

Konstantin K. Likharev Essential Graduate Physics Lecture Notes and Problems

Beta version

Open online access at http://commons.library.stonybrook.edu/egp/

and https://sites.google.com/site/likharevegp/

Part QM: Quantum Mechanics

Last corrections: 2021/08/16

A version of this material was published in 2019 under the title

Quantum Mechanics: Lecture notes IOPP, Essential Advanced Physics – Volume 5, ISBN 978-0-7503-1411-4, with the model solutions of the exercise problems published under the title

Quantum Mechanics: Problems with solutions IOPP, Essential Advanced Physics – Volume 6, ISBN 978-0-7503-1414-5 However, this online version is better corrected now.

Also recommended:

Konstantin K. Likharev (ed.) *Essential Quotes for Scientists and Engineers* Springer, 2021, ISBN 978-3-030-63331-8 (see https://essentialquotes.wordpress.com/)

Table of Contents

Chapter 1. Introduction (28 pp.)

- 1.1. Experimental motivations
- 1.2. Wave mechanics postulates
- 1.3. Postulates' discussion
- 1.4. Continuity equation
- 1.5. Eigenstates and eigenvalues
- 1.6. Time evolution
- 1.7. Space dependence
- 1.8. Dimensionality reduction
- 1.9. Exercise problems (15)

Chapter 2. 1D wave mechanics (76 pp.)

- 2.1. Basic relations
- 2.2. Free particle: Wave packets
- 2.3. Particle reflection and tunneling
- 2.4. Motion in soft potentials
- 2.5. Resonant tunneling, and metastable states
- 2.6. Localized state coupling, and quantum oscillations
- 2.7. Periodic systems: Energy bands and gaps
- 2.8. Periodic systems: Particle dynamics
- 2.9. Harmonic oscillator: Brute force approach
- 2.10. Exercise problems (43)

Chapter 3. Higher Dimensionality Effects (64 pp.)

- 3.1. Quantum interference and the AB effect
- 3.2. Landau levels and the quantum Hall effect
- 3.3. Scattering and diffraction
- 3.4. Energy bands in higher dimensions
- 3.5. Axially-symmetric systems
- 3.6. Spherically-symmetric systems: Brute force approach
- 3.7. Atoms
- 3.8. Spherically-symmetric scatterers
- 3.9. Exercise problems (40)

Chapter 4. Bra-ket Formalism (52 pp.)

- 4.1. Motivation
- 4.2. States, state vectors, and linear operators
- 4.3. State basis and matrix representation
- 4.4. Change of basis, and matrix diagonalization
- 4.5. Observables: Expectation values and uncertainties
- 4.6. Quantum dynamics: Three pictures
- 4.7. Coordinate and momentum representations
- 4.8. Exercise problems (34)

Chapter 5. Some Exactly Solvable Problems (48 pp.)

- 5.1. Two-level systems
- 5.2. The Ehrenfest theorem
- 5.3. The Feynman path integral
- 5.4. Revisiting harmonic oscillator
- 5.5. Glauber states and squeezed states
- 5.6. Revisiting spherically-symmetric problems
- 5.7. Spin and its addition to orbital angular momentum
- 5.8. Exercise problems (48)

Chapter 6. Perturbative Approaches (36 pp.)

- 6.1. Time-independent perturbations
- 6.2. The linear Stark effect
- 6.3. Fine structure of atomic levels
- 6.4. The Zeeman effect
- 6.5. Time-dependent perturbations
- 6.6. Quantum-mechanical Golden Rule
- 6.7. Golden Rule for step-like perturbations
- 6.8. Exercise problems (31)

Chapter 7. Open Quantum Systems (50 pp.)

- 7.1. Open systems, and the density matrix
- 7.2. Coordinate representation, and the Wigner function
- 7.3. Open system dynamics: Dephasing
- 7.4. Fluctuation-dissipation theorem
- 7.5. The Heisenberg-Langevin approach
- 7.6. Density matrix approach
- 7.7. Exercise problems (14)

Chapter 8. Multiparticle Systems (52 pp.)

- 8.1. Distinguishable and indistinguishable particles
- 8.2. Singlets, triplets, and the exchange interaction
- 8.3. Multiparticle systems
- 8.4. Perturbative approaches
- 8.5. Quantum computation and cryptography
- 8.6. Exercise problems (31)

Chapter 9. Elements of Relativistic Quantum Mechanics (36 pp.)

- 9.1. Electromagnetic field quantization
- 9.2. Photon absorption and counting
- 9.3. Photon emission: spontaneous and stimulated
- 9.4. Cavity QED
- 9.5. The Klien-Gordon and relativistic Schrödinger equations
- 9.6. Dirac's theory
- 9.7. Low energy limit
- 9.8. Exercise problems (21)

Chapter 10. Making Sense of Quantum Mechanics (16 pp.)

10.1. Quantum measurements

10.2. QND measurements

10.3. Hidden variables, the Bell theorem, and local reality

10.4. Interpretations of quantum mechanics

* * *

Additional file (available from the author upon request):

Exercise and Test Problems with Model Solutions (277 + 70 = 347 problems; 520 pp.)