997) to provide a set of different initializations
for the high-resolution COSMO model. The 51 EPS members
are divided in 16 clusters and one member of each cluster is
selected to generate initial conditions for the COSMO model.
Model uncertainty is sampled by the use of different convective
parameterization schemes.

LAMEPS is a short-range ensemble developed at the Norwe-
gian Meteorological Institute (Frogner et al., 2006). It is based on
the use of the High-Resolution Limited Area Model (HIRLAM)
with different initial and boundary conditions with a grid spacing
of 12 km. The initial and boundary conditions are constructed
by the use of a 21-member version of the EC ensemble in which
the singular vectors are optimized to maximize the 48 h growth
over northwestern Europe (TEPS, Frogner and Iversen, 2001).
In the LAMEPS perturbations of the TEPS are added to the
high-resolution regional analysis. The whole system is called
NORLAMEPS. Model uncertainty is included in two ways: al-
ternating different physical parameterizations and combining
LAMEPS and TEPS.

Current areas of research on short-range EPS include the use
of high-resolution non-hydrostatic models to describe forecast
uncertainty up to a convection-permitting scale, that is 2 or 3
km of horizontal resolution (Wandishin et al., 2008, Wandishin
et al., 2010).

This is a non-comprehensive list of short-range forecasting
systems, mainly in Europe, and it shows that this is an active
area of development, in which different ensemble techniques are
used to provide probabilistic insight in the short-range weather
forecast.

This paper sets out the results of the Short-Range Ensemble
Prediction System (SREPS) developed at the Spanish Meteo-
rological Service (AEMET: Agencia Estatal de Meteorologı́a)
using the multimodel multiboundary technique. The system is
built using a set of LAMs and a set of deterministic global
models supplying the initial and boundary conditions. In this
way, both initial conditions and model errors are represented in
the EPS. The system is focused on short-range forecast (up to
72 h) and has been developed to help in the forecast of extreme
weather events (gales, heavy precipitation and snow storms).
For instance, the Spanish Mediterranean region has a meteoro-
logical behaviour dominated by the interaction of synoptic flow
with small-scale orographic features and the Mediterranean Sea.
Such interaction produces mesoscale structures that are difficult
to model using global models or even LAM. The relevance of
most of these events is related to the value that meteorological
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parameters take at the surface, therefore different verification
exercises have been performed to validate the system in this
context.

AEMET-SREPS (AE hereafter) project began in 2005. In
2006 the system was capable to run every day at 00 UTC the
first set of models with different boundary conditions. During
2007 the ensemble reached a mature stage, running 20 members
with good performance at a horizontal resolution of 0.25◦ ×
0.25◦ and 40 vertical levels. During 2008 it was added a second
daily run at 12 UTC. In October 2009 it was included the CMC
global model, increasing the number of ensemble members up
to 25. Currently (July 2010) the system is running daily (00
and 12 UTC) with a forecast range T+0 to T+72 h at 0.25◦

and 25 members. Verifications shown here cover 2007–2008
and thus correspond to SREPS 00UTC run at 0.25◦ with 20
members.

In the second section we present the methodology used, and
in the subsequent sections we set out the results of the objective
verification exercises. In Sections 3 and 4 we introduce the veri-
fication strategy and methods followed, showing and discussing
results of several measures for different aspects of performance.
Conclusions and further results are presented and discussed in
Section 5 together with suggestions about on-going develop-
ment.

2. Methodology

Following the results of the Storm and Mesoscale Ensemble
Experiment (SAMEX) performed in the United States in 1998
(Hou et al., 2001) AEMET chose the multimodel multibound-
ary technique to build a short-range ensemble prediction sys-
tem, called SREPS, to provide probabilistic forecasts for a wide
range of parameters and thresholds. These probabilistic forecasts
give complementary information to the operational determinis-
tic NWP model at AEMET and may improve the prediction of
severe weather events such as gales, heavy precipitation, snow-
storms or heat waves. Severe weather warnings are one of the
most important tasks of a modern weather service because of
the damage that such events cause.

2.1. Multimodel technique

Operating the AE consists of running five LAMs each of them
using initial and boundary fields from five different global de-
terministic models. The SREPS has 25 members as a result of
this combination. The system runs twice a day, at 00 and 12
UTC, with a forecast range of up to 72 h. LAMs are configured
to have a horizontal resolution of about 25 km and 40 vertical
levels. As not all LAMs use the same map projection (HIRLAM,
COSMO, High-Resolution Regional Model [HRM] and UM use
rotated latitude-longitude, and MM5 uses Lambert conformal)
it is not possible to cover the same integration area at the same
horizontal resolution. This is why it was decided to use a large

integration area and a smaller common post-process area for the
purpose of computing the probabilistic forecasts.

The LAM models used are High-Resolution Limited Area
Model (HIRLAM, McDonald and Haugen, 1992; Undén
et al., 2002), High-Resolution Regional Model (HRM,
Majewski, 1991; Majewski and Schrodin, 1994) from Deutsche
Wetterdienst (DWD), Mesoscale Model version 5 from Penn
State University and NCAR (MM5, Dudhia, 1993; Grell et
al., 1994); Unified Model (UM, Cullen, 1993) from UKMO
and COSMO Model (LM, Doms and Schättler, 1997) from the
COSMO Consortium. Each model has its own numerical fea-
tures and has different physics parameterization schemes.

When trying to interface the LAMs with the different global
models, the standard pre-process tools available for each LAMs
have been used when possible. However, in several cases it was
unavoidable to perform an additional vertical interpolation and
do some modifications in the codification of GRIded Binary
(GRIB) files provided by global models (e.g. change the global
model fields from isobaric levels to hybrid levels based on sur-
face pressure, before the standard pre-processing tool is used),
thus making necessary the development of additional software.
In addition to the technical difficulties, there can be some me-
teorological impact in those members where two vertical inter-
polations are done on the global fields instead of one. However,
the interpolation method used has been chosen to minimize this
potential loss of information. Then, it is also necessary in some
cases to calculate new variables from the available set of fields
provided by the global model (a typical case is finding the relative
humidity from the specific humidity, pressure and temperature).
Finally, the standard pre-process tools of each LAM model is
applied to produce the initial and boundary conditions, including
the necessary horizontal interpolations and adjustments of the
fields to the LAM topography.

2.2. Multiboundary and initial conditions

Initial and boundary conditions for LAMs are taken from the
forecasts of five different global deterministic models. These
global forecasts are initialized 12 h before the start time of the
SREPS integration. So, if the global model integration is based
on the global HH UTC analysis, the SREPS members are initial-
ized with the meteorological fields of the HH + 12 UTC global
model forecast. This strategy may decrease thedeterministic per-
formance of each member because the most recent observations
are not used. However, the performance of the SREPS as a tool
for probabilistic forecasting is not very affected and the fact that
its cycle finishes earlier makes it more useful for the forecasters.

The initial and boundary conditions are obtained from the
following: well-known global deterministic models: Integrated
Forecast System (IFS, Simmons et al., 1989; Jakob et al., 1999)
from European Centre of Medium Range Weather Forecasts
(ECMWF); Global Unified Model (UM, Cullen, 1993) from
UKMO; Global Forecast System (GFS, Sela, 1980, 1982) from
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NCEP; Global Model (GME, Majewski et al., 2002) from DWD
and Global Canadian Model (CMC, Côté et al., 1998a,b). All
of these include Variational Data Assimilation Schemes (IFS,
UM and CMC use 4DVAR and GFS and GME use 3DVAR)
and up-to-date physical parameterization schemes. Using these
global models as initial and boundary conditions ensures a good
initialization of the system.

2.3. Post-process

One of the features of an EPS forecast is the huge amount of
information that the system can supply. For this reason, when
working in an operational environment the use of post-process
methods becomes necessary for reducing this information down
to a comprehensive set that can be better used by a human
forecaster. The first step in the SREPS post-processing con-
sists in the interpolation of the integration area of each model
into a common area of 0.25◦ horizontal resolution in latitude-
longitude. The common area is shown in Fig. 1 and covers
most of North-Atlantic Ocean, Europe, Northern Africa and the
Mediterranean Sea. Probabilistic forecasts of meteorological pa-
rameters are computed from SREPS assuming that each mem-
ber is equally likely, as it is in other ensemble systems. Most of
these products are routinely verified to assess the performance of
SREPS.

3. Large-scale flow consistency

To assess the overall consistency of the system on the large
scale, it has been carried out a verification of some synoptic
fields against ECMWF operational analysis. Different results
are shown in Sections 3.1 and 3.3 for mean sea level pressure
(MSLP) and in Section 3.2 for geopotential at 500 hPa (Z500).
Using objective analysis as reference has the advantage that per-
formance measures cover the whole integration domain (shown
in Fig. 1) with the same weight and then no priority is given
to land areas where the density of observations is higher. Ver-
ification against SYNOP/TEMP observations (not shown here)
gives, as expected, worse but qualitatively similar results.

A 21-month verification period from April 2007 to December
2008 has been chosen to fit with the same verification period
given in Section 4 for weather parameters (see 4.1 for details).
A number of 614 daily forecasts at 00UTC has been selected
from out of the whole April 2007 to December 2008 period,
because due to usual operational problems on the development
stage there is a non-negligible number of days without forecasts.
The number of grid points on the domain is 380 × 164 = 62 320.
Thus, the total number of realizations for each individual score at
any forecast length is 62 320 × 614 ∼ 3.8e7. The forecast range
shown covers T+6 to T+72 every 6 h, which means 12 forecast
lengths. Different aspects of large-scale flow consistency have
been considered: individual member performance (shown in 3.1

Fig. 1. AE LAM models integration domains: HRM, COSMO (dotted line), MM5 (dashed line), HIRLAM and UM (dash-dot line). The verification
domain (solid line) was selected as the maximum possible area defined by a regular 0.25◦ lat-lon grid, and it covers part of the North Atlantic Ocean,
Northern Africa and a big part of Europe.
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for MSLP), statistical consistency with the analysis (in 3.2 for
Z500) and ensemble spread (in 3.3 for MSLP).

3.1. Individual member performance

Compared with a single-model ensemble, some extra issues arise
when a multimodel EPS is being considered. The task of inter-
facing several LAM models to different global models in an
ensemble is intricate and expensive from the technical point of
view, and the individual member deterministic quality helps to
monitor each model implementation. Moreover, from the vali-
dation point of view, it is first necessary to assess this individual
member deterministic performance, because every member can
be weighted equally in the computation of probabilistic fore-
casts when they perform similarly. It is also expected that the
root mean square error (RMSE) of the ensemble mean is smaller
than that of any member (Leith, 1974; Murphy, 1988; Whitaker
and Loughe, 1998; Ziehmann, 2000). To measure this, evolu-
tions with forecast length of synoptic variables bias and RMSE
(Z500, T500, MSLP) have been computed for each member and
also for the ensemble mean. Results are shown for MSLP in
Fig. 2. As far as the performance of each individual model is
not the main purpose here, there are no labels in Fig. 2 to dis-
tinguish between the different members; instead, the ensemble
mean is highlighted, as well as those LAMs who are driven with
their “normal operating” global model, that is, MM5 and GFS,
HIRLAM and ECMWF, COSMO and GME, UM and global
UM, HRM and GME (this last aspect has been shown due to
its special interest). These results indicate similar performance
of the members, with no clear improved quality for the ‘nor-
mal operating’ members, and the ensemble mean shows a lower
RMSE than any of the rest. It can therefore be concluded that,

Fig. 2. Evolutions with forecast length of mean sea level pressure
(MSLP) bias and RMSE computed for each member (thin lines) and
for the ensemble mean (thick line). ‘Normal operating’ members are
highlighted (circles).

as expected, the forecast quality of every member is similar and
that the ensemble mean outperforms any member.

3.2. Statistical consistency with the analysis

The first step in the validation of an EPS, as a probabilistic pre-
diction system, is to check its statistical consistency with obser-
vations (analysis) in the large-scale flow. The rank histogram
(Anderson, 1996; Hamill and Colucci, 1997, 1998; Hamill,
2001; Candille and Talagrand, 2005) can be used to check if
the verifying observation is statistically indistinguishable from
the set of forecast values (or if any ensemble member, as well as
the verifying observation, can be considered equally likely to
be the truth), and thus whether the system is statistically con-
sistent with the observations (‘reliable’ in this context). Such
a system must show an approximately flat-shaped rank his-
togram. The rank histogram corresponding to the mentioned
period April 2007 to December 2008 for Z500 at forecast length
T+24 (Fig. 3) shows overall consistency and some outliers in-
dicating a possible slight subdispersion typical of current EPS
systems. Averaging over 21 months could hide seasonal variabil-
ity. In Fig. 4 rank histograms corresponding to different seasons
are spanned to show seasonal differences: clear subdispersion in
winter (‘U’ shape), flat in spring, clear overdispersion in summer
(inverted ‘U’ shape) and some subdispersion in autumn. Rank
histograms for other variables and forecast lengths (not shown)
show similar shapes.

3.3. Ensemble spread

The consistency with observations is also related to the ensem-
ble spread. An EPS is expected to sample the uncertainties of
NWP models (ensemble spread), as well as to give an explicit
and quantitative information about the predictability of the at-
mosphere (represented by the ensemble mean error compared
with the observation). A consistent EPS is expected to show a
sort of linear relationship between these two magnitudes: the

Fig. 3. Rank histogram corresponding to the period April 2007 to
December 2008 for 500 hPa geopotential height and forecast length
T+24. The analysis of the ECMWF model is taken as observation
value.
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Fig. 4. Rank histograms corresponding to different seasons: December 2007 to February 2008 (DJF), March to May 2008 (MAM), June to August
2008 (JJA) and September to November 2008 (SON).

ensemble spread (as far as there is not a control forecast in the
system, the spread is measured here by the standard deviation
of the ensemble values with respect to the ensemble mean) and
the RMSE of the ensemble mean with respect to the analysis
(Buizza and Palmer, 1997; Whitaker and Loughe, 1998).

As far as an AE is composed of a set of LAMs (‘multi-
model’) and global models as initial and boundary conditions
(‘multiboundaries’), an interesting issue arises: how much of
the ensemble spread comes from the different LAMs and how
much from the global ones? To try to answer this question, two
kind of subensembles have been considered: those composed of
one LAM and four global (five LAMs give five possible combi-
nations for strictly ‘multiboundaries’ subensembles) and those
composed of five LAMs and a single global (four globals give
four possible combinations for strictly ‘multimodel’ subensem-
bles). Then, the formulation of the problem can be given as fol-
lows: how is the whole system spread compared with that of any
of these subensembles? The verification of ‘multiboundaries’
and ‘multimodel’ subensembles gives insight to this question.
The impact of difference in ensemble size (20 members for the
whole system, 4 or 5 members for the different subensembles)
has not been addressed in this study though it could add useful
information (see Buizza and Palmer 1998; Ferro, 2007; Ferro
et al., 2008).

To summarize results, Fig. 5 shows MSLP spread-error dia-
grams from T+6 to T+72 every 6 h for the whole ‘multimodel
multiboundaries’ system (20 members) and for the five differ-
ent ‘multiboundaries’ subensembles. Figure 6 shows the same

Fig. 5. Mean sea level pressure (MSLP) spread-error diagrams from
T+6 to T+72 every 6 h, for the whole ‘multimodel multiboundaries’
system (thick solid line, 20 members) and for the five different
‘multiboundaries’ subensembles (thin lines).

information for the whole ‘multimodel multiboundaries’ system
and the four different ‘multimodel’ subensembles.

As a first result, the system as a whole shows a clearly linear
relationship between ensemble spread and RMSE of the ensem-
ble mean, that is, the system is consistent with the observations
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Fig. 6. Mean sea level pressure (MSLP) spread-error diagrams from
T+6 to T+72 every 6 h, for the whole ‘multimodel multiboundaries’
system (thick solid line, 20 members) and for the four different
‘multimodel’ subensembles (thin lines).

(analysis). A second result is that all subensembles show lower
spread than the full system. This conclusion has been reached
in other ensembles, see for instance the SAMEX project (Hou
et al., 2001), UKMO Test of Poor Man’s EPS (Arribas et al.,
2005) and DEMETER project (Palmer et al., 2004), this last for
seasonal prediction ensembles. Finally, as a third result, ‘multi-
model’ subensembles happen to be, as moving to T+72, more
underdispersive than the ‘multiboundaries’ ones. The contribu-
tion of the different global models to the spread of the whole
system is larger than the contribution of the LAM models. This
is a confirmation that the perturbation of the boundaries is an
important requirement for LAM ensemble systems like AE. This
result needs further research and a comprehensive explanation
is beyond the scope of this paper; as an outline the seasonal be-
haviour is briefly described later. Similar results have been found
for other parameters (not shown). It can therefore be concluded
that the whole system performs significantly better than any of
its subensembles.

To include seasonal behaviour that could be hidden on the
overall average, Fig. 7 shows MSLP spread and ensemble
mean RMSE (EMRMSE) only for the whole system (20 mem-
bers) for winter (2007D-2008JF), spring (2008MAM), sum-
mer (2008JJA), autumn (2008SON) and the whole 12 months
(2007D-2008N) in separate curves. These results give an insight
to seasonal differences that are more or less consistent with that
for Z500 at T+24 (Section 3.2) but give further details. In winter,
the ensemble gets underdispersive as the forecast length grows;
in spring the system clearly shows some overdispersion that
grows slightly with forecast length (with Z500 T+24 it was not
clearly overdispersive) where in T+72 large values of spread and

Fig. 7. Mean sea level pressure (MSLP) spread-error diagrams from
T+6 to T+72 every 6 h. Each thin line corresponds to a period of 3
months: December 2007 to February 2008 (square), March to May
2008 (cross), June to August 2008 (plus sign) and September to
November 2008 (circles). The thick line corresponds to the spread-error
diagram for the whole period, December 2007 to November 2008.

EMRMSE are reached; in summer there’s some overdispersion
but both spread and EMRMSE reach smaller values than that for
spring (this is consistent with the larger predictability expected
in summer in contrast with the lower predictability and corre-
sponding larger spread expected in spring); finally, the system
shows in autumn the best spread–error relationship, fairly close
to the diagonal and reaching values of spread and EMRMSE
smaller than that for winter–spring and larger than that for sum-
mer. These different seasonal behaviours compensate each other
to produce a more balanced relationship spread EMRMSE, a bit
overdispersive, in the overall average.

4. Verification of precipitation forecasts using
HR networks

A short-range EPS is mainly focused on surface parameters (pre-
cipitation, 2 m temperature, 10 m wind), becoming nowadays
an important tool for the short-range forecast guidance. Thus,
the ensemble response to binary events related to these parame-
ters, over a selected set of thresholds in this operational forecast
context, must be assessed. Even though EC is a medium-range
forecast system, it has been selected as a high-performance avail-
able reference ensemble forecast to compare with AE, selecting
some feasible forecast lengths for the comparison.

Detailed results for the 24 h precipitation forecast verification
for both AE and EC ensembles are shown here, whereas for 2 m
temperature and 10 m wind only a brief summary is given.
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4.1. Data sets

Observed precipitation data from High Resolution (HR) net-
works over Europe have been used for verification. The period
chosen covers almost 2 yr, from April 2007 (here the ensemble
00UTC run reaches a mature stage) to December 2008 (obser-
vations for 2009 were not still available for this study), thus it
comprises 21 months. To avoid (i) the impact of spatial density of
observations and (ii) the potential lack of statistical significance
due to spatial dependence between close ones (both are typi-
cal problems of model interpolation to the observation points),
an up-scaling method (Cherubini et al., 2002) has been applied.
Precipitation observations have been provided by ECMWF (who
collects raw data from different member and cooperating states
over Europe) already up-scaled to 0.25◦ × 0.25◦ boxes, picking
up only those ones in which a minimum significance is guar-
anteed with at least five observations available inside (which
makes the number of daily observations not to be constant). The
box average value is used as representative of the precipitation
over that box.

AE and EC forecasts for the same period are compared, this
latter selected as a high-performance available reference ensem-
ble forecast. EC is a medium-range forecast system, whereas
AE is a short-range one, so any comparison should take this dif-
ference into account, especially by choosing a suitable range
of selected forecast lengths. As climatological networks of-
ten record precipitation from 07 to 07 UTC and only 00UTC
run was available at the whole period, to assess 24-h accumu-
lated precipitation only T+30 and T+54 rain forecasts (from
the system whole forecast range outputs T+0 to T+72 every
6 h) can be used. In this case T+54 has been selected as the
only fair possibility to compare EC and AE performance. 24
h accumulated precipitation forecast is computed for the time
window 06–06UTC; this 1-h shift between observed and fore-
cast periods is not taken into account in this study. The average
number of daily realizations is above 1000, whereas the average
number of realizations for 3-month periods is about 76 000. Due
to their operational forecast importance, rainfall thresholds 1, 5,
10 and 20 mm have been selected.

4.2. Verification strategy, performance measures

To assess the performance of AE and EC in terms of reliabil-
ity, resolution and discrimination standard probabilistic verifi-
cation methods have been followed (Wilks, 1995; Jolliffe and
Stephenson, 2003; Candille and Talagrand, 2005; Stensrud and
Yussouf, 2007).

First, a set of binary events corresponding to the set of rainfall
thresholds 1, 5, 10 and 20 mm has been addressed. As usual,
for each event (the rainfall threshold is exceeded or not) the
joint distribution of observations and forecasts has been com-
puted, giving to any observation the value 0 or 1 (whether the
event occurred or not) and in the case of ensemble forecast tak-

ing the probability of occurrence as the number of forecasts
exceeding the threshold divided by the ensemble size, that is,
considering all members equally likely. N+1 probability classes
are used for an ensemble size of N, in order to obtain the best
possible performance measure (Ziehmann, 2000), which means
52 classes for EC and 21 classes for AE. However, as already
mentioned in Section 3.3, the impact of the difference in the
ensemble size (in this case 51 members for EC and 20 members
for AE) has not been included in this study, though it could
be addressed in future works (Buizza and Palmer 1998; Ferro,
2007; Ferro et al., 2008). As this difference can give better
performance to EC it should be taken into account. From the
joint distribution, computed in the form of contingency tables,
a set of several performance measures has been obtained. For
brevity, only a detailed description of some aspects is given
here.

Brier Skill Score (BSS) and its decomposition in reliabil-
ity and resolution terms (Jolliffe and Stephenson, 2003, p.147)
have been selected as summary measures to show an indication
of overall skill, reliability and resolution, respectively (a system
with BSS greater than 0 is more skilful than the sample climatol-
ogy, while BSS = 1 indicates a perfect deterministic forecast).
ROC (relative operating characteristic) skill area (RSA), ob-
tained as 2A – 1, where A is the area under the ROC curve,
has been used as a measure of discrimination (a system with
RSA greater than 0 shows better discrimination than the sam-
ple climatology). The ROC areas have been crudely estimated
by straight lines joining the points and computing the areas of
the underlying trapezoids (empirical method). The estimation
by a parameteric method (Swets, 1988; Wilson, 2000; Jolliffe
and Stephenson, 2003) would provide a less-biased estimate of
the area under the ROC. The empirical method tends to un-
derestimate this area, especially for events with low base rates
(higher thresholds), and would tend to favour larger ensemble
sizes.

Discrimination is a measure that can provide complementary
performance information to BSS. While BSS is relatively insen-
sitive to extreme events (Gutiérrez et al., 2004), RSA is not. On
the other hand, RSA can be insensitive to some kinds of fore-
cast biases (Kharin and Zwiers, 2003). Sample climatology for
each 3-month period has been used as reference (Mason, 2004).
As a caveat, here it is not given assessment of the uncertainty
related to the measures used. Different approaches can be fol-
lowed to give, for instance, confidence intervals (Jolliffe, 2007;
Casati et al., 2008; Mason, 2008) and will be included in further
studies. To give a minimum statistical and meteorological con-
sistence, any score has been averaged on 3-month periods and
over the whole set of grid boxes (averaging first in time and after
in space or vice-versa gave similar results). The correspond-
ing time-series with the mentioned 3-month moving average are
shown for BSS and RSA separately for each rain threshold (see
Section 4.3). Therefore, the performance evolution of AE and
EC along 19 months (3-month moving average), with different
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Fig. 8. Time-series of BSS (thick line), BSS reliability (thin lines) and BSS resolution (thin dotted lines) components. Values plotted are 3-month
moving average from May 2007 to November 2008 corresponding to binary events of 1, 5, 10 and 20 mm of accumulated precipitation in 24 h given
by T+54 forecasts, respectively. Results are shown for AE (circles) and EC (crosses).

aspects of the forecast skill and their seasonal variability can be
assessed.

4.3. Summary of verification results for precipitation

Time-series from May 2007 to November 2008 for BSS and
its components for rainfall thresholds 1, 5, 10 and 20 mm are
shown in Fig. 8. BSS (thick lines) is positively oriented (where
0 indicates no skill with respect to sample climatology and 1
corresponds to a perfect forecast) while reliability (thin dashed
lines) and resolution (thin lines) components are negatively ori-
ented (higher scores mean worse performance). As common
and general patterns, both systems present their highest skill in
winter, skill is degraded as threshold grows and for 20 mm the
skill seasonal variability is not so significant. This is consistent
with the large-scale precipitation predominance in winter. AE
(circles) outperforms EC (crosses) in spring and summer sea-
sons, significantly for 1, 5 and 10 mm, while for 20 mm this
clear out-performance happens only in winter. To explain this
difference in skill, horizontal resolution plays a main role: AE
(0.25◦) can better resolve convective systems than EC (0.50◦).
This skill difference was also expected, but not measured, in
autumn: AE convection in autumn is already known to need
some improvement. Further detail is given by the BSS reliabil-
ity and resolution components. AE is clearly more reliable (with
a decreasing difference with threshold) especially in spring and
summer. On the other hand EC shows better resolution (possibly
due to its larger ensemble size) in spring, autumn and winter,

except for 20 mm. This resolution is a clear indication of EC
forecast quality, as far as resolution cannot be improved under
a calibration process. On the other hand, reliability can be im-
proved by calibration at the expense of resolution, and the bene-
fits of calibration are difficult to achieve in an operational context
(Atger, 2003). The difference in reliability, higher than that in
resolution in spring and summer, gives AE higher BSS in these
seasons.

Time-series for the same period and rainfall thresholds are
shown for RSA in Fig. 9. RSA is positively oriented, where a
value of 0 indicates no better discrimination than the sample cli-
matology, and 1 corresponds to perfect discrimination. For 1, 5
and 10 mm both AE (circles) and EC (crosses) show high values
of RSA, slightly better in winter where large-scale precipitation
is predominant, and no relevant differences can be found be-
tween the two systems. For 20 mm a more clear difference in
discrimination is found, AE showing higher RSA in autumn and
winter, possibly due to the RSA sensitivity to rare events. The
role of horizontal resolution and the relation with predominance
of convective activity is not so clear in this case.

In summary, AE shows generally better performance than
EC in terms of BSS (while EC shows better resolution, AE is
more reliable and gives generally a better overall BSS), with
bigger difference in those seasons where convective precipita-
tion is more frequent, whereas when large-scale precipitation
is expected to be dominant, no skill difference is observed.
These results are consistent with the horizontal resolution of
each ensemble, despite the EC advantage in ensemble size. No
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Fig. 9. Time-series of RSA. Values plotted are 3-month moving average from May 2007 to November 2008 corresponding to binary events of 1, 5,
10 and 20 mm of accumulated precipitation in 24 h given by T+54 forecasts, respectively. Results are shown for AE (circles) and EC (crosses).

major differences in discrimination were found according to
RSA measures, except for 20 mm threshold where AE showed
higher values, possibly due to RSA sensitivity to rare events. If
further assessment on the impact of the ensemble size had been
done, AE could be expected to give even better performance
difference when compared with EC. According to these results,
AE improves EC forecasts probably due to its higher horizon-
tal resolution (25–50 km). In January 2010, ECMWF upgraded
model resolutions, and EC became to run at 32 km. It is not so
clear that AE can now improve the quality of EC in the same
way as the results shown here. AEMET plans include an up-
grade in resolution into the mesoscale, then new performance
assessments should be done.

4.4. Verification of 10 m wind speed and 2 m
temperature

To complement the information about validation of weather pa-
rameters, in this section a brief summary of 10 m wind speed (10
mWS) verification is given as well as some remarks about 2 m
temperature (2 mT). For consistency, the same period has been
assessed (April 2007 to December 2008), but now SYNOP sta-
tions have been used, and no comparison with other ensembles is
provided. The same verification strategy and performance mea-
sures than that for precipitation have been used, selecting only a
few thresholds for brevity (10 m s−1 for 10 mWS). Time-series
are depicted with 3-month moving-average from May 2007 to
November 2008 for BSS and its components, with RSA in the
same graph.

For 10 mWS (Fig. 10) resolution and reliability (both neg-
atively oriented) show the worst values in May–June–July and
keep good behaviour along the rest of the period. Thus, the
whole BSS (positively oriented) presents local minimums in
May–June–July and reaches a minimum value of −0.5 (the
system is not more skilful than the sample climatology) in
May–June–July 2008. The RSA (as a measure of discrimi-
nation) shows the same behaviour, with a minimum value of

Fig. 10. Time-series of BSS (square), BSS reliability (crosses), BSS
resolution (plus sign) components and RSA (circles). Values plotted
are 3-month moving average from May 2007 to November 2008,
corresponding to binary events of 10 m s−1 of wind speed at 10 m
given by T+54 forecasts.
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0.4 (even here the system is more discriminative than the sample
climatology) in June 2008, and values larger than 0.5 almost
along the whole period. This is consistent examining the sample
climatology: the monthly typical base rates (frequency of occur-
rence) for the event WS ≥ 10 m s−1 are about 0.004–0.010; in
June–July–August 2008 the base rates were about 0.001–0.002.
The sensitivity of BSS (relative) and RSA to rare events is clear
in this case. Therefore, the system is generally skilful, always
discriminative and provides better information than the sample
climatology, except for those months (May, June and July) in
which the event shows to be really rare, with base rates under
0.002.

For 2 mT the geographical variability over the verification
domain is extremely high and, if the same verification methods
were applied, could lead to mix very different sample clima-
tologies and thus producing results of little significance (Hamill
and Juras, 2006). For instance, taking the event 2 mT > 0 ◦C,
the monthly base rate for North Europe in winter is far away
for that one over North Africa. Separate verifications should be
done over smaller subparts of the domain, and then the problem
would become the small sample size. More advanced verifica-
tion methods should be applied in this case that could be object
of further studies.

5. Conclusions

A multimodel multiboundary SREPS has been developed at the
Spanish Meteorological Service (AEMET). The system consists
of five different LAMs using initial and boundary fields from five
different deterministic global models. The system is composed
of 25 members running twice a day (at 00 and 12 UTC) pro-
ducing forecasts up to 72 h ahead. The resolution of the models
is approximately 25 km in the horizontal and with 40 vertical
levels.

The validation of the system on the large-scale flow indi-
cates that AEMET-SREPS (AE) is statistically consistent with
ECMWF analysis, with a slight underdispersion typical of state-
of-the-art ensembles. The ensemble spread shows a fairly linear
correlation with the error of the ensemble mean, better than any
of its subensembles. Furthermore, subensembles of LAM mod-
els happen to be more underdispersive than subensembles of
global models; further research is needed to better understand
this behaviour.

For surface parameters (2 m temperature, 10 m wind speed,
accumulated precipitation) forecasts, the most important in
short-range ensemble forecasting, the system presents high skill
(shown only for 10 m wind speed and accumulated precipita-
tion). To illustrate this, assessment of 21 months of 24-h pre-
cipitation probabilistic forecasts performance has been shown
in detail. Observations from European high-resolution precipi-
tation networks have been used up-scaled to a 25 km grid. AE
and ECMWF-EPS (EC) forecasts are compared, selecting an
appropriate forecast length of T+54. Rainfall thresholds of 1, 5,

10 and 20 mm have been selected due to their importance in op-
erational forecast. In terms of BSS and its components, AE turns
out to be a more reliable system, and despite its worse resolution
it shows a higher overall skill, more significant in those seasons
where convective activity is higher. Measuring discrimination
of both systems with ROC Skill Area (RSA), the only differ-
ence was found for 20 mm, where AE discrimination is higher
in autumn-winter. AE horizontal resolution (0.25◦), compared
with that of EC (0.50◦) has an important role on this difference
in performance, despite its lower ensemble size: convective sit-
uations are better described at higher resolution. Therefore, in
those seasons where convection is expected there is a signifi-
cant difference between EC and AE, whereas when large-scale
precipitation is predominant no skill difference is found. On the
other hand, the role of each ensemble nature is fairly difficult
to assess in this context. AE nature is multimodel multibound-
aries, while EC is an ensemble built with initial perturbations
and stochastic physics. Further research is also needed here, and
though some experiences could help to address this issue (e.g.
Ziehmann, 2000), a straightforward application to this case is
not clear for the authors. Finally, the role of the ensemble size
(which could benefit in principle EC with 51 members compared
with AE with 20 members) has not been addressed and will be
object of further studies.

The different performance assessments done show a system
that is statistically consistent with the analysis in the large-scale
flow and provides probabilistic forecasts of weather parame-
ters with good reliability, resolution and discrimination. There-
fore, the multimodel multiboundaries strategy to build the AE
is confirmed as a feasible option to sample initial and model
errors. These probabilistic forecasts of surface parameters can
help in the forecast guidance as a complementary tool for high-
resolution deterministic models. As far as it gives explicit and
quantitative information about predictability, as well as several
atmospheric scenarios of potential risk, it can be a powerful help
in early warnings of severe weather events of great relevance
in Spain, for example, Mediterranean heavy rain and floods,
Cantabric Sea wind gales and summer heat waves.
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