
Finite Element Operators in the Vertical
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The purpose of the present work is to provide a vertical finite element technique
making use of analytical properties of B-splines

This technique can be a solution to solve constraints
I invertibility between integral and derivative: d and w
I C1 constraint

Cooperation in VFE with

I Mariano Hortal, Juan Simarro (AEMET)
I Petra Smoĺıková (CHMI)
I Jozef Vivoda (SHMI)
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VFE in hydrostatic model

Splines have been implemented successfully on IFS hydrostatic model by A.
Untch and M. Hortal with linear and cubic B-splines using Galerkin method. All
variables are kept at full levels, no staggering of variables is used

In non-hydrostatic model there is a constraint between vertical operators (C1)
which is very desirable to satisfy in order to reduce the Helmholtz equation to a single
variable d̂
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P. Smoĺıková and J. Vivoda work

P. Smoĺıková and J. Vivoda have developed a FE discretization with B-splines
(computed with the de Boor algorithm) and Galerkin method. The C1-constraint is
relaxed by an iterative method

Nik = (t− ti )
Ni,k−1

∆i,k−1

+ (ti+k− t)
Ni+1,k−1

∆i+1,k−1

where ∆ik := ti+k− ti

0th-order B-splines are

Ni1 (t) =


1 ti ≤ t < ti+1

0 otherwise

knots ti are a non-decreasing
sequence of points ”related” to levels
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Analytical VFE

VFE operators based on analytical properties of B-splines instead of Galerkin
method. B-splines are a partition of unity, constants can be written as a linear
combination of basis functions P

i
Nik (t) = 1

B-splines are well suited also in view of their properties under derivation and
integration

∂
∂ t

Nik = (k − 1)

»
N

i,k−1
∆

i,k−1
−

N
i+1,k−1

∆
i+1,k−1

–
R t

0
Nik =

∆
ik

k

P
i≤s

Ns,k+1
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VFE integral and derivative

as a consequence we have the commutative diagram where ∼ identify functions
that differ by a constant. Sk is the space spanned by B-splines

Sk

Pk

R
0

,
R
1 // Sk+1/∼

Pk+1

∂
oo

F(1:L)

Qk

cR
0

,cR
1

F(1:L+1)/∼

Qk+1

b∂
it ensures invertibility between integral and derivative operators in grid-point

space b∂, cR
0
, cR

1
, what can be seen as a constraint
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Álvaro Sub́ıas (AEMet) Finite Element Operators . . . 16 April 2015 6 / 16



VFE integral and derivative:
invertibility between gw and d

We can make use of b∂, cR
1

operators to have an invertible-full-level representation

of vertical divergence and vertical velocity

d = −
p

mRdT
∂η gw gw = ~vs

~∇φs −
Z

η

1

mRdT

p
d dη′
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Spectral integral and derivative

r

r
r

NFLEVG+1

0

-NELEV

we make a periodic extension at the upper levels of the atmosphere
and apply fourier analysis using the basis functions

1, x

λn := e
2πinx

L

∂x x = 1

∂x λn = 2πin
L

λn

R
x

∗ 1 = xR
x

∗ λn = L
2πin

λn
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C1 constraint: FE operators

the vertical operators that appear in semi-implicit nh-model are

derivative:
∂∗ := π∗ ∂

∂π∗

L∗ := ∂∗(∂∗+ 1)

integration:

G∗f :=
R π∗s

π∗ f dπ∗

π∗

S∗f := 1
π∗

R π∗

0 fdπ∗

N ∗f := 1
π∗s

R π∗s
0 fdπ∗

constraints:

C1 C2
A∗1 ≡ 0 T ∗ ≡ 1

A∗1 := G∗S∗ − G∗ − S∗ +N ∗

T ∗ := g2

c2 N2 L∗
h
S∗G∗ − cpd

cvd
[G∗ + S∗]

i
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C1 constraint: factorization

Factorization of C1-constraint (G∗− 1)(S∗− 1) = (1−N ∗) allows us to make

the chain of operators in functional space (where C1 is always guaranteed)

Hk
1−N∗ //

S∗−1 **VVVVVVVVVVVVVVV Hk

P
Hk

Kk

G∗−1

66mmmmmmmmm

P
Kk

F(0:L)
1̂−N∗

Ŝ∗−1

Q
Hk

F(0:L)

F(1:L)

Q
Kk

Ĝ∗−1

and in grid-point space cX ∗ := 1 + X̂ ∗ − 1

Álvaro Sub́ıas (AEMet) Finite Element Operators . . . 16 April 2015 10 / 16



C1 constraint: factorization

Factorization of C1-constraint (G∗− 1)(S∗− 1) = (1−N ∗) allows us to make

the chain of operators in functional space (where C1 is always guaranteed)

Hk
1−N∗ //

S∗−1 **VVVVVVVVVVVVVVV Hk

P
Hk

��

Kk

G∗−1

66mmmmmmmmm

P
Kk

��

F(0:L)
1̂−N∗ //
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C1 constraint: factorization

the basis functions are not exactly B-splines. Coordinate is t := π∗

π∗s

Hk : (∂∗+ 1) Nik

Kk : − ∂∗Nik

to compute vertical laplacian cL∗ we simply use the spaces Sk and L∗Sk , it’s only
a first attempt because is not obvious how to satisfy C2-contraint simultaneoulsy with
C1-constraint
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C1 constraint: coding

nh-vfe operators are defined in setup inside SUVERT and encapsulated at low level

invertibility C1-constraint

VERINT cR
0

, cR
1

VERDER b∂
SIGAM dG∗
SITNU dS∗, dN∗ SISEVE dL∗

we have found that C1 constraint is guaranteed up to max |cA∗
1 ij

| ' 10−13
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C1 constraint: B matrix

there’s still the problem of to obtain real and positive eigenvalues of B matrix
that appears in the inversion of Helmholtz equation [KY]

SUNHSI

SUNHBMAT
B = C

2
241 − β

2∆t
2 C2

H2

T∗

T∗a

dL∗
35−1 241 + β

2∆t
2

N
2 T∗

T∗a

dT ∗
35 NPDVAR=2

NVDVAR=3, 4

a symmetric matrix has non-negative real eigenvalues, so if B were one of that

class their eigenvalues would be as required. A good trial can be symmetrize cL∗ as
much as possible due to the dependency of T ∗ on L∗

the subroutine SISEVE acting on the iden-

tity matrix gives a matrix representation cL∗.
In a FE construction is good to symmetrize
it at the lowest full-level where it shows his
higher asymmetry
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C1 constraint: first test
Iberian peninsula 26nov14 to 3dec14 LL36 LPC FULL.T. FD vs FD + FE GSNL
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Future Work

• Adapt non-linear model to be consistent with G∗,S∗,N ∗ operators.
This can be done through compatible integral operators

P
n

dG∗ln fn =
P

n RINTEG
ln

„
m∗
π∗

«
n

fnP
n

dS∗ln fn = 1
π∗

l

P
n RINTES

ln
m∗n fnP

n
dN∗n fn = 1

π∗s

P
n RINTENn m∗n fn

• Test G∗,S∗,N ∗ operators in full-nhvfe scheme

• Test invertible integral and derivative operators in current code.
Surface data is needed for invertible derivation!

RINTE is (L+1) × L

RDERI is L × (L+1)

• Study the impact of the choice of knots in the quality of solutions.
They should be at the maxima of basis functions (nice talks with Jozef)
but not very close to boundaries in order to avoid high ∆ik
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Thank you for your attention!
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