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Abstract. Daily NO2 vertical column density (VCD) has
been routinely measured by zenith sky spectroscopy at the
subtropical station of Izãna (28◦ N, 16◦ W) since 1993 in the
framework of the Network for the Detection of Atmospheric
Composition Change (NDACC). Based on 14 years of data
the first low latitude NO2 VCD climatology has been estab-
lished and the main characteristics from short timescales of
one day to interannual variability are presented. Instrumen-
tal descriptions and different sources of errors are described
in detail. The observed diurnal cycle follows that expected
by gas-phase NOx chemistry, as can be shown by the good
agreement with a vertically integrated chemical box model,
and is modulated by solar radiation. The seasonal evolution
departs from the phase of the hours of daylight, indicating the
signature of upper stratospheric temperature changes. From
the data record (1993–2006) no significant long-term trends
in NO2 VCD can be inferred. Comparison of the ground-
based data sets with nadir-viewing satellite spectrometers
shows excellent agreement for SCIAMACHY with differ-
ences between both datasets of 1.1%. GOME displays unre-
alistic features with the largest discrepancies during summer.
The ground-based data are compared with long-term output
of the SLIMCAT 3-D chemical transport model (CTM). The
basic model, forced by ECMWF (ERA-40) analyses, cap-
tures the observed NO2 annual cycle but significantly un-
derestimates the spring/summer maximum (by 12% at sun-
set and up to 25% at sunrise). In a model run which uses
assimilation of satellite CH4 profiles to constrain the model
long-lived tracers the agreement is significantly improved.
This improvement in modelled column NO2 is due to better
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modelled NOy profiles and points to transport errors in the
ECMWF ERA-40 reanalyses.

1 Introduction

NO2 plays an important role in the chemistry of ozone from
the mid stratosphere to the mesosphere through catalytic re-
actions:

NO + O3 → NO2 + O2 (1)

NO2 + O → NO + O2 (2)

Net: O3 + O → 2O2 (3)

The NOx contribution to the overall O3 equilibrium de-
pends on latitude, altitude and season. The primary source of
stratospheric active nitrogen is N2O (e.g. see Minschwaner
et al., 1993). In the middle and upper stratosphere N2O
is converted to NO by reaction with excited oxygen atoms
O(1D) produced mainly by UV photolysis of O3. Measure-
ments have shown a steady increase in atmospheric N2O over
the last two decades of 2.2–2.6% per decade (WMO, 2007).
While the chemistry of the NOy family has been well estab-
lished over recent decades, long-term NO2 observations dis-
play positive trends exceeding that of N2O. Liley et al. (2000)
analysed the longest available visible spectroscopy dataset
(Lauder, New Zealand) and found an increase of 5±1% for
the period 1980–1999, some 2% larger than the estimated
trend in N2O. The same rate of increase (+5.2±3.2% per
decade) was obtained by Rinsland et al. (2003) for Kitt Peak
(32◦ N) using FTIR spectrometer data. Struthers et al. (2004)
extended the Liley et al. (2000) work by comparing Lauder
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and Arrival Heights (Antarctica, 78◦ S) data with a three-
dimensional coupled chemistry-climate model (CCM). They
again found a greater rate of increase of NO2 compared with
N2O both in the measurements and the model.

Differential optical absorption spectrometry (DOAS) in
the visible range has been used extensively for ground-
based measurements of NO2 vertical column density (VCD)
since the pioneering work of Brewer (1973) and Noxon
(1975), and further improvements by Solomon et al. (1987)
and others. Since the late 1980s/1990s zenith spectrom-
eters have been deployed at remote locations around the
globe for studies of stratospheric NO2. Most of them are
integrated into the Network for Detection of Atmospheric
Composition Change (NDACC), formerly NDSC, follow a
measurement protocol and participate in regular intercom-
parisons for quality assurance (http://www.ndsc.ncep.noaa.
gov/). These data have helped establish a better under-
standing of nitrogen oxides stratospheric behaviour in the
extra-tropical region. In 1993 Izaña (28◦ N) initiated its
routine measurement programme for NO2, later extended
to O3 and BrO. In the early 1990s four stations were
also set up in the framework of the Systeme d’Analyse
par Observation Zenithale (SAOZ) network in the Southern
Hemisphere (http://www.aero.jussieu.fr/themes/CA/Reseau
SAOZ.html). Recently, two more were added to the BRE-
DOM network (http://www.iup.physik.uni-bremen.de/doas/
groundbaseddata.htm). However, long records in the trop-
ical latitude belt are still scarce and no comprehensive long-
term low latitude NO2 measurements have been reported to
date.

In the last decade, the technique has been successfully ex-
tended to satellites instruments such as GOME (ESA, 1995),
SCIAMACHY (Bovensman et al., 1999) and OMI (Dover et
al., 2005) and will continue in the years to come with the
GOME-2, a set of units on board of the operational METOP
series. While polar orbiting satellites offer the advantage of
global coverage, no study of stratospheric diurnal variation
is possible since they scan low latitude regions once per day
at best. Additionally, orbiting instruments require validation
from the ground to establish the optimum settings and detect
potential degradation with time. Ground-based quality con-
trolled instrumentation provides independent measurements,
stable in time, which are extremely useful for validating or-
biting instruments. The UV-Vis spectrometer network has
contributed to the NO2 validation of satellite instruments
such as GOME (e.g. Lambert et al., 1998; Richter et al.,
2000) on board the ERS-2, and extensively to SCIAMACHY
(e.g. Lambert et al., 2004; Richter et al., 2004; Piters et al.,
2006; Lambert et al., 2007) and MIPAS (e.g. Hendrick et al.,
2004; Wetzel et al., 2007) on the ENVISAT platform.

Here we report the behaviour of the NO2 column over
the high altitude subtropical station of Izaña (28◦ N, 16◦ W,
Tenerife, Canary Islands, 2370 m a.s.l.) on different time
scales, from diurnal to interannual, based on 14 years of
data. Ground-based observational data are compared to mod-

els and satellite measurements for the same location, consti-
tuting a limited low-latitude NO2 climatology for the period
1993–2006.

2 Passive DOAS at zenith

The technique used is based on measurement of atmospheric
absorption of solar radiation in selected wavelength bands
where NO2 has a structured cross-section. For stratospheric
observations the instrument is pointed at the zenith sky. Un-
der these conditions, the equivalent photon path (EPP), or
radiation slant path, for a given wavelength is defined as the
single path that corresponds to the sum of all paths contribut-
ing to the observed zenith radiation weighted by the inten-
sity of each one. At twilight, the scattering point of the EPP
occurs in the stratosphere. The slant path from the top of
the atmosphere to the scattering point is enhanced as the sun
moves to larger solar zenith angles (sza), while below the
scattering point radiation comes from the vertical. As a con-
sequence, the stratospheric contribution of the NO2 absorp-
tion is amplified compared to the tropospheric one (Solomon
et al., 1987).

The logarithm of this equivalent twilight spectrum, ide-
ally ratioed to an extraterrestrial spectrum, yields the opti-
cal depth of the absorbers, providing that the Lambert-Beer
equation applies which is the case in an optically thin atmo-
sphere. In practice, the extraterrestrial spectrum is substi-
tuted by a spectrum measured at high sun (so called refer-
ence spectrum). The measured NO2 column is, in fact, the
difference in NO2 between twilight and high sun EPP and
it is called the Differential Slant Column Density (DSCD).
The high sun spectrum contains an unknown amount of NO2
which has to be estimated and added afterwards to obtain the
NO2 Slant Column Density (SCD).

The DOAS at zenith technique requires that all absorbers
are known in advance and that their absorption cross-sections
are known in the spectral range selected. DSCDs are derived
by least squares fitting (i.e. Vandaele et al., 2005) using:(

d

dNi

) ∣∣∣∣ln [
I (aλ + b)

Iref(λ)

]
+

∑
{σi (λ) ∗ DSCDi} + P(λ)

∣∣∣∣2
= ε (minimum) (4)

WhereI (λ) is the twilight spectrum. Parametersa andb

account for spectral squeeze and shift due to small changes
in the spectrograph and are obtained by iterative approxima-
tions until the minimum residual is reached.Iref(λ) is the ref-
erence spectrum at high sun after alignment using the Fraun-
hofer lines present in the solar spectrum.σi are the differen-
tial absorption cross-sections andP(λ) is a polynomial func-
tion accounting for scattering. To convert the spectral obser-
vations to vertical column density (VCD) a further two-step
process is required. First, the amount of the NO2 density
contained in the reference spectrum must be computed and
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added to the DSCD, and then the vertical column conversion
is performed by dividing by the Air Mass Factor (AMF) co-
efficients.

2.1 Reference content and AMF calculations

The amount of gas contained in the reference spectrum in dy-
namically controlled species can be obtained as the intercept
of a linear fit by the classical Langley plot method:

Ref=VCD∗ AMF (sza)−SCD(sza) (5)

where VCD is the vertical column density of the gas under
consideration and SCD (sza) is the amount retrieved from the
observations. AMF (sza) is mainly a function of solar zenith
angle (sza) but also dependent, to some extent, on the shape
of the vertical profile of the gas under consideration. Ref is
the amount contained in the zenith reference spectrum at high
sun. It can be retrieved as the intercept of the linear fit under
the assumption of no concentration changes during the period
of the measurements. Other species of short photochemical
lifetime, e.g. NO2, undergo significant changes throughout
the day, and the constant column assumption is not valid.
Consequently the representation of AMF versus slant column
departs from a straight line.

For these short-lived species the so-called modified AMF
must be used instead (Lee et al., 1994). These AMFs are ob-
tained by including a coefficient C (sza)=VCD0/VCD (sza),
where VCD (sza) comes from a photochemical box model
for the appropriate season. VCD0 is the vertical column at
the sza where the reference spectrum is recorded. The cor-
rection assumes that the actual NO2 diurnal variation is pro-
portional to the NO2 predicted by the model. The reference
content can then be estimated by:

Ref=VCD∗ AMF (sza) ∗ C(sza)−SCD(sza) (6)

The reference spectrum can be used for many years if the
spectrograph does not change its specifications, and the Lan-
gley plot is computed only once per reference.

3 The station

The Global Atmospheric Watch (GAW) Izaña station, man-
aged by the Instituto Nacional de Meteorologı́a (INM,
Spain), is located at 28◦18′ N, 16◦29′ W on Tenerife (Ca-
nary Islands), 300 km from the African west coast at an al-
titude of 2370 m a.s.l. The Canary Islands are below the de-
scending branch of the Hadley Cell which favours a large-
scale high stability catabatic flow regime, resulting in a
large number of clear-sky days. The appearance of deep
lows and cut-off lows, which could favour stratosphere-
troposphere exchange, is limited to winter time. The sta-
tion is above a quasi-permanent trade wind inversion well
established between 800 and 1500 m a.s.l., only absent dur-
ing some episodes in winter. As a consequence, the station

is under free-troposphere conditions most of the time, pre-
cluding pollution from the Sta. Cruz and Puerto de la Cruz
coastal towns from reaching the station, except on occasions
associated with the passing of low pressure systems. In-situ
annual mean NO2 during twilight are of 115 and 473 pptv for
a.m. and p.m. respectively (Y. Gonzalez, personal communi-
cation). The summer-autumn stratospheric circulation is es-
sentially zonal. Air-masses originate at 20–25◦ N with little
latitudinal variation (Schneider et al., 2005). During winter
there is a large variation in the origin of the air masses arriv-
ing at the station due to planetary wave activity. Occasionally
polar stratospheric air-masses reach the station (Yela, 1999).

3.1 Instrumentation

Two instruments contribute to the data record. In May 1993
a scanning spectrometer (EVA) was installed on the ter-
race of the observatory for twilight measurements between
88◦–92◦ in the 430–450 nm spectral range. It is based on
a Jobin-Yvon H20 monochromator with a ruled grating of
1200 grooves/mm and a photomultiplier tube Hammamatsu
R212-UH blue enhanced as the detector. Spectral resolution
is 1 nm FWHM and the sampling path is 0.1 nm. A full spec-
trum is taken in 1.7 s and 30 spectra per measurement are
accumulated to improve the signal-to-noise ratio. The instru-
ment is located outdoors in a thermostatised housing. Light
reaches the spectrograph by a 45◦ angle mirror. The instru-
ment takes one measurement per 0.5◦ of sza between 88◦ and
92◦.

In December 1998 an advanced visible spectrograph
(RASAS) was installed. The instrument is based on an
EGG&1453A 1024 photodiode array (PDA) detector con-
trolled by an EGG 1461 on a Jarrel-Ash Monospec 18 spec-
trograph. Scattered light at zenith is collected by a baf-
fled cylinder through a quartz fibre bundle with the inner
end rectangle-shaped acting as 100µm entrance slit. A flat-
ruled diffraction grating of 600 grooves/mm provides a spec-
tral range of 340–600 nm for NO2 and O3 observations with
an average FWHM resolution of 1.3 nm. The spectrograph
and detector are housed in a thermostatised hermetic con-
tainer keeping the spectrograph at a constant temperature
of 15±0.2◦C, thus maintaining the alignment of the spec-
tra with time. The detector is operated at−35◦C by means
of a 2-step peltier and external assistance of a circulating
chiller at−10◦ C. A continuous supply of dry nitrogen from
a generator prevents ice formation on the detector window.
In-house control software keeps the assembly in operation.
Measurements are carried out in continuous mode from 94◦

sza at dawn to 94◦ at sunset skipping the central hours of
the day whenever the sza is smaller than 45◦ to avoid spec-
tra perturbations due to reflections in the entrance baffle and
direct sun. Typical daytime integration time in clear sky is
2.5 s, increasing to 25 s at 90◦ sza. The instrument is pro-
grammed to integrate spectra during the time required for the
sun to move 0.2◦, therefore about 500 spectra are collected
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Table 1. Summary of main specifications of spectrometers used in this work.

Spectrometers technical specifications

EVA RASAS ARTIST

Type of spectrometer Scanning Spectrograph Spectrograph
Monochromator Jobin-Yvon H20 Jarrel Ash Monospec 18 Jobin Yvon TRIAX 180
Difraction grating Ruled, 1200 grooves/mm Ruled, 600 grooves/mm Holographic, 900 grooves/nm
Slit width 250µm 100µm 100µm
Detector type Photomultiplier Photodiode array (PDA) Photodiode array (PDA)
Detector model HAMAMATSU R212-UH EGG&1453A 1024-PDA

at−35◦C
Princeton Instruments PDA 1024
at−40◦C

Controller Home made EGG 1461 Princeton Instruments STS 121
FWHM 1.25 nm 1.3 nm 0.6 nm
Spectral range 430–450 nm 340–600 nm 325–460 nm
Fitting window for NO2 430–450 nm 425–540 nm 425–450 nm
Detector full depth STN 4000 4100 >10 000
Oversampling factor Sampling path 0.1 nm 5 pixel/nm 7.7 pixel/nm
Light collection 45◦ angle mirror Quartz fibre bundle Quartz fibre bundle
FOV (half angle) 8.5◦ 6.5◦ 3.2◦

Measurement period Since 1993 Since 1998 Since 2001
Location Outdoor Indoor Indoor
Thermostatic control Yes Yes (15±0.2◦C) Yes (14±0.2◦C)
External chiller No Yes (T =−10◦C) Yes (T =0◦C)
Measurement SZA range 88◦ to 92◦ every half degree a.m. 94◦to 45◦ p.m. 45◦ to 94◦ a.m. 94◦ to 45◦ p.m. 45◦ to 94◦

SZA range for mean twilight 89◦ to 91◦ 89◦ to 91◦ 89◦ to 91◦

Typical integration time 1.7 s /spectrum 2.5–25 s at SZA 90◦ 3–50 s at SZA 90◦

Accumulation 30 spectra/measurement During time required by the sun
to move 0.2◦ SZA at SZA 90◦

During time required by sun to
move 0.2◦ SZA at SZA 90◦

Typical shift ±2e−2 nm ±5e−3 nm ±2.5e−3 nm
Typical stretch ±4e−3 nm/range ±7.5e−2 nm/range ±1.5e−3 nm/range

everyday. Midnight spectra are recorded everyday for dark
current checking. Spectral resolution is measured periodi-
cally by monitoring a low-pressure Hg lamp and whenever
an increase in the errors is observed.

Short-term studies and diurnal evolution are carried out
with a third instrument. The ARTIST spectrometer is op-
timized for BrO measurements covering the 325–460 nm
range at 0.6 nm resolution FWHM. The detector is a Prince-
ton PDA1024 operating at−40◦C controlled by a ST121
unit. Light collection is essentially identical to RASAS ex-
cept for a narrower Field Of View (FOV). Lower detector
noise and high instrumental stability result in a signal-to-
noise 2 times better than the RASAS instrument. The en-
trance FOV’s (half angle) are 8.5◦, 6.5◦, and 3.2◦ for EVA,
RASAS, and ARTIST, respectively. Instrumental details are
summarised in Table 1.

The UV-Vis spectrometer RASAS has been operating on a
routine basis since late 1998 and ARTIST since 2001. Both
are NDACC (formerly NDSC) -qualified instruments. INTA
has participated in the OHP 1996 (Roscoe et al., 1999) and
Andoya 2003 (Vandaele et al., 2005) NDACC intercompari-
son exercises.

3.2 Data and settings

Fourteen years of data have been used in the analysis. Due
to a refurbishment of the Izaña observatory from 1998 to
2003 the spectrometers were installed in a container sepa-
rated from the main building. From time to time they suf-
fered failures due to power supply interruptions and high dust
produced by the surrounding working machines that reached
the spectrograph through the nitrogen generator. In October
2003 the spectrometers were moved again to the upper floor
of the main building tower significantly improving the labo-
ratory temperature control and power, resulting in almost no
gaps in the data since that date.

NO2 from the scanning EVA spectrometer is retrieved in
the 433–448.5 nm range. The operational RASAS analysis
makes use of a larger spectral interval (435–540 nm) for si-
multaneous retrieval of NO2 and O3 columns. NO2 from the
ARTIST is evaluated in the 425–450 nm range. The NO2 ab-
sorption cross-sections in the visible are highly structured,
Gaussian in shape, with a large number of optically active
transitions with irregular fine structure superimposed, due
to the strong coupling between the ground and first excited
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electronic states (Orphal, 2002). Doppler broadening, due
to thermal motion of the molecules, and pressure broadening
are irrelevant for the retrieval at the spectral resolution used
in our instruments.

In order to homogenise the results, cross sections used are
those defined as standard in the Andoya NDACC (NDSC)
intercomparison (Vandaele et al., 2005). A set of 6 cross-
sections have been included in the analysis; O3 at 223 K
(Bogumil et al., 2001), NO2 at 220 K (Vandaele et al., 1998),
H2O from Hitran database (2000) and O4 at room tempera-
ture by Greenblatt et al. (1990). The Raman scattering cross-
section was generated by the Windoas package (Fayt and Van
Roozendael, 2001) from the Raman theory. Finally, the in-
verse of the reference spectrum was included as a pseudo-
cross-section to account for stray light inside the spectro-
graph and detector residual dark current. Figure 1 shows an
example of clear-sky fitting results at twilight for all three in-
struments. The ARTIST performance yields very low resid-
uals (2.5–3.5×1014 mole/cm2) while RASAS and EVA per-
form at a similar level (6–7×1014 molec/cm2).

Air Mass Factors were computed by the INTA single scat-
tering radiative transfer model (Sarkissian et al., 1995a) at
440 and 500 nm, for EVA and RASAS, respectively, using
the procedure described in Sarkissian et al. (1995b). An
ozonesonde climatology from Tenerife was used for O3 and
temperature profiles. A single set of AMFs has been used for
all seasons since both NO2 and stratospheric temperature an-
nual variations in subtropical regions are small. No aerosols
have been included in the calculations.

Stratospheric annual mean temperatures over Izaña for
the same 1993–2005 period have been obtained from the
monthly mean assimilation data provided by the British At-
mospheric Data Centre calculated using the daily analyses
from the United Kingdom Met Office. The original data set
includes temperature on the standard UARS pressure levels,
from surface to 0.316 hPa, on a 2.5◦ latitude by 3.75◦ lon-
gitude global grid. The data assimilation system used data
from operational meteorological observations.

3.3 Errors

Uncertainties in UV-Vis spectrometry at zenith during twi-
light come from four sources: errors in the retrieval, un-
certainty in NO2 cross-sections, uncertainty in the reference
content and AMF calculations. Typical fitting errors range
from 1–2 % under clear skies and 2–3% in cloudy condi-
tions. The uncertainty in the Vandaele et al. (1998) NO2
cross-sections is estimated to be 2% or better. These cross-
sections are recommended as standard by Orphal (2002) in
his comprehensive review. Uncertainty in the amount of the
reference content from modified-Langley plots, estimated as
the standard deviation of the intercept for a cluster of days,
accounts for another 2%. The AMF depends on the shape of
the NO2 profile distribution. The NO2 profile changes from
sunrise to sunset and from winter to summer due to photo-

430 440 450 460 470 480 490 500 510 520 530 540
-1x10-2
-8x10-3
-6x10-3
-4x10-3
-2x10-3

0
2x10-3
4x10-3
6x10-3
8x10-3
1x10-2

426 428 430 432 434 436 438 440 442 444 446 448 450
-2.0x10-2

-1.5x10-2

-1.0x10-2

-5.0x10-3

0.0

5.0x10-3

1.0x10-2

1.5x10-2

430 435 440 445 450

-6x10-3

-4x10-3

-2x10-3

0

2x10-3

4x10-3

6x10-3

RMSE = 5.4x10-4 

RASAS

 Wavelength (nm)

 

 

N
O

2 
  D

O
D

 Differential spectrum
 Fit to the data

RMSE = 2.5x10-4 

ARTIST

 Wavelength (nm)

 

 

N
O

2 
D

O
D

 Differential spectrum
 Fit to the data

EVA

 Wavelength (nm)

 

N
O

2 
 D

O
D

 Differential spectrum
 Fit to the data

RMSE = 6.0x10-4 

Fig. 1. Examples of spectral fits for the EVA, RASAS and ARTIST
ground-based spectrometers for the standard NO2 retrieval ranges.
No smoothing has been applied to the spectra.

chemistry. Accurate VCD AMFs require day-to-day calcula-
tions based on realistic NO2 profiles. For practical reasons
a single AMF-set has been used all the year round. The
AMF has been computed for the AFGL profiles for the trop-
ical scenario by the INTA fully spherical single-scattering
radiative transfer code. The model was run for sunrise and
sunset during the solstices to estimate the error introduced
by this approximation. In this case profiles have been ex-
tracted from the NO2 harmonic climatology by Lambert et
al. (2000) based on HALOE v19 and POAM-III data. AMF
differences between this climatology and the AFGL-tropical
used as reference for summer-winter and am-pm in the 89◦–
91◦ sza range, are of the order of 5%. The error due to single
scattering approximation AMF at the retrieved sza and wave-
lengths is below 1%. The overall uncertainty due to the AMF
is estimated to be 6–7%.

The differential cross-section of NO2 in the visible range
depends on temperature. Retrievals using stratospheric tem-
peratures (i.e. 220 K) yield too low NO2 when the actual
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Fig. 2. Magnitude (in percent) of the errors in the RASAS spectral
range if temperatures are different from 220 K, based on Vandaele
et al. (1998) cross sections.

temperature is higher. Figure 2 shows the magnitude of the
error as a function of the effective temperature of the atmo-
sphere for the 435–540 nm spectral range based on the Van-
daele et al. (1998) cross-sections. The NO2 effective temper-
ature at a given sza can be defined as the mean temperature of
the atmosphere weighted by the NO2 concentration at each
layer contributing to the total observed rays in the same way
as the O3 effective temperature (Bernhard et al., 2005):

Teff (sza) =

∫ top
0 NO2(z) · WF(sza, z) · T (z)dz∫ top

0 NO2(z) · WF(sza, z)dz
(7)

where WF(sza,z) are the normalized weighting functions for
each altitude. Since the altitude of the maximum scattering is
strongly dependent on the sza during twilight a large change
in the NO2 effective temperature is observed at high sza
(Fig. 3). If a unique NO2 cross-section is used during the day
an underestimation of 10 to 13% occurs at noon due to this
effect. Except for the investigation of the diurnal variation,
only spectra at around 90◦ sza have been used in this work.
Under these conditions, the NO2 effective temperature essen-
tially matches the cross-section temperature (220 K). About
±1–2% error can be produced due to changes in the NO2 ef-
fective temperature at twilight during the year, which is not
corrected in the presented data.

The FOV of the instrument also has an impact on the re-
trieved columns. The observed spectrum results from the in-
tegration of rays of different directions within the FOV, while
the column is referred to an ideal pure zenith line. We can
define an effective path,R, dependent on the semi FOV (α)

as:

R =
secα − 1

ln(secα)
(8)

For the FOV’s used in our instrumentsR is less than 1%
larger than the pure vertical or, in other words, we expect an
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Fig. 3. Effective temperatures above Izaña for the solstices from a
radiosonde climatology and the AFGL tropical model.

underestimation of the column of less than 1% due to this
effect. The overall uncertainty in the data considering all
mentioned effects is estimated to be 12–14%

3.4 Homogenization of the dataset

In order to minimise the impact of the switch from scanning
instrument (EVA) to PDA-based spectrograph (RASAS) on
the data record, both instruments have been kept in parallel
operation at Izãna for an extended time period. In Fig. 4a
the VCDs from EVA and RASAS are shown for the twi-
light mean between 89◦ and 91◦ for the overlapping years
2000 and 2001. Cross-correlation shows no deviation from
unity in the slope (Fig. 4b), the standard deviation being
1.6×1014 molec/cm2. When distinguishing between a.m.
and p.m. data the slope changes slightly to 0.96 and 1.03,
respectively. As a consequence of the excellent overlap be-
tween instruments, a complete 1993–2006 NO2 record was
created without the use of any kind of correction factors.

4 SLIMCAT 3-D model

SLIMCAT is an off-line 3-D chemical transport model
(CTM) described in detail by Chipperfield (1999) and Chip-
perfield (2006). The model has been used in many studies
of stratospheric chemistry and has been shown to perform
well (e.g. Feng et al., 2006). The model contains a gas-phase
stratospheric chemistry scheme along with a treatment of het-
erogeneous chemistry on liquid aerosols and liquid/solid po-
lar stratospheric clouds (PSCs). Horizontal winds and tem-
peratures are specified using meteorological analyses (e.g.
from European Centre for Medium-Range Weather Forecasts
(ECMWF)) while vertical transport in the stratosphere is di-
agnosed from calculated heating rates.
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In this study the model was run at a resolution of
7.5◦

×7.5◦ with 24 hybridσ−θ levels from the surface to ap-
proximately 60 km. Two runs were performed; the first (run
A) was a simulation with free-running chemistry. The model
was integrated from 1977 until 2006 using ECMWF analyses
(ERA-40 up to 2001, then operational). Chemical boundary
conditions were applied by specifying surface mixing ratios
of source gases based on past observations (WMO, 2003). In
this run the distribution of chemical species is therefore de-
termined by the modelled chemistry and transport. A second
model run (run B) was performed which included chemical
data assimilation. Run B started in 1991 (initialised from run
A) but with assimilation of HALOE O3, CH4, H2O and HCl.
The method of chemical data assimilation used in this model
is described in Chipperfield et al. (2002) and uses the sequen-
tial technique of Khattatov et al. (2000) along with preserva-
tion of model-predicted tracer-tracer correlations. In effect,
the assimilation of the long-lived tracer CH4 constrains all of
the modelled long-lived tracers and serves to correct errors in
the modelled transport (as provided by the forcing analyses).

Model output was saved every 2 days (at 00:00 UT) in-
terpolated to the location of Tenerife. A stacked chemical

- Page 12, column 2, line: 53. 
 Page numbers from reference should be: 6-8 
 
- Page 13, column 1, line: 37 
 Last access reference should be 2008 
 
- Page 13, column 2, line 33 
 
- Page 14, column 2, first reference should be: 
 “…..Atmos. Chem. Phys., 7, 3261-3284, 2007” 
  
- Page 14, column 2, line 24, last reference should be: 
 “… Proc. Quadrennial Ozone Symposium, 1055, 1-8 June 2004, Kos, Greece, 
2004.” 
 
 
- Figure 5 should be changed by: 
 
  
     

 

355.2 355.3 355.4 355.5 355.6 355.7 355.8
0.0

5.0x1014

1.0x1015

1.5x1015

2.0x1015

2.5x1015

3.0x1015

3.5x1015

4.0x1015

4.5x1015

5.0x1015

5.5x1015

6.0x1015

Off-axis
  gaps

Izaña data      NO2 VCD        day 355/2004

 
 

Observations

90º
pm

90º
am

ref (sza=70 pm) = 6x1015 molec/cm2

Box Model SLIMCAT
(+ offset 3x1014 molec/cm2)

 

 

N
O

2 V
C

D
 (m

ol
ec

/c
m

2 )

Day

Fig. 5. NO2 VCD during a day (red squares) versus output from the
SLIMCAT photochemical box model.

box model was then run to obtain model output at the correct
time of day for comparison with the observations (sunrise
and sunset at 90◦ sza).

5 Results

5.1 Diurnal variations

Although optimized for twilight observations, DOAS visible
spectroscopy can be used to study the diurnal evolution of
the NO2 in unpolluted environments. Measurements at low
SZA are challenging since they are highly sensitive to instru-
mental noise, accuracy in air mass factors and atmospheric
conditions. Additionally, the impact of the uncertainty in the
reference content to the VCD, which is small at twilight, in-
creases at low SZA since measured SCD approach zero to-
wards noon. A wrong estimation of the absorber content in
the reference results in a strong diurnal variation with either
too large an increase (excess) or too low (defect of reference
content).

For these reasons we have selected days with extremely
low aerosol content resulting in very large signal to noise ra-
tio. In Fig. 5 an example is shown for winter solstice. The
diurnal variation has been constrained by considering that,
once the day conditions are established, NO2 VCD increases
linearly during the day, between 80◦ morning and evening,
essentially due to photodissociation of N2O5 (Solomon et al.,
1986). A value of 6×1015 molec cm−2 in the reference con-
tent (sza=70◦ p.m.) is obtained in this way. Measurements
start at sza of 93.3◦ a.m. and end at 93.6◦ p.m. when the sky
illumination is too low. Data gaps between 65◦ and 70◦ in
a.m. and p.m. are due to the instrument scheduling configu-
ration for off-axis measurements. The diurnal cycle has been
simulated for the same day and latitude by vertically inte-
grating in 1-min steps the output profile of a photochemical
box model derived from the SLIMCAT 3D CTM (Denis et
al., 2005). A fixed offset of 3×1014 molec cm−2 is added
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to the model data to fit the observations. Other tested days
provide similar results although these kind of observations
are restricted to winter period when days of extremely low
aerosol optical depths (AOD<0.03 at 500 nm) occur. The
good agreement in the diurnal behaviour provides observa-
tional evidence of the accuracy of the model NOy chemistry
at low latitudes.

5.2 Seasonal variability

The climatological seasonal wave has been obtained by
taking the mean for each day of all the years consid-
ered (Fig. 6). Mean annual values are of 2.51×1015 and
3.79×1015 molec cm−2 for a.m. and p.m., respectively. Al-
though strongly modulated by photochemistry through the
number of sunlit hours in the stratosphere, a spring-autumn
asymmetry occurs. The maximum departure from pure pho-
tochemical control takes place at 13–13.5 h of light (March–
October) (Fig. 7). The asymmetry can be described by a sec-
ondary wave which is phase-shifted by 3 months with re-
spect to the primary one, having an amplitude of 2.8×1014

and 4.5×1014 molec cm−2 for the a.m. and p.m. data, respec-
tively. A relative contribution to the VCD of about 6% during
the equinoxes (Fig. 8a) results in a shifting of the NO2 VCD
maximum/minimum toward spring/autumn. The secondary
wave has been found to be highly correlated to the tempera-
ture in the upper stratosphere. The sign of the correlation is
opposite to that expected from an artefact resulting from tem-
perature changes not treated in the retrieval. Figure 8b dis-
plays the correlation between the NO2 secondary wave con-
tribution to the VCD and the mean temperature from UKMO
for the same time period (1993–2006), showing how the ob-
served modulation is dominated by the layer above 5 hPa
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Fig. 7. The NO2 VCD versus hours of available sunlight at 30 km
showing a spring-autumn asymmetry.

(∼36 km) where the correlation coefficient is over 0.85. The
change in NO2 due to temperature can be estimated for day-
time by computing the ratio

NO

NO2
≈

JNO2 + k1[O]

k2[O3]
(9)

where k1 and k2 are the reaction constants of
NO2+O→NO+O2 and NO+O3→NO2+O2, respectively.
The ratio NO/NO2 decreases as temperature increases
resulting in an almost linear NO2 increase of 1.5%/K in
the stratosphere forJ , [O] and [O3] typical of a tropical
atmosphere. This corresponds to 6% for the 4 K amplitude
of the temperature wave in the upper stratosphere, in good
agreement with observations.

5.3 Interannual variability

The monthly mean column NO2 data record since 1993 is
shown in Fig. 9a. The column displays an increase in the first
years due to the recovery from stratosphere partial denoxifi-
cation after the Mt. Pinatubo eruption in 1991, observed as
a general feature in ground-based datasets (Johnston et al.,
1992; Koike et al., 1993; Van Roozendael et al., 1997; Liley
et al., 2000). However, other interannual variability can also
be seen from the observational record. From 2002 onwards
a decrease in the amplitude of the annual wave is observed.
Departures from the seasonal mean (Fig. 9b) can be due to a
number of effects such as changes in the meridional compo-
nent of dominant winds in the mid stratosphere due to drift-
ing in quasi-stationary waves or the QBO, changes in tem-
perature, etc. An interpretation of these features requires a
detailed knowledge of the dynamics and chemistry of the re-
gion and is out of the scope of this work. Trends are not
obvious from the figure and in any case are not statistically
significant.
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Fig. 8. (a) Amplitude of the secondary wave and temperature at 5 hPa (∼36 km). (b) Correlation between secondary waves and upper
stratosphere temperature.

5.4 Ground-based versus satellite

Ground-based a.m. NO2 VCDs have been compared to
GOME (ERS-2) and SCIAMACHY (ENVISAT) VCD data
retrieved at the University of Bremen (Richter et al., 2005a,
Richter et al., 2005b) updated to version 2.0. The satellite
data are based on DOAS retrievals performed in the 425–
450 nm range with essentially the same settings as used for
the ground-based instruments, except for the NO2 cross-
sections. For GOME, the NO2 cross-sections of (Burrows
et al., 1998) at 241 K were used, while for SCIAMACHY
the Bogumil et al. (2003) values at 243 K were used. Due
to the lack of simultaneity between ground-based and satel-
lite measurements, the diurnal change of the VCD must be
taken into account for a proper intercomparison (Lambert et
al., 2004; Sussmann et al., 2005). According to box model
results and observations (see Fig. 5), the NO2 VCD continues
to decrease due to photodissociation well after the 90◦ a.m.
DOAS measurements. The column recovers during daytime
at a rate of 6×1013 molec/cm2/h and equals the a.m. twi-
light after noon (fractional day 0.58 and 0.62 in winter and
summer, respectively). ENVISAT overpasses the station at
around 10:00 Solar Local Time (SLT) or fractional day 0.42,
therefore values 2.3 to 2.9×1014 molec/cm2 lower in SCIA-
MACHY data would be expected due to this effect. GOME
overpass is half an hour later and the difference with the
ground-based data should be 3×1013 molec/cm2 less. A frac-
tion of it would be compensated by the smaller NO2 column
observed by the ground-based spectrograph as compared to
the satellite due to the height of the observatory. Additional

uncertainties result from the different line of sight of both
instruments. Maximum sensitivity of ground-based zenith
instrumentation at dawn occurs some 200 km in the direction
towards sunrise. While this difference must be considered at
high latitudes where NO2 zonal gradients can be significant
in winter due to asymmetry of the polar vortex (Solomon et
al., 1994), its contribution at tropical regions is within the
error bars and has not been taken into account in this work.

Figure 10 displays the satellite NO2 VCD superimposed
on the ground-based DOAS. One year of overlap between
GOME and SCIAMACHY shows consistency in magnitudes
between both instruments. When compared to the ground-
based data, SCIAMACHY shows excellent agreement while
GOME data produces too low summer values and the an-
nual maximum shifted towards spring. SCIAMACHY mi-
nus ground-based differences are 1.1% on average (Fig. 11a)
with a moderate standard deviation of 2.2×1014 molec/cm2.
GOME yields lower values (−9.4%) and larger standard de-
viation 3.0×1014 molec/cm2 (Fig. 11b).

As discussed above, the satellite data should be slightly
lower than the ground-based measurements as result of the
photochemical change of NO2 over the day. However, this is
not the case for SCIAMACHY while for GOME the underes-
timate is very strong. For SCIAMACHY, the most probable
reason is the use of NO2 cross-sections at 243 K instead of
220 K, which leads to a systematic overestimation of about
6% (2×1014 molec/cm2 in summer, 1.2×1014 molec/cm2 in
winter). For GOME NO2 columns, a spectral interference
pattern induced by the diffuser plate used for irradiance mea-
surements prevents the use of the solar measurements as
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reference (Richter and Burrows, 2002). Therefore, a nor-
malisation over the Pacific region is used assuming a con-
stant NO2 column in that region (Richter et al., 2005a) which
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Fig. 11. Satellite – ground-based data cross-correlation (upper pan-
els) and frequency distributions of the differences (lower panels).

strongly limits the information content of GOME measure-
ments at low latitudes. In addition, the Burrows et al. cross-
sections used for GOME show differences of up to 10% com-
pared to the cross-sections used for the ground-based mea-
surements which can introduce a corresponding scaling error.
The poorer agreement of GOME data compared to SCIA-
MACHY (which do not suffer from such an effect) is there-
fore to be expected.

5.5 Ground-based versus SLIMCAT

Figure 12 shows the comparison of observed and modelled
sunrise and sunset column NO2 at Izãna. The chemically free
running model (run A) reproduces the general shape of the
observed NO2 VCD seasonal cycle but underestimates the
magnitude throughout spring and summer. The maximum
underestimation is more marked at sunrise (25%) than at
sunset (12%). When chemical data assimilation is included
(run B) the model-observation comparison improves consid-
erably. The modelled sunrise NO2 VCD now agrees very
well in magnitude throughout the annual cycle, although the
winter minimum in the observations is overestimated (15%).
The sunset agreement is also much better although, as with
the sunrise plot, there is an overestimation of the winter min-
imum seen in the observations (25%). Note that in the assim-
ilation run B the winter minimum is too high.

Clearly, the model run constrained by chemical data as-
similation compares better with observations but it is impor-
tant to bear in mind how that has been achieved and to re-
member where comparisons are still meaningful. In the case
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of run B, assimilation of HALOE CH4 constrains this mod-
elled field to mimic the observations. Through preserved
tracer-tracer correlations the modelled N2O field is trans-
formed and then so is NOy. In effect the CH4 constraint
modifies the model NOy distribution to be consistent. These
changes to the long-lived tracers are correcting errors in the
modelled transport. The partitioning of chemical species
within the NOy family is then controlled by the model chem-
istry, as before, although changes to the model O3 through
assimilation will affect this slightly. Overall we can say that
the assimilation run B is therefore still testing the model NOy
chemistry but, compared to run A, has been corrected for un-
certainties in modelled transport.

Figure 12 indicates, therefore, that chemical assimilation
improves upon the transport in the model which is deter-
mined by the quality of the winds used to force it. There are
known problems with the ability of assimilated winds to rep-
resent transport in the sub-tropics; analyses tend to allow too
much transport from the tropics to mid-latitudes (e.g. Schoe-
berl et al., 2003).

Clearly, both model runs capture the seasonal cycle in col-
umn NO2, although run A underestimates the summer maxi-
mum due to transport errors. Run B has improved upon run
A, in effect having been corrected for these transport errors.
However, run B overestimates the winter minimum by 10%
at sunrise and 20% at sunset. In run B the modelled NO2 col-
umn generally increases relative to run A because of larger
NO2 mixing ratios in the lower stratosphere associated with
larger NOy (and smaller N2O). Without suitable observations
(e.g. profiles of NOy and N2O5) it is not possible to confirm
the accuracy of the other model NOy species and explain the
reason for the overestimate in winter column NO2.

6 Summary

Fourteen years of daily NO2 vertical column density (VCD)
measurements by zenith sky spectroscopy at the unpolluted
NDACC station of Izãna (28◦ N, 16◦ W, 2370 m a.s.l.) start-
ing in 1993 have been used to analyse the NO2 climatol-
ogy in the northern subtropics from diurnal to interannual
timescales. The overall uncertainty in the data is estimated
to be 12–14% considering measurement errors, cross-section
uncertainties and Air Mass Factor approximations.

The NO2 VCD from continuous measurements between
95◦ a.m. to 95◦ p.m. displays a diurnal cycle in good agree-
ment with a vertically integrated gas-phase chemical box
model, providing observational evidence that the diurnal cy-
cle at low latitudes is dominated by solar radiation via the
NOx partitioning. The seasonal cycle is mainly controlled
by the available hours of sunlight, but modulated by the
temperature in the upper stratosphere. This secondary an-
nual wave contributes 6% to the total column and is phase-
shifted by 3 months (maximum in spring) with respect to the
solar wave resulting in a shifting of the NO2 VCD maxi-
mum toward spring and a flatness of the summer maximum
and winter minimum. Mean values are of 2.51×1015 and
3.79×1015 molec cm−2 for a.m. and p.m., respectively. In-
terannual variability of up to 10% in the annual maxima is
observed from the monthly mean record but no trend can be
inferred from the available dataset.

Ground-based data have been compared with the GOME
(ERS2) and SCIAMACHY (ENVISAT) orbital spectrome-
ters in nadir-viewing mode processed by the University of
Bremen (v2.0). SCIAMACHY NO2 VCDs yield an excel-
lent agreement with ground-based data while GOME dis-
plays too low values in summer due to a spectral interfer-
ence pattern induced by the diffuser plate. Mean differences
(ground-based minus satellite) are +1.1% for SCIAMACHY
and−9.6% for GOME.
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Additionally, a comparison between data and modelling
has been carried out using long-term output of the SLIM-
CAT 3-D CTM. The basic, chemically free running model
run A, forced by ECMWF (ERA-40) analyses, captures the
observed NO2 annual cycle but significantly underestimates
the spring/summer maximum. A second model run B, which
assimilated HALOE profiles of CH4 to constrain the model
long-lived tracers, showed much better agreement. This im-
provement in modelled column NO2 is likely due to better
modelled NOy profiles and confirms previously established
transport errors in the ECMWF ERA-40 reanalyses. The im-
pact of this on CTM studies of long-term trends in NO2 and
O3 needs further investigation.

Acknowledgements.The authors want to acknowledge the Izaña
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