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This book attempts to give students a unified introduction to the models, 
methods, and theory of modem linear algebra. Linear models are now used 
at least as widely as calculus-based models. The world today is commonly 
thought to consist of large, complex systems with many input and output 
variables. Linear models are the primary tool for analyzing these systems. 
A course based on this book ( or one like it) should prove to be the most 
useful college mathematics course most students ever take. With this goal 
in mind, the material is presented with an eye toward making it easy to 
remember, not just for the next hour test but for a lifetime of di verse uses . . 

Linear algebra is an ideal subject for a lower-level college course in 
mathematics, because the theory, numerical techniques, and applications are 
interwoven so beautifully. The theory of linear algebra is powerful, yet easily 
accessible. Best of all, theory in linear algebra is likable. It simplifies and 
clarifies the workings of linear models and related computations . This is 
what mathematics is really about, making things simple and clear. It provides 
important answers that go beyond results we could obtain by brute compu
tation. For too many students. mathematics is either a collection of tech
niques, as in calculus, or a collection of formal theory with limited appli
cations, as in most courses after calculus (including traditional linear algebra 
courses). This book tries to rectify this artificial dichotomy. 

Again, the applications of linear algebra are powerful, easily under
stood, and very diverse. This book introduces students to economic in-

. put-output models, population growth models, Markov chains', linear pro
gramming, computer graphics, regression and other statistical techniques, 
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numerical methods for approximate solutions to most calculus problen1s, 
linear codes, and much more. These different applications reinforce each 
other and associated theory. Indeed, without these motivating applications, 
several of the more theoretical topics could not be covered in an introductory 
textbook. 

The field of linear numerical analysis is very young, having been de
pendent on digital computers for its development. This field has wrought 
major changes in what linear algebra theory should be taught in an intro
ductory course. The standout example of such a modem linear algebra text 
is G . Strang's Linear Algebra and Its Applicatiorzs. Once the theory was 
needed as an alternative to numerical computation, which was hopelessly 
difficult. Now theory helps direct and interpret the numerical computation, 
which computers do for us. 

Overview of tJ1e Text This book develops linear algebra around mat
rices. Vector spaces in the abstract are not considered, only vector spaces 
associated with matrices. This book puts problem solving and an intuitive 
treatment of theory first, with a proof-oriented approach intended to come 
in a second course, the same way that calculus is taught. 

The book's organization is straightforward: Chapter 1 has introductory 
linear models; Chapter 2 has the basics of matrix algebra; Chapter 3 develops 
different ways to solve a system of equations; Chapter 4 has applications, 
and Chapter 5 has vector-space theory associated with matrices and related 
topics such as pseudoinverses and orthogonalization. Many linear algebra 
textbooks start immediately with Gaussian elimination, before any matrix 
algebra. Here we first pose problems in Chapter 1, then develop a matl1e
matical language for representing and recasting the problems in Chal)ter 2, 
and then look at ways to solve the problems in Chapter 3-four different 
solution methods are presented with an analysis of strengths and weaknesses 
of each. 

In ·most applications of linear algebra, the most difficult aspect is un
derstanding matrix expressions, such as Ue0 u - 1. Students from a traditional 
linear algebra course have little preparation for understanding such expres
sions . This book constantly forces students to interpret the meaning of matrix 
expressions, not just perform rote computations. Matrix notation is used as 
much as possible, rather than constantly writing out systems of equations. 
The sections are generally too long to be covered completely in class; most 
have several examples (based on familiar models) that are designed to be 
read by students on their own without explanation by the instructor. The 
goal is for students to be able to read and understand uses of matrix algebra 
for themselves . 

The material is unified pedagogically by the repeated use of a few 
linear models to illustrate all new concepts and techniques. These models 
give the student mental pictures to ' 'visualize'' new ideas during this course 
and help remember the ideas after the course is over. 

Although this book is often informal (''proving theorems'' by example) 
and sticks mainly to matrices rather than general linear transformations, it 
covers several topics normally left to a more advanced course, such as matrix 
norms, matrix decompositions, and approximation by orthogonal polyno
mials. These advanced topics find immediate, concrete applications. In ad-
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dition, they are finite-dimensional versions of important theory in functional 
analysis; for example, the eigenvalue decomposition of a matrix into simple 
matrices is a special case of the spectral representation of linear operators. 

Discrete Versus Continuous Mathematics Today there is a major cur
riculum debate in the mathematics community between computer sci
ence-oriented discrete mathematics and classical calculus-based mathemat
ics. Linear algebra, especially as viewed in this book, is right in the middle 
of this debate. (Linear algebra and matrices have always been in the middle 
of such debates. Matrices were a core topic in the best-known first-year 
college mathematics text before 1950, Hall and Knight's College Algebra; 
and much of Kemeny, Snell, and Thompson's Introduction to Finite Math
ematics involved new applications of linear algebra: Markov chains and 
linear programming.) 

This book attempts to present a healthy interplay between mathematics 
and computer science, that is, between continuous and discrete modes of 
thinking. The complementary roles of continuous and discrete thinking are 
typified by the different uses of the euclidean norm (12-norm) and sum norm 
(1 1-norm) in this book. An important example of computer science thinking 
in this book is matrix representations, such as the LU decomposition. They 
are viewed as a way to preprocess the data in a matrix in order to be ready 
to solve quickly certain types of matrix problems. 

We note that computer science even gives insights into the teaching 
of any linear algebra course. A computer scientist's distinction between high
level languages (such as PASCAL) and low-level languages (such as assem
bly language) applies to linear algebra proofs: A high-level proof involves 
matrix notation, such as BT AT = (AB)7 , while a low-level proof involves 
individual entries ay, such as cij = 2JauPkj· 

Suggested Course Syllabus This book contains more than can be cov
ered in the typical first-semester sophomore course for which it is intended. 
Most of Chapters l, 2, and 3 and the first four sections of Chapter 5 should 
normally be covered. A freshman course would skip Chapter 5. In addition, 
selected sections of Chapter 4 can be chosen based on available time arid 
the class's interests. For the student, the essence of any course should be 
the homework. This book has a large number of exercises at all levels .of 
difficulty: computational exercises, applications, and proofs of much of the 
basic theory (with extensive hints for harder proofs) . For more information 
about course outlines, plus suggested homework sets, sample exams, and 
additional solutions of exercises, see the accompanying Instructor's Manual . 

At the end of the book is a list of various programming languages and 
software packages available for performing matrix operations. It is recom
mended that students have access to computers with ready matrix software 
in the first week. 

Acknowledgments The first people to thank for help with this book are 
relatives. My father, A . W. Tucker, ignited and nurtured my born-again 
interest in linear algebra. Notes from the linear algebra course of my brother, 
Tom Tucker at Colgate, formed the foundation of early work on this book. 
My family- wife, Mandy, and daughters, Lisa and Katie-provided a sup-

. portive atmosphere that eased the long hours of writing; more concretely, 
Lisa's calculus project on cubic splines became the appendix to Section 4. 7. 
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Mathematical Models 

This book is concerned with ways to organize and analyze complex S)'stems. 
From the time of the ancient Greeks until the middle of the twentieth century, 
scienti ts concentrated on problems involving a small number of variable . 
The calcuJus of Newton and Leibnitz dealt with functions of a single vari
able, later generalized to several variables. Although the functions studied 
in calculus can display very complex behavior. the arnount of input data is 
usually quite small. 

Today, scientists face problems in,1olving large amounts of data. Con
sider the following examples of modern complex systems. 

I. A mathematical model of the U.S. econom)' that considers the interactive 
effects of supplies and demands of various goods. The model may involve 
thousands of variables and equations. 

2. The task of routing long-distance telephone calls. Every second, thou
sands of calls must be instantly routed from various origins to destinations 
through many intermediate switching stations. The system doing the rout
ing procedure must look for circuitous indirect routes when more direct 
patl1ways are saturated. 

3. Statistical studies of factors implicated in the spread of some new disease. 
Hundreds of causative agents must be analyzed for interactive effects; 

• 
whereas neither effect A aJone nor effect B alone may make a person 
susceptible to the illness, effects A and B together make a person very 
susceptible . 

1 
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4. A mathematical model simulating the airflow around a jet aircraft whose 
design requires thousands of parameters to describe . 

Although this book does not contain 100-, much less 1000-variable 
problems (5 variables are usually sufficient for realistic examples), it is 
concerned with mathematical techniques that can readily be applied to such 
large problems. 

In this opening chapter we present some basic models that are used 
throughout the book to illustrate concepts of matrix theory and associated 
computations. In Chapter 2 we develop the basic tools of matrix algebra. In 
Chapter 3 we present various ways to solve a system of linear equations. In 
Chapter 4 we use matrix algebra to analyze a collection of models in greater 
depth. In Chapter 5 we discuss the theory of solutions to systems of equa
tions. 

Intuitively, the more information we put into a model, the more ac
curate should be the analysis obtained. The problem is, how do we handle 
all this information? How do we construct sensible models using hundreds 
of inputs when we do not really know the underlying mechanism by which 
the input variables affect the model? In the ' 'old'' days when scientists 
studied simpler systems, very accurate mathematical models were obtained, 
say, to describe a spherical body's rate of fall based on three critical param
eters: the time elapsed since the body was dropped, the body's density, and 
the density of air. When hundreds of interdependent variables are involved, 
there is 1 ittle chance of obtaining a precise mathematical model. 

If we do riot understand well the systeni we are modeling, then the 
structure of our mathe,natical model should be simple . But the model must 
still be useful-tell us things about the system that we could not otherwise 
easily find out. We shall see as we work through this book, that a linear 
mathematical model is often the best choice. Before defining a linear model, 
let us state -what we mean by a mathematical model in general. 

A mathematical model is a n1athematical formulation of some class 
of real-world problems. The formulation may be a set of equations, it may 
be the minimization of some function, or it may involve integrals. The model 
may embody various constraints on its variables or it may be a combination 
of other mathematical models. Part of the modeling process involves input 
values that vary from one instance of the problem to another. These values 
are coefficients and constants for equations in the model. 

Let us consider five simple mathematical models. The first is a physics 
model derived with calculus . The other four are standard high school algebra 
·problems. 

Example 1. Falling Objects 

In physics, the height H of an object dropped off a building is modeled 
by the formula 

H = -16T2 +H0 (1) 

where T is time (in seconds) elapsed since the object was dropped, 
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Figure 1.1 Equation of falling object 
H = - 1672 + 100. 

H 

• 

100 

80 

60 

40 

20 

-0~-....--------- T 
1 2 3 

and H0 is the height (in feet) of the building. (The numbers 16 and H0 

are the input values of the model.) One can derive this formula with 
calculus (if drag from air resistance is ignored). 

Suppose that the building is 100 feel tall. Figure 1.1 gives the 
graph of the equation H = - 16T2 + 100. When 2 seconds has 
elapsed, the object's current height can be computed to be 

H = - 16(2)2 + 100 = -64 + 100 = 36 

To determine the time until the object hits the ground, we set 
H = 0 and solve for T: 

0 = -16T2 + 100 ~ 1672 100 
~ T2 _ 100 _ 2s 
---, - 16 - T 

~r=~==i • 

Example 2. Elementary Algebra: 
A Problem of Relative Ages 

Consider the following word problem. Michael is three times the age 
of his sister, but in 6 years he will be only twice his sister's age. How 
old is Michael now? 

We want to model the information in the word problem with 
algebraic equations. If M is Michael's current age and S is his sister's 
age, we have 

M == 3S 

M + 6 = 2(S + 6) 
. 

(2) 

(3) 

This n1odel is simply an algebraic restatement of information 
given in words. We were told that certain quantities were equal; for 
example, Michael 1 s current age equals three times his sister's current 
age, and we expressed these equalities in sy1nbolic (algebraic) form . 
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There are two variables in this problem, but the relation between 
the two variables M and S is so simple-one is triple the· other-that 
one can easily rewrite the second equation (3) in terms of one of the 
variables. If we write (3) in terms of S by substituting 3S for M, we 
obtain 

(3S) + 6 = 2(S + 6) (3') 

Solving equation (3'), we obtain S == 6, so M = 3S = 18. • 

We now consider a slightly more complicated age problem. 

Example 3. Another Problem of Relative Ages 

Alice is currently twice as old as her brother Bill. If twice the sum of 
their current ages is equal to the product of their ages 4 years ago, 
how old is Bill? 

If A represents Alice's current age and B Bill's current age, the 
given information can be modeled by the system of two equations 

A= 2B (4) 
2(A + B) = (A - 4)(8 - 4) 

Expanding and simplifying the second equation, we obtain 

A == 2B 

AB - 6A - 6B + 16 == 0 (5) 

Note that this model involves a term of ''degree 2,'' the product AB 
in the second equation. 

Substituting 2B for A in the second equation yields 

(2B)B - 6(2B) - 6B + 16 = 0 or B2 - 9B + 8 = 0 (6) 

Factoring the right equation in (6) yields 

(B - I )(B - 8) = 0 (7) 

and thus B == I or B = 8. 
The solution B = 1 is not possjble in terms of the problem 

statement (if Bill is currently l year old, what was he 4 years ago?). 
Thus the answer is: Bill is 8 ( and Alice is 16) . • 

Although both (B = 1, A = 2) and (B = 8, A = 16) satisfy algebraic 
system (4), only the second pair of values makes sense in the original real
world problem. This illustrates an important aspect of modeling that is fre
quently assumed in this book: namely, interpreting a mathematical solution 
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Figure 1.2 Modeling process. 
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in terms of the original real-world problem to see that the solution makes 
sense. Figure 1.2 provides a picture of the major steps in the modeling 
process. 

Example 4. Speed of a Canoe 

Consider another classic word problem. When Mary paddles a canoe 
up a river (against the river's flow), the canoe goes 3 miles per hour, 
and when she paddles downstream the canoe goes 11 miles per hour. 
How fast would the canoe be going if she were paddling on a still 
lake? 

If C is the canoe 's speed in stil] water and R is the speed of the 
river, then algebra books model the problen1 with the two equations 

C+R 
C - R 

1 l 

3 
(8) 

This model expresses the upstream and downstream speeds as functions 
of C and R by using the intuitive physical principle that the net up
stream speed is the canoe speed minus the river speed , and that the 
net downstream speed is the canoe speed plus the river speed. 

Figure 1.3 has a graph of the two equations in (8) . We see that 
they intersect at the point C = 7, R = 4. This solution can also be 
obtained by solving (8) algebraically . • 

Figure 1.3 Graphical solution of canoe R 

problem. 
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Exan1ples 2 and 4 are called linear models becai,se the mathe,natical 
equatio,is in the model are li11ear, that is, equations of lines. Examples 1 
and 3 are nonlinear models because they contain nonlinear equations. A 
linear equation involves sun1s and differences of variables or multiples of 
variables, such as 

y == 2x - 6, 
y 

X = - + 3 
2 

4x - 2y == 12 

Note that the three preceding equations are all equivalent. 

(9a) 

(9b) 

The left sides in (8) and (9b) are called linear combinations of vari
ables: sums and differences of variables or of multiples of variables. A linear 
combination is the simplest type of expression of variables that one can . 
build. 

The widespread use of linear models results primarily from the ease 
of computing linear expressions as well as the existence of a powerful theory 
for analyzing linear models. Even when a problem is nonlinear, a linear 
model will often be used as an approximation. For example, for small \'alues 
of x, sin x is often approximated by x. However, the reader should not 
expect that every solution has a satisfactory linear model, as the next example 
shows. 

. 
Example 5. Speed of Canoe with Sail 

Suppose that the canoe has a sail mounted at its front. The canoe is 
on a lake with a wind of W miles per hour. We assume that downwind 
speed (moving with the wind) is again C + W, the sum of the canoe's 
speed (paddled by Mary) plus the wind's speed. However, boats with 
sails can move upwind by an aerodynamic principle, the same principle 
that holds up airplanes. So we try a linear combination of the C and 
W of the form C + kW, where k is a constant to be determined. If U 
is the upwind speed and D the downwind speed, we obtain the equa
tions 

Downwind: 

Upwind: 

C + W = D 

C +kW= U 
(10) 

Let us co11sider a numerical example. Suppose that our downwind 
speed D is 7 and our upwind speed V is 5. We try our model-the 
equations in ( 10)-with k values of k = . 75 and k ::;= l. 

k == .75: 

k = I: 

c+ W == 7 

C + .75W = 5 

C + W = 1 

C + W = 5 

(11) 

(12) 
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Figure 1.4 Equations for canoe with saiJ . w 
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Obviously, the two equations in (12) can ,iever be satisfied sin1u/
taneously. In (11) with k = .75, there are also difficulties. Subtract
ing the second equation in ( 11) from the first, we obtain . 25 W = 2 or 
W = 8. Since C + W = 7, then C = 7 - W == 7 - 8 = - 1 . A 
negative canoe speed is impossible (we assume that Mary is not cheat
ing by paddling backwards). 

A good way to see what is happening is with a graph. In Figure 
1. 4, we have plotted the lines in ( 11). Because these two lines do not 
meet inside the positive quadrant, there is no feasible solution. If we 
change our estimate for the constant k slightly from . 7 5 to 5 ~ then we 
obtain a solution W = 6, C = l , which might be close to the true 
value of Wand C. 

Instead of assigning specific values to k, U and D, let us solve 
the two equations of ( I 0) for C and W in terms of these general pa
rameters. If we,.subtract the upwind equation from the downwind equa
tion, we have 

C + W = D 

C +kW = U 

(1 -- k)W = D - U or 

W = _D_-_U_ 
1 - k 

( 13) 

If we substitute the formula for W found in ( 13) into the downwind 
equation, we obtain 

or 

C=D 
D-U 
1 - k 

D - U 
C+-- = D 

1 - k 

(1 k)D - (D 

1 - k 

U) U - kD 
1 - k 

( 14) 
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Observe that whereas originally D and U were expressed as linear 
combinations of C and W, we have now expressed C and W as linear 
combinations of D and U. However, the critical factor here is k. Recall 
that the parameter k is supposed to allow us to express the upwind 
speed with a sail as a linear combination of C and W. In (13) and (14), 
C and W depend on k in a nonlinear fashion: When k approaches J, 
the denominator 1 - k in (13) and (14) approaches 0, so the values 
of C and W blow up. 

This sensitivity to small changes in k near 1 makes this model 
inherently poor. More generally, it appears that a linear combination 
such as C + kW of C and W is unable to model properly the upwind 
speed of a canoe with sail. • 

Example 5 illustrates the possible inadequacy of a linear model. It also 
points out that one must always be careful about the accuracy of coefficients 
in linear equations, because the solution depends on them in a nonlinear 
fashion. A system of equations is called ill-conditioned if a large change in 
the answer can be produced by a small error in the value of a coefficient ( or 
by a roundoff error in computation, such as writing½ as .33). When k was 
near 1, the system of equations in the canoe-with-sail model was very ill
conditioned. In Section 3.5 we learn how to calculate the conditiori number 
of a system of equations, which tells how poorly conditioned a system is. 

Section 1.1 Exercises 

Summary of Exercises 
These exercises examine the five models presented in this section and ask 
the reader to make mathematical models of similar problems. Exercises 1-3 
are based on Example 1; Exercises 4-8 on Examp]e 2; Exercises 9-15 on 
Example 4; Exercises 16-19 on Example 5. All the exercises require only 
first-year high school algebra. 

1. In Example 1 about a falling object (dropped from the top of a l 00-
f oot building), what height will the object have after I second? 

2. If the object in Example 1 were dropped from a 400-foot building, how 
high would it be after 2 seconds? When would it hit the ground? What 
is the relation between the time of impact in this problem and the time 
of impact in the original 100-foot problem in Example l? Guess the 
time of impact if the object were dropped from the top of a 1600-foot 
building, and verify that this guess is right. 

3. If the object in Example 1 were dropped from a building of height H0 , 

solve equation (1) for the time when the object hits the ground (your 
answer will involve H0 and the constant 16). Make a graph plotting the 
time when the object hits the ground as a function of building height. 

4. Suppose that John is twice Mary ts age but 4 years ago he was three 
times her age. Express this information as a pair of linear equations 
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involving J (John's current age) and M (Mary's current age). Solve for 
J and M. 

5. Store A expects to sell three times as many books as store B this month. 
But next month store B's sales are scheduled to double while store A's 
sales stay the same. Over the 2-month period, the two stores together 
are expected to sell a total of 4500 books. How many books would each 
store sell this month? 

6. Suppose that Mary and Nancy are sisters and the sum of their ages 
equals their older brother Bill·s age, that Nancy is 4 years older than 
Mary, and that Bill is 6 years older than Nancy. Express this information 
in three linear equations in B (Bill's age), M (Mary's age), and N 
(Nancy's age). Express B and Nin terms of M, and then solve for the 
ages of the three children. 

7. A rectangle is twice as high as it is wide. The sum of the height and 
width of this rectangle is equal to one-half the area of the rectangle. 
Find the height and width. 

8. A company has a bttdget of $280,000 for computing eqttipment. Three 
types of equipment are available: microcomputers at $2000 each, ter
minals at $500 each, and word processors at $5000 each. There should 
be five times as many terminals as microcomputers ,tnd two times as 
many microcomputers as word processors. How many machines of each 
type should be purchased? · 

9. Suppose that the canoe in Example 4 went 5 miles per hour upstream 
and 9 miles per hour downstream. Solve the resulting system of linear 
equations algebraically to determine the speed of the canoe (in still 
water) and the speed of the river. 

10. Suppose that the canoe in Example 4 goes U miles per hour upstream 
and D miles per hour downstream. Find general formulas in terms of 
U and D for the speed of the canoe (in still water) and the speed of the 
. 

nver. 

11. A company has $36,000 to hire a mathematician and his or her secre
tary. Out of respect for the mathematician's training, the mathematician 
will be paid $8000 more than the secretary. How much will each be 
paid? 

12. Cook A cooks 2 steaks and 6 hamburgers in half an hour. Cook B cooks 
4 steaks and 3 hamburgers in half an hour. If there is a demand for 16 
steaks and 21 hamburgers, how many half-hour periods should cook A 
work and how many half-hour periods should cook B work to fill this 
demand? 

13. We have two oil refineries. Refinery A produces 20 gallons of heating 

• 
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oil and 8 gallons of diesel oil out of each barrel of petroleum it refines. 
Refinery B produces 6 gallons of heating oil and 15 gallons of diesel 
oil out of each barrel of petroleum it refines. There is a demand of 500 
gallons of heating oil and 7 50 gallons of diesel oil. How many barrels 
of petroleum should be refined at each refinery to equal this demand? 

14. The sum of John's weight and Sally's weight is 20 pounds more than 
four times the difference between their two weights (John is 'the heav
ier) . Twice Sally's weight is 40 pounds more than John's weight. Write 
down these two facts in two linear equations. Simplify the first equation 
and solve the two equations to find the weights of John and Sally . 

15. Two ferries travel across a lake 50 miles wide. One ferry goes 5 miles 
per hour slower than the other. If the slower ferry leaves 1 hour before 
the faster and arrives at the opposite shore at the same time as the other 
ferry, what is the speed of the slower ferry? 

• 

16. In Example 5, re-solve the downwind-upwind equations of ( 10) when 
k = .9 with D = 7 and U = 5. Solve again with k = .9 but now 
D = 6.5 and U = 5. Does this small change in D result in an equally 
small change in C? 

17. In Example 5, suppose that D = 7 and U = 5, as in equations ( 10) 
and ( 11). Then formula ( 14) for C becomes · 

5 - 1k 
C = 1 - k 

Plot C as a function of k in the interval 0 s k < 1. Is C equal to 
+ infinity or equal to - infinity when k = I? Explain your answer. 

18. In the downwind- upwind system of equations in Example 5, suppose 
that Mary were not paddling, so that C = 0. If k = . 75 and U (upwind 
speed) = 6 , what is Wand what is D? In this case, what must be the 
relation between U and D? (That is, write U as a function of D.) 

19. In the system of equations for our canoe-with-sail model, 

C + kW== 8 

C + W = 12 

pick the unknown k so that C = 0 when this system is solved. What 
is W? 

20. A refinery produces 8 gallons of gasoline and 6 gallons of heating oil 
from each barrel of petroleum it refines. There is a demand for 400 
gallons of gasoline and 200 gallons of heating oil. Can you set up a 
linear equation to determine how many barrels of petroleum should be 

• 



Sec. 1.2 Systems of Linear Equations 11 

• 

refined? Explain your answer and tell how many barrels )'OU would 
refine if you were the manager of the refinery. 

I 

21. Suppose we estimate that a child's IQ is the average of the parents ' IQs 
and that the income the child has when grown to the age of 40 is 200 
times the father's IQ plus 100 times the mother's IQ. If the child has 
an IQ of 120 and earns $48,000 at age 40, what are the parents ' IQs? 
Does this model give a reasonable answer? 

22. Suppose that factory A produces 12 tables and 6 chairs an hour while 
factory B produces 8 tables and 4 chairs an hour. How many hours 
should each factory work to produce 48 tables and 24 chairs? How 
many different solutions are there to this problem? 

23. We estimate that Jack can do 3 chemistry problems and 6 math problems 
in an hour, while Paula can do 4 chemistry problems and 7 math prob
lems in an hour. There are 11 chemistry problems and 17 math prob
lems. Set up and solve a system of two linear equations to determine 
how long Jack and Paula should work to do these problems. What is 
the matter with the solution? Propose a solutio~ that makes more sense. 

Systems of Linear Equations 

In Section 1.1 we gave a quadratic formula H == - l 6T2 + H0 to model 
mathematically the height of an object dropped from a building H0 feet tall . 
From this formula we could determine how long it took for an object to hit 
the ground (see Example I of Section 1.1). The model involved a single 
nonlinear equation with one variable to be determined. Nonlinear equations 
in one variable are not difficult to derive and solve. 

When many variables need to be determined, then almost surely the 
mathematical model will be a syste1n of linear equations. There are four 
basic reasons for using linear models. 

1. There is a rich theory for analyzing and solving systems of linear equa
tions. There is limited theory and no general solution techniques for 
systems of nonlinear equations. 

2. Systems of nonlinear equations involving several variables exhibit very 
complex behavior and we rarely understand real-world phenomena well 
enough to use such complex models. 

3. Small changes in coefficients in nonlinear systems can cause huge 
changes in the behavior of the systems, yet precise values for these 
coefficients are rarely known. 

4. All nonlinear phenomena are approximately linear over small intervals; 
that is, a complicated curve can be approximated by a collection of many 
short line segments (see Figure 1.5) . 
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f"igure 1.5 Linc segments ap
proxin1ating a curve. 

For these reasons we have the following general principle that is true 
for numerical problems in all fields: physics, statistics, economics, for in
stance. 

Ge11.eral Mathematical Principle for Multivariable Problems. Any 
proble11i involving several unknowns is normally solved by recasting 
the problem as a syste,n of li11ear equatio11s. 

The two canoe problems, with and without a sail, in Section 1.1 were 
simple examples of systems of linear equations. Here are two more exam
ples . These examples, together with those in Section 1.3, are used dozens 
of times throughout the book to motivate and illustrate theory and numerical 
methods. It is very importa11t for the reader to gain familiarity with these 
examples through working some of the numerical exercises at the end of 
each section. 

R1tlifi'iW£~r · ~ 

Example 1. Oil Refinery Model 

A company runs three oil refineries. Each refinery produces three pe
troleum-based products: heating oil, diesel oil, and gasoline. Suppose 
that from 1 barrel of petroleum, the first refinery produces 20 gallons 
of heating oil, 10 gallons of diesel oil, and 5 gallons of gasoline. The 
second and third refineries produce different amounts of these three 
products as described in the following table. 

Refinery 1 

Heating oil: 20 

Diesel oil: 10 

Gasoline: 5 
• 

Refinery 2 

4 

14 

5 

Refinery 3 

4 

5 (1) 

12 
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Let xi be the number of barrels of petroleum used by the ith refinery . 
Then the total amount of each product produced by the refineries is 
given by the linear expressions 

Heating oil: 

Diesel oil: 

Gasoline: 

20x1 + 4x2 + 4x3 

10x1 + 14x2 + 5x3 

5x1 + 5x2 + 12x3 

(2) 

Suppose that the demand is 500 units of heating oil, 850 units of diesel 
oil, and 1000 units of gasoline. What values x 1, x2 , x3 are needed to 
produce these amounts? We require the xi to satisfy the following 
system of linear equations. 

20x 1 + 4x2 + 4.t3 = 500 

10x 1 + 14.~2 + 5x3 = 850 

5x 1 + 5x2 + 12x3 = 1000 

(3) 

Later in this book we shall learn several ways to solve systems 
of linear equations . For now, let us use the tried-and-true method of 
trial and error. As an initial guess, try x 1 = 25, x2 = 25, x3 = 25 . 
Using these values in (3), we get 

20(25) + 4(25) + 4(25) = 700 

10(25) + 14(25) + 5(25) = 725 

5(25) + 5(25) + 12(25) = 550 

(4) 

(It is helpful to have a programmable calculator or microcomputer for 
calculation~ with systems of linear equations.) 

We need to alter the X; values to make the first expression (heating 
oil) smaller and the last expression (gasoline) larger. Since .x, makes_ 
the largest contribution to the first expression and x3 makes the largest 
contribution to the last expression, we decrease .t 1 and increase x3 • 

Suppose that we try x 1 = 10, x2 = 25 , .t3 = 70 . 

20( 10) + 4(25) + 4(70) = 580 

10(10) + 14(25) + 5(70) = 800 

5(10) + 5(25) + 12(70) = 1015 

(5) 

Although these x values are much better than the original ones, let us 
try to do better. We need to decrease the first expression and increase 
the second expression (without changing the third expression) . To de
crease the first expression, we should decrease x 1• Similarly, to in
crease the second expression, we increase x2 . Trying the following 
values, we obtain the result that production levels 
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5, 

yield 

heating oil = 520, diesel oil = 890, gasoline = I 040 

This is getting quite close to our production goals. The overproduction 
of 20 to 40 gallons in each product might be a reasonable safety margin 
that is actually desirable. 

To get closer, we should decrease .t2 and x3 a little. 

X1 = 5, 

yield 

heating oil = 504, diesel oil = 852, gasoline = 1006 

This is an excellent fit. We have been a bit lucky. To do better, we 
would probably have to use fractional values. (In the Exercises the 
reader may need more tries to get this close.) • 

We next consider a slightly more complicated supply-demand model. 
This model has the balancing advantage that trial-and-error calculations to 
estimate a solution are easier. The reader is warned that it takes a little while 
to get a feel for all the numbers in this model . . 

• 

Example 2. A Model of General Economic 
Supply-Demand 

We present a linear model due to W. Leontief, a Nobel Prize-winning 
economist. The model seeks to balance supply and demand throughout 
a whole economy. For each industry, there will be one supply-demand 
equation. In practical applications, Leontief economic models can have 
hundreds or thousands of specific industries. We consider an example 
with four industries. 

The left-hand side of each equation is the supply, the amount 
produced by the ith industry. Call this quantity x;; it is measured in 
dollars. On the right-hand side , we have the demand for the product 
of the ith industry. There are two parts to the demand. The first part 
is demand for tl1e output by other industries (to create other products 
requires some of this product as input). The second part is consumer 
demand for the product. 

For a concrete instance, let us consider an tconomy of four gen
eral industries: energy, construction, transportation, and steel. Suppose 
that the supply-demand equations are 

• 
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Industrial Demands 
Consumer 

Supply Energy Construct . Transport. Steel Dema11d 

Energy: X1 . 4x1 + .2X2 + .2X3 + .2X4 + 100 
Construct.: X2 = .3X1 + .3X2 + .2x, + . l X4 -l-

I 50 
Transport. : X3 = . ]XI + . lX2 + + .2x4 + 100 

. Steel: X4 = + . 1~"2 + . lX3 + 0 

(6) 

The first equation, for energy, has the supply of energy x 1 on the 
left. The terms on the right of this equation are the various demands 
that this supply must meet. The first term on the right, .4x1, is the 
input of energy required to produce our .. t'1 dollars of energy (.4 units 
of energy input for one unit of energy output). Also, the second term 
of . 2x2 is the input of energy needed to make x2 dollars of construction. 
Similarly, terms .2x3 and .2.x4 are energy inputs required for transpor
tation and steel production. The final term of l 00 is the fixed consumer 
demand. 

Each column gives the set of input deITYand of an industry. For ,,, 
example, the third column tells us that to produce the ."t'3 dollars of 
transportation requires as input .2x3 dollars of energy, .2x3 dollars of 
construction, and . lx3 dollars of steel. In the previous refinery model, 
the demand for each product was a single constant quantity . In the 
Leontief model, there are many unknown demands that each industry's 
output must satisfy. There is an ultimate consumer demand for each 
output, but to meet this demand industries generate input demands on 
each other. Thus the demands are highly interrelated: Demand for 
energy depends on the production levels of other industries, and these 
production levels depend in turn on the demand for their outputs by 
other industries, and so on. 

When the levels of industrial output satisfy these supply-den1and 
equations, economists say that the economy is i,i equilibri u,n . 

As in the refinery model, let us try to solve this system of equa
tions by trial-and-error. As a first guess, let us set the production levels 
at twice the consumer demand (the doubling tries to account for the 
interindustry demands). So x1 = 200, x2 = 100, x3 = 200, and 
.. Y4 == 0; these are our supplies . Given these production levels, we can 
compute the demands from ( 6). 

Supply Demand 

Energy: 200 .4(200) + .2(100) + .2(200) + .2(0) + 100 == 240 
Construct. : 100 .3(200) + .3(100) + .2(200) + .1(0) + 50 = 180 
Transport.: 200 .1(200) + .1 ( 100) + + .2(0) + 100 130 

Steel: 0 + .1(100) + .1(200) 30 
(7) 



16 

• 

Ch. 1 Introductory Models 

For our next approximations, let us try supply levels halfway 
between the supply and demand values in (7). That is, x1 = 
½(200 + 240) = 220, and similarly, x2 == 140, x3 = 165, and 
X4 = 15. 

Supply 

Energy: 220 

Construct. : 140 

Transport.: 165 

Steel: 15 

Demand 

.4(220) + .2(140) + .2(165) + .2(15) + 100 = 252 

.3(220) + .3(140) + .2(165) + .1(15) + 50 = 192.5 

.1(220) + .1(140) + + .2(15) + 100 = 139 

+ .1(140) + .1(165) = 30.5 

(8) 

The second approximation is only moderately better. The interaction 
effects between different industries are hard to predict. Adjusting pro
duction levels was much easier in the refinery problem, where the 
demand for each product was constant. 

Let us stop trying to be clever and just use the simple-minded 
approach of setting production levels (i.e., supply levels) equal to the 
previous demand levels. So from (8), we try 

Supply 

Energy: 252 

Construct.: 192 

Transport.: 139 

Steel: 30 

De1nand 

.4(252) + .2(192) + .2(139) + .2(30) + 100 = 273 

.3(252) + .3(192) + .2(139) + .1(30) + 50 = 214 

.1(252) + .1(192) + + .2(30) + 100 = 150 

+ .1(192) + .1(139) 33 

(9) 

The demand values here have been rounded to whole numbers. The 
supplies and demands are getting a little closer together in (9). Re
peating the process of setting the new supply levels equal to the pre
vious demand levels (i.e., the demands on the right side in (9)) yields 

Supply 

Energy: 273 

Construct.: 214 

Transport.: 150 

Steel: 33 

De1nand 

.4(273) + .2(214) + .2(150) + .2(33) + 100 = 289 

.3(273) + .3(214) + .2(150) + .1(33) + 50 = 229 

. 1 (273) + . 1 (214) + + 
+ .1(214) + .1(150) 

.2(33) + 100 = 155 

36 

(10) 

Repeating this process again, we have 

• 
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Supply 

Energy: 289 
Construct.: 229 
Transport. : 155 

Steel: 36 

17 

Demand 

.4(289) + .2(229) + .2(155) + .2(36) + 100 = 300 

.3(289) + .3(229) + .2(155) + .1(36) + 50 = 240 

.1(289) + .1(229) + + .2(36) + 100 = 159 

+ .1 (229) + .1(155) 38 

(11) 

Observe that in successive rounds (9), (10), (11), supplies are 
rising. This is because as we produce more, we need more input which 
requires us to produce still more, and so on. It may be that this iteration 
will go on forever, and no equilibrium exists . On the other hand, the 
gap between supplies and demands is decreasing. 

Leontief proposed a constraint on the input costs that we shall 
show (in Section 3 .4) guarantees that an equilibrium exists. The con
straint is 

Input Constraint. Every industry is profitable: Every industry must 
require less than $1 of inputs to produce $1 of output. 

In mathematical tenns, this means that the sum of the coefficients 
in each column must be less than 1. Our data in (6) satisfy thi con
straint, so an equi)ibrium does exist for this four-industry economy. 
Moreover, the iteration process of repeatedly setting production levels 
equal to the previous demands will converge to this equilibriun1. The 
reader should check that the following numbers are equilibrium values 
(rounded to the nearest integer). 

Equilibrium: energy = 3 25, construction = 265 , 

transportation = 168, steel = 43 • 

Note that any system of linear equations can be rewritten in the form 
of supply-demand equations \Vith X; appearing alone on the left side of the 
ith equation, as in the Leontief supply-demand model (6). It is standard 
practice to solve large systems of linear equations by some sort of iterative 
method. The nature of the supply-den1and equations suggested the iterative 
scheme .we used here, letting the demands from one round be the production 
levels of the next round. 

Section 1.2 Exercises 

Summary of Exercises 
Exercises 1-5 are based on the refinery model. Exercises 6-8 are other 
problems involving a system of three linear equations in three unknowns. 
Exercises 9-12 are based on the Leontief economic model. Exercises 13 and 
14 involve converting the refinery problem into a system of Leontief-type 
equations. 

• 
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E.,'tercises 1- 3 refer to the refiriery model in Example 1. 

1. Suppose that refinery 1 processes 15 barrels of petroleum, refinery 2 
processes 20 barrels, and refinery 3 processes 60 barrels. With this 
production schequle, for which product does production deviate the 
most from the set of demands 500, 850, 1000? 

2. Suppose that the demand for heating oil grows to 800 gallons, while 
other demands stay the same. Find production levels of the three refi
neries to meet approximately this new set of demands (by ''approxi
mately'' we mean with no product off by more than 30 gallons). 

3. Suppose that refinery 3 is improved so that each barrel of petroleum · 
yields 8 gallons of heating oil, l 0 gallons of diesel oil, and 20 gallons 
of gasoline. Find production levels of the three refineries to meet ap
proximately the demands (by ''approximately' ' we mean with no prod
uct off by more than 30 gallons). 

4. Consider the following refinery model. There are three refineries 1, 2, 
and 3 and from each barrel of crude petroleum, the different refineries 
produce the following amounts (measured in gallons) of heating oil, 
diesel oil, and gasoline. 

Heating oil 

Diesel oil 

Gasoline 

Refinery I 

6 

4 

3 

Refinery 2 

3 

6 

2 

Suppose that we have the following demand: 
• 

280 gallons of heating oil, 

350 gallons of diesel oil, and 

350 gallons of gasoline. 

Refinery 3 

2 

3 

6 

(a) Write a system of equations whose solution would determine pro
duction levels to yield the desired amounts of heating oil, diesel 
oil, and gasoline. As in Example 1, let xi be the number of barrels 
processed by the ith refinery. 

(b) Find an approximate solution to this system of equations with no 
product off by more than 30 gallons from its demand. 

5. Repeat the refinery model in Exercise 4 with new demand levels of 500 
gallons heating oil, 300 gallons diesel oil, and 600 gallons gasoline. 
Try to find an approximate solution (within 30 gallons) with this set of 
demands. Something is going wrong and there is no valid set of pro-
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duction levels to attain this set of demands. What is invalid about the 
solution to this refinery problem? 

Extra Credit: Try to explain in words why this set of demands is 
unattained while the demands in Exercise 4 were attainable. 

6. The staff dietician at the California Institute of Trigonometry has to 
make up a meal with 600 calories, 20 grams of protein, and 200 mil-
1 igrams of vitamin C. There are three food types to choose from: rubbery 
jello, dried fish sticks, and mystery meat. They have the following 
nutritional content per ounce. 

Calories 

Protein 

Vitamin C 

JeUo 

10 

] 

30 

Fish Sticks 

50 

3 

10 

Mystery Meat 

200 

.2 

0 

(a) Make a mathematical model of the dietician's problem with a sys
tem of three linear equations. 

(b) Find an approximate solution (accurate to within 10%). 

7. A furniture manufacturer makes tables, chairs, and sofas. In one month, 
'-

. the company has available 300 units of wood, 350 units of labor, and 
225 units of upholstery. The manufacturer wants a production schedule 
for the month that uses all of these resources. The different products 
require the following amounts of the resources. 

Wood 

Labor 

Upholstery 

Table 

4 

3 

2 

Chair 

l 

2 

0 

Sofa 

3 

5 

4 

(a) Make a mathematical model of this production problem. 
(b) Find an approximate solution (accurate to within 10%). 

8. A company has a budget of $280,000 for computing equipment. Three 
types of equipment are available: microcomputers at $2000 a piece, 
terminals at $500 a piece, and word processors at $5000 a piece. There 
should be five times as many terminals as microcomputers and two 
times as many microcomputers as word processors. Set this problem up 
as a system of three lin.ear equations. Determine approximately how 
many machines of each type there should be by solving by trial-and
error. 
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Note: Check your answer by expressing the numbers of terminals and 
microcomputers in terms of the number of word processors and solving 
the remaining single equation in one unknown. 

• 

Exercises 9-11 are based on the Leontief model in Example 2. 

9. If we produced 300 units of energy, 250 units of construction, 160 units 
of transportation, and 40 units of steel, what would be the largest de
viation between supply and demand among the four commodities? 

10. Start the iteration procedure followed in (9), (10), and (11) with an 
initial set of supplies equal to the consun1er demand~, that is, x 1 = 
l 00, x2 = 50, x3 = 100, x4 = 0. Compute the right sides of the 
equations in (6) \Vith this set of xi's and let the resulting numbers be 
the new values for x1, x2 , x3 , x4 ; compute the right sides again with 
these new x;s; and so on. Do this iteration five times. Do the successive 
sets of X;S appear to be converging toward the equilibrium values given 
at the end of Example 2? 

11. This exercise explores the effect on all industries of changes in one 
industry. Quadrupling the price of petroleum had a widespread effect 
on all industrial sectors in the l 970s. But smaller changes in one seem
ingly unimportant industry can also result in important changes in many 
other industries . 
(a) Change the system of equations in the Leontjef model in (6) by 

decreasing the coefficient of x1 (energy) in the construction equation 
from .3 to .2 (this is the result of new energy efficiencies in con
struction equipment). We want to know how this change affects 
our economy. Iterate five times, as in Exercise l O, with this altered 
system using as starting x,,s the equilibrium values for the original 
model: x1 = 325, x2 = 265, x3 = 168, x4 = 43. 

(b) Repeat part (a), but now decrease the coefficient of x4 (steel) in the 
transportation equation from · .2 to .1. 

(c) Repeat part (a), but now increase the coefficient of x2 (construction) 
in the energy equation from . 2 to . 3. 

12. Consider the Leontief system 

x, - .4x1 -
X2 .3x1 

X3 .3X1 

+ 
+ 
+ 

.3X2 + .3.t3 

.4x2 + .3X3 

.3X2 + .4X3 

+ 

+ 
+ 

100 

100 

100 

Here the column sums are 1, violating the Leontief input constraint 
given in the text. Show that this system cannot have a solution. 

Hint: Add the three equations together. 

Extra Credit: Try to explain in economic terms why no solution exists. 
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13. (a) Rewrite the refinery model's equations in (3) to look like Leontief 
equations as follows . Divide the first equation by 20 (the coefficient 
of x 1 in that equation), divide the second equation by 14, and divide 
the third equation by 12. Next move the x2 and x3 terms in the new 
first equation over to the right side, leaving just x I on the left ( the 
new equation should be x1 = - .2x2 - .2x3 + 25); similarly, in 
the second equation leave just x2 on the left and in the third equation 
leave just x3 on the left. Note that the Leontief input constraint 
about column sums is not satisfied by this system. 

(b} Use the iteration method introduced in equations (9), (10), and (11) 
( see also Exercise 10) to get an approximate solution to the refinery 
problem (do five iterations, starting with the ''consumer demands'' 
of.25, 50, 100). 

14. (a) Rewrite the refinery model's equations in (3) to look somewhat like 
Leontief equations as follows. In the first equation, move the x2 

and x3 terms to the right side and also move 19 of t~e 20 units of 
the x1 term to the right, leaving just .t 1 on the left (the equation is 
now x 1 = -19x1 - 4x2 - 4x3 + 500), Similarly, in the second 
equation leave just x2 on the left; move everything else to the right 
side. In the third equation leave just x 3 on the left. Note that Leon
tief' s input constraint about column sums is far from satisfied by 
this system. 

(b) Try using the iteration method introduced in equations (9), (10), 
and ( l l) (see also Exercise 10) to get an approximate solution to 
the refinery problem ( do five iterations starting with the guess of 
x 1 = 25, x2 = 50, x3 = 100). Does the iteration process seem to 
be converging? 

Markov Chains and 
Dynamic Models 

The refinery and economic supply-demand models of Section 1.2 were static 
in the sense that we solved them once and that was it. There was one set of 
production levels required, not a sequence of levels that would be needed 
to describe an economy changing over time. A model that tries to predict 
the behavior of a system over a period of time is called a dynamic model . 
In this section we examine two dynamic linear models. 

The first dynamic model we consider involves probability. This model, 
called a Markov chain, will arise over and over in this book, so it is important 
to understand the model well . The concepts of probability we need for this 
model are simple and intuitive. 

A Markov chain is a probabilistic model that describes the random 
movement over time of some activity. At each period of time, the activity 
is in one of several possible states . States might be amounts won in gam-

• 
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bling, different weather conditions (e.g., sunny, snowy), or numbers of jobs 
waiting to be processed by a computer. The model specifies probabilities 
that tell how the activity changes states from period to period. Consider a 
simple two-state Markov chain. 

Example 1. Markov Chain for Weather 

Suppose that we have two states of the weather: sunny or ,cloudy. If 
it is sunny today, the probability is ¾ that it will be sunny tomorrow, 
and l that it will be cloudy tomorrow. If it is cloudy today, then the 
probability is ½ that it will be sunny tomorrow and l that it will be 
cloudy tomorrow. It is convenient to display these probabilities in an 
array. 

Today 

Sunny Cloudy 

Tomorrow 
Sunny 

Cloudy ¼ • 

The probabilities in this array are called transition probabilities, and 
the array is called a transition matrix. The probabilities in each column of 
the transition matrix must add up to 1. A convenient way to display the 
information in a Markov chain is with a transition diagram. The diagram for 
the weather Markov chain is drawn in Figure 1.6. There is a node for each 
state and arrows between states. Beside the arrow from state A to state B 
we write the transition probability of going from state A to state B. 

The transition probabilities of a Markov chain tell us the chances of 
being in different states one period later. We need a formula from probability 
theory to be able to calculate the probabilities of where an activity will be 
after several periods. As in weather forecasting, it is predictions manv ne
riods i,zto the fiiti,re that are most interesting. 

To state this probability formula, we need to introduce some notation. 
Let p 1, p2 , . . . , Pn be the probabilities of being in state 1, state 2, . . . , 
state n. This set of probabilities is called a probability distribution. Let aii 
be the transition probability of going from state j to state i. In the weather 
Markov chain, if state 1 is sunny and state 2 is cloudy, the transition prob
abilities are 

Figure 1.6 

a - 3 
11 ..- 4 

a - l. 
21 - 4 

a - 1 
12 - 2 ,. Weather 

a - 1 
22 - 2 

3 
4 

Sunny 

Markov chain 

l 
4 

l 
2 

l 
2 

• 
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Formula for Distribution of Nexi States in Markov Chain. If 
p 1, p 2 , ••• , Pn is the current probability distribution of the activity, 
then the probability distribution p; , p~, .. . , p;i for the next period is 
given by 

Pi = a11P1 + a1 2P 2 + a1 3P 3 + • • • + a1nPn 

p; = a2,P1 + a22P2 + a 23p 3 + I I I + a 2nPn 

Pi = a31P1 + a 32P 2 + a 33p 3 + • • • + a3nPn 
• • • • • 
• • • • • 
• • • • • 

I + an2P2 + an3P3 + + annPn P,, = a,,1P1 • • • 

To illustrate this formula with the weather Markov chain , let p 1 

and p2 = !. Then tomorrow's distribution p ; , p~ is 

P, _ a p + a p _ a 3 + 1 1 _ 11 
J - 11 J 12 2 - 4 . 4 ~ . 4 - 16 

, · 1 3 1 1 5 
P2 = a21P 1 + a22P 2 = 'i · 4 + 2 · i = 1s 

(1) 

3 
4 

(2) 

We explain the formulas in (2) intuitively as follows . We can be in 
state 1 (sunny) tomorrow either because we are in state 1 today and then 
stay in state 1-this is the probability a 11p 1- or because \Ve are in state 2 
today and then switch to state I-this is the probability a 12p2 • lTo compute 
the probability of a sequence of two events , such as (i) the probability p2 of 
now being in state 2, and (ii) the probability a 12 of switching from state 2 
to state 1, we multiply these two probabilities tog~ther, to get a 12p2 . ) 

Let us next consider a larger Markov chain that models the action of 
a popular video arcade game called Frogger. 

Example 2. Frogger Markov Chain 

We model the behavior of a frog jumping around on a four-lane high
way. The possible states range from I = 1eft side of highway, to 
6 = right side of highway . See Figure 1. 7a. Suppose that the following 
array gives the transition probabilities that the frog , if now in state j, 
will be in state i one minute later. The transition diagram for this 
Markov chain is given in Figure I. 7b. 

State in Current Period 
1 2 3 4 5 6 

State I .5 .25 0 0 0 () 
. 

2 .5 .5 .25 0 0 0 lil 

Next 3 0 .25 .5 .25 0 0 

Period 4 0 0 .25 .5 .25 0 
(3) 

5 0 0 0 .25 .5 .5 

6 0 0 0 0 .25 .5 

• 
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Figure 1.7 (a) Six different states I I 
for frogs on four-lane highway. I I (b) Transition diagram for Markov 

I I chain in Example 2 ~ there is a node 
for each state. The number beside l 2 I 3 4 I 5 6 

the edge from state j to state i is pij Left I I Right 
(the probability of going from state curb curb 

I j to state i) . I 

• 

I I 
I I 

(a) 

.5 .5 .5 .5 

.5 .25 .25 .25 .25 
.5 .5 

.25 .25 .25 .25 .5 

(b) 

. 
The formulas for next-period probabilities with the frog Markov 

chain are 

1 

Pi -= .50pl + .25p2 

p' -2 - .50p 1 + .50p2 + .25p3 • 

, -p3 - .25p2 + .50p3 + .25p4 (4) 
1 -p4 - .25p3 + .50p4 + .25p5 
1 -Ps - .25p4 + .50p5 + .50p6 
I 

P6 = .25p5 + .50p6 

Suppose that the frog starts in state l (left side of highway). Then 
its probability distribution after 1 minute is given by the probabilities 
in the first colu1nn of ( 4), since initially p, = 1 and other p; = 0: 

p I = .5' P2 = .5, other P; = 0 (5) 

Let us use ( 4) to compute the probability distribution for the frog after 
2 minutes (remember that only pt and p2 are nonzero): 

-
t 

Pt = .5pl + .25p2 = .5 X .5 + .25 X .5 .375 
, -P2 - .5p1 + .5p2 = .5 X .5 + .5 X .5 .5 (6) 

p' -3 - 0 + .25p2 = 0 + .25 X .5 .125 

Other p~ = 0. Note that the sum of the probabilities in (6) equals 1, 
as it should. 

We can continue iterating with fonnula ( 4) to find the distribution 
after 3 minutes, after 4 minutes, and so on (it helps to let a computer 
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Table 1.1 

State 

Minutes 1 2 3 4 5 6 

0 1 0 0 0 0 0 

1 .50 .50 0 0 0 0 

2 .375 .50 . ] 25 0 0 0 

3 .312 .469 .188 .031 0 0 

4 .273 .438 .219 .063 .007 0 

5 .246 .410 .234 .088 .020 .002 

6 .226 .387 .242 .122 .046 .011 

10 .176 .320 .241 .150 .080 .030 

15 .144 .272 .226 .172 . 128 .056 

20 .126 .244 .217 . 183 .157 .073 

25 .116 .226 .210 . 190 .173 .084 

100 . 1 :2 .2 .2 .2 . I 
• 

200 . 1 .2 .2 .2 .2 . l 

1000 . 1 .2 .2 .2 .2 . I 

do this). Table 1.1 gives these probabilities, assuming that the frog 
started in state I (left side of highway). 

Observe that the probabilities converge to the distribution 
p 1 = .1, p2 = .2, p3 = .2, p4 = .2, p5 = .2, p6 = . l (and then 
stay the same forever). Very interesting! 

Would this long-term distribution evolve from any starting dis
tribution? Do all Markov chains exhibit this type of long-term distri
bution? Can the long-term distribution be computed more simply than 
iterating the equations in (4) 100 times? (Answer: Definitely yes.) • 

Markov cl1ains are a very useful type of linear model-linear because 
formula (I) for next-state probabilities is a system of linear equations. Part 
of their usefulness is due to results in matrix algebra that provide simple 
answers to all the questions just posed and many more. 

Next we look at a simpler dynamic model, an ecological model that 
traces the sizes of populations of rabbits and foxes. The simplicity of the 
model allows us to experiment more, changing the values of the coefficients 
to exhibit a variety of different long-term trends. 

~-• • ,• • , .. • • • -• o O L ', I I ~ ... •. • 

, •• 1.l .. ' L .. ... • ... \;,,): -' • • .. -~ •'-- ... ,,. ..... 

Example 3. Gro,vth Model for Rabbits 
and Foxes Model 

Consider the following model for the monthly growth of populations 
of foxes and rabbits. If R and F are the numbers of rabbits and foxes 
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this month, let R' and F' be the numbers next month given in the 
equations 

R' = R + bR - eF 

F' = F - dF + e'R 
(7) 

where b is the birthrate of rabbits, d the death rate of foxes, and e and 
e' are eating rates. The term -eF in the rabbit equation is negative and 
the term + e' R in the fox equation is positive because foxes eat rabbits. 
The results R', F' after 1 month can become new values for R and F 
to project the populations 2 months hence, and so on, as we did in the 
frog Markov chain. 

Normally, the (positive) constants would be estimated for us by 
ecologists. But let us make up some reasonable-sounding values for 
these constants and see what sort of behavior this model predicts. 
Suppose that we try 

R' = R + .2R - .3F 

F' = F - . IF + . IR 
(8) 

and start with R = 100, F = 100. Then using (8) repeatedly to 
compute the populations in successive months, we get 

0 months: 100 rabbits, 100 foxes 

1 month: 90 rabbi ts, l 00 foxes 

2 months: 78 rabbits, 99 foxes 

3 months: 64 rabbits, 97 foxes 
(9) 

4 months: 48 rabbits, 94 foxes 

5 months: 29 rabbits, 89 foxes 

6 months: 8 rabbits, 83 foxes 

7 months: -15 rabbits, 76 foxes 

A negative number means that the rabbits became extinct. 
If there are no rabbits, then the fox equation in (8) becomes 

F' = F - .IF~F' = .9F 

and the foxes will eventually die out, too. This behavior of foxes killing 
off the rabbits and then starving to death is reasonable. 

Let us try new starting values for R and F that will allow the 
rabbits to increase in size. The term + . 2R - . 3F in the rabbit equation 
is the amount the rabbit population changes from this month to the 
next. For this tenn to be positive we require .2R to be more than .3F. 
Suppose that we choose R = 100, F = 50: 

• 

0 months: 

l month: 

l 00 rabbits, 50 foxes 

105 rabbits, 55 foxes 
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2 months: 109 rabbits, 60 foxes 

3 months: 113 rabbits, 65 foxes 

4 months: 116 rabbits, 70 foxes 

5 months: 1 I 9 rabbits , 75 foxes 

6 months: 120 rabbits, 79 foxes 

7 months: 121 rabbits, 83 foxes (10) 

8 months: 120 rabbits, 87 foxes 

9 months: 118 rabbits, 90 foxes 

10 months: 115 rabbits, 93 foxes 

11 months: 110 rabbits, 95 foxes 

12 months: 103 rabbits, 97 foxes 

13 months: 94 rabbits, 97 foxes 

14 months: 84 rabbits, 97 foxes 

15 months: 72 rabbits, 96 foxes 

While the rabbits increased initially, so did the foxes (since they fed 
off the rabbits). After 7 months there were enough foxes so that they 
were eating rabbits faster than new rabbits were being born and the 
rabbit population began to decline. After 13 months (when there are 
fewer rabbits than foxes), the foxes begin to decline, a]so. Now we 
are in the same situation as before, in (9). 

It appears that the equations in our model (8) make it inevitable 
that the foxes will grow to a level where they eat rabbits faster than 
rabbits are born, causing the rabbits to decline to extinction. Then the 
foxes become extinct, too. The reader is asked in the Exercises to try 
other values for b, d, e, and e' in this model and to explore the resulting 
behavior. 

Akin to the stable probability distribution in the frog Markov 
chain, let us try to determine values of the coefficients in our model 
that will permit the rabbit and fox populations to stabilize, that is, to 
remain the same forever. This means that R' = R and F' = F . · 

We return to the original general model 

R' = R + bR - eF 

F' == F - dF + e'R 

When R' = Rand F' = F, we have 

or 

• 

R = R + bR - eF 

F = F - dF + e'R 

bR - eF = 0 

e'R - dF = 0 

( 11) 

(12) 
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Note that in ( 12), the order of the terms + e 'R and - dF in the second 
equation was reversed. Let us solve this pair of linear equations. for R 
and F. Obviously, R = F = 0 is a solution. But we want another 
solution. We use the standard method for eliminating one of the vari
ables in (12): Multiply the first equation by d and the second bye and 
then subtract the second from the first. 

dbR - deF = 0 

-(ee'R - edF = 0) 

(bd - ee')R = 0 

If bd - ee' = 0, then R (and F) need not be 0. Note that 

e d 
bd - ee' = 0 ~ bd = ee' ~ - = - (13) 

b e' 

Suppose that e/b = d/ e'. Then one can show that Rand Fare solutions 
to ( 11) if and only if 

R e d - = -
F b e' 

For example, the system 

R' = R + .1R - .15F 

F' = F - .15F + .1R 

(14) 

(15) 

has stable values R = 15, F = IO or R = 6, F = 4. In fact, any 
pair (R, F) is stable in ( l 5) if 

Stable R, F values for (15): 
R 
F 

.15 
. 1 

or R = ~ F (16) 
2 

Further, if we start with values for R and F that are not stable, then 
over successive months the rabbit and fox populations always move 
toward one of these stable pairs of values, just like the Markov chain. 
In this model the ''law of nature'' is that there should be a 3 : 2 ratio 
of rabbits to foxes. Figure 1.8 shows sample curves along which un
stable values move in approaching a stable value. For example, if we 
start iterating (15) with R = 50, F = 40, we have 

0 months: 50 rabbits, 40 foxes 

1 month: 49 rabbits, 39 foxes 

2 months: 48 rabbits, 38 foxes 

3 months: 47 rabbits, 37 foxes 
• • • • 
• • • 
• • • 
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Figure 1.8 Stable values and trajectories to stable values in rabbit- fox 
growth model. 

10 months: 42 rabbits, 32 foxes 
• • • 
• • • 
• • • 

20 months: 37 rabbits, 27 foxes 
• • • 
• • • 
• • • 

30 months: 34 rabbits, 24 foxes 
• • • 
• • • 
• • • 

40 months: 32.5 rabbits, 22.5 foxes 
• • • 
• • • 
• • • 

50 months: 31. 5 rabbits, 21.5 foxes 
• • • 
• • • 
• • • 

75 months: 30.4 rabbits, 20.4 foxes 
• • • 
• • • 
• • • 

100 months: 30. 1 rabbits, 20.1 foxes 

• 

29 

J 6 Rabbits 

(17) 
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Clearly, the populations are approaching the stable sizes of 30 rabbits 
and 20 foxes. 

The starting pair (100, 80) goes to (60, 40); (80, 30) goes to 
( 150, 100). If we write the starting values in the form R = r, F = 
r - k, then the limiting stable values will always turn out to be 
R = 3k, F = 2k. If the starting values have R < F, the limiting values 
will both be negative, with rabbits becoming negative (extinct) first. 
If R = F, both populations approach O. 

Why does this happen? How much of this behavior would occur 
if we used other values for the constants b, d, e, e' that satisfied the 
condition e/ b = d/ e'? • 

We conclude this section by introducing a nonlinear model for rabbit 
and fox populations. This nonlinear model can simulate a cyclic behavior 
that occurs frequently in nature. 

Example 4. Nonlinear Model for 
Rabbits and Foxes 

Let us consider the following nonlinear model for the monthly growth 
of populations of foxes and rabbits. Again, if Rand Fare the numbers 
of rabbits and foxes this month, then R' and F' are the numbers next 
month. Our system of equations is 

R' = R + bR - eRF 

F' = F - dF + e'RF 
(18) 

We now use the terms - eRF and + e' RF for the effect of foxes eating 
rabbits because the chances of a fox catching a rabbit depend on the 
abundance of both species. 

Let us suppose that b = d = . l and e = e' = . 0 I . 

R' = R + . IR - .0lRF 

F' = F - . lF + .01RF 
(19) 

If initially we let R = 30 and F = 30, then using (19) we obtain 
the table whose values are plotted in Figure 1. 9. 

Number of Months 

1 

2 

3 

5 

10 

15 

Rabbits 

30 

32 

34 

40 
58 

87 

Foxes 

· 30 

28 
26 
23 

17 

15 
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Foxes 

40 

38 

36 

34 

32 

30 

28 

26 

24 

22 

20 

18 

16 

14 

12 

10 

8 

6 

4 

2 

45 

so 

S5 

60 

65 

70 I 5 
..,· ~ 1;0-~15 __ !20~ __ _.2s~,;..· ___ _ 

80 90 
~---100 
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0 2 4 6 8 10 12 14 16 I 8 20 22 24 26 28 30 32 34 36 38 40 Rabbits 

Figure 1.9 Cyciic pattern of population sizes in nonlinear rabbit-fox 
growth model. 

20 132 15 
25 196 20 • 

30 282 36 
35 354 96 

(20) 

40 261 278 
45 62 389 
50 15 280 
60 6 107 
70 7 40 
80 15 15 

90 35 7 
100 88 4 

When we started with a small number of both rabbits and foxes, 
the fox population declined further for a few months (from the -dF 
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tenn) while the rabbit population started growing (from the. + bR term); 
the - eRF and + e 'RF terms have little effect because the constants e 

• 
and e' are so small. Soon the fox population grows and the rabbit 
population stops growing and starts to decline as the foxes eat the 
rabbits (the terms -eRF and +e'RF come into effect when Rand F 
are large). As the rabbit population declines, so the fox population 
soon declines because of less food. We eventually find the sizes of the 
two populations back at the levels at which we started. The cycle time 
in this model is about 80 months. 

This cycle of sudden growth followed by sudden decline char
acterizes the behavior of periodic pests, such as gypsy moths. The 
moths are donnant for many years and then have sudden, major out
breaks when few of their natural enemies are present (for gypsy moths, 
the enemy is a parasitic wasp). Eventually, the large numbers of the 
pest stimulate the appearance of its predator. The moths are killed off 
by the wasps and then the wasps die for lack of food. The dormant 
period begins again. 

Linear models cannot produce this type of behavior. • 

Note that after one cycle (80 months) the population sizes in (20) are 
15 rabbits and 15 foxes, half the starting sizes of 30. This slippage in size 
is a fault in the n1odel, due to the fact that we rounded tin1e into units of 
months. If time were measured in days or seconds, the slippage would be 
less. Exercise 21 describes how to convert this model into units of days or 
seconds. 

Section 1.3 Exercises 

Summary of Exercises 
Exercises 1-11 involve Markov chain models. Exercises 12-19 examine the 
model in Example 3 and similar linear growth models. Exercises 20 and 21 
examine the behavior of the nonlinear model in Example 4. Exercises 11, 
20, and 21 require computer programs. 

1. Using the weather Markov chain in Example 1, simulate the weather 
over 10 days by flipping a coin to determine the chances of sunny or 
cloudy weather the next day according to the Markov chain's transition 
probabilities. If currently sunny, flip once and a head means sunny the 
next day and a tail means cloudy the next day. If currently cloudy, flip 
twice and when either flip is a head it is sunny the next day and when 
both flips are tails it is cloudy the next day. To start, assume that the 
previous day was sunny. What fraction of the 10 days was sunny? 

2. In the weather Markov chain, starting with the probability distribution 
(1, 0) (a sunny day), compute and plot (in p 1, p 2 coordinates) the 
distribtttion over five successive days. Repeat the process starting with 
the probability distribution (0, 1). Can you guess the value of the stable 
distribution to which your points are converging? 

• 
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3. In the frog Markov chain, what js the probability distribution in the 
next period if the current distribution is 
(a) p 3 = 1, all other Pi = O? 
(b) p2 = .5, p 3 = .5, all other P; = O? 
(c) p2 = .25, p3 = .25, p4 = .5, all other Pi = O? 
(d) P1 = .1, P2 = .2, p3 = .2, P4 = .2, Ps = .2, P6 = .1? 

4. The printing press in a newspaper has the following pattern of break
downs. If it is working today, tomorrow it has 90% chance of working 
(and 10% chance of breaking down). If the press is broken today, it 
bas a 60% chance of working tomorrow (and 40% chance by being 
broken again). 
(a) Make a Markov chain for this problem; give the matrix of transition 

probabilities and draw the transition diagram. 
(b) If there is a 50-50 chance of the press working today, what are the 

chances that it is working tomorrow? 
(c) If the press is working today, what are the chances that it is working 

in 2 days' time? 

5. If the local professional basketball team, the Sneakers, wins today's 
game, they have a i chance of winning their next game. If tl1ey lose 
this game, they have a½ chance of winning their next game. 
(a) Make a Markov chain for this problem; give the matrix of transition 

probabilities and draw the transition diagram. 
(b) If there is a 50-50 chance of the Sneakers winning today's game, 

what are the chances that they win their next gam~? 
(c) If they won today, what are the chances of winning the game after 

the next? 

6. If the stock market went tip today, historical data show that it has a 
60% chance of going up tomorrow, a 20% chance of staying the same, 
and a 20% chance of going down. If the market was unchanged today, 
it has a 20% chance of being unchanged tomorrow, a 40% chance of 
going up, and a 40% chance of going down. If the market goes down 
today, it has a 20% chance of going up tomorrow, a 20% chance of 
being unchanged, and a 60% chance of going down. 
(a) Make a Markov chain for this problem; give the matrix of transition 

probabilties and the transition diagram. 
(b) If there is a 30% chance that the market goes up today, a 10% 

chance that it is unchanged, and a 60% chance that it goes down, 
what is the probability distribution for the market tomorrow? 

7. The following model for learning a concept over a set of lessons iden
tifies four states of learning: I = Ignorance, E = Exploratory Thinking, 
S = Superficial Understanding, and M = Mastery. If now in state /, 
after one lesson you have ~ probability of still being in / and ½ proba
bility of being in E. If now in state E, you have ¼ probability of being 
in /, ½ in E, and ¼ in S. If now in state S, you have ¼ probability of 

• 
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being in E, ½ in S, and ¼ in M. If in M, you always stay in M (with 
probability 1). 
(a) Make a Markov chain model of this learning model. 
(b) If you start in state I, what is your probability distribution after two 

lessons? After three lessons? 

8. (a) Make a Markov chain model for a rat wandering through the fol
lowing maze if at the end of each period, the rat is equally likely 
to leave its current room through any of the doorways. The states 
of the Markov chain are the rooms. 

2 

----l l 

4')-
3 

(b) If the rat starts in room I, what is the probability that it is in room 
4 two periods later? 

9. Make a Markov chain model of a poker game where the states are the 
number of dollars a player has. With probability .3 a player wins 1 
dollar in a period, with probability .4 a player loses 1 dollar, and with 
probability . 3 a player stays the same. The game ends if the player 
loses all his or her money or if the player has 6 dollars (when the game 
ends, the Markov chain stays in its current state forever). The Markov 
chain should have seven states, corresponding to the seven different 
amounts of n1oney: 0, I , 2, 3, 4, 5, or 6 dollars. If you now have $2, 
what is your probability distribution in the next round? In the round 
after that? 

10. Three tanks A, B, Care engaged in a· battle. Tank A, when it fires, hits 
its target with hit probability ½. B hits its target with hit probability ~, 
and C with hit probability!. Initially (in the first period), B and C fire 
at A and A fires at B. Once one tank is hit, the remaining tanks aim at 
each other. The battle ends when there is one or no tank left. Make a 
Markov chain model of this battle. 

Assistance in Computing Probabilities: Let the states of the Markov 
chain be the eight different possible subsets of tanks currently in action: 
ABC, AB, AC, BC, A, B, C, None. When in states A or B or C or 
None, the probability of staying in the current state is I-this simulates 
the battle being over. One can never get to state AB. (Why?) So one 
only needs to determine the transition probabilities from states ABC, 
AC, and BC. From states AC and BC, the transition probabilities are 
products of the probability that each remaining tank hits or misses its 
target. For example, the probability of going from state AC to state A 
is the product of the probability that A hits C-½ times the probability 

• 
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that C misses A-~. So this probability is (½)(!) = -&. It takes some 
knowledge of probability to compute the transition probabilities from 
state ABC. From ABC there is a fa chance of remaining in state ABC 
(all tanks miss), a A chance of going to state AC (A hits B but B and 
C miss A), a fa chance of going to state BC (at least one of B or Chits 
A and A misses B), and a i''s chance of going to state C (at least one of 
B or Chits A and A hits B). 

11. Use a computer program to follow the Markov chains in the following 
examples and exercises for 50 periods by iterating the next-period for
mula ( l) as done in Example 2. 
(a) Example 1, starting in state Sunny. 
(b) Example I, starting in state Cloudy. 
(c) Example 2, starting in state 4. 
(d) Example 2, starting with Pt = p6 = .5, other Pi = 0 . 
(e) Exercise 4, starting in state Broken. 
(f) Exercise 5, starting in state Win. 
(g) Exercise 6, starting in state Market Unchanged. 
(h) Exercise 7, starting in state /. 
(i) Exercise 8, starting in state Room I . 
(j) Exercise 9, starting in state $2 . 
(k) Exercise 9, starting in state $3. 
(I) Exercise 9, starting in state $4. 
(m) Exercise IO, starting in state ABC. 

12. For the rabbit-fox model in equations (8), use hand calculations to 
verify the population sizes for months 1, 2,. and 3 given in table (9). 
To get the sizes after 1 month, set R = 100, F = 100 (the starting 
sizes) and evaluate the right sides of the equations in (8). Next take the 
values you obtained for R' and F' and let these be the new R and F. 
Repeat this process three times. 

13. For the rabbit-fox model in equations (8), suppose that the initial pop
ulation sizes are R = 50, F = 50. 
(a) Calculate by hand the population sizes after 1 month, after 2 

months, and after 3 months . 
(b) Use a computer or calculator to compute the population sizes over 

8 months . 

14. Consider the following rabbit-fox models and an initial population size 
of R = 100, F = 100. In each case, compute the population sizes after 
1 month, after 2 months, and after 3 months. 
(a) R' = R + .3R - .2F (b) R' = R + .3R - .2F 

F' = F - .2F + . lR F' = F - . IF + .2R 

15. Consider the following goat-sheep models, where the two species com
pete for common grazing land. In each case, compute the population 
sizes after 1 month, after 2 months, and after 3 months if the initial 
population is 50 goats and 100 sheep. 

• 
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(a) G' = G + . 2G - . 3S 

S' = S + .2S - .2G 

(b) G' = G + . 2G - . 1 S 

S' = S + .4S - .2G 

16. This exercise concerns the rabbit-fox model in equations ( 15). For given 
initial population sizes , calculate the population sizes after I month, 
after 2 months, and after 3 n1onths . Also plot the trajectory of population 
sizes from the starting values to the stable sizes (as in Figure 1.8). The 
initial sizes are 
(a) R = 30, F = 24 (b) R = 8 , F = 3 (c) R = 8, F = IO 
(d) R = 10, F = 10 

17. Consider the rabbit-fox model 

R' = R + . 1R - .15F 

F' = F - .3F + .2R 

What is the equation of the line of stable population sizes? For given 
initial population sizes, calculate the population sizes after 1 month, 
after 2 months, and after 3 months. Also predict th~ stable sizes to 
which these populations are converging. Compare your numbers with 
the calculations in Exercise 16. The initial sizes are 
(a) R = 30, F = 24 (b) R = 8, F = 3 (c) R = 8, F = 10 

· ( d) R = 10, F = 10 

• 

18. Consider the rabbit- fox model 

R' = R + . l R - . 2F 

F' = F - .4F + .2R 

On a graph plot the following: 
(a) The line of stable population sizes. 
(b) The trajectory of population sizes starting from ( 10, 15). 
(c) The trajectory of population sizes starting from (10, 30). 
(d) The trajectory of population sizes starting from (20, 10). 

19. Consider the rabbit-fox model 

R' = R + 2R - 3F 

F' = F - 3F + 2R 

On a graph plot the following: 
(a) The line of stable population sizes. 

• 

• 

(b) The trajectory of population sizes starting from (10, 15). 
(c) The trajectory of population sizes starting from (1, 2). 
( d) How do the trajectories of this model differ from those in Figure 

1.8? 

• 
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20. Use a computer program to follow the behavior of the nonlinear rab
bit-fox model in ( 19) over a period of 100 months (as in Figure 1. 9) 
with the following starting values: 
(a) R = 6, F = 6 (b) 100, 100 (c) 10, 10 

21. In Example 4, if the change in R is . lR - .01RF in 1 month, then in 
1 day we would expect 3

1
0 of such a change [i.e. , (a6o)R - (ao1no)RF]; 

similarly for the change in foxes. Write out the full set of equations for 
this model with time measured in days . Starting with R = 3, F = 3, 
follow the populations as before for 3000 days ( == 100 months). (Use 
a computer program.) How do your results compare with those in table 
(20)? 

Projects 
22. Use a computer program to follow the populations for many periods in 

the models in Exercises 14 and 15. Try a couple of different starting 
population sizes. In each case describe in words the long-term trends 
of the populations. 

23. Make a thorough analysis of long-tenn trends for the rabbit-fox model 

R = R + bR - eF 
F = F - dF + e'R 

for different values of the positive parameters b, d, e, e'. That is, list 
all possible long-tetn1 trends and give conditions on the parameters that 
tell when each trend occurs. For example, one trend is that both pop
ulations become extinct, with rabbits dying out first. Determine the 
conditions experimentally by trying many different specific parameter 
values and in each case computing the population sizes over many 
months. 

Linear Programming and 
Models Without Exact Solutions 

In this section we examine two very important variations on the problem of 
solving n linear equations in n unknowns . We illustrate these variations with 
the refinery problem from Section 1.2. 

Example 1. Refinery Problem Revisited with 
One Refinery Broken • 

The original refinery problem had three refineries and three products: 
heating oil, diesel oil, and gasoline. We wanted the production levels, 
x 1, x2 , x3 , of the refineries to meet demands of 500 gallons of heating 
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oil, 850 gallons of diesel oil, and 1000 gallons of gasoline. The equa-
tions we got were 

Heating oil: 

Diesel oil: 

Gasoline: 

20x1 + 4x2 + 4x3 = 500 

l0xl + 14x2 + 5x3 = 850 

5x1 + 5x2 + 12x3 = 1000 

(1) 

Suppose that the third refinery breaks down and we have to try to meet 
the demands with two refineries. Our system of equations is now 

Two-Refinery Production Problem 

Heating oil: 

Diesel oil: 

Gasoline: 

20xt + 4x2 = 500 

10x1 + 14x2 = 850 

5x1 + 5x2 = 1000 

(2) 

A system like (2) with more equations than unknowns is called 
o·verdetermined and does not normally have a solution. All one can 
ask for is an approximate solution. We want a ''solution'' of x 1, x2 

values that makes the total production of the two remaining refineries 
as close as possible to the demands. In Chapter 5 we define precisely 
the term '' as close as possible'' and tl1en show how to solve this 
problem. • 

If we take the situation in system (2) to a greater extreme, with, say, 
10 or 50 equations but just two unknowns, then we have a famous estimation 
problem in statistics . 

.... 

Exa,nple 2. Predicting Grades in College 

A guidance counselor at Scrooge High School wants to develop a 
simple formula for predicting a Scrooge graduate's GPA (grade-point 
average) at the local state college as a function of the student's GPA 
at Scrooge High. The formula would be a linear model of the form 

college GPA = q x (Scrooge GPA) + r (3a) 

or 

C = qS + r (3b) 

where C stands for college GP A, S stands for Scrooge GPA, and r, q 
are constants to be determined based on the performances of past 
Scrooge graduates. Suppose that the data from eight students are 

• 
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Figure 1.10 E~timated equa
tion for relation betv.1een 
Scrooge GPA and college 
GPA. 
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Predicted C 
Student S (Scrooge GP A) C (College GPA) l .lXS - .9 

A 3.0 2.2 2.4 

B 3.6 3.6 3.06 
C 2.6 2.4 1.96 
D 3.2 2.8 2.62 
E 2.0 1.0 1. 3 

(4) 

F 3.0 2.8 2.4 

G 3.8 3.0 3.28 

H 3.6 2.8 3.06 

One should pick the constants q and r so that the predicted college 
GPA given by the expression qS + r will be as close as possible to 
the actual college GPA for these students. Using a method discussed 
in Chapter 4, we set q = 1.1 and r = - . 9. The predicted college 
GP As with this formula are given in the last column of the table. Figure 
1 .10 bas a plot of the C and S values from ( 4) along w;th the suggested 
line C = I. IS - . 9. • 

This is the same sort of problem that we faced in finding an approxi
mate solution to the refinery problem in Example 1. The statistical name for 
this type of estimation problem is regression. 

Suppose that the counselor \vanted to break down the Scrooge grade 
average into various components GM; s, GE, and GH; L, representing the stu
dent's grades in the three subject areas of math/science, English, and his
tory /languages. The counselor would give these three components separate 
weightings in a formula like 
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(5) 

The solution of regression problems is discussed in Chapters 4 and 5. 
Next let us consider the situation where we have more unknowns than 

equations . Again we use the refinery model. 

Example 3. Refinery Model Revisited 
Without Diesel Oil 

Suppose now that there is no demand for diesel oil and the three 
refineries just produce heating oil and gasoline. So the system of equa
tions to be satisfied is 

T,vo-Product Refinery Problem 

Heating oil: 

Gasoline: 

20x1 + 4x2 + 4x3 = 500 
5x1 + 5x2 + 12x3 = 1000 

(6) 

This system of two equations in three unknowns is called underdeter
mined in the sense that there are not enough constraints to determine 
each unknown uniquely. The solution we found in Section 1.2 for the 
refinery problem with all three equations is clearly valid with two 
equations: x 1 = 5, x2 = 33, x3 = 68. But many other solutions are 
possible. In particular, we could shut down one of the refineries, say 
refinery 3, as in Exa1nple 1. In mathematical terms, we seek a solution 
to (6) with x3 = 0. Dropping the x3 terms from (6), we have 

Heating oil: 

• Gasoline: 

20x1 + 4x2 = 500 

Sxi + 5x2 = 1000 
(7) 

This system of equations is easily solved by high school algebra: 
Subtract four times the second equation from the first to eliminate x 1 
and obtain - l 6.t2 = - 3500 or x2 :_ .a~~o = 218~. Now the gasoline 
equation becomes 5.x1 + 5(218~) = 1000; dividing this equation by 
5 and solving for x1 yields x 1 = -18¾. Unfortunately, a negative 
value for x I is nonsense. 

Next try shutting down the first refinery by setting x 1 = 0. We 
have 

Heating oil: 

Gasoline: 

4X2 + 4x3 = 500 

5x2 + 12x3 = 1000 

Solving (8) for x2 and x3 yields the solution x2 == 5~
0 = 71, x3 

(8) 

3¼5 
=: 54. We could set x2 = 0 and get another solution, There are 

many more solutions in which all the refineries are running. 
Which solution would we use in practice? The answer is, the 

solution that is most efficient. That is, the solution that is the cheapest . 

• 
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Each refinery will have a cost of operation. Suppose that the costs to 
refine a barrel of oil (the units for the xi's) are 

Refinery Operation Costs 

Refinery 1 

Refinery 2 

Refinet')' 3 

$30 per barrel 

$25 per barrel 

$20 per barrel 

(9) 

Then we want a solution to the two-product production problem 
(6) (with no X; negative) for which the total refining cost of 30x1 + 
25x2 + 20x3 is minimized. The complete mathematical statement of 
this problem is 

Optimal Refinery Production Problem 

Minimize 30 .. t 1 + 25x2 + 20x3 

subject to the constraints 

20x1 + 4x2 + 4x3 = 500 

5xL + 5x2 + 12x3 = 1000 

X 1 > 0, X2 > 0, X3 > 0 

( 10) 

• 

The problem of optimizing (minimizing or maximizing) a linear 
expression subject to constraints that are linear equations or inequalities is 
called linear programming. Linear programming is the most important 
mathematical tool in management science. There are thousands of different 
real-world problems that can be posed as linear programming problems. 
When scientists at Bell Laboratories recently proposed a new, more efficient 
way to solve linear programming problems, the announcement was a front
page story in major newspapers. 

The optimal refinery production problem ( 10) involved a set of linear 
equations as constraints together with the inequalities x 1 ~ 0, x2 > 0, x3 > 
0. As we shall see shortly, it is easier to solve linear programs in which · all 
the constraints are inequalities. Exercise 13 shows how to convert the equa
tions in (10) into linear inequalities. This conversion is discussed further in 
Section 4. 6. 

As an example of how linear programs with inequalities are solved, 
we look at a simple two-variable maximization problem. 

Example 4. A Linear Program: Optimal 
Production of Two Crops 

Suppose that a farmer has 200 ac~es on which he can plant any com
bination of two crops, corn and wheat. Corn requires 4 worker-days 
of labor and $20 of capital for each acre planted~ while wheat requires 
1 worker-day of labor and $10 of capital for each acre planted. Suppose 

• 
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also that corn produces $60 of revenue per acre and wheat produces 
$40 of revenue per acre. If the farmer has $2200 of capital and 320 

• 
worker-days of labor available for the year, what is the most profitable 
planting strategy? 

If 

C = number of acres of corn 

W = number of acres of wheat 

the constraints on land, labor, and capital are given by the following 
system of linear inequalities: 

Land: 

Labor: 

Capital: 

also, 

C+ W < 200 

4C + W :s; 320 

20C + lOW =s 2200 

W 2: 0, 

(11) 

Subject to these constraints, we want to determine C and W so as to 
maximize the total revenue . 

Maximize 60C + 40W (12) 

The expression to be maximized is called the objective function·. 
When only two variables are involved, one can plot the inequality 

constraints and display the region of (x 1, .t2)-points that simultaneously 
satisfy all the constraints in (11 ). This region is called the feasible 
region of the linear program, and its points feasible points. See the 
shaded area in Figure l .11 . Recall that to find the points satisfying an 
inequality such as C + W < 200, we plot the line C + W = 200 
and then shade the line and all points on the lower left side of the line. 

Once we have plotted the feasible region for ( 11), it remains to 
find out which feasible point maximizes 60C + 40W. The following 
geometric insight greatly simplifies the solution of linear programs (this 
theorem is proved in Section 4. 6). 

Theorem. A linear objective function assumes its maximum and min
imum values on the boundary of the feasible region. In fact, the optimal 
value is achieved at a corner point of this boundary. 

Now we can solve our linear program. The theorem tells us where 
to look for the optimal (C, W)-value-at the comers of the feasible 
region. To find a corner that lies at the intersection of two constraint 
lines, we solve for a (C, W) point that lies on both lines-the same 
old problem of solving two equations in two unknowns. Once we 
determine the coordinates of a corner of the feasible region,· we can 
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Figure 1.11 Feasible region for 
two-crop linear program. 
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evaluate the expression 60C + 40W at that corner. The corner that 
maximizes this expression is the answer to our optimal production 
problem. In the current problem we can see from Figure 1.11 which 
intersections of constraint lines form comers of the feasible region. 

Table 1.2 lists the coordinates of the corners and the associated 
objective function values. So the optimal production schedule is to 
plant 20 acres of corn and 180 acres of wheat. In Section 4. 6 we 
present a more general, systematic approach to find the maximizing 
comer in a linear program. 

Table 1.2 

Corner 
Coordinates 

(0, 0) 

(0, 200) 

(20, 180) 

(50, 1'20) 

(80, 0) 

Intersecting 
Constraints 

C 2: 0 and W > 0 

C > 0 and Land 

Land and Capital 

Capital and Labor 

Labor and W > 0 

Objective 
Function 

0 

8000 

8400*** 

7800 

4800 
• 

Before leaving this example, we note that the farmer's constraints 
(Land, Labor, and Capital) determined the feasible region, and the ''mar
ketplace'~ (prices for corn and wheat) determined the objective function. If 
the market prices for corn or wheat change, or equivalently , the farmer 
receives a subsidy for one of the crops, the optimal solution may change. 
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Table 1.3 

Corner 
Coordinates 

(0, 0) 

(0, 200) 

(20, 180) 

(50, 120) 

(80~ 0) 

• 

Intersecting 
Constraints 

C 2: 0 and W > 0 

C > 0 and Land 

Land and Capital 

Capital and Labor 

Labor and W > 0 

Ch. 1 Introductory Models 

Objective 
Function 

0 

8000 

9000 

9300*** 

7200 
• 

For many years, the Federal Farm Program has offered crop subsidies in 
order to influence both the types of crops grown and the total number of 
acres planted. 

To illustrate how a crop subsidy can cause land to be taken out of 
production, let us suppose in Example 4 that the farmer receives a subsidy 
for corn that increases the revenue from $60 to $90 per acre. Then the 
objective function is now 90C + 40W. The values of this new objective 
function at the comer points of the feasible region are shown in Table 1.3. 
The new optimal strategy is to plant 50 acres of corn and 120 acres of wheat, 
for a total of 170 acres. The subsidy results in the farmer removing 30 acres 
fro1n production. 

Section 1.4 Exercises 

Summary of Exercises 
Exercises 1-5 involve overdetermined systems and regression. Exercises 
6-12 involve linear programming. Exercise 13 tells how to convert a system 
of equations into a system of inequalities (this conversion is discussed further 
in Chapter 4) . 

1. Use a trial-and-error approach to estimate as closely as possible an 
approximate solution to the refinery problem in Example 1: 

2. (a) Repeat Exercise l, but now refinery 2 rather than refinery 3 is 
• • rruss1ng. 

(b) Repeat Exercise 1, but now refinery 1 rather than refinery 3 is 
. . 

m1ss1ng. 
( c) If you had to close down one refinery , which refinery would you 

pick in order to meet the demand as closely as possible with the 
remaining two refineries? 

3. Consider the following system of equations, which might represent sup
ply-demand equations for chairs, tables, and sofas from two factories: 

I 
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Chairs: 

Tables: 

Sofas: 

Factory 1 

10x1 

7x1 

5x1 

+ 
+ 
+ 

Factory 2 Demand 

200 

150 

100 

Find an approximate solution to this system of equations by trial and 
error. 

-
4. For the following sets of x-y points, estimate a line to fit the points as 

closely as possible. 
(a) (1, 1), (2, 3), (3, 2), (4 , 6), (5, 5) 
(b) ( 1 , 6), (2, 4) , ( 3 , 3), (3 , 2), ( 4, - I), ( 4, 0) 

5. Suppose that the estimate for GPA in college in Example 2 had been 

Ge = .6GM/s + .3GE + .3GH/L - 1 · 

where GM; s, GE, and GH/L are the GPAs in mathematics/ science, 
English, and humanities/ languages. Based on this predictor, on which . . 
courses should students work hardest (if students want to improve their 
expected college GPA)? 

6. Find a solution to the refinery problem in Example 3 in which the values 
of x2 and x3 are the same. 

7. Change the labor constraint in the crop linear program of Example 4 to 
be 4C + 2W = 320. Now what would be the optimal solution? 

8. Suppose that a Ford Motor Company factory requires 7 units of metal , 
20 units of labor, 3 units of paint, and 8 units of plastic to build a car, 
while it requires 10 units of metal, 24 units of labor, 3 units of paint, 
and 4 units of plastic to build a truck. A car sel Is for $6000 and a truck 
for $8000. The following resources are available: 2000 units of metal, 
5000 units of labor, 1000 units of paint, and 1500 units of plastic. 
(a) State the problem of maximizing the value of the vehicles produced 

with these resources as a linear program. 
(b) Plot the feasible region of this linear program. 
(c) Solve this linear program by the method in Example 4, by deter

mining the coordinates of the comers of the feasible region and 
finding which comer maximizes the objective function. 

Hint: By looking at the objective function, you should be able to 
tell which corners are good candidates for the maximum. 

9. Suppose that a meal must contain at least 500 units of vitamin A, 1000 
units of vitamin C, 200 units of iron, and 50 units of protein. A dietician 
has the following two foods from which to choose: 
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Meat: One unit of meat has 20 units of vitamin A, 30 units of vitamin 
C, 10 units of iron, and 15 units of protein. 

Fruit: One unit of fruit has 50 units of vitamin A, 100 units of vitamin 
C, 1 unit of iron, and 2 units of protein. 

Meat costs 50 cents a unit and fruit costs 40 cents a unit. 

(a) State the problem of minimizing the cost of a meal that meets all 
the minimum nutritional requirements as a linear program (now 
you want to minimize the objective function). 

(b) Plot the boundary of the feasible region for this linear program. 
(c) Solve this linear program by the method in Example 4 [see Exercise 

8, part (c)]. 

10. Consider the two-refinery problem in Example 1. 

Heating oil: 

Diesel oil: 

Gasoline: 

20x1 + 4x2 = 500 

10x1 + 14x2 = 850 

5x1 + 5x2 = 1000 

(2) 

Suppose that it costs $30 to refine a barrel in refinery 1 and $25 a barrel 
in refinery 2. What is the production schedule (i.e., values of x 1, x2) 

that minimize the cost while producing at least the amounts demanded 
of each product (i.e., at least 500 gallons of heating oil, etc.)? . 

Hint: Solve by the method in Exercise 8, part (c). 

11. Consider the following two linear programs. 

(i) Maximize 3x 1 + 3x2 (ii) Minimize I Ox 1 + 8x2 

subject to subject to 

X1 > 0, X2;::: 0 X 1 > 0, X2 > 0 

X1 + 2X2 $ 10 X1 + 2x2 ~ 3 

2x1 + X2 $ 8 2x1 + X2 > 3 

Solve them and show that the optimum values of these two objective 
functions are the same. 

12. Set up the following problem as a linear program, but do not solve. 
There are two truck warehouses and two stores that sell trucks. The 
following table gives the cost of transporting a truck from one of the 
warehouses to one of the stores. 

Warehouse 1 

Warehouse 2 

Store 1 

$40 

$60 

Store 2 

$50 

$40 

• 
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Warehouse 1 has 100 trucks and warehouse 2 has 80. Store 1 needs at 
least 50 trucks and store 2 needs at least 100 trucks. Find the cheapest 
way to meet the stores' demand. 

Hint: Let the variables be x11 , x12, x21 , and x22 , where xii is the amount 
shipped from warehouse i to store j. 

13. To convert a system of equations in which each variable must be ~ 0, 
into a system of inequalities with each variable > 0, we p~rfonn the 
following steps. 
(i) Pick a variable in the first equation and solve that ~quation for the 

chosen variable, that is, so that the chosen variable is alone on one 
side of the equation. For example, in the system of equations 

2x + 4y + 6z = 8 

~t + 3y + 2z = 6 
X 2= 0, y ~ 0, Z > 0 

if we pick x in the first equation, then we rewrite it as 

(*) X = - 2y - 3z + 4 

(ii) Replace the chosen variable in the other equations by substituting 
in its place the right-hand side in (*). So the second equation in 
this problem becomes 

( - 2y - 3z + 4) + 3y + 2z = 6 

or 

y - z = 2 

(iii) Since the chosen variable is > 0, the right side of (*) must be 
> 0, that is, 

-2y - 3z + 4 > 0 

or 

4 ~ 2y + 3z (equivalently, 2y + 3z :::; 4) 

Now the original three-variable problem has been reduced to a two
variable problem with one equation converted into an inequality . 

2y + 3z < 4 

y - z = 2 

y > 0, z > 0 

• 
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(iv) Repeat the entire procedure for a variable in the second equation. 
If we pick )1, solve the second equation for y in terms of z, substitute 
this expression involving z in place of y in the first inequality; also 
make this expression in z be ~ 0. · 

(a) Complete step iv. 
(b) Convert the refinery linear program at the end of Example 3 into a 

linear program with inequalities, and solve the linear program. 
(c) Convert the following system of eqt1ations for nonnegative vari

ables into a system of inequalities. 

x L + 3x2 + 2x3 = I 0 

2x 1 + 5x2 - 4x3 = 15 

XI > 0, X2 > 0, X3 2:'.: 0 

Arrays of Data and 
Linear Filtering 

In the previous sections we have encountered arrays of numbers that were 
the coefficients of systems of equations. But not all arrays of numbers are 
sets of coefficients . There are many problems in which arrays of numbers 
are input data to be analyzed. In statistics, we study huge data sets that come 
in sequences , two-dimensional arrays, and more complex structures. In the 
field of information processing and pattern recognition, certain information 
must be extracted from the data, be it a coded message or a picture. Both 
of these fields make heavy use of linear modeJs to process arrays of data. 

The examples in this section illustrate the use of linear models in 
pattern recognition and encoding of information. First we consider an ex
ample in which the data to be processed are letters, not numbers. 

Example 1. Linear Models for Encoding 
Alphabetic Messages 

A common approach to coding an alphabetic message is to treat each 
letter in the message as a number between 1 and 26: A~ 1, B ~ 2, 
C ~ 3, . . . , Z ~ 26. The simplest way to encode a message is to 
convert each letter (number) to a different letter (number) using some 
simple arithmetic formula. For example, we could add 7 to each num
ber (this shifts the corresponding letter seven places to the right in the 
alphabet) or multiply each number by 11 . However, these operations 
will sometimes convert a number between I and 26 to a number greater 
than 26. 

To ensure that the result of some calculation is a number between 
1 and 26, we usually assume that all arithmetic is done mod 26. As 
an example, 
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7 x 13 = 91 = 13 ( mod 26) since 91 = 3 x 26 + 13 

Encoding schemes based on adding a constant to each number 
(letter) or multiplying by a constant are easy for an outsider to break 
because once one letter is guessed, the constant can be determined. 
For example, if XL is the original letter and Xe the coded letter, the 
encoding 

transforms THE into JOI since in numbers T 
E = 5, so 

7 · T = 7 · 20 = 140 = (mod 26) 

7 · H = 7 · 8 56 = (mod 26) 

7 · E = 7 · 5 = 35 = (mod 26) 

20, H 

10 = J 

4=D 
9 = I 

(1) 

8, and 

Now if we guess that I is the encoding of E, it is easy to compute that 
the constant in (1) is 7. Even a code with multiplication and addition, 
such as Xe = 9XL + 21, is easy to break. 

A better scheme, in which frequent words and letters are scram
bled, is to encode numbers in pairs using two linear eqt1ations of the 
fallowing form. Let £1 , L2 be a pair of original letters (represented as 
numbers between 1 and 26), and C 1 , C 2 be the coded letters ( also 
represented as numbers) into which L 1, L2 are transformed. 

cl - aL1 + bL2 (mod 26) 

C2 = cL, + dL2 (mod 26) 

For example, in the scheme 

C1 = 9L 1 + 17L2 (mod 26) 

C2 = 7L1 + 2L2 (mod 26) 

(2) 

(3) 

the pair E, C, represented numerically as 5, 3, would be encoded as 

C 1 = 9 X 5 + 17 X 3 = 96 18 (mod 26) = R (4) 

C2 = 7 X 5 + 2 X 3 = 41 = 15 (mod 26) = 0 

To use (2) for a whole message, we divide the string of m letters 
(ignoring punctuation) into m/2 successive pairs. Observe that if the 
fifth letter in the message were an E, the fifth letter in the encoded 
sequence would vary depending on what the sixth letter was [ with 
which Eis paired in (2)]. There are four constants [a, b, c, din (2)] 
in this encoding scheme, and hence 264 = 456,976 different possible 
schemes. Moreover, there are no meaningful patterns of frequently 
used letters to help a codebreaker. 

• 
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If the codebreaker had access to a large computer, we could 
counter this by grouping letters in sets of 5 and replace (2) by a scheme 
involving five equations of linear combinations of five letters. Now 
there would be 25 constants yielding 2625 ~ 1035 schemes-and we 
can go to sleep knowing that our code is secure. 

Although it is important to keep this code from being broken, it 
is also important that a code not be too hard to decode by a receiver. 
If the receiver knows the constants in (2), he or she still has to reverse 
the encoding process by solving a pair of equations in two unknowns. 
For example, if (3) were being used and the pair R, 0 ( = 18, 15) 
generated in (4) were received, the decoder would have to solve the 
system of equations 

9L 1 + 17L2 = 18 (mod 26) 

7L1 + 2L2 = 15 (mod 26) 
(5) 

For a more complex scheme of five equations in five unknowns, 
the decoding problem gets harder, especially since arithmetic is mod 
26. Fortunately, we shall show in Chapter 3 that there exist simple 
formulas for decoding so that the original pair L 1, L2 ( or 5-tuple) can 
be computed as a linear combination of the coded pair C 1 , C 2 • For 
example, the decoding equations for (3) are 

L1 = 18C1 + 3C2 (mod 26) 

L2 = 1SC1 + 3C2 (mod 26) 

The next two examples involve data analysis . 

• 

Example 2. The Mean of a Data Set 

(6) 
. • 

The most basic piece of statistical .information about a set of data is 
the mean, or average, of the data. The mean is obtained by summing 
all data values and dividing by the number of data. For example, 
the mean of the sequence of numbers 2, 3, 13, 3, 7, 1, 9, 3, 4, 5 is 
(2 + 3 + 13 + 3 + 7 + 1 + 9 + 3 + 4 + 5)/10 = 5. 

The mean is a linear combination of these 10 data values in which 
each value is multiplied by 1

1
0 (recall from Section 1.1 that a linear 

combination is an expression of the form c1x1 + c2x2 + · · · + cnxn). 
• 

Example 3. Smoothing a Time Series 

In many situations one receives a sequence of numbers recorded over 
time that form a pattern, but randomness in nature or in recording and 
transmitting the numbers has obscured the pattern. Such sequences are 
called time series. Consider the series of readings in Data Plot 1 taken 
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Time Data 

I 23 
2 27 
3 21 
4 32 
5 29 
6 26 
7 30 
8 29 
9 26 

10 26 
11 27 
12 19 
13 24 
14 22 
15 25 
16 20 
17 16 
18 27 
19 19 
20 15 
21 13 
22 25 
23 18 
24 22 
25 21 
26 24 
27 25 
28 28 
29 23 
30 27 

Data Plot 1 
• 

over a period of time. Suppose that this time series gives the numbers 
of people applying for welfare aid in some city in successive months 
(the numbers are presented in units of 100). The values might equally 
well have represented levels of X-rays measured in a spacecraft or the 
numbers of new houses started in the United States in successive 
months. 

To help picture the data, we plot the numbers in a graph, with 
time measured on the vertical axis and the data values on the horizontal 
axis. (The axes are omitted in the graph.) 

We want to try to find a long-term pattern in this time series by 
smoothing the data-that is, reducing the jumps in data from one 
period to the next. In engineering, the task of smoothing a noisy elec
tronic signal is called filtering ( the term is now also used in nonen
gineering settings). 
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The simplest way to filter a time series is by rep.lacing the ith 
value d; by the average of di and the two adjacent values d; _ 1 and 

• 
d, + 1• That is, we form a new time series whose ith value d~ is given 
by 

, di - 1 + di + d, + I 
d . = 

' 3 
(7) 

For example, we replace d15 by 

d~ s = d 14 + d15 + d 16 = 22 + 25 + 20 = 22 
3 3 

(When the value of d~ is fractional, we shall round to the nearest 
integer.) The f ormu1a in (7) is not defined for the first and last values 
(i = I and i = 27); instead, let us set d~ = (d1 + d2)/2 and 
d~7 = (d26 + d27)/ 2. The complete system of linear equations (the 
linear model) for filtering is then 

d' 1 
- ld - 2 1 + ½d2 

d' - 1 d 2 - 3 l + 1d2 + }d3 
d' - 1 d 3 - 3 2 + ½d3 + !d4 (8) 

• • • • 
• • • • 
• • • • 

d:1 - l = ~dn- 2 + idn - 1 + ½dn 
d' - 1 d n - 2 n - 1 + ½d,i 

Our new time series looks as shown in Data Plot 2. This time series 
is much smoother. There is a clear trend of increasing values, then 
decreasing, then increasing, and finishing relatively level. 

To smooth these data further, we could apply the smoothing 
transformation (8) again to this new time series. Instead, let us smooth 
the original data (in Data Plot 1) by applying a weighted average of 
five values in which d; is weighted more and d1 _ 2 and d; + 2 are weighted 
less: 

d'~ == d, - 2 + 2di - 1 + 3d; + 2di+ l + di+ 2 , 
9 

(9) 

For example, now d 15 is replaced by 

d" 15 
d1 3 + 2d14 + 3d1s + 2d16 + d17 

9 

24 + 2 X 22 + 3 X 25 + 2 X 20 + 16 
9 

199 = 22 
9 

• 
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Time Data 

1 25 
2 24 
3 27 
4 27 
5 29 
6 28 
7 28 
8 28 
9 27 

10 26 
11 24 
12 23 
13 22 
14 24 
15 22 
16 20 
17 21 
18 21 
19 20 
20 16 
21 18 
22 19 
23 22 
24 20 
25 22 

• 

26 23 
27 26 
28 25 
29 26 , 
30 25 

Data Plot 2 
• 

For d'{, drop the missing terms from (8) to obtain d1
{ = (3d1 + 

2d2 + d3)/6, and similarly ford~, d;9 , d~0 . The new time series ob
tained when transformation (8) is applied to the original data is as 
shown in Data Plot 3. Observe how smooth this transformed time series 
is as compared to the original one. The Exercises have other examples 
of time series for which filtering reveals important trends. 

We can show that applying the three-value average (7) to Data 
Plot 2; or, equivalently, applying the three value average twice to the 
original data, produces the same time series as in Data Plot 3. In 
general, successively performing two (or more) linear filterings is 
equivalent to performing another (more complicated) filtering; see the 
Exercises for examples. • 
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Time 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

Data 

24 
25 
26 
28 
28 
29 
28 
28 
27 
26 
25 
23 
23 
23 
22 
21 
21 
21 
19 
18 
17 
19 
20 
21 
22 
24 
25 
26 
26 
26 

Data Plot 3 
• 

Example 4. Linear Filtering in 
Pattern Recognition 

Ch. 1 Introductory Models 

• 

• 

• 

When the TV camera that serves as the eyes of a robot transmits a 
picture to the robot's computer, the picture is sent as a two-dimensional 
array of numbers that indicate the darkness of each point in the picture. 
A computer program to perform pattern recognition must determine 
what the robot is seeing by analyzing this digital representation of the 
picture. Light reflecting off an object or confusing patterns in the back
ground can make a simple object quite difficult to recognize. Trans
formations to filter the data and increase the level of contrast are an 
essential part of any pattern recognition program. 
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Suppose that there are nine shades of darkness of a point, rep
resented by integers O through 8, 0 for white (least dark) and 8 for 
black: 

0= , 
,· .. . 

I - , .. . . - .... . . . . . ' 2 r.,..... 3 ijij• =!:~ - t 
;,--:-:. , - •• : I ' 

s = Ill, 6 = •, 7 = •. 8 = 
4 = mm ~, 

A picture represented by the 12 x 12 array of darkness values shown 
in Data Plot 4 has been received from a robot 's TV camera.(of course, 
a 12 x 12 array would only be a small section of the full TV image) . 

. . . . --··· . . . . .. ... \ ... ......... ~ 
• • • ..1 ... •,·• • 

,.,.,.,, 
t::::~: ,._.•., ,:~ .......... .... .. 

. . . . .... _.. ,. .. ,.,~ 
• • • • • ........ ;.: .. i;. 

•.•. ···•· r~ . • • • ':.•~··.· ~t:t:'• 
• • • • •i•~--:• ~~r.: :L 

··-···· .... : ... 
•.'•/-;: _: . -.... •~-- ....... ... . 

;-::?:· _ , .,. ... 
' ....... :-,-,-.,..~ ~1':t"'J': ......... "'-~-.,,.,, ' •.. -:--...•. ······•t • ~· •.- •• : ~:-:: !';.T.t::t-. 

, ••• ._... ~ • • &,.:. •·!'I,""'• . . ......... ··•·· --.··.•··~· • ,;•.,:.:- .,. ....... .. ·~··:~·•. ::e-:-:::: -~•~9.•• • . ·.·~·-. ::,-.:::: : ~·:.·'.. 
' --••~- ... -· :~:::~· ..... :. 

• • • I ... . 
• . . ... ffl . . . 

• • • • \i.-

........ _ 
:_:~::;:,: 
••:·•-:--- .. . 

Data Plot 4 

•...... ,. ·.· -~ ....... . •······· ,_,.__ ~ ·•· ... , •.. ;.;.,• ~-:-:.... . .. .. : . 
: •• ;._:.1,·• • • -•• •,.-..... " ~ ::, •• :.:.: .• 

• ............. 1,---• n.::~·,.. t., ...... ~ 
. ;r::; : . . •.,.. ' 
•;:::; :. .. ..:-;: •. :. • • 1 

M ·.•,·-· ..... ·c ~ ,,~,.,. ..... .... ......... - ....... . 
:·~~ .... " ...:.· --~· ~ . ~!'-:..;• ........... ........ • 1•··'""· . . ... .. .... 

..,, __ ,, ..... • -·-· ':.,. .. . ........ 

• .,,.~, . . . . ' ....... :.!i::?:": • • O • l\••,'H•, 
:!.;t;::. • ........ . ·:: •,,:--:: . . . . ''".·:··· 

.. .. -.r,- ... - ... ii· • • • • .,,_#...-....... .. 
• ::,~:::: .Z./ •• / .... ~ ........... -··-.·· , ~ . . . . .. · rffi• . . . .. . ... . . . . . " .. 

•• * • • • • • • 

• ··~ . . . , .. 
• • I ..... '· . ' 

Let us perform a linear filtering on this array of darkness values . 
We replace each value by a weighted average of the value and the 
eight values surrounding it, as denoted by 1 's and 4 's in Figure 1.12. 

· 141 

4• 4 

14 l 

• 

l 5 

4• 
I 5 

We use a weighting in which the old value gets a weight of 16, the 
four neighboring values in the same row or column ( denoted by 4' s in 
Figure 1.12) get a weight of 4, and tl1e diagonal neighboring values 
( denoted by 1 's in Figure 1 . 12) get a weight of 1; we divide this 
weighted sum by 36. (At the edges of the array, we increase the 
weights on the border values to 5, 20, 5, as shown in Figure 1. l 2.) 
The transformed array is shown in Data Plot 5. 

-
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............ ·••:·•~· ••• j .......... ~~ 
..... ~4\·~ •• •-;-,-... • • .. • • ~ .. , ... ~ J·i:-it.: ,.. .. : ....... •·t·~·-.. .... ·.-·.'•l..· rr:·• ~ 
.. •••••\ .. ,,,,,, - , • • 1\ul•u l•';~l, ... ·•· ········· 

. ., __ --· t'"'"'" ti .. ,. ..... .. :..... -:~-· 
..: .; ..:. : --:..L.l, • j.;. ... r. ~ • • • • • • • • . '"-W 
~--:--..·~ •-;--:-•:· .. li't:"'i •• 

Data Plot 5 

We might now start to perceive a person in the figure. But to see 
the person clearly we need greater constrast. To increase the contrast 
between light and dark, we apply the following linear function with 
roundoff: f(x) = 3x - 9; a value below O is rounded to O and a value 
above 8 is rounded to 8. The table for this contrast function is 

Old Value 0 1 2 3 4 5 6 7 8 

New Value 0 0 0 0 3 6 8 8 8 

With this contrast function, Data Plot 5 becomes Data Plot 6. 
Now the person is fairly visible, perhaps with an object by the left 
foot. Greater contrast would help a little more. A good co1nputer pro
gram to recognize patterns should now be able to ''see'' that the object 
pictured is a human being. 

• :, h~ ... -.... ,. . .,.'":. .. 
..;• •.: 

• 

• 

Data Plot 6 

• 

-

.,., • .. ,. ,- -~..:-· .. ..... .. . .. 

• :O.i!'J. ::·.?;?: II ·······~ -.. •. :;!.~2 . .:., ' :-. ........ ... ~··· 

)-... ~· 
ii~:;· . 
. . : : . 

II 

. .. . . . ... . 
•t ::: ~ ·~·· .. ~. 

• 
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''Adaptive'' filtering schemes do a small amount of_ filtering and 
then look for ''borders'' between light and dark regions. The region 
around a border is then subjected to a contrast transformation to ac
centuate the border, while nonborder regions are filtered as above. • 

Section 1.5 Exercises 

• 

Summary of Exercises 
Exercises 1-5 are associated with Example I about codes . Exercises 6-12 
are associated with Example 3 on filtering time series; Exercises 10-12 
involve algebraic composition of transformations-they require more ma
turity. Exercises 13- 15 are associated with Example 4 about two-dimen
sional arrays forming ''pictures. '' 

1. Evaluate the following expressions mod 26. All answers mi1,st be posi
tive numbers between 1 and 26. 
( a) 7 X 7 (b) 12 X 5 ( c) - 5 X 5 ( d) - 11 X 19 
(e) 12 X (14 + 17) 

2. Use the encoding C = SL + 7 (mod 26) to encode the letters in the 
following words. 
(a) BE (b) AT (c) APE 

3. Use the encoding in equations (3) to enc~de the following pairs of 
letters . 
(a) BE (b) AT (c) CC 

4. Use the decoding in equations (6) to decode the following pairs of 
letters. 
(a) BG (b) CC . (c) RD 

5. Determine the value(s) of x that satisfies (satisfy) the following equa
tions mod 26. Which equations have unique solutions? 

• 

(a) 9x= 11 (b) 7x= 13 (c) 14x = 3 (d) llx= 9 

6. Apply the filtering transformation in formula (7) to the first 15 numbers 
in the time series in Data Plot 2. (You should get the same results as 
in Data Plot 3.) 

7. Apply the following filtering transformations to Data Plot 1 ( explain 
how you alter these transformations for the first and last values) . 

(a) d; = d, _2 + i + d;+2 
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(b) d~ 

(c) d~ 

d; - 2 + d;- 1 + d; + d; + I + d; + 2 

5 

di - 3 + di - 1 + d; + l + d; + 3 

4 

I 

Ch. l Introductory Models 

8. Consider the time series 2, 10, 4, 12, 6, 14, 8, 16, 10, 18, 12, 20. 
Apply transformations (a), (b), and (c) from Exercise 7. Which of the 
transformations smooth this time series well, and which do a poor job? 

9. Consider the time series 1, 4, 2, 5, 8, 6, 3, 10, 3, 12, 10, 9, 8, 12, 
18, 13, 21, 16, 16. Apply transformations (a), (b), and (c) from Ex
ercise 7. Which of the transformations smooth this time series well, and 
which do a poor job? 

10. Show algebraically that if the transformation in formula (7) were applied 
to a time series and applied again to the resulting time series, then the 
cumulative result would be the same as the transformation in formula 
(9). 

11. (a) Suppose that the transformation in Exercise 7, part (a) is applied 
twice (as described in Exercise 10). Give a formula for the cu
mulative transformation . • 

(b) Suppose that the transformation in Exercise 7, part (a) is applied 
to a time series and then the resulting time series is filtered by the 
transformation in Exercise 7, part (b). Give a formula for the cu
mulative transformation . 

12. Suppose that d: = a1d; _ 1 + a2d, + a3d;+ 1, d'; = b1d; _ 1 + b2d1 + 
b3d; + 1 • Give a formula for the transformation obtained by performing 
the first and then the second transf onnation on a time series . 

• 

13. Apply the contrast function (given just before Data Plot 6) to Data 
Plot 6. 

14. Apply the following filtering transformations to the upper 8-by-8 comer 
of Data Plot 4 (just the frrst 8 rows and first 8 columns), and then apply 
the contrast function given in the text. The transformations are described 
by a 3-by-3 square of weights, as in Figure 1.12. Explain what you did 
at the borders. 

(a) 1 1 l 
1 1 I 
1 1 l 

(b) 0 1 0 
1 4 1 
0 l 0 

(c) 1 2 l 
2 8 2 
1 2 1 

(d) 1 2 1 
2 0 2 
1 2 1 

How effectively does each transfonnation help reveal the human being 
in the picture? 

• 
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15. Consider the following ''pictures,' ' given in terms of numbers rather 
than darkness levels. Apply the transformation in Example 4 followed 
by the contrast function. Give your answer in darkness levels. What is 
tlie letter or number in each picture? 

(a) 5 7 I 2 7 (b) 8 7 2 5 8 (c) 3 3 5 1 2 
8 4 1 5 1 7 6 1 3 7 4 7 3 3 8 
7 3 5 2 1 4 8 3 7 6 3 8 4 1 7 
7 7 5 7 8 8 5 8 5 1 2 6 3 3 8 
4 8 6 7 5 7 4 8 7 3 6 ·6 1 6 6 
8 4 3 4 8 6 8 2 8 5 3 8 2 4 7 
7 8 7 4 7 7 4 4 6 7 1 3 1 5 I 
5 7 6 8 6 8 7 1 1 8 5 1 6 2 3 

• 

• 



• 

• 
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• 

Examples of Matrices 

An essential tool in all mathematical modeling is good notation. This is 
especially true for models with large systems of equations or arrays of data. 
Two characteristics of good notation are 

1. To provide a way to express complex operations simply. 
2. To help a reader concentrate on the central features of a model without 

being overwhelmed by numbers. 

Most data can be naturally organized int() tables . Sometimes tl1e table 
consists of a single 1ist, as in a list of scores of students on a test . Sometimes 
the table has the form of a rectangular array with several columns and TO\VS , 

as in a teacher's record of the scores of students on all tests in a course~ 
here we have one column for each test a11d one row for each student. The 
mathematical name for a rectangular array of numbers is a matrix. The most 
common type of matrix in mathematical applications is the an·ay of the 
coefficients in some system of linear equations . 

In this section we introduce basic matrix notation. Matrix notation 
takes most people a little time to learn. But in a sl1ort while the reader will 
find it impossible to talk about linear models without using matrix notation. 

A matrix is a rectangular array of numbers. We speak of an m-by-n 
matrix when the n1atrix has 11z rows and n columns, and we use capital 

· boldface letters, such as A, to denote matrices. (The common handwritten 

61 
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• 

way to indicate a matrix is with a wavy line under the letter, such as A.) 
We use the notation au to denote the number in matrix A occurring in row 
i and column}. This is similar to the computer programming notation A(I,J) . 
Examples of matrices are 

A 
I 2 3 

4 5 6 
and 

4 3 8 

M - 9 5 I 

2 7 6 

(1) 

An ordered list of n numbers is called a vector or an n-vector. We use 
lowercase boldface letters, such as v, to denote vectors; v; is our name for 
the ith entry in vector v. Examples of vectors are 

v - I I, 2, 3 , 4] and 

7 

C - 8 
9 

Sometimes we write a vector as a row of numbers, sometimes as a column, 
but a vector is formally just an ordered list. 

An n-vector is just a l-by-11 matrix or an n-by-1 matrix. Conversely, 
an m-by-n matrix A can be thought of as a set of m row vectors (each of 
length n) or as a set of n column vectors (each of length m). We use the 
following notation: 

af denotes the ith row vector in A. • 

a.f denotes the }th column vector in A. 

We omit the R (or C) superscript when it is clear from the discussion that 
we are talking about rows (or columns). 

• 

For example , in the matrix A in ( l) , 

af = [l, 2, 3], ac -
2 -

2 

5 

Summarizing our matrix notation, we can write a general matrix A in 
the following ways: 

Q l l al2 G1 3 • • • al) • • • aln af 
a 2 l a 22 a 23 • • • a 2J • • • a 2n a~ 

a 31 a 32 a33 • • • a3J • • • a3n · a1 

• • • • • • • • • • • • 
A • • • • • • • • • • • • 

• • • • • • • • • • • • 

a;, a.? a,3 • • • a .. • • • ain al.? ,_ IJ I 

• • • • • • • • • • • 
• ' • • • • • • • • • • • 
• • • • • • • • • • • • 

a,,,1 an,2 a,n3 • • • a,nj • • • an,n R a,n 
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• 

or 

= laf af a~· · · · a~ 
J 

• • • a~] 

The following examples will show how vectors and 1natrices arise 
naturally in linear models introduced in Chapter I. 

• 

Example 1. Matrix Notation for Oil 
Refinery Model 

In Section 1 . 2 we introduced a system of linear equations modeling 
the production of three products-heating oil , diesel oil, gasoline-by 
three refineries. The system of equations was 

Heating oil: 

Diesel oil: 

Gasoline: 

20x1 + 4x2 + 
10x1 + 14x2 + 
5x1 + 5x2 + 

500 

850 

1000 

(2) 

We can make a matrix A of the coefficients on the left sides 
in (2) . 

• 

20 4 4 

A = 10 14 5 (3) 

5 5 12 

Each column of A is a vector of outputs by a refinery . For example, 
from 1 barrel of oil, refinery 2 produces an output vector 

• 

4 

af == 14 

5 

Each row on the left side is a vector of amounts produced of some 
product. The vector for gasoline is a~ [5 , 5, 12]. The right-side 
numbers in (2) f orrn a demand vector. • 

Example 2. Matrix Notation for Leontief 
Economic Model 

The Leontief model for economic equilibrium in Example 2 of Section 
1.2 contained the following system of supply-demand equations: 
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Supply Industrial Demand 

Energy: X 1 = .4X1 + .2x2 + .2x3 + 
Construct. : Xi= .3X I + .3x2 + .2x3 + 
Transport .: X3 = . lx 1 + .lx2 + + 

Steel: X4 = + . lX2 + . lX3 

.2x4 + 
. lX4 + 
. 2 .. t4 + 

+ 

Consumer 
Demand 

100 

50 

100 

0 

(4) 

It is natural to form a matrix D of the coefficients of industrial demands 
on the right-hand side of (4). The set of consumer demands in the last 
column in ( 4) form a vector c . 

.4 . 2 .2 .2 100 

D = 
.3 .3 .2 . 1 50 

and C = (5) 
. I . I 0 .2 100 

0 . I . I 0 0 

Recall that the second row d~ = [.3, .3, .2, . I] tells how much of 
product 2 (construction) is needed to prc>duce 1 dollar's worth of the 
other products; for example, it takes d23 = .2 dollar of product 2 to 
make 1 dollar of product 3 (transportation). Similarly, the third column 

.2 

.2 • 

de -
3 - 0 

. I 

tell the inputs required to make I dollar of product 3. • 
Example 3. Matrix Notation for a Markov Chain 

• 

The transition probabilities of the Markov chain in Example 2 of Sec-
tion 1.3 (about a frog wandering around i11 a highway) for1n a transition 
matrix A: 

.50 .25 0 0 o· 0 

.50 .50 .25 0 0 0 

0 .25 .50 .25 0 0 
A = (6) 

() 0 .25 .50 .25 0 • ... • 

0 0 0 .25 .50 .50 
• , 

0 0 0 0 .25 . 50 ' 
• 

The columns are associated with current states and the rows with states 
in the next period. Entry au is the transition probability of going from 
state j to state i-the probability that if the frog is now in state j, then 
l minute later it will be in state i. The third column a~ gives the 

• .. 

• 
' ~ • •• 

• • .. .. 

• 
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probability distribution a1nong states next period if we are currently in 
state 3. 

In general, we have a vector p of the current probability distri
bution p = [p 1, p2 , p 3, p4 , p~, p6] ; that is , /J; i the probability that 
the frog is currently in state i. From p and the transition probabilities 
in A~ we obtained a system of equations that allowed us to compute 
the probability distribution p' for the next period [see equations (4) of 
Section 1.3]. By repeating the process elf computing the next-period 
probabilities k times, we could compute the probability distribution p<k) 
after k periods , (see Table 1.1). • 

Example 4. A Vector as a Point in Space 

A common use of vector notation is to represent points in space. In 
two-dimensional space, we use a 2-vector; in n-dimensional space, we 
use an 11-vector. The point in three-dimensional x-y-z space with co
ordinates x = 2, y = 7 , z = I is written as the vector [2, 7, 1]. Often 
a two- or three-dimensional vector is repre ented by an arrow going 
fro1n the origin to the point with these coordinates , as shown in Figure 
2. I . 

The collection of all 3-vectors is all of three-dimensional space; 
all n-vectors are n-dimensionaJ space. Much of the algebraic theory 
about collections of vectors is equivalent to the geometric theory of 
the corresponding spaces of points. In Section 5.2 we discu s some 
properties of the collection of vectors that satisfy a given system of 
linear equations. 

It is often helpful to think of an n-vector as a point in n-space. 
For example , we can talk naturally about the distance between two 
vectors. We can use .t -y coordinates to plot the behavior of a linear 
model involving two-dimensional vectors. • 

The thoughtful reader may rightly ask: ' 'You have shown me one
dimensional arrays and two-dimensional arrays , so what about higher-di
mensional arrays?'' We see higher-dimensional arrays from time to time in 
computer programs. If programmers work with three-dimensional arrays, do 
not mathematicians? The answer surprisingly is basically ' 'no'' (although 

Figure 2 ,I Vector as an arrow . y 
l 2, 7, ll 

6 

4 2 

2 

_.,..._ _ _..__ _ _.,_ ___ __,_ __ ... X 

0 2 4 6 8 
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tensors are a higher-dimensional extension of matrices). Historically, matri
ces have been closely associated with systen1s of linear equations, as in 
Examples 1 and 2. The operations performed on matrices are defined with 
an eye on the associated systems of equations. The absence of a natural 
l1igl1er-dimensional version of a system of linear equations is the major 
reason why mathematicians have only been concerned with one- and two
dimensional arrays. 

Matrix elements need not be numbers , as this next example illustrates. 

Example 5. Encoding Messages \\'ith Matrices 

In Example I of Section 1.5 we introduced some linear models for 
encoding messages by converting letters to numbers between 1 and 26. 
In this example we show how to scramble a message without trans
forming the letters. We place the message into a matrix and perform 
simple scrambling functions on this matrix . 

Suppose that our message is 

ALLIED SOLDIERS SHOULD REMAIN ON ALERT 

The n1essage has 33 letters. We use this list of the letters (ignoring 
spaces) to fill the entries in the first row, then the second row, and so 
on in a matrix M . We want M to be a sqt1are matrix . To accon1modate 
33 letters, we need a 6-by-6 matrix (with 36 entries). We add three 
E·s (or any nonsense lettets) at the end of the n1essage to fill out the 
matrix. 

A L L l E D 
s 0 L D I E 

R s s H 0 u 
M (7) 

E M L D R A 

I N .0 N A L 

E R T E E E 

Consider the following simple operations on a square matrix. 

l. Interchange two rows (or two columns) . 
2 . Interchange itl1 row and ith colun1n. 
3. Rearrange entries in a row (or column), such as reversing the order 

of entries or cyclicly permuting. 

A suitable sequence of 10 operations , chosen from these three 
types , will produce an array of letter tl1at will be impossible to un
scran1ble without knowing what operations were performed. As an 
example, suppose that we interchange the first row and column; then 
interchange the new third row and colurnn; and tl1en interchange the 
new sixth row and column. The result is 
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A s L L I D 

L 0 s D I R 

R L s R 0 u 
M* (8) 

I H E M E D 

E N 0 N A E 

E E T A L E 

Already, the message is unintelligible. • • 

Now we define some simple operations on matrices. The most basic 
operation is to multiply a vector or matrix by a constant c. This operation 
is called scalar multiplication. A scalar is a single number, as opposed to 
a vector or matrix. Scalar multiplication is performed by multiplying each 
entry in the vector or matrix by the constant c. For example, 

2 4 5 I 

M=3925, 

l 6 6 2 

then 3M 

6 12 15 3 

9 27 6 15 

3 18 18 6 

Addition of vectors and matrices is str~tightforward-add the corre
sponding entries together. There is one minor problem, however. Two vec
tors being added together must have the same length, and two matrices being 
added must have the same nt1mber of rows and same number of columns. 
For example, if 

A 
1 5 
2 3 

- 7 0 
and B 

3 l 
0 4 , then A + B 
I 2 

Example 6. Matrices of Test Scores 

4 6 
2 7 

- 6 2 

Suppose that we are recording the test scores of four students in three 
subjects. To preserve confidentiality, we will call the students A, B, 
C, and D , and the subjects 1 , 2, and 3. The students have two hour 
exams and a final exam in each course, each graded out of 10 points. 
For each of the three tests we form a matrix of test scores with rows 
for students and columns for subjects. Call the matrices S l, S2 , and S3 
(S3 is the matrix of final exam scores). 

I 2 
I A 8 9 5 • 9 8 6 7 9 

B 8 5 8 6 7 9 8 6 9 (9) 
S1 S2 = S3 = C 8 7 8 ' 7 8 8 ' 8 7 8 

D 6 6 5 6 7 6 5 6 
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Then the matrix T of total scores of each student in each course ( with
out any weighting to make the final more important) is 

Summing the corresponding entries in S 1, S2 , and S3 , we obtain the 
matrix T: 

6 8 9 5 9 8 6 7 9 

8 5 8 6 7 9 8 6 9 
T= + + 

8 7 8 7 8 8 8 7 8 

4 6 6 5 6 7 6 5 6 
(10) 

17 24 26 
22 18 26 
23 22 24 

15 17 19 

Suppose that the final should be weighted twice as much as each hour 
test. Each test had a total of 10 points, and we want the course score 
also to be out of l O points. That is, the course score is a weighted 
average of the tests . Then the n1atrix C of weighted averages of course 
scores has the form 

( 11) 

We co1npute C by computing the linear combination in ( 11) for each 
entry. For example, the entry c 12, student A's weighted average in 
course 2, is 

tg + 419 + 17 - 73 c,2 = 4 2 - 4 

• 

A computer program to compute all the c ij entries would look as fol-
lows: 

FOR I = · 1 TO 4 

FOR J = l TO 3 

C(I, J) = . 25*S l (I, J) + . 25*S2(l, J) + . 5*S3(I, J) 

NEXT J 

NEXT I 

Using this program, we obtain C (fractions > .5 have been rounded 
up; that is, 3. 6 is written as 4 ): 
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I 2 3 

A 6 8 9 

C=B 8 6 9 ( 12) 

C 8 7 8 

D 5 6 6 • 

Example 6 implicitly shows why we rarely have to check whether a 
set of nlatrices that we want to add together has the same numbers of rows 
and columns. We would not want to add the matrices together unless the 
entries in the matrices matched up in some natural way . 

. 

Section 2.1 Exercises 

t 

Summary of Exercises 
The exercises in this section are straightforward variants on the examples in 
this section. 

1. Given the matrix 

1 2 3 4 

A 2 4 6 8 

3 5 7 9 

write out the following row and column \'ectors, and entries. 
(a) af (b) af (c) a f (d) a22 (e) a3 1 

2. In the matrix of letters 

A= 

E R S T A 

NPOC\V 

H B U l L 

M G Y F K 

spe]I out the words given by the following sequence of entries. 
(a) a31, a,1, a35, G22 (b) G35, G34, G21• a1,, a,s, a,2 
(c) a,,, a35, a32, a23, a2s (d) G2s, a,.s/ a 14, a24, ll31, a23, G33, a,4 

3. Consider the following Markov chain model involving the states of mind 
of Professor Mindthumper. The states are Alert (A}, Hazy (H), a11d 
Stupor (S). If in state A or H today, then tomorrow the professor has a 
½ chance of being in each of the three states. If in state S today, to
morrow with probability 1 the professor is still in state S. 
(a) Write the transition matrix A for this Markov chain. 
(b) Write out entry a 23 and column af. 
(c) Which pairs of rows and pairs of columns in this Markov cl1ain are 

the same? 

• 
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4. In the transition matrix A for the frog Markov chain in Example 3, 
what does entry a34 represent? 

5. (a) In the matrix A for the refinery model in Example 1, state in words 
what the numbers in entries a 23 and entries a31 represent. What do • 
the numbers in the third column of A represent? 

(b) Suppose that refinery 3 is modernized and its output for each barrel 
of oil is doubled. What is the new matrix of coefficients? 

(c) In Example 1 of Section 1.4 we discussed the situation where re
finery 3 broke down and was out of service. In this case, what is 
the matrix of coefficients? 

6. Make a matrix for data of Scrooge high school GP As and college GP As 
for the set of students in Example 2 of Section 1.4. 

7. Write out the matrix of coefficients in the inequality constraints of the 
linear program in Example 4 of Section 1.4. 

8. Plot the following vectors as points in the x-y plane. 
(a) [1, O] (b) [2, 4] (c) [2, - I] 

9. Plot the following points on an x-y-z grid of the sort given in Exam
ple 4. 
(a) [1, 0, O] (b) [1, 1, 11 (c) [2, 4, l] (d) [2, -1, ·31 

• 

10. Scramble the matrix M in Example 5 by performing the following 
sequences of changes. 
(a) Interchange row 2 and column 2; interchange row 3 and 5; inter

change columns 1 and 4. 
(b) Reverse the order of the letters in row 2; do the same in column 

3; intercl1ange row l and column I; do the same for row 4 and 
column 4. 

( c) Reverse the order of each row; then reverse the order of each col
umn. 

11. In Example 5, why is it unclear how one should define the process of 
interchanging row i and with column j (for i ~ j)? 

Hint: What will entry (1, 2) be when we try interchanging row 1 and 
column 2? 

12. Let 

1 2 3 4 

A= 2 4 6 8 

3 5 7 9 

Determine 

and B 

-1 0 2 
2 -1 -1 

2 0 0 

I 
0 

2 
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(a) 3A (b) 2B 
(f) 3A - 2B 

(c) - 38 · (d) A + B 

71 

(e) 2A + 3B 

13. Let all matrices in this exercise be 4-by-4. Let I denote the matrix with 
l's in the main diagonal and O's elsewhere. Let J denote the matrix 
with each entry equal to 1, and let A be the matrix 

A= 

1 0 l 0 

0 l O 1 

1 0 1 0 

0 I O I 

Express the following matrices as linear combinations of I, J, and A. 

(a) 

6 2 2 2 
2 6 2 2 
2 2 6 2 

2 2 2 6 

(b) 

0 1 0 l 

1 0 1 0 

0 1 0 1 

l O 1 0 

(c) 

5 3 1 3 

3 5 3 I 

1 3 5 3 

3 1 3 5 

14. Show that any vector x [x1, x2] that is a multiple of [2, l] (i.e., 
x = c[2, 1] for some c) satisfies the system of equations 

x 1 - 2x2 = 0 

-2x1 + 4x2 = 0 

15. Suppose in Example 6 that the final exam counted three times as much 
as an hour exam , so that the weights on the three tests should be l, i, 
i, respectively. Recompute the course score matrix C with these 
weights. 

16. Write a computer program to add two matrices A and B, where both 
are m-by-1z. Assume ,n, ·n given and that the entries of the matrices are 
stored in arrays A(l.J) and B(l ,J). 

17. Write a computer program to read in scalars r and s and then compute 
the linear combination r A + sB of the ,n-by-,z matrices A and B. 
Assume ,n, n given and that the entries of the matrices are stored in 
arrays A(l,J) and B(l,J). 

Matrix Multiplication 

In Section 2.1 we introduced vectors and matrices and showed how to add 
them and multiply them by a scalar. These two operations were obvious and 
straightforward, and according]y they are not powerful tools. In this section 
we discuss multiplication of vectors and matrices. This operation is more 

• 

• 
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complicated but also more useful . It provides a simple notation for express
ing systems of linear equations and associated calculations. 

Consider the following typical situation, which requires vector multi
plication. We have a vector p of prices for a set of three vegetables. Suppose 
that p = [.80, 1.00, .50], where the ith entry is the price of the ith vegetable. 
We are also given a vector d of the weekly demand in a household for these 
three vegetables. Suppose that d = [5, 3, 4] . We shall define vector-times
vector multiplication so that p · d equals the cc>st of the household's weekly 
demand for these three vegetables. In this case, 

p · d = [.80, 1.00, .50] · [5, 3, 4] 

= . 80 X 5 + 1 . 00 X 3 + . 50 X 4 

= 4.00 + 3.00 + 2.00 = 9.00 

Vector Multiplication 

Let a and b be two n-vectors, where a = [a 1, a2 , •.• , a
11

] and b = 
[b1, b2 , .. . , b,,]. Then the product a· b, called the scalar product of a 
and b, is a single nun1ber (a scalar) equal to the sum of the products a;b;. 
That is, 

n 

a· b = "°' a.b. L..J I l 

i = I 

Vector nii,ltiplicatio,1 a · b 111akes sense only lvhe,z a and b have the 
sa1ne length. 

The scalar product is also sometimes called the i1i1zer product or dot 
product (the latter term coming from the dot used in writing the product). 
An important geometric interpretation of scalar products is discussed in 
Chapter 5. 

Example 1. Calculating Time to Process 
Computer Jobs 

A Superduper computer requires 3 minutes to do a type l job (say, a 
statistics problem), 4 minutes to do a type 2 job, and 2 minutes to do 
a type 3 job. The computer has 6 type 1 jobs, 8 type 2 jobs, and 10 
type 3 jobs. How long will the computer take to perform all these jobs? 

If t = [3, 4, 2] is the vector of the times to do the various jobs 
and n = [6, 8, 10) is the vector of the numbers-of each type of job, 
the total time required will be the value of the scalar product t · n. 

Total time = t · n = [3, 4, 2] · [6, 8, JO] 

= 3 X 6 + 4X8 + 2 X l0 

= 18 + 32 + 20 = 70 • 

The key idea about a scalar product is: It is a linear combination of 
the entries in each vector. Any /i,iear combination of variables or nu111bers 

• 
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can be expressed as a scalar product. Consider the linear equation 

20X I + 4 .. t2 + 4.t3 = 500 

The left side is a linear combination of variables. If a = [20, 4, 4] and 
x = [x 1, x2 , x3], the left side can be written as a scalar product 

Similarly, any linear equation or system of linear equations can be 
written in terms of scalar products. 

Example 2. Representing the Refinery System 
of Equations 

Recall the system of equations for the refinery production problem in 
Section l . 2. 

20x 1 + 4x2 + 4x3 = 500 

I O.,t I + 14x2 + 5x- = _., 850 (1 a) 

5x1 + 5x2 + 12x~ = _ .. 1000 

Or making a vector of the quantities on each side of these equations, 

20xt + 4x2 + 4x3 

10x1 + 14x2 + 5x3 

5.t 1 + 5x2 + l 2x3 

500 

850 

1000 

(1 b) 

Let A be the 3-by-3 matrix of the coefficients on the left side of the 
equations in ( 1 a) wjth row vectors af, a~, a1. Let b be the right-side 
vector, and let x be the vector of unknowns . 

af 20 

A = a1 10 

a~ 5 

• 

4 4 
14 5 , 

5 12 

b 

500 

850 .. 

1000 

(2) 

The left sides of the equations in (lb) are a vector of scalar products 
of x with the rows of A: 

20x1 + 4x2 + 4X3 [20, 4, 4] · X 

10x1 + 14x2 + 5..t3 [10, 14, 5] · X 

5x1 + 5x2 + J2x3 [ 5, 5, 12] · X 
(3) 

aR. X 
I 

a~· X = Ax ' 
aR • X 

3 
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As noted in (3), we call the result of multiplying each row of A times 
a vector x the matrix-vector product Ax. Thus in matrix notation, ( l) 
is written simply Ax = b. • 

By treating a matrix as a set of row vectors, we can extend our defi-
nition of vector-times-vector multiplication to matrix-times-vector multipli
cation. 

Matrix-Vector Multiplication 

Let A be an ni-by-n matrix and b be an n-vector. Let af be the ith row of 
A. Then the matrix-vector product Ab (the multiplication sign is normally 
omitted) is defined to be the colu1nn vector of scalar products a~ · b: 

aR 
l 

Ab= a~ b = 
• 
• 
• 

R a,n 

For example, if 

then 

• 

Ab 

-1 0 2 

A = 2 1 1 

3 3 3 

- 1 0 2 l 

2 1 l 2 

3 3 3 1 

af · b 

af · b 
• 
• 
• 

aR · b n1 

and 

1 

b = 2 
I 

-1x1+ox2+2x1 

2Xl + lx2 + lXl 

3Xl+3x2+3xl 
• 

(4) 

• 

1 

5 

12 

What if we want to multiply a vector b times the columns of A? The 
convention is that when a vector b multiplies the roJtvs of A, b is written to 
the right of A in the product, as in ( 4). Wheri b multiplies the coli,mns of 
A, then b is writte11 to the left of A as in (5 ). The reason for this convention 
will become evident shortly. 

bA == b · [af, af, ... , a;] (5) 
== [b · a f, b · a f, . . . , b · a~] 

For example, if we reverse the order of A and b in the previous 
computation of Ab, we have 

bA == [l 2 

-1 

I] 2 

3 

0 2 

l 1 

3 3 
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[ 1 X ( - I) + 2 X 2 + 1 X 3, l X O + 2 X l + 1 X 3, 

1 X 2 + 2 X ] + I X 3] 

[6, 5, 7) 

Remember that the length of b ,nust equal tl1e f ength of the ro»>s of A in tlze 
product Ab. Similarly, the length of b must equal the length of tfze (·olu,nns 
of A i·n the product bA. 

Example 3. Comparing Computations by 
Different Computers 

In Example l we computed ho\.v long it would take a Superduper 
computer to complete a set of jobs. There were three types of jobs and 
a vector t = [3, 4, 2] of ti1nes for Superduper to do each type of job. 
Suppose that we also have three other brands of computers, Wacko, 
Whooper, and Ultima, and for each there is a similar vector of times 
to do the jobs. Let us put all these vectors into a matrix A: 

Superduper 

Wacko 
A = 

Whoop~r 
Ultima 

Type of Job 

1 2 3 

3 4 2 

5 7 3 

1 2 I 

3 3 3 

Matrix of times 

In Example 1 we computed how long it would take a Superduper 
computer to do 6 type I, 8 type 2, and 10 type 3 jobs by forming the 
scalar product of the Superduper time vector [3, 4, 2] and with the 
number-of-jobs vector n = (6, 8, 10]. Now let us find out how long 
it would take each of the computers to do this set of jobs by multiplying 
each row of A times o, that is, by computing An. 

An = 

3 4 2 
5 7 3 

I 2 1 

3 3 3 

6 
8 

JO 

3 X6 + 4 X8 + 2 X l0 

5 X 6 + 7 X 8 + 3 X 10 

l X6+2 x 8 + t x l0 

3 X6 + 3 X8 + 3 X l0 

70 
116 

32 

72 

The final column tells us that the set of jobs takes 70 minutes for 
Superduper, 116 minutes for Wacko, 32 minutes for Whooper, and 72 
minutes for Ultima. • 

Example 2 (continued). Representing the Refinery 
Systems of Equations 

Let us quickJy review our matrix notation for the refinery system of 
equations . 

• 
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20x 1 + 4x2 + 4x3 

l0x1 + 14x2 + 5x3 

5x1 + 5x2 + 12x3 

500 
850 

1000 

• 

• 

Let A be the 3-by-3 matrix of the coefficients on the left side of the 
equations in ( la), b be the right-side demand vector, and x be the 
vector of unknowns: 

20 4 4 
A = 10 14 5 , 

5 5 12 

b 

500 
850 , 

1000 

The left sides of the equations are a vector of scalar products of x with . 
the rows of A . This vector is simply Ax: 

20 4 4 x, 20xl + 4X2 + 4X3 

l Ox1 + 14x2 + 5x3 

5x1 + 5X2 + 12X3 

10 14 5 x2 - Ax ( 6) 

5 5 10 X 3 

Note that we can write (6) as a weighted sum of vectors: 

20 
x, 10 

5 

4 

+ x') 14 -
5 

4 

+ x3 5 
12 

Or in vector notation, (7) becomes 

500 
850 

1000 
(7) 

• 

Observe how (7) views Ax = bin terms of columns, while (6) views 
Ax in terms of rows. 

We shall use the notation Ax = b for a system of equations over and 
over again herein. For another example we consider the system of equations 
in the Leontief economic model. 

Example 4. Matrix Representation of Leontief 
Economic Model 

The supply-demand equations of the Leontief economic model in Sec
tion 1.2 can be written 

x, - .4x, + .2x2 + .2X3 + .2x4 + 100 -
X2 .3x1 + .3x2 + .2X3 + . lX4 + 50 

(8) 
. lx1 + . lX2 + + .2x4 + 100 X3 

X4 - + . lx2 + . IX3 + 0 -
• 
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Let x = [x,, x2 , x3 , .x4] and let D be the matrix of coefficients on the 
right-hand sides of (8), and let c be the rightmost column vector of 
const1mer demands: 

Xi .4 .2 .2 .2 x, + 100 

X2 - .3 .3 .2 . 1 X2 + 50 
(9a) 

. 1 . 1 .2 + 100 X3 J"3 

X4 .1 . 1 X4 + 0 

or 

X Ax + C (9b) 

The system of equations in (8) can also be written as a linear 
combination of columns: 

x, .4 .2 .2 .2 100 

X2 .3 .3 .2 . l 50 
= x, + X2 + X3 + .t4 + (10) 

X3 .1 . 1 0 .2 100 

X4 0 . I . l 0 0 • 
Example 5. Matrix Notation for 

a Linear Program 

In Example 4 of Section 1.4 we presented the following linear program 
for maximizing revenue from planting two crops, com (C) and wheat 
(W). 

If we let 

Maximize 60C + 40iV 

subject to C > 0, W > 0 and 

Land: C + W < 200 

Labor: 4C + W < 320 

Capital: 20C + l0W :s; 2200 

l 1 200 

A = 4 1 , b = 320 

20 10 2200 

( 11) 

and c = [ 60, 40], x = [ C, W], the inequality constraints in ( 11) can 
be written 

l 
4 

20 

• 

1 

I 

10 

C 

w 

200 

320 

2200 
or Ax< b 
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In matrix notation, ( 11) can be written 

Maximize c • x 
subject to x ~ 0 and Ax ~ b 

(12) 

• 

where O is a vector of all zeros. • 
. ..· - . •. '. ····= ~ ... y- ~.~ .. .. . , . ' 

Example 6. Matrix Notation for Markov Chains 

In Section I. 3 we introduced the concept of a Markov chain and in 
Example 2 of Section 1.3 gave the following Markov chain for the 
random movements of a frog across a highway; the possible locations 
for the frog were represented as states l through 6. The matrix of 
transition probabilities A was 

.50 .25 0 0 0 0 

.50 .50 .25 0 0 0 

0 .25 .50 .25 0 0 
A= 

.50 .25 0 0 0 .25 

0 0 0 .25 .50 .50 

0 0 0 0 .25 .50 

We let p = [p 1, p2 , .•• , p6 ] be the current probability distribution 
vector (p; is the probability the frog is currently in the ith state) and 
p' be the vector of the probability distribution in the next minute. We 
developed the following system of linear equations to determine p' 
from A and p. 

p' -,- .50p, + .25p2 
, 

P2 = .50p, + .50p2 + .25p3 
I 

p3 = .25p2 + .50p3 + .25p4 (13) 
p' -4 - .25p3 + .50p4 + .25p5 

I 

Ps = .25p4 + .50p5 + .50p6 
I -P6 - .25p5 + .50p6 

In matrix form, ( 13) becomes 

I 

P, .50 .25 0 0 0 0 P, 
I 

P2 .SO .50 .25 0 0 0 P2 
p~ 0 .25 .50 .25 0 0 p3 

p~ 0 0 .25 .50 .25 0 p4 
p; 0 0 0 .25 .50 .50 Ps 

I 

P6 0 0 0 0 .25 .50 P6 

or 
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(14) • 

• 

p' = Ap 

Note that each individual equation in (13) can be written as 

p~ = af · p ( 14a) 

Let us recall what (14) represents for a general Markov transition 
matrix A and initial distribution p. For simplicity, let A be 2-by-2 . 

A= 

Then p' = Ap becomes 

--

, p Pi 
p,, 

a11P1 + a, 2P2 

a21P1 + a22 P2 

Now that we have a concise way <)f writing Markov chain cal
culations, we can easily write equations to express the probability dis
tribution vector p" for the frog 2 minutes from now. 

p" = Ap' = A(Ap) 
= A2p 

(15) 

In ( 15) we have rewritten AA as A 2 , jLtst as one would with single 
variable. However, we have yet to define what the product of two 
matrices is. The first line of ( 15) says that to get p" we must multiply 
p by A twice. It should be possible to ''multiply'' A times A and then 
multiply the resulting A 2 times p to obtain p". We shall show how to 
do this matrix multiplication shortly. 

With this notation, we can write the probability distribution vec
tor p<3> for the frog 3 minutes from now as 

(16) 

Generalizing this formula, we find that the probability distribu
tion p<n> for the frog in n minutes is given by 

( 17) 

Note how concisely we can write the complex calculations for p", p<3>, 
and p<n) using matrix notation. It would be impossible to analyze prop
erties of Markov chains without such notation. • 

In Example 6 we wrote A 2 and other powers of matrix A without ever 
c;Iefining what matrix multiplication was. To the question as to how matrix 
multiplication is defined, our reply is that it should be defined to make matrix 
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multiplication a useful operation. In this instance it should be defined to 
make the fonnulas in Example 6 valid. 

The next example further motivates matrix multiplication and shows 
us how to do the computation. 

Example 7. A Collection of Computer 
Computation Times 

In Example 2 we computed the time it would take four different com
puters, Superduper, Wacko, Whooper, and Ultima, to do a set of jobs. 
We were given a matrix A telling how many minutes it took each 
computer to do each of three types of job. 

Type of Job 

1 2 3 

Superduper 3 4 2 

Wacko 5 7 3 (18) 
A= Matrix of times 

2 1 Whooper 1 

Ultima 3 3 3 

We calculated how long it would take each computer to do 6 type 1, 
8 type 2, and 10 type 3 jobs by multiplying A times the vector 
n = [6, 8, 10]: 

• 
3 4 2 3 X6 + 4 X8 + 2 X 10 70 

6 
5 5 x 6 + 7 x 8+3 x 10 116 

An = 
7 3 

8 --
l 2 l 1 X 6 + 2 X 8 + l X 10 32 

3 3 3 
10 

3 X6 + 3 X8 + 3 X l0 72 • 

(19) 

Now let us do this calculation not for one set of jobs, but for three 
sets of jobs. Set A will be the previous set n = [ 6, 8, 1 O]. Sets B and 
C will be [2, 5, 5] and f 4, 4, 4]. Let us calculate the times required 
to do each set on each computer by expanding the vector n in ( 19) 
into a matrix N of three column vectors. 

Sets of Jobs 

A B C 

Type 1 6 2 4 

N = Type 2 8 5 4 Matrix of jobs 

Type 3 10 5 4 

• 

The calculation of An in ( 19) required us to multiply each row of A 
times the vector n. Now we need to multiply each row of A (one for 
each computer) times each column of N ( one for each set of jobs): 
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AN -

3 4 2 

5 7 3 
1 2 I 

3 3 3 

6 2 4 

8 5 4 

10 5 4 

3 X6 + 4 X8 + 2 X l0 
5 x 6 + 7 x 8 + 3 x to 

l X 6 + 2 X 8-+ 1 X 10 

3 x 6 + 3 x 8 + 3 x l0 

Sets of Jobs 

A B C 

Superduper 70 36 36 

Wacko 116 60 60 

3 X2 + 4 X5 + 2 X5 

5 X2 + 7 X5 + 3X 5 

1 X 2 + 2 X 5 -~ I X 5 

3 X2 + 3 X5 + 3 X5 

3 X4 + 4 X4 + 2 X4 

5 X4 + 7 X4 + 3 X4 

1X4 + 2 X4 + 1X4 

3 x 4 +3x 4 + 3 x 4 

Whooper 

Ultima 

32 17 16 

72 36 36 

Matrix of total 

computation times (20) 

• 

• 

Formalizing the computation process in this example yields a method 
for extending matrix-vector multiplication to matrix-matrix multiplication. 

Matrix Multiplication. Let A be an m-by-r matrix and B be an 
r-by-n matrix. The t1Llmber of colum11s in A ,nust eqi1.al the number of 
rows in B. Then the matrix product AB is an m-b),-n matrix obtained 
by forming the scalar product of each row in A with each column in 
B. Tl1at is , the (i, j)th entry in AB is af · bf, where af is the ith row 
of A and b.f is the jth column of B. 

AB = 

--

• 
• 

· [bf, bf, . . . , b!;] 

• 

R a,,, 

a1 · bf 
aR. be 2 ] 

• 
• 
• 

aR. be 
n1 I 

aR. be 
1 2 

aR. be 
2 2 

• 
• 
• 

aR . be 
1n 2 

• • • 

• • • 

• • • 
• • • 
• • • 

• • • 

aR. be 
I " 

aR. be 
2 n 

• (A) 
• 
• 

aR. be 
tn n 

• 
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lf 

A = 
l 2 

-1 0 
and 

then AB = 1·4 + 2·6 

-1·4+0·6 

B 
4 5 

6 7 ' 

1·5 + 2·7 

- 1·5+0·7 
, 

There are several ways to interpret matrix multiplication: first, 
as the scalar product of each row of A with each column of B, as in 
(A). Next, we can adopt the point of view of Example 7, where the 
product AB was an exension of the matrix-vector product Ab to the 
matrix-vector products of A with each column of B. 

AB = A[bf, bf , . .. , b~] = [Abf , Abf , .. . , Ab~] (B) 

For A, B above, check that the first column of AB is 
I 2 

-1 0 
4 

6 

Finally, we could also view AB as an extension of the vector-matrix 
product aB to the vector-matrix products of B with each row of A. 

af afB 

a~ a1B 
AB == • B = • 

• • 
• • 

3R 
m a;!,B 

For A, B above, check that the first row of AB is [ I 

Equivalent Definitions of Matrix Multiplication AB 

(A) Entry (i , j) of AB is scalar product af · bf . 
(B) Column j of AB is matrix-vector product Ab_f . 
(C) Row i of AB is vector-matrix product afB. 

4 5 
21 6 7 . 

• 

(C) 

Remember that for the matrix product AB to make sense, the length 
of the rows in A ( = the number of columns in A) must equal the length of 
the columns of B ( = the number of rows in B) . Further, if A is ,n-by-r and 
B is r-by-n , then AB is an m-by-n matrix: AB has as many rows as A and 
as many columns as B. 

We shall see shortly that this form of matrix multiplication is exactly 
what is needed for Markov chain calculations. If thi~ definition of matrix 
multiplication were given to a reader out of the blue, it would probably seem 

• 
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quite strange and artificial. But from Example 7 and dozens of other ex-
amples throughout this book we see that this strange definition i's the '' nat
ural'' definition to give. 

Example 8. Matrix Multiplication Example 

4 5 2 l 2 
Let A = and B = . Then AB is 

6 7 3 0 1 

AB= 

--

4 5 

6 7 

4x2+5x3 

6 X2 i 7 X3 

23 13 

33 6 19 

1 2 

0 1 

4Xl+5x0 

6Xl+7X0 

4 X2+ 5 X l 

6x2+7Xl 

• 

Note that tlie order of the matrices in matrix multiplication makes a 
big difference. That is, if A and B were two square 11-by-,1 matrice~, the 
matrix products AB and BA would yield different results (except in unusual 
cases). In mathematical terms, we say that matrix multiplication is noncom
mutative. 

Example 9. Matrix Multiplication Is 

Let A= 

AB= 

BA = 

Not Commutative 

1 0 ~I - l 
and B = . Then 

3 0 2 

I X(- l)+0 X2 

3X(-l) + 1 X2 

l X l + ( - 1) X3 l XO + (-l)Xl 

ox 1 + 2X3 0X0 + 2xl 

Thus AB =I= BA. 

I 

3 

- 1 

- 1 

-2 
6 

-1 

2 

• 

Matrix multiplication is clearly quite tedious. lt is easy to make a 
mistake and multiply the wrong entries together. But with three simple loops, 
a short computer program for matrix multiplication ca11 be written to do the 
work for you. (This is a beautiful example of the advantage computers have 
in speed and accuracy for doing repetitive arithmetic.) Assume that A is an 
m-by-r matrix, B is r-by-n, and so the product C = AB is m-by-n . 

• 

• 
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FOR I= 1 TOM 

FOR J = l TON 

FORK= l TOR 

Ch. 2 Matrices 

C(l,J) = C(I ,J) + A(I, K) * B(K ,J) (21) 

NEXTK 
NEXT J 

NEXT I 

We assume in this program that C(l ,J) = 0 initially; otherwise, the statement 
C(l.J) = 0 must be inserted just after FOR J = l TO N. 

• 

Example 10. Powers of Markov Chain 
Transition Matrices 

Let p denote the vector of the current probability distribution. In Ex
ample 6 we showed that the system of equations to compute the prob
ability distribution vector p' for the next period can be written as 
p' = Ap, and that the probability distribution vector p" after 2 minutes 
• 
IS 

p" = Ap' = A(Ap) J: A2p 

Similarly, the distribution pc3> after three periods is 

p<3J = A(A(Ap)) J: A3p 

(22) 

The 1- means that the step is yet to be proven. In (22) ~ we want A 2p 
to be the same as A(Ap)-that is, premultiplying p by A2 should be 
the same as premultiplying p twice by A; and similarly for A3

• 

Let us first compute A 2 and A 3 for the weather Markov chain 
introduced in Section 1.3. 

A 

Then 

A2 = 

--

--

Sunny 

Cloudy 

¾ ½ 
l l 
4 2 

• 

• 

Sunny 
.a. 
4 

1 
4 

3 1 
4 2 

¼ ½ 

3x.:J. + lxl. 4 4 2 4 

¼x~ + i x¼ 
11 5 
16 8 

Cloudy 
1 
2 

1 
2 

:x~ + ½x½ 
! x½+ix½ 

(23) 

• 
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• 

. 

Next we compute A3
: 

A3 = A· A2 
3 l 
4 2 

¼ ½ • . 

--
43 21 
64 32 

+ ½x-h 
+ 1 x-h 

21 11 
64 32 

• 

11 
T6 
5 

16 

5 
8 

3 
8 

3 5 
4 X 8 + 
l xi + 

(24) 

The entries in A 2 will be transition probabilities for two periods 
and the entries in A3 transition probabilities for three periods. For 
example, the value 1

5
6 in entry (2, 1) of A2 should mean that if we are 

now in state I (Sunny), the chance is -& that in 2 days we will be in 
state 2 (Cloudy). The value of i¼ in entry (2, 1) of A3 tells us that if 
now Sunny, the probability is H that in 3 days it will be Cloudy. 

The values we obtained in computing A2 and A3 look reasonable. 
In particular, the numbers in each column of A 2 and A 3 sum to l . • 

• 

We must check that matrix multiplication has given the correct prob
abilities in A2 and A3 in (23) and (24). In general, entry (i, j) in A2 should 
be the probability that if we are now in state j ~ then in two periods we shall 
be in state i . By the scalar-product definition <>f matrix multiplication, 

af · af • • • af · a; • • • aR. ac 
J n 

aR. ac • • • a1 · a; • • • aR. ac 
2 I 2 n 

AA • • • • • • • • 

• • • • • • • • • 
• • • • • • • • • 

aR. ac • • • aR • ar • • • 3R • 3 C 
n I 11 J n n 

where 

a/J ·a~= a-1a, . + a .... a?. + · · · + a. a 
l J I J I.I. .:.J l ll llj 

In the case of a 2-by-2 transition 1natrix, (25) is 

a 11a 11 + a 12a21 

a 2 ,a1 1 + a 22a 21 

a,,a12 + G1 2° 22 

a2,a12 + a21a22 

(25) 

(26) 

In words, we interpret (26) as follows: The probability of going fron1 
state j to state i in two periods is obtained by fi11ding the probability of going 
from state j to state 1 (in the first period) and then from state 1 to state i (in 
the second period), plus the probability of going from j to 2 and then from 
2 to i, plus from j to 3 and then from 3 to i. and so on. This is exactly the 
probability of going from state j now to state ; in two periods . 
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This argument extends to show that A3 is the three-period transition 
matrix and Ak is the k-period transition matrix. 

Example 10 (contin,,ed). Powers of Markov 
Transition Matrices 

Let us turn now to the frog Markov chain. Recall that the transition 
matrix is 

.50 .25 0 0 0 0 

.50 .50 .25 0 0 0 

A= 0 .25 .50 .25 0 0 
(27) 

.50 0 0 .25 .25 0 

0 0 0 .25 .50 .50 

0 0 0 0 .25 .50 

Using the computer program given above , one can compute A 2 and 
A3. 

.375 .25 .062 0 0 0 

.50 .437 .25 .062 0 0 

A2 = AA = 
.125 .25 .375 .25 .062 0 

(28) 
.062 .25 .375 .25 .125 0 

0 0 .062 .25 .437 .50 

0 0 0 .062 .25 .375 

and 

.312 .234 .094 .016 0 0 

.468 .406 .250 .093 .016 0 

A3 = A2A = 
.187 .25 .312 .234 .094 .031 

(29) 
.094 .234 .312 .25 .187 .031 

0 .016 .094 .250 .406 .468 

0 0 .016 .094 .234 .312 

Looking at entry (2, 1) in A 2 and A 3 , we see that if the frog were now 
in state 1, then in 2 minutes the frog has probability . 5 of being in 
state 2 and in 3 minutes it has probability .468 of being in state 2. • 

Optional Exa,nple on Linear Filtering (Revisited) 

In Example 4 of Section 1.5 we applied linear filtering to a noisy 
pattern of darkness levels that might have come from the TV eye of a 

• 
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robot. The array of readings, numbers between O and 8, represented 
levels of darkness. The initial array is given beJow. First we give 
the matrix D of darkness levels and beneath the array of darkness 
characters. 

l 

4 

3 

7 

8 

D= 
3 

4 

2 

6 

1 

3 

2 

2 0 3 I 7 8 2 2 4 

l 2 3 7 5 8 6 3 2 

4 1 3 7 5 7 7 3 4 

2 3 4 1 7 5 2 ') - 4 

4 2 '1 5 8 7 6 7 2 

7 8 2 6 8 6 7 3 8 
2 3 3 8 8 4 7 2 4 

6 3 2 6 7 8 7 3 1 

1 2 3 8 2 3 7 1 3 

7 1 4 8 2 3 7 1 I 
7 2 5 7 3 3 7 2 4 

2 8 8 7 3 2 8 7 6 

............ . ·- ... . . . . . " ';"'•,•· . . . . . ...... .. 
t~P~ • • • • 1#•'••· ••• . ····· . ,. ~ ::!'- • • 
--:-::--: • ... 

........ ......... r,1( ~ ·•······ . -. .,. ... ~ ... ~· ···. ·1 .... -:- ·.· •, .. ·\·-.. ~......... . ... ••.• ................ -C R ....... . . . . . . " 

~ 
. . . ··-·- ,..,._,. 

I!~ ij • • • • .. 1. .... t,..,!of.;.~ 
"i' , .... ~ ,; ._:._: •:l·~:,; 

• ..., ••••••• ,uo .. , .. ~ .. .. . . . .. .. 

.. .. . . . . . . . 

. ...... ~,.:-• ~ •• .• ..... ....... ...r.::-::t •••• ··~•· ~,.. ~:- .. ....... ·····!";•.. • .... 
.... -· ··--\ .. . . . ....... 
: .... :.: . . 

t ····. . ··•··••· !.. ·.:.: 
:.J ............ 

• ........ ········ ~· ,;. ..... ; ..... : . ' ~ 
i:ii::;J~ -..:.,:._:.,: .. 
; •;' .. :-,• ··--~-· . . ' 

• • 
~ 

:::.:::: t,_--..;~; 
:. : ... ·•······ • • . . ,:,er;,: ··-··:··~ :•:·,::· 

. .,.,. . . .............. ,_. .,..t-• 1"' 111 ······ .. ·-···••'_• 
;:;.::.:;· -: .\:.: /~·:: 
·-··r• . • ······"":. --.-·:-· 

. .. ,-... ~ ""'"' .... ··.··.·t~-. .. ~:: :::::- .••• 
~- ~ ..... · ·:t . .t'.!· • ••• 
............. • .,.. ;•:•!1 ... ... 

• •. ~-- r.~ ... _ ..... ~ 
• • • :~::: :: o:r"•• • • .:::~ :--r:, ... •• ,._, ... • . . . t~•:i;: ......... , • 

• • • • + • ···· m . . . ' ' ... . ;,.~. 

2 0 

4 2 

2 2 

3 7 

3 6 
6 2 

3 l 
(30) 

7 2 

2 5 

5 0 

4 5 

l 4 

In Section 1 .5 we obtained a filtered matrix D' (Data Plot 5) by 
applying linear filtering to D. We computed each entry d~i in D' in
dividually from the weighted-average formula 

d;i == h{l6du + 4(d;,1_ , + d;,J+ i + d i - l .J + d; ... 1,j ) 

+ l(di- 1.j- l + d i+ l.j- 1 + d i- 1.j+ I + d ; + I. j-r l)} (31) 

Now we shall give a l 2-by-12 filtering matrix F that performs the 
filtering (31) on the whole darkness matrix D at once using matrix 
multiplication . 
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6 A 0 0 0 0 0 0 0 0 0 0 
l 2 1 0 0 0 0 0 0 0 0 0 6 3 6 

0 .l 2 1 0 0 0 0 0 0 0 0 6 3 6 

0 0 l 2 l 0 0 0 0 0 0 0 6 -g 6 

0 0 0 1 2 1 0 0 0 0 0 0 6 3 6 

0 0 0 0 1 2 1 0 0 0 0 0 F= 6 3 6 
1 2 1 0 0 0 0 0 0 0 0 0 6 3 6 

0 0 0 0 0 0 i 1 
3 

1 
6 0 0 0 

0 0 0 0 0 0 0 1 2 1 0 0 6 3 6 

0 0 0 0 0 0 0 0 1 2 1 0 6 3 6 

0 0 0 0 0 0 0 0 0 1 
6 

2 
-g l 

6 

0 0 0 0 0 0 0 0 0 0 1 5 
6 6 

We claim that the filtered matrix D' equals the product matrix 

D' = FDF 

(32) 

(33) 

A closer examination of why (33) is true and computation with (33) 
is left to the Exercises. • 

Section 2 .2 Exercises 

Summary of Exercises 
Exercises 1-15 deal with matrix-vector products. Exercises 16-34 deal with 
matrix multiplication; Exercises 29-34 look at some general classes of matri
ces. Exercises 35-39 involve writing or using computer programs. Exercises 
40 and 41 cover material in the optional final pages of the section . 

• 

1. Let a = [1, 2, 3], b = (-1, 3, -1], c = [2, 5, 8]. Compute 
(a) a · b (b) b · c ( c) a · (b + c) ( d) a · a 
( e) Show that for any a, a · a is th,e sum of squares of entries. 

2. In Example 2 of Section 1. 5 we smoothed a time series with the 
transformation d~ = (d; _ 1 + d; + d; + 1)/3. If d; is the vector d; = 
[d; _ 1, d;, d; + 1 l, define a vector c so that d; == c · di. 

3. Let a, b, c be as in Exercise 1. Let 

1 2 3 4 l 0 -1 
5 4 1 

A= 2 6 8 B == C= 
1 0 2 

4 
' 

2 -2 0 
' 3 2 1 

3 5 7 9 0 1 -1 
0 I 3 

Which of the following matrix calculatio11s are well defined (the sizes 
match)? If the computation makes sense, perform it. 
(a) aA (b) bB (c) cC (d) Aa (e) Bb (f) Cc 
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4. Calculate the following expressions, unless the sizes do not match. The 
vectors a, b, c are as defined in Exercise I, and matrices A, B, C are 
as in Exercise 3 . 
(a) (aB) · c (b) (a + c)A (c) b(A + B) 

5. Suppose that you want to buy 5 cantaloupes, 4 apples , 3 oranges, and 
2 pineapples. You comparison shop and find that at store A the costs 
of these four fruits, respectively, are 30 cents, 10 cents, l O cents, and 
75 cents a piece, while at store B the costs are 25 cents , 15 cents, 8 
cents, and 80 cents . 
(a) Express the problem of determining the cost of this set of fruit at 

each store as a matrix-vector product; write out the matrix and 
vector. 

(b) Compute the costs of the fruits at the two stores . 

6. Suppose that you want to have a party catered and will need 10 hero 
sandwiches, 6 quarts of fruit punch, 3 quarts of potato salad, and 2 
plates of hors d'ocuvres. The following matrix gives the costs of these 
supplies from three different caterers. 

Caterer A Caterer B Caterer C 

Hero sandwich $5 $5 $4 

Fruit punch $1 $I.SO $.75 

Potato salad $.75 $1 .00 $ ) 

Hors d'oeuvres $8 S7 $ 10 

(a) Express the problem of determining the costs of catering the party 
by each caterer as a matrix-vector product (be careful whether you 
place the vector first or second in the product). 

(b) Determine the costs of catering with each caterer. 

7. Write the following systems of equations in matrix notation. Define any 
matrices or vectors you use . 
(a) 3x1 + 4x2 = 5 (b) 2x1 = 0 ( C) ,\' I = 2X I - x.., -

= 3 

= 5 

.. t 2 = 3x1 + 2x2 

.r3 = 4x 1 - 3~t 2 

8. Write the following linear programs in matrix notation. Define any 
matrices or vectors that you use. 
(a) Maximize 3x 1 + 10x2 (b) Minimize 5~t 1 + 5x2 + 5x3 

x, 2:: 0, X2 ~ 0 X 1 > 0, x2 ~ 0, X3 2:: 0 

ix, + X2 S 20 .XI + 2x2 + 3 .. t 3 > 20 

x, + 3x2 s; IO 2x, + X2 + 2X3 > 25 

4x1 + 2x2 :5 35 2x1 - X2 + 3X3 > 15 

• 
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9. Write the rabbit-fox equations 
• 

R' = R + . lR .15F 

F' = F + .2R .3F 

in matrix form using p = [R, f '], p' -- [R', F'], and 

A= 
. l - .15 

.2 - .3 

10. Consider the system of equations 

2x 1 + 3x2 - 2x3 = 5y 1 

X l + 4x2 + 3x3 = 6y l 

5x l + 2x2 - X3 = 2y I 

+ 2y2 - 3y3 + 200 

- 4y2 + 4y3 120 

- 2y3 + 350 

(a) Write this system of equations in matrix form. Define the vectors 
and matrices you introduce. 

(b) Rewrite in matrix form with all the variables on the left side (and 
just numbers on the right). 

11. Three different types of computers need varying amounts of four dif
ferent types of integrated circuits. The following matrix A gives the 
number of each circuits needed by each computer . 

• 

Circuits 

1 2 3 4 

A 2 3 2 l 

A = Computers B 5 I 3 2 
C 3 2 2 2 

Let d = [ 10, 20, 30] be the computer demand vector (how many of 
each type of computer is needed). Let p = [$2, $5, $1, $10] be the 
price vector for the circuits (the cost of each type of circuit). 

Write an expression in terms of A, d, p for the total cost of the 
circuits needed to produce the set of computers in demand; indicate 
where the matrix-vector product occurs and where the vector product 
occurs. Compute this total cost. 

12. For the frog Markov chain in Example 6 it was noted in Section 1. 2 
that p* = [. l, .2, .2, .2, .2, . l] is a stable distribution. In matrix 

• 

algebra, this means that p* = Ap*, where A is the frog Markov tran-
sition matrix. Verify that p* = Ap* for this p*. 

13. One can express polynomial multiplication in terms of a matrix-vector 
product as follows: to multiply the quadratic 2x2 + 3x + 4 by 
lx2 

- 2x + 5, we multiply 
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14. 

15. 

16. 

2 0 0 

3 2 0 1 

4 3 2 • -2 
0 4 3 5 

0 0 4 

The resulting vector will give the coefficients in the product. Confirm 
this. For the polynomial multiplication (x3 + 2x2 + 3x. + 4) x 
(4x2 

- 3x + l), write the associated matrix-vector product. 

Let 1 denote a vector of all l's. Show for a Markov transition matrix 
A that 1 · af = 1 (where af is the jth column of A). Then show that 
IA = 1. 

In the problem of smoothing a time series introduced in Example 2 of 
Section 1. 5, we start with a time-series vector d of data values. We 
want to smooth the time series d into d' with the transformation on the 
entries d; = (di - t + di + d1+ 1)/ 3. Show that d' = Sd, where S is 
the matrix 

1 1 0 0 0 • • • 2 2 

i l 1 0 0 3 3 • • • 

0 1 1 
3 3 

1 
3 0 • • • 

0 0 1 
3 

.! 
3 

1 
3 • • • 

Indicate which pairs of the following matrices can be multiplied together 
and give the size of the resulting product. 

(i) A 3-by-7 matrix A 
(ii) A 2-by-3 matrix B 

(iii) A 3-by-3 matrix C 
(iv) A 2-by-2 matrix D 
(v) A 7-by-2 matrix E 

• 

0 
17. Let A = I 2 B = 

3 4 ' 
1 

2 

-1 

10 
, C = 

-2 
3 1 

2 5 
. Compute the 

following matrix products (if possible). 
(a) AB (b) AC (c) BC (d) CA (e) (CA)B 

18. Let 

5 4 l 
1 2 3 4 1 0 -1 

1 0 2 
A= 2 4 6 8 B= 2 -2 0 C --, 

' 3 2 1 
3 5 7 9 0 I -1 

0 l 3 

-
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Compute these matrix products (if possible). 
(a) AB (b) BA (c) AC (d) CA (e) CB 

. 
19. Compute just one row or column, as requested, in the following matrix 

products (A, B, C are as in Exercise 18). 
(a) Row 1 in B2 (b) Column 2 in AC (c) Column 3 in CB. 

20. Show that AB = BA for the matrices 

A = 
I 1 

2 3 
and B 

·3 

- 2 

(Normally, matrix multiplication does not commute.) 

- 1 

1 

21. For A, B, C in Exercise 18, compute entry (2, 3) in (BA)C . 

22. Suppose that we are given the following matrices involving the costs 
of fruits at different stores, the amounts of fruit different types of people 
want, and the numbers of people of different types in different towns. 

Apple 

Orange 

Pear 

Town 1 

Town 2 

Store A Store B 

.10 • J 5 

.15 .20 

.10 .10 

Person A Person B 

1000 

2000 

500 

1000 

Apple Orange Pear 

Person A 5 10 3 

Person B 4 5 5 

(a) Compute a matrix that tells how much each person's fruit purchases 
cost at each store. 

(b) Compute a matrix that tells how many of each fruit will be pur
chased in each town. 

(c) Compute a matrix that tells the total cost of everyone's fruit pur
chases in town I and in town 2 when people use store A and when 
they use store B (a different number for each town and each store). 

23. Express in matrix notation the following operations on these arrays of 
data: Matrix A gives the amount of time each of three jobs requires of 
I/0 (input/output), of Execution time, and System overhead; matrix B 
gives the charges (per unit of time) of different computer activities under 
two different charging plans; matrix C (actually a vector) tells how 
many jobs of each type there are; and matrix D tells the fraction of the 
time that each time-charging plan (the columns in matrix B) is used 
each day. 
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t 

Time Time Charges 

A 1/ 0 Execution System B Plan I 

Job A 5 20 10 I/ 0 2 

Job B 4 25 8 Execution 6 

Job C 10 10 5 System 3 

Number of Jobs of Fraction 
C Each Type D of Time 

-
Job A 4 Plan I .3 

Job B 5 Plan II .7 
Job C . 3 

Compute the following arrays using A, B, C, and D. 
(a) Total cost of each type of job for each charge plan. 

Plan II 

3 

5 

4 

(b) Total amount of 1/ 0, Execution, and System time for all the jobs 
(all jobs are summarized in matrix C) . 

(c) Total cost of all jobs when run u11der plan I and under plan II. 
(d) Average cost of 1 unit of 1/ 0, of Execution, of System time. 

Hint: Use matrix D. 
( e) Average cost of each type of job (job A, job B, job C). 

24. Express in matrix notation the following operations on these arrays of 
data: Matrix A gives the amounts of raw material required to build 
different products; matrix B gives the costs of these raw materials in 
two different countries; matrix C tells how many of the products are 
needed to build two types of houses; and matrix D gives the demand 
for house in the two countries. 

Raw Material Cost by Country 

A Wood Labor Steel B Spain Italy 

Item A 5 20 10 Wood $2 $3 

Item B 4 25 8 Labor $6 $5 

Item C 10 10 s Steel $3 $4 

ltems Needed in House Demand for Houses 

C Item A Item B Item C D House I House II 

House I 4 8 3 Spain 50,000 200,000 

House II s 5 2 Italy 80,000 500,000 

(a) Con1pute the first row in the matrix product AB. 
(b) Which matrix product tells how much of the different ite,ns are 

needed to meet the demand for houses ( types I and II combined) 
in the different countries? 

(c) Which matrix product gives the cost of building each type of house 
in each country? 
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(d) Which entry in what matrix product would give the total cost of 
building all homes in Spain? 

Note: If the rows and columns in a matrix must be interchanged 
in a product, indicate this by using the transpose of the matrix 
(transposes are not formally introduced until Section 2.4). 

25. Express in matrix notation the following operations on these arrays of 
I 

data: Matrix A gives the number of tradesmen needed each day to build 
different types of small stores; matrix B gives the number of days it 
takes to build each type of store in each state; matrix C gives the cost 
of tradesmen (per day) in New York and Texas; and matrix D gives the 
number of stores of each type needed in two different sorts of shopping 
centers. 

A 

Store A 

Store B 

Store C 

Carpenter Electrician 

5 2 
4 

3 

2 

l 

B New York Texas 

Store A 

Store B 

Store C 

C 

Carpenter 

Electrician 

Bricklayer 

20 
30 

20 

New York 

$100 
$80 

$80 

15 

25 

20 

Texas 

$60 
$50 
$60 

Bricklayer 

1 

2 

I 

D 
Store A 

Store B 

Store C 

(a) Compute the first column in AC. 

• 

Shopping Shopping 
Center I Center II 

10 5 
10 10 
20 20 

(b) Which matrix product tells how many tradesmen per day are needed 
to build the stores in each type of shopping center? Do not compute 
this prodz,ct. 

(c) Which entry in what matrix product would give the total cost of 
building three stores, one of each type, in New York? (Total cost 
covers all the days of construction.) 

Note: If the rows and colunns in a matrix must be interchanged in 
some matrix product, indicate this by using the transpose of the 
matrix (transposes are defined in Section 2.4). 

26. Consider a growth model for the numbers of computers ( C) and dogs 
(D) from year to year: 

D' 3C + D 
C' - 2C + 2D 

• 
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Let x = [ C, D] be the initial vector and let x<k> denote the vector of 
computers and dogs after k year . Let A be the matrix of coefficients 
in this system. Write x<k> in terms of A and x. 

27. Consider a variation on the Markov chain for Sunny and Cloudy 
weather. The new transition matrix A is 

A= Sunny 
Cloudy 

Sunny Cloudy 
2 
3 

1 
3 

2 
3 

(a) Compute A 2 . What probability does entry ( l, 2) in A 2 represent? 
(b) Compute A3

. What is the probability if sunny today that it is sunny 
in 3 days? 

( c) Compute A 4 . What vector do the columns of A k , for k = 2, 3, 4, 
seem to be approaching? 

28. (a) Show that if we multiply any 3-by-3 matrix A by 

I O 0 

I = 0 l 0 
0 0 1 

then the result IA (or Al) always equals A. 
Hint: Make up a 3-by-3 matrix and multiply it by I. 

(b) Show that if we premultiply A by 

K 
l O 0 

0 2 0 
0 0 3 

the result is A except that the second row of A is doubled and the 
third row of A is tripled. 

(c) Suppose that K has kt in entry (1, 1) , k2 in (2 , 2), k3 in (3, 3) , and 
O's elsewhere. Describe the effect of premultiplying any 3-by-3 
matrix A by K. 

29. A ~quare matrix is called diagonal if all its nonzero entries are on the 
main diagonal. 
(a) Find the product AB of 

2 0 0 

A= 0 1 0 

0 0 3 

and 

3 0 0 

B = 0 2 0 

0 0 5 

(b) Suppose that a 11 , a 22 , a 33 are the diagonal entries in the diagonal 
matrix A and b 11 , b22 , b33 are the diagonal entries in the diagonal 
matrix B. Then what are the diagonal entries in AB? 

• 
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l O 0 

Q = 0 0 I 

0 1 0 

• 
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• 

show that the resulting matrix QA is just A with the second and 
third rows interchanged. 
Hint: To see why this is so, make up a 3-by-3 matrix and pre
multiply by Q. 

(b) If we premultiply any matrix A by 

0 0 1 

R = 0 2 0 

1 0 0 

show that the result RA is a matrix with the rows of A reversed 
and the values of all entries in the second row doubled . 

(c) If we premultiply any matrix A by 

1 0 0 

S = - 2 1 0 

0 0 I 
• 

show that the result SA is A except that twice the first row has 
been subtracted from the second row. 

(d) Construct a 3-by-3 matrix which when premultiplying a 3-by-3 
matrix has the effect of adding four times the third row to the first 
row. 

(e) Construct a 3-by-3 matrix which when premultiplying a 3-by-3 
matrix has the effect of subtracting twice the first row from the 
second row and also adding three times the first row to the third 
row. 

31. (a) Show that if we postmultiply any 3-by-3 matrix A by the matrix 
Q in Exercise 30, the resulting matrix AQ is A with the second 
and third columns interchanged. 

(b) Show that if we postmultiply A by R in Exercise 30, the resulting 
matrix AR is A with the columns reversed and the values of all 
entries in column two doubled. 

(c) Show that if we postmultiply A by S in Exercise 30, the resulting 
matrix AS is A except that twice the second column has been 
subtracted from the first column. 

(d) Construct a 3-by-3 matrix which when postmultiplying a 3-by-3 
matrix bas the effect of adding two times the third column to the 
second column. 

(e) Construct a 3-by-3 matrix which when postmultiplying a 3-by-3 

• 
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matrix has the effect of subtracting four times tl1e first column frorn 
the second column and also adding twice the first column to the 
third column. 

32. Compute the matrix product 

l 2 1 0 

0 I 3 l 

0 0 1 2 

0 0 0 1 

• 

2 0 l 1 

0 1 2 0 

0 0 1 l 

0 0 0 3 

A matrix is called upper triatzgular if the only nonzero entrie are on 
or above the main diagonal. The previous computation illustrated the 
fact that the product of two upper triangular matrices is again upper 
triangular. Give an explanation of why tl1is is true for the product of 
any two 4-by-4 upper triangular matrices ( or more generally for any 
size matrices). 

a b 
33. Show that in a 2-by-2 matrix , if one row is a multiple of the 

C d 

other row, then one column is a multiple of the other column. 

34. Let A and 8 be 2-by-2 matrices. If C = AB and the second row of A 
is 3 times the first row of A (a1 = 3af), show that the second row of 
C is 3 times the first row of C. 

Hint: Compare c 11 = af · bf with c21 = a~ · bf~ similarly for c21 
versus c22 . 

Exercises Involving Computer Programs 
35. Write a program to multiply a matrix times a vector, take the resulting 

vector, and premultiply it again by the matrix, and so 011 a specified 
number of times. (This is the computation needed to follo\v a Markov 
chain ·over many periods.) 

36. Write a program to read in two matrices and multiply them together. 

37. Write a program to raise a (square) matrix to a specified power. 

' 
38. Use the program you wrote in Exercise 35 (or one supplied by the 

instructor) to compute successive probability distributions for 20 periods 
for the following Markov chains. Unless otherwise specified, assu1ne 
that the initial distribution vector is p = [ 1, 0, 0, . . . ] (i.e., one starts 
in state 1 ). 
(a) The weather Markov chain (in Example 10). 
(b) The frog Markov chain starting with p = lO, 0, ½, ,½, 0, O] . 
(c) The rat maze Markov chain in Exercise 8 of Section 1.3. 
( d) The poker Markov chain in Exerci e 9 of Section 1. 3 with p = 
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[O, 0, 0, 1, 0, 0, 0]-you start with $3. What are your chances of 
winning $6 by the end of 20 periods? 

(e) The tank battle Markov chain in Exercise 10 of Section 1.3. What 
are each tank's chances of winning the battle? 

39. Use the program you wrote in Exercise 37 to raise the following Markov 
transition matrices to the twentieth power. In each case explain the 
pattern of values in the matrix . 
(a) The weather Markov chain (in Example 10). 
(b) The frog Markov chain. 
(c) The rat maze Markov chain in Exercise 8 of Section 1.3. 
(d) The poker Markov chain in Exercise 9 of Section 1.3. 
(e) The tank battle Markov chain in Exercise 10 of Section 1.3 

Exercises for Optional Part of Section 
40. Compute entry (3, 3) in the matrix product FDF in Example 11, and 

verify that it agrees with the value given in Data Plot 5 of Section 1.5. 

41. (Difficult) (a) Verify that the matrix product FDF performs the filtering 
given by formula (3 l) in Example 11 [e.g., that entry (i, j) equals that 
formula]. 
(b) Build a filtering matrix G such that GDG performs the filtering 

transformation 

d:J = -h{4d,j + 2(d;_; - J .,. di.j4 l + d, - 1. j + d, + 1,j) 
• 

+ l(d; - (,j -1 + d, + l,j- 1 + di-l ,j+J + d;+1,j+ 1)} 

0-1 Matrices 

Most of the mathematics that is studied in high school involves numbers or 
geometric objects. However, there are important fields of discrete mathe
matics that work with sets of nonnumeric objects. One such field is graph 
theory. These graphs are different from the graphs for plotting functions. 
Graph theory is used extensively in computer science and systems analysis. 

A graph G = (N, E) consists of a set N of nodes and a collection E 
of edges that are pairs of nodes. There is a natural way to ''draw'' a graph. 
We make a point for each node and draw lines linking the pairs of nodes in 

· the edges. For example, the graph G with node set N = {a, b, c, d, e} and 
edge set E = {(a, b), (a, c), (a, d), (b, c), (b, d), (d, e), (e, e)} is drawn 
in Figure 2. 2. An edge may link a node with itself, called a loop edge, as 
at node e in Figure 2.2. 

Figure 2.2 a 

C b d 
• 
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A flowchart for a computer program is a form of graph. The data 
structures that are used to organize complex sets of data are graph . Or
ganizational charts, electrical circuits, telephone networks, and road maps 
are other examples of graphs. Billions of dollars are spent every year ana
lyzing problems that are modeled in terms of graphs. 

One class of questions asked about graphs concerns paths. A path is 
a sequence of nodes with edges linking consecutive nodes. We may want 
to firid the shortest path between two nodes, or determine whether or not 
any path exists between a given pair of nodes. Finding paths through graphs 
arises when one wants to route a set of telephone calls through a net work 
between prescribed cities without exceeding the capacity of any edge. The 
question of whether a path exists between two nodes arises over and over 
again in studying the effect on networks of random disruption, say, due to 
lightning. For example, in a given 1000-edge network one might want to 
know the probability that if five randomly chosen edges are destroyed , the 
network will become disconnected . 

The purpose of mentioning all these graph problems is to motivate the 
importance of having good methods to represent and manipulate graphs in 
a computer. We frequently use matrices for representing graphs . 

Adjacency Matrix A(G) of a Graph G. A(G) tells which pairs of nodes 
are adjacent (i.e., which pairs form edges). Entry au = I if there is 
an edge linking the ith and }th nodes; otherwise, a iJ = 0 . Note that 
a,i = 0 unless there is a 1oop at the ith 11ode. 

The adjacency matrix A( G) of the graph G in Figure 2. 2 is 

a b C d e 

a 0 l I l 0 
• b 1 0 1 1 0 

A(G) I 1 0 0 0 
.( 1) 

= C 

d 1 I 0 0 l 

e 0 0 0 l l 

Matrix A(G) is symmetric; that is, aiJ = a
1

; , 

Let us see how a question about graphs can be solved in terms of this 
matrix. 

Example 1. Paths in Graphs 
. 

A path is a sequence of nodes such that each consecutive pair of nodes 
in the path is linked by an edge. The le,1gtli of a path is the number 
of edges along it. For example , in Figure 2.2, (a, b, d, e) is a path of 
length 3 between a and e. A single edge is a path of length 1 . 

• 
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We claim that the ith and jth nodes can be joined by a path of 
length 2 if and only if entry (i, j) in A2(G), the square of the adjac~ncy 
matrix A(G), is positive. 

First let us compute A 2( G) for the graph in Figure 2. 2. To do 
this , we must find the scalar product of each row of A( G) with each 
column of A(G). Since A(G) is symmetric, this is equivalent to finding 
the scalar product of each row with every other row. (Why?) Consider 
the scalar product of a's row and b's row in A(G): 

a O 1 1 1 0 

b 1 0 1 1 0 
• • • • • 

• • • • • 

• • • • • 

[0, 1, l, 1, 0] · [ 1, 0, I , 1, O] = 0 x l + 1 x O + l x 1 + 
l x l+O x 0=2 

(2) 

The product of two entries in this scalar product will be I if and 
only if the two entries are both 1. Thus tl1e value of the scalar product 
is simply the number of positions where the two vectors both have a 
1. With this observation , it is easy to compute all the scalar products 
that form the entries of A 2( G). 

a b C d e 

a 3 2 1 1 1 • 

b 2 3 l 1 1 

A2(G) == C 1 I 2 2 0 
(3) 

d I I 2 3 1 

e 1 1 0 I 2 

We now interpret the computation of the scalar product (2) in 
terms of adjacencies in the graph . In (2), when rows a and b have a 
1 in c' s column, this means that a and b are both adjacent to c. From 
(2) we see that a and bare both adjacent to nodes c and d. In general, 
when two nodes ni and ni are adjacent to a common node nk, then 
(11 ;, n1< , nj) will be a path of length 2 between n; and ni. This proves 
that the (i, j) entry in A2(G) equals the number of paths of length 2 
between the ith and }th nodes. 

This property extends to higher powers of A( G) . The entries of 
A 3( G) tell how many paths of length 3 join different pairs of nodes. 
For any positive integer m, the entries of Am(G) tell how many paths 
of length m join different pairs of nodes. Illustrative examples and 
mathematical verification of this property of Am( G) are left to the 
exercises. • 

A graph G is connected if every pair of nodes in G are joined by a 
path. Using powers of A( G), we can determine whether or not a graph is 
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connected. If G has n nodes, any path between two nodes in G l1as length 
<n - 1. So G is connected when there exist paths of length <1l - 1 
between all pairs of nodes. To determine whether all such paths exist, we 
compute A2 , A3 , . .. , A" - 1(G) and check for each (i,j) pair, i =I= j, whether 
entry (i, j) is positive for some power of A. For example, the graph G in 
Figure 2.2 is seen to be connected; all entries but (c, e) and (e, c) are positive 
in A2(G), and these two zero entries become positive in A3(G). 

Summarizing our discussion of paths and connected11ess, we have 

Graphs and Matrix Multiplication 

l. Let A(G) be the adjacency matrix of graph G. Then the entry 
(i, j) in A"(G) tells how many paths of length 2 join node i with 
node j, and more generally, entry (i, j) in An1(G) tells how many 
paths of length m join node i with node j. 

2. Let G be an 11-vertex graph. G is co11nected if and only if for each 
(i, j) pair, i-:/:- j, entry (i, j) is positive in some power Ak, k = 1, 
2, . . . , 11 - l. 

If D is a directed graph (in which an edge (a, b) goes onl)' fronz a to 
b), its adjacency matrix A(D) has a 1 in entry (i, j) if there is an edge from 
node j to node i. Then (i, }) entry in A"1(D) will tell how many directed 
paths of length ,n there are in D from node j to node i. 

There is one important scalar product \vhich we shall use in Example 
2 that merits discussion. If bis some vector b = [b 1, b2 , . .. , b,,J and 1 is 
a vector of 11 l's , the sum of the b, can be written 

1 bi = b1 + b2 + · · · + b,1 

1 X b 1 + 1 X b2 + · · · + 1 X b n 

l·b 

Example 2. Ranking Track Teams 

• 

Suppose that there are five track teams, named Ants (A). Birds (B). 
Cats (C)~ Dogs (D), and Elephants (E), that compete in nine meets. 
The results of the competition are modeled by a directed graph G witl1 
nine edges, in which there is an edge from A to B if A beat B (see 
Figure 2.3). 

One approach, the one we will use, is to give two points to team 
A for each team that A beats and to give one point to team A for each 
case where team A beats a team, say D, that in turns beats another 
team, say B (this way, team A gets several points when A beats a 
''good'' team that has beaten other teams). In the directed graph, node 
A gets two points for each edge directed out from A and gets one point 
for each path of length 2 directed out from A. Recall that the number 
of paths of length 2 frorn node j to node i is entry (i, j) in A2(G) . 

• 

• 
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Figure 2.3 

• 

A D 

• 

C 

From 

A B C D E 

A 0 1 1 0 0 
B 0 0 1 1 0 

A(D) = To C 0 0 0 0 1 

D 1 0 1 0 I 
E 0 1 0 0 0 

The question is: How to rank the five teams? 
If 1 denotes a vector of five l's and 2 denotes a vector of five 

2' s, then team A's total score will be the scalar product of 2 times A's 
column in A( G) plus the scalar product of 1 times A's column in A 2( G). 
To get the scores of all the teams at once, we multiply 2 times all 
columns of A( G)-that is, compute 2A( G)- and add it to 1 times all 
columns of A2(D)-that is, compute 1A2(G). Our computations yield 
(here we have already computed A2(G) on a computer): 

0 1 1 0 

0 0 l l 
2A(G) + 1A2(G) = [2 2 2 2 2] 0 0 0 0 

l 0 1 0 
0 1 0 0 

• 

0 0 1 

l 0 1 

+ [1 1 1 l l] 0 1 0 

0 2 1 

0 0 I 

[2, 4, 6, 2, 4] + (1, 3, 4, 2, 4] 

ABC DE 

= [3, 7, 10, 4, 8) 

0 

0 

1 

l 

0 

1 1 

0 2 

0 0 

0 1 

1 0 

Based on this scoring system, the ranking of the teams would be 
C first, E second, B third, D fourth, A fifth. The reader may want to 
experiment with other ranking systems. • 
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The fact that matrix multiplication can be used to answer questions 
about paths in graphs is quite unexpected . But it helps prove the point that 
a very large number of diverse mathematical problems can be analyzed \Vith 
matrices and linear models . This example also shows how useful it can be 
to interpret the meaning of mathematical operations. such as matrix multi
plication, in terms of the system being modeled. 

Examples 3 and 4 involve mathematical schemes to encode information 
in a fashion designed to detect, and if possible correct, errors introduced by 
noise when messages are transmitted. A binary code is a scheme for en
coding a letter or number as a binary sequence of O' s and l ' s and then 
decoding the binary sequence back into a letter or number. The binary se
quence often is transmitted over a communications channel with random 
noise that may change one of the digits in the binary sequence. That is, 
when a I is sent, a O may be received; or vice versa. We assume that the 
chance of two errors in one binary sequence is small enough that it can be 
ignored. 

The examples about binary codes involve multiplication and addition 
mod 2. Because computers represent numbers in terms of O · s and 1 's ( a 
circuit is open or closed), it is very easy for computers to calculate mod 2. 
The followjng tables summarize the rules for addition and muJtiplication 
mod 2. 

+ mod 2 0 l x mod 2 0 l 

0 

l 

0 I 

1 0 

() 

l 

0 0 
• 

0 1 

The sum of many I's is O if there are an even number of I 's and is 1 if 
there are an odd number of l 's. For example, the following scalar product 
is calculated in arithmetic mod 2: 

[l, 1, 0, 1, l] · [l, 0, 1, l, 1] 

l X l + l XO + Ox l + l X l + l X l 

== l + 0 + 0 + 1 + 1 ( mod 2) 

= l (mod 2) 

Example 3. Parity-Bit Code for Error Detection 

Error-detecting binary codes are designed to make it possible to detect 
an error should one occur during transn1ission . Then the transmitter 
would be asked to send the binary sequence again. A standard error
detecting code used to transmit data over telephone lines between com
puters is a parity-bit code. 

The basic unit in such communication is usually a byte. an 8-bit 
binary sequence. Let b = (b 1, b2 , .•. , b~ l be the byte to be sent. In 

• 
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a parity-bit code, an additional 9th bit p is added to b to get the 
sequence to be transmitted, c = [b 1, b2 , ••• , b8 , p]. This bit p is 
normally chosen so that the number of 1 's in c is even. Another way 
to say this is: Pick p so that the sum of the bits in c equals 0 mod 2: 

b, + b2 + · · · + b8 + p == 0 (mod 2) 

or equivalently, I 

1 · c == 0 mod 2 

For example, if the byte to be sent is b = [ 1, 0, l, 0, 0, 1, 0, O], 
which has an odd number of l's, then p = 1 and we send c = [l, 0, 
1, 0, 0, 1, 0, 0, 1]. Suppose that the message we received was c' = 
[l, 0, 0, 0, 0, 1, 0, 0, l]-the third bit was erroneously changed to 
0. 

Whenever a message c' is received, we compute 1 · c'. If no 
errors had occurred and c' = c, then we would find that 1 · c' = 
0 mod 2. On the other hand, if 1 · c' = 1, as in this example, then 
some digit was altered-and we ask the sender to retransmit. 

A simple way to compute the proper value for the parity bit p is 
to let 

p = ~ bi = 1 · b (mod 2) . (4) 

That is, let p equal the sum mod 2 of the 1·'s in b. If p J • b = 
l mod 2, b has an odd number of l's and making p 1 will give c an 
even number of 1 's. If p = 1 · b = 0 mod 2, then b already has an 
even number of 1 's and we want p to be 0. • 

Example 4. Hamming Code for Error Correction 

More advanced error-correcting codes can actually correct an error 
and reconstruct the original binary sequence that was sent. The follow
ing scheme due to Hamming takes a 4-bit binary sequence and encodes 
it as a 7-bit sequence. Let b = [b1, b2 , b3 , b4 ] be the binary message, 
letp 1, p2 , p3 be the parity-check bits, and let c = [c 1, c2 , .•• , c7 ] be 
the code sequence that will be transmitted. The parity-check bits are 
chosen to satisfy the following three parity checks: 

Pi + b4 = 0 (mod 2) 

+ b3 + b4 = 0 (mod 2) 

p3 + b2 + b3 + b4 = 0 (mod 2) 

(5) 

Let us encode these message and parity-check bits in the code sequence 
c as follows: 

• 
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c, = Pi, C2 = P2, . C3 = bi, C4 = p3, 

c5 = b2 , c6 = b3 , c7 = b4 · 
(6) 

The reason why c3 = b,, not p3 , will be clear shortly. Now (5) is 

+ c7 = 0 (mod 2) 

+ c6 + c7 = 0 (mod 2) (7) 
c 4 + c 5 + c 6 + c7 = 0 ( mod 2) 

or 

Mc = 0 (mod 2) 

where O is a vector of all O's and M is the matrix of coefficients in 
(7): 

M= 
1 0 

0 l 

0 0 

1 0 1 0 

1 0 0 l 

0 J l l 

l 

1 

1 

(8) 

Each of tl1e c;'s is involved in a different subset of parity checks, 
so when (exactly) one c, is altered in transmission, the parity checks 
allow us to determine which bit was changed. 

Since each of the parity bits c 1 ( = p 1), c2 ( = p2), c4 ( = p 3) is 
in just one of the parity equations in (7), each can be determined as 
the sum of the other bits in their equation Uust asp = I b1 in Example 
2). Summarizing how we go from the message vector b to the code 
vector c, we obtain: 

c 1 = b 1 + b2 + b4, c2 = b1 + b3 + b-4, C3 = b1, 

C4 = bi + b3 + b4, C5 = bi, c6 = b3, (9) 
. C7 = b4 

The following matrix-vector product (mod 2) does the encoding 
specified b)1 (9). 

I 1 0 ] 

I 0 l J 

1 0 0 0 

C = Qb, where Q = 0 l 1 I ( l 0) 

0 1 0 0 

0 0 l 0 

0 0 0 1 

For example, suppose that b = [l, 0, 1 .. 0). Then 
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l l 0 1 

I 0 l 1 
1 

l 0 0 0 

C == Qb == 
0 

0 1 1 1 
I 

0 1 0 0 
0 

0 0 1 0 

0 0 0 1 

l x l + l x O + Ox l + 1 x o 1 

l x l + Ox O + l X l + l x O 0 

l x l + Ox O + Ox l + Ox O 1 

Ox l + I x O + l X l + l x O - 1 -

Ox l + l x O + Ox l + Ox O 0 

Ox l + OxO + l X l + Ox O 1 

Ox l + o x o + Ox I+ l XO 0 

( 11) 

Suppose that the transmission received was c' [1 , 0, 1, 1, 0, 
0, O]; the sixtl1 bit was changed from 1 to 0. We compute the vec
tor e: 

I 

() 

1 0 1 0 1 0 1 I 0 

e = Mc' 0 1 1 0 0 l 1 J l (12) 

0 0 0 I 1 1 1 0 1 

0 

0 
• 

Note that Mc' is just the set of left sides in (7) with c replaced by c'. 
If no error had occurred and c' = c, then e == Mc == 0, as in (7). If 
e # 0, as in (12), an error must have occurred . Depending on which 
parity equations are now violated, we can ~gure out which bit in c ' 
was changed in transmission. We claim that e ( = Mc1

) equals the 
column of M corresponding to the bit of c that was changed. This is 
the case in (12), where e equals the sixth column of M. The reason is 
that when the kth bit is altered, exactly those equations involving the 
kth bit (i.e . , those rows of M with a 1 in the kth column) will now 
equal 1 (mod 2). 

As the reader has probably noticed , for each i, the ith column of 
Mis simply the binary representation of the number i. Thus the vector 
e ''spells out'' the location of the bit that was changed. To get the 
correct transmission, we simply change back the bit in the position 
spelled out by e. In this instance we would change the sixth bit from 
a O back to a 1. • 
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Another useful matrix associated with a graph is the incidence matrix M(G). 

lncide,rce Matrix M(G) of a Graph G. M(G) has a ro\v for each node 
of G and a column for each edge of G. If the jth edge is incident to 
the ith node (i.e., the ith node is an endpoint of the jth edge), then 
entry mii = I; entry mu = 2 if there js a loop edge at i; and otherwise, 
miJ = 0. 

The incidence matrix for the graph in Figure 2. 2 is 

e, e2 e3 e4 es e6 e1 
a 1 l I 0 0 0 0 

b 1 0 0 1 l 0 0 
(13) 

M(G) 0 l 0 1 0 0 0 = C 

d 0 0 1 0 l I- 0 

e 0 0 0 0 0 1 2 

M(G) will always have exactly two l's in each column (or one 2), since an 
edge has two endpoints . 

The next example shows how, using M( G), one can recast a graph 
optimization problem as a linear program. Although the reformulation is not 
hard to follow, it required considerable ingenuity to think it up. 

Example 5. Finding a Maximum Independent Set 

An independent set I of nodes in a graph is a set of nodes \vith no 
linking edges. For example, {a, e} is an independent set of nodes for 
the graph in Figure 2.2. Independent sets arise in various settings. For 
example, let G be a graph in which each node stands for a letter that 
can be transmitted over a noisy communications channel and an edge 
joins two nodes if the corresponding letters can be confused when 
transmitted (i.e., one letter is sent but another letter is received). An 
independent set ,vould represent a set of letters that cannot be confused 
with one another. 

We shall now recast the property of being an independent set in 
terms of a set of linear inequalities. We assume that G has n nodes. 
The key step is lo represent a set of nodes by a membership vector. 
The membership vector x = [x 1, x2 , . • . , .tnl for a set / is defined to 
have X; = l if the ith node is in the set / and x; = 0 otherwise. 

We clain1 that x is the memberslup vector for an independent set 
if and only if the following inequality holds. 

xM(G) < l (14) 
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Recall that putting the vector before the matrix means that we 
are forming the scalar product of x with each column of M( G); the 
columns of M( G) correspond to the edges of G. For the graph in Figure 
2.2, (14) becomes 

Edge e1: Xa + Xb :5 1 

Edge e2: Xa + Xe :5 1 

Edge e3 : ~~a + Xd < l 

Edge e4 : X b + X e s l (] 5) 

Edge e5: X b + Xd :5 1 

Edge e6: Xd + Xe s 1 

Edge e7: 2.xe :5 1 

Recall that each column of M(G) has two l's, which correspond to 
the pair of nodes that form that edge. 1"hen the left side of the first 
inequality in (15) says that nodes a and b are the endpoints of edge 
e 1 • The condition that x0 + xb < l says that not both a and b can be 
in the independent set I (i.e. , not both x,, = 1 and xb = 1). 

We are ready to pose the problem of finding a maxim,,m inde
pendent set of Gas a linear program. In the graph model for confusing 
letters sent over a noisy communication channel, a maximum inde
pendent set would be the largest possible set of letters that can be sent 
without one being confused with another. 

We must restate the concept of maximizing the size of the inde
pendent set in terms of membership vector. What we want is to max
imize the number of 1 ' s in the membership vector. Another way to 
say this is to maximize the sum of the x;'s. But l xi = 1 · x. Combining 
this fact with ( 14), we have the linear program 

Maxi1nize 1 · x 

subject to xM(G) < 1 

and X; = 0 or 1 

Because of the integer constraint, such a linear program is called an 
integer program. There is a large literature about solving integer 
programs. All optimization problems in graph theory can be posed as 
integer problems. • 

Sectio1i 2 .3 Exercises 

• 

Summary of Exercises 
Exercises J-10 deal with adjacency matrices and paths in graphs, Exercises 
8-10 being ''theoretical.'' Exercises 11-20 concern coding problems. Ex
ercises 21-23 deal with the optional material at the end of the section . 

• 
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1 . Draw the graphs with the following adjacency matrices. 

0 0 0 l 0 l 1 ) 0 0 l I 0 0 

(a) 
0 0 1 0 

(b) 
1 0 0 I 0 l l 0 l I 

0 l 0 0 1 0 0 I I I 0 0 0 I 
(c) 

1 0 0 0 l I 1 0 l 0 0 l 1 1 

0 I 0 l 0 0 
0 1 l 1 0 1 

2. Write the adjacency matrices for the following graphs. 

(a) G 1 a b 

d c. 

(c) G3 • • • • • • 
a b c d e I 

(e) G5 

I 

C b 

d 

(d) G4 a --•--... b C 

• 

C 

d 

• 
({) G6 .,a ___ .,.b _____ c 

f e d 

3. Compute the square of the adjacency matrix for the following graphs 
from Exercise 2. 
(a) G 1 (b) G2 (c) G3 (d) G4 (e) Gs (f) G6 
Use your answer to tell how many paths of length 2 there are in each 

• 

graph between vertex a and vertex d. 

4. Compute the cube of the adjacency n1atrix for the following graph 
from Exercise 2. 
(a) G1 (b) G2 (c) G3 (d) G4 (e) Gs (f) G6 

Note: You may use a computer program to do this computation. 
Use your answer here along with that in Exercise 3 to tell if all 

vertices in the graph are joined by a path of length < 3. 

5. Use your calculation in Exercise 4 to show that G 1 and G2 are con
nected. 

6. Direct the edges in the graphs G 1, G2 in Exercise 2 from the earlier 
node to the later node according to the alphabetical order of the nodes; 
for example, edge (a, c) goes fron1 a to c . 

• 
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(a) Write the adjacency matrix for graphs G 1 and G2 and compute the 
square of each. 

(b) Give an argument to explain why entry (i, j) in the square A 2(D) 
of the adjacency matrix A(D) of a directed graph D tells how many 
directed paths there are in D from j to i. 

7. For the directed versions (see Exercise 6) of graphs G1, G2 in Exercise 
2, compute the total points for each node according to the method in 
Example 2. 

8. For an undirected graph G, show that the result of the matrix-vector 
product A(G)l (where 1 is a vector of l's) is a vector in which the ith 
position tells how many nodes are adjacent to node i. 

9. (a) Explain in words why, if entry (i, j) in A(G)2 is the number of 
paths of length 2 between nodes i and j in graph G, entry (i, j) in 
A( G)3 is the number of paths of length 3 between nodes i and j 
in G. 

(b) (Advanced) Extend the argument in part (a) by induction to show 
that entry (i, j) in A(G)k is the number of paths of length k between 
nodes i and j in G. 

10. (a) Suppose that we redefined the adjacency matrix A(G) so that the 
diagonal entries (i, i) were all 1. Now what is the interpretation of 
entry (i, j) being positive in A2(G)? In Ak(G)? 

(b) Compute A2(G) for this redefined adjacency matrix for graph GL 
in Exercise 2. 

11. If the following bytes (8-bit binary sequences) are being sent in a parity
check code, what should the additional parity bit be (0 or l)? 
(a) 10101010 (b) 11100110 (c) 00000000 

12. Suppose that the following 9-bit messages were received in a parity
check code. Which messages are altered during transmission? 
(a) 101010101 (b) 101101101 (c) 000000000 

13. Explain why if two errors occur during transmission, a parity-check 
code of the sort in Example 3 will not detect an error. 

14. Suppose that in the Hamming code in Example 4, the following 4-bit 
binary messages b = [b 1, b2 , b3, b4] are to be sent. What will the 
coded 7-bit message c = [c1, c2 , c3 , c4 , c5 , c6 , c7] be?· 
(a) b = [l, 1, 0, O] (b) b = [l, 1, 1, O] (c) [l, 1, 1, 1] 

15. Suppose that in the Hamming code in Example 4, the following mes
sages c' are received. In each case compute the ·error vector e = Mc' 
and from it tell which bit, if any, was changed in transmission. 
(a) [ 0 , 0, 1 , 1 , l , 1 , 0] (b) [ 1 , 1 , 1 , 1 , 1 , 0 , 1] 
(c) [O, 1, 0, 0, 0, 0, O] 

• 



• 

Sec. 2.3 0-1 Matrices 111 

' 

• 

16. Assume that at most one error occurred in transmission of the Hamming 
code in Example 4. What message was originally sent if the following 
message was received? 
(a) [0, 0, 1, l, 1, 1, 0] (b) [0, 1, 0, 0, 0, 0, 0. 0] 
(c) [l, 1, 1, 0, 0, 1, 0) 

17. Suppose that we let c 1 = p 1, c2 = p2 , c3 = p3 , c4 = b,, c5 = b2 , 

c6 = b3 , c7 = b4 instead of the encoding scheme in (6). With this 
encoding scheme, what is the new Q matrix in ( 10)? If b = [ 1, I ~ 0, 
O], what would c be? 

18. (a) Explain why the Hamming code in Example 4 will al ways detect 
two errors; that is, if two bits in the code are changed, the error 
vector e cannot be all O's. 

(b) Give an example to show that the Hamming code in Example 4 
cannot correct two errors. 

(c) Give an example to show that the Hamming code c~nnot always 
detect three errors. 

19. The Hamming code in Example 4 can be extended to a similar code for 
15-bit sequences-I I messages bits and 4 parity-check bits. Write out 
the system of parity-check equations (or equivalently, the 111atrix for 
coefficients for these equations) for a 15-bit Hamming code. 

20. Another way to encode a binary sequence is by treating the sequence 
as the coefficients of a polynomial p(x); for example, .the sequence 
( 1, 0, l, l] yields the polynomial p(x) = 1 + Ox + lx2 + Ix3. We en
code by multiplying p(x) by some other polynomial g(x) to get tl1e poly
nomial p*(x) = g(x)p(x), whose coefficients we transmit. For example, 
let g(x) = 1 + x. Then for p(x) = 1 + Ox + lx2 + lx3 , we com
pute p*(x) = g(x)p(-t) = ( I + x)( 1 + Ox + lx2 + Ix3) = I + 
Ix + lx2 + O.x3 + lx4

. (Remember that arithmetic is mod 2.) So we 
transmit [l, 1, 1, 0, l]. To decode, we divide the polynomial p*(x) by 
g(.x). If any error occurred in transmission, there will be a reminder
this tells us that an error occurred. 
(a) Using g( .. Y) = 1 + x, perform a polynomial encoding of the se

quence [l, 1, 0, l]. 
(b) Suppose that the following messages are received, based on this 

polynomial encoding with g(x) = 1 + x. Which ones have errors? 
(i) [l, 1, 0, 1, O] (ii) [1, 0, 1, O] (iii) [1, 0, 0, O] 

(c) (Advanced) Show that the parity of messages transmitted is always 
even with the polynomial encoding scheme with g(x) = l + x. 

Hir1,t: By setting _t = I in p*(.-r) [ = g(J't)JJ(x)], one can sum the 
coefficients (i.e., the message bits). 

• 
Exercises for Optional Material 
21. Write the incidence matrix M( G) for the following graphs in Exer

cise 2. 
(a) G 1 (b) G2 (c) G5 

• 
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22. Write out the linear program for finding a maximum independent set in 
the following graphs in Exercise 2 . 
(a) G 1 (b) G2 (c) G5 

23. Show that 1 · M(G) = 21 = [2 , 2, 2, .. . , 2] for any graph. 

Matrix Algebra 

In this section we introduce the algebra of matrices. Algebraic techniques 
are used in high school to manipulate, simplify, and solve equations, such 
as rewriting 2x - 2y = 4 as y = x - 2. Similar methods exist for matrices . 

In Sections 2.2 and 2.3 we used matrix notation to express systems of 
linear equations. For example, in Example 2 of Section 2. 2 we wrote the 
refinery equations 

as 

20x1 + 4x2 + 4x3 = 500 

10x1 + 14x2 + 5x3 = 850 

5x1 + 5x2 + 12x3 1000 

20 4 4 X1 

10 14 5 · X2 

5 5 12 X3 

20x1 + 4x2 + 4x3 

10x1 + 14x2 + 5x3 

5:t 1 + 5x2 + J 2x3 

or, in matrix notation, 

Ax= b 

500 . 

850 
]000 

(1) 

(2) 

where A is the 3-by-3 matrix of coefficients, bis the right-side vector, and 
x is the vector of unknowns . 

Jt1st as the matrix notation of Ax = b gives a concise way to write 
the system of equations in (1), so matrix algebra provides a concise, powerful 
way to manipulate and solve matrix equations. As one would expect, the 
rules of matrix algebra are basically extensions of single-variable high school 
algebra. We start with some examples that illustrate the power of matrix 
algebra. 

First we need to define the ones vector 1 and identity matrix I. The 
vector 1 is simply a vector of all 1 's: 

1 = [1, 1, ... , l] 

When we write a scalar product such as 1 · b, we assume that the ones 
vector 1 has the same length as b (so that the product makes sense). As 
noted in Section 2.3 , the product 1 ·bis simply the sum of the elements in 
the vector b = lb1, b2 , ••• , bn] . 

• 
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1 • b = b I + b2 + • · · + b n 

The identity matrix I, always a square matrix, has 1 's on the main 
diagonal and zeros elsewhere. 

I 0 0 • • • 0 

0 1 0 • • • 0 

0 0 l • • • 0 
I --

• • • • • • • 
• • • • • • • 
• • • • . • • 

0 0 0 • • • 1 

If we multiply I times a vector b, the result is simply b. 

1 0 0 • • • 0 b, 
0 1 0 • • • 0 b2 
0 0 l • • • 0 b3 

lb= • 
• • • • • • • • 
• • • • • • • • 
• • • • • • • • 

0 0 0 • • • I bn 

1 x bi + 0 X b2 + 0 X b3 + • • • + 0 x bll b, 

0Xb1 + 1 X b2 + 0 Xb3 + • • • + 0 x bll b,, ..... 

Ox b, + Oxb2 + 1 X b3 + • • • + Ox b" b3 
= b --

• • • • • • • • 

• • • • • • • • 
• • • • • • • • 

Oxb, + 0 X b2 + 0 X b3 + • • • + J x bn bn 

In a similar way, one car verify that bl = b. So we have 

lb = b = bl (4) 

This is why I is called the identity matrix. As with the ones vector 1, we 
assume that the size of I equals the length of b. 

Equation ( 4) extends to matrices. That is, 

1B = B = BI (5) 

for any matrix B. Note that if B is an n1-by-r matrix , then the I on the 
left side of B must by nz-by-,n, while the I on the right side of B must be 
r-by-r. 

We can t1se matrix algebra to verify (5). The columns of the matrix 
product 1B equal the matrix-vector products of I with each colum11 bf of 
B. For example, the first column in 18 is the matrix-vector product lbf, 
which by (4) equals bf. In matrix notation \\'e write 

I 
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1B = l[bf, bf, bf, ... , b~] = [lbf, Ibf, Ibf, ... , lb~] (6) 

= [b I, h2, b3, ... , bn] = B . 

Example 1. Matrix Algebra in the Leontief 
Economic Model 

In Example 4 of Section 2.2 we used matrix notation to represent the 
system of equations in the Leontief economic model 

Industrial Demands 
Consumer 

Supply Energy Constr. Transp. Steel Demand 

Energy: X1= .4x1 + .2x2 + .2x3 + .2X4 + 100 

Construct. X2 = .3x1 + .3X2 + .2X3 + . lX4 + 50 
(7) 

Transport. . lx 1 + . lX2 + + .2x4 + 100 X3 = 
Steel: X4= + . lx2 + . lX3 + 0 

as 

x = Dx + c (8) 

where D is the matrix of coefficients for interindustry demands, c = 
[100, 50, 100, OJ is the vector of consumer demand, and xis the vector 
of (unknown) production levels x1• · 

The standard way to write a system of linear equations is with 
the X; all on the left side and constants on the right. If we bring all the 
X; over to the left side, (7) becomes 

.6x1 .2x2 - .2X3 - .2x4 = 100 

- .3x1 + .7x2 - .2x3 - . lX4 50 (9) 
- . lX1 . lx2 + X3 - .2x4 

- 100 -

.lx2 - .lX3 + X = 4 0 

We can also shift the x, to the left side in matrix notation. We 
rewrite (8) 

x=Dx+c ~ x-Dx=c (10) 

Recall from ( 4) that x = Ix (I is the identity matrix). Using this fact, 
we can rewrite (10) 

x-Dx=c 

Writing I - D out, we have 

lx-Dx=c 
(I - D)x = c 

(11) 
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1 0 0 0 .4 .2 .2 .2 

0 I 0 0 .3 .3 .2 . l 

0 0 1 0 . 1 .1 0 .2 

0 0 0 1 0 . 1 . I 0 

.6 - .2 -.2 - .2 
- .3 .7 - .2 . - .1 

(12) 
- .1 - .1 1 :.- .2 

0 - . l - .1 1 

The resulting matrix in ( 12) is the coefficient matrix of (9) . 
In Section 1. 2 we stated Leontief' s input constraint that every 

industry be profitable; that is, making 1 dollar,s worth of the ith com
modity should cost less than l dollar. Recall that the input costs of 
energy are the coefficients in the Energy column of the demand matrix 
D; similarly for other commodities. So Leontief's constraint is that 
each column sum in D should be less than l . 

We now develop a compact matrix inequality that expresses this 
constraint on D. Using the ones vector 1, we can write Leontief' s 
constraint (where d.f is the jth column of D): 

Input constraint: 1 · d ~ = d1 · + d, . + d3 · + d4 · < l ( 13) J J ..;1 '.I ':} 

[This use of l in summing was discussed in (3)). Combining (13) for 
all columns, we have 

The vector inequality < means term-by-term inequality. Factoring 1 
out in front, as with one-variable expressions, we have 

• • 

l[df, df, df, df] < 1 

or 

1D < 1 ( 14) 

This is the compact mathematical way to say that all column sums are 
less than 1 in the interindustry matrix D. In Section 3. 4 we shall use 
1D < 1 to prove that all Leontief economic models have a solution. 

• 

Example 2. Matrix Algebra in Markov Chains 

We showed in Section 2.2 that the transition equations for a Markov 
chain can be written in matrix notation as 
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or 

~ 
____...,,, p' == Ap 

p~ = afp 

(15) 

• 

(16) 

where A is the Markov transition matrix, pis the vector of the current 
probability distribution, and p' is the vector of the next-period prob
ability distribution. For the frog Markov chain, the system of equations 
p' = Ap is 

p; = .50p1 + .25p2 

p; = .5Qpl + .50p2 + .25p3 

Pi = .25p2 + .50p3 + _.25p4 

I 

Ps = 
, -

P6 -

.25p3 + .50p4 + .25p5 

.25p4 + .50p5 + .50p6 

.25p5 + .50p6' 

The next-period calculations represented by (15) can be repeated to 
find the distribution p" after two periods. Using matrix algebra, we 
have 

(Ap) = A2p 

and after n periods, the d · tribution vector pCn) is 

Th.e current probabilities Pi, the entries in p, must sum to 1. We 
can express this fact with the ones vector 1 as 

1 • P = PI + P2 + · · · + P n = 1 (17) 

The entries in the columns af in A must also sum to 1. 

1 · a~ == a 1 - + a2 - + · · · + a - = I J J 'J nJ 
(18) 

Combining all the columns together into A, we see that (18) yields 

lA = [l · af, 1 · af, ... , 1 · a~] 

[l, 1, ... , l] = 1 
(19) 

atrix algebra allows us first to represent the column sum being 
AJ~ncisely and then also allows us to state the fact for all columns at 

once.as lA = 1. 
Equations p' = Ap, 1 · p = l, and lA = 1 can be used to 

show that in the next-period distribution vector p', the entries p~ also 
sum to 1. That is, we want to prove 
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1 · p' 1... 1: 1 · p' = 1 · (Ap) 

= (lA) · p = l · p 

= 1 

since p' = Ap 

since lA = 1 

since 1 · p = I 

(20) 

This argument can be repeated to show that the entries sum to 1 in p", 
the distribution vector in two periods, and more general} y in p(n). • 

Transpose of a Matrix and 
Symm.etric Matrices 

The operation of transposing a matrix has many theoretical and practical 
uses. In this book, jts primary use is in computing pseudoinverses (in Section 
5.3). 

The transpose of a matrix A, written A7', is the matrix obtained from 
A by interchanging rows and columns. Another way to think of it is, flipping 
A's entries around the main diagonal. For example, if 

1 2 

A= 4 5 , 

7 8 
then A7 = 

Transposes have the following properties: 

1 4 7 

2 5 8 

• 

AT + BT = (A + B)T 

(AB)T = BT AT and 

(AT)T = A 

(Ab)T = b7A7 

(21) 
(22) 

(23) 

The order of multiplying A and B is reversed on the left side of (22) because 
transposing reverses the roles of rows and columns: If A is m-by-r and B is 
r-by-n, then A7 is r-by-m and Br is n-by-r. We use the notation br in the 
second part of (22) to emphasize the change of b' s role from a column vector 
to a row vector. 

Proof of (AB)7 = B7A7 . We must show for any i,j, that entry (i, j) 
in (AB)T equals entry (i, j) in BT AT. Entry (i, j) in B7 AT equals the 
scalar product of the ith row of BT ( = ith column of B) times the Jth 
column of Ar ( = jth row of A). So we have 

entry (i, j) of BT A7 = bf · af 

and 

entry (i, j) in (AB)7 = entry (j, i) in AB 

Since b~ · a~ = a~ · b~ the identity is proved 
l J j l ' • 

a~· b~ J l 

• 

• 
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One of the most useful properties a matrix may have is symmetry. A 
matrix A is symmetric if A = Ar. The adjacency matrix A(G) of a graph 
G, introduced in Section 2. 3, is a symmetric matrix. Of course, a symmetric 
1natrix must be a square matrix. Symmetric matrices have many nice theo
retical and computational properties. If A is a symmetric matrix, all the 
inf onnation in the matrix is contained on or above the main diagonal. 

A familiar example of a symn1etric matrix is a mileage chart on a road 
map. Because of its symmetric structure, only the upper (or lower) triangular 
portion of this matrix is usually given. Symmetric matrices are very common 
in physical sciences applications. 

There is a useful symmetric matrix associated with any unsymmetric 
matrix, the matrix AT A. Entry (i, j) in Ar A will be the scalar product 
af · a.f of the ith and }th columns of A. Since af · aJ = a.f · af, entry 
(i, j) and entry (j, i) in ATA are the same. So AT A will be symmetric. (One 
computes scalar products of pairs of rows in the related symmetric matrix 
AAT.) 

There are many problems where one wants to measure in some infor
mal way how similar various pairs of columns are in a matrix. Scalar prod
ucts of the columns, as computed in Ar A, provide one good measure. 

• 

Example 3. Scalar Products of Columns as a 
Similarity Measure • 

Suppose that five students A, B, C, D, E have been asked to rate six 
subjects-linguistics, mathematics, necromancy, optometry, philoso
phy, and quantum mechanics-as subjects they like (rating = 1) or 
as subjects they do not like (rating = - 1). The following rating matrix 
R was obtained. 

A B C D E 

Ling 1 -1 • 1 -1 1 

Math 1 l -1 -1 1 

Neer l -1 l -1 -1 (24) 
R= 

Opto l I . -1 -1 l 
Phil -I -1 - 1 - 1 - 1 

QM 1 -1 1 -1 1 

To measure the similarity of interests among students, we want to use 
the scalar product of pairs of columns. Observe that the scalar product 
will be positive if two students' ratings tend to agree and will be 
negative if they tend to disagree. To get these scalar products, we 
simply compute RTR_ Since R7R is symmetric, we only need to com
pute the entries on or above the main diagonal. 

This computation yields 

• 
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A B C D E 

A 6 0 2 - 4 4 

B 6 - 4 2 2 

RTR = C 6 0 0 
(25) 

D 6 - 2 

E 6 

Computing RRT would yield scaJar products of pair of rows in 
R. These products would measure how imilar different pair of sub
jects are perceived to be; that is , a large positi,1e number \vould mean 
that most student~ give the same rating to the two subjects . • 

We close our discussion of symmetric matrices with a very special, 
and simple, type of symmetric matrix. A diagonal matrix is a matrix with 
nonzero entries only on the main diagonal. The identity matrix is a diagonal 
matrix. If one premultiplies a matrix A by a diagonal matrix D-DA-the 
result just multiplies the ith row of A by the ith diagonal element in D: 

5 0 l 2 

0 8 3 4 

5 x l+0 x 3 

0 x l+8 X 3 

s x 2.+ o x 4 

0 X 2 + 8 X4 
5 10 

24 32 

(26) 

Postmultiplying by a diagonal matrix has a similar effect on tl1e columns 
(see the Exercises). 

Rules of Matrix Algebra 
In Example 2 the step 1 · (Ap) = ( lA) · p (going from line l to I ine 2 in 
(20)] was not justified. Similarly, in Example 1 we wrote Ix = Dx = 
(I - D)x without explanation. These arc common algebraic manipulations 
for single-variable equ~tions, the associative and the distributive law , re
spectively. We were implicitly a suming that these laws are al o valid in 
matrix algebra. 

The rest of this section is devoted to a quick summary of what algebraic 
manipulations are and are not valid for matrices. In the follo,ving ,ve assume 
that our vectors and matrices have the right sizes (so that operations make 
sense). 

Since all the basic rules are tated in terms of equations , their proof 
consist in showing that the (i, j) entry of the matrix on the left side equals 
the (i, j) entry in the matrix on the right side. One such proof is worked out 
to show both the technique of proving matrix equality and the power of the 
notation we have developed. The other proofs are left to the Exercises. 

Co,nmutative Law. Matrix addition is commutative, but matrix multipli
cation is not commutative. 

A+B=B+A but AB :/: BA (27) 
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Distributive Law 

A(B + C) = AB + AC and (B + C)A = BA + CA (28) 

Proof' of A(B + C) = AB + AC. We must show that the (i, j) entry 
of the product matrix A(B + C) equals the ( i, j) entry of the sum of 
products AB + AC. This entry in A(B + C) is the scalar product of 
the ith row of A times the jth column of B + C (which is bf + 
cf )-af · (bf + cf). Now we must write out this symbolic scalar 
product term by term and use the distributive law for scalars (this gets 
a bit messy). 

= a~b~ + a~c~ (28a) 
I J I J 

and afbf + afcf is exactly the (i, j) entry in AB + AC. • 

Associative Law 

(AB)C = A(BC) (29) 

There is one new property for matrices, scalar factoring. If r is a scalar 
(a single number), then 

Scalar Factoring 

r(AB) = (rA)B = A(rB) (30) 

A vector is just a matrix with one row or one column. The rules for 
matrix multiplication thus apply to matrix-vector multiplication. For com
pleteness, we restate them. 

(AB)c = A(Bc) 

A(b + c) = Ab + Ac 
a(B + C) = aB + aC 
(rA)b = A(rb) = r(Ab) 

and 

and 

and 

and 

'a(BC) = (aB)C (31) 

(c + d)A = cA + dA (32) 

(C + D)a = Ca + Da (33) 

(rb )A = b(rA) = r(bA) (34) 

In this book we have not made a major distinction between a vector x 
being a column vector or being a row vector. However, in complex products 
involving matrices and vectors, it is essential to treat each vector as an 
n-by-1 or a 1-by-n matrix (whichever is appropriate) and then treat the result 
of a matrix-vector product, such as Ax (where A is m-by-n), as an m-by-1 
n1atrix . For examplet the following equality is false: 

(Ab)C :/= A(bC) (35) 

s·ince Ab yields a column vector and C should be premultiplied by a row 
• 
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vector, and similarly for bC and A. For the same reason 

(Ab) · (Cd) =I= (A(bC)) · d (36) 

See the Exercises for specific counterexamples of (35) and (36). 
On the other hand, the following equality is valid: 

( aB) · c = a · (Be) (37) 

because no vector changes roles from a column to a row vector. 
Near the beginning of this section, we introduced the vector 1 of all 

l's and the identity matrix I . We noted 

(38) 

and 

al = a = Ia and IA = A = AI (39) 

A related vector and matrix is the O's vector O of all O's and the 0 
matrix of all O's. It is immediate that 

0 ·a= 0 Oa = 0 OA = 0 (40) 

There is another special vector that will be used in this book. The itb 
unit vector, denoted ei, is the ith column in the identity matrix I. Vector ei 
has a 1 in the ith entry and O's elsewhere. This vector has the following 
useful property: 

Ae; = af (the ith column of A) 
e;A = af (the ith row of A) 

(41) 

Vector sums and product (scalar products) also behave nicely. In fact, 
scalar products are commutative as well as distributive and have scalar f ac
toring. 

a+b=b+a 

a·b = b·a 

a · (b + c) = a · b + a· c 

r( a · b) = (ra) · b = a · ( rb) 

(42) 

(43) 

(44) 

(45) 

Note that in the distributive law (44), addition is vector addition on the left 
and scalar addition on the right. 

There is no associative law for scalar products, since the expression 
( a · b) · c is nonsense: ( a · b) is a scalar, not a vector. There is a related 
expression that looks reasonable but is not valid . 

(a · b)c =I= a(b · c) (46) 
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To sum up matters thus far, it is easiest to say what is not true for matrices . 
The rules that fail are 

1. AB ~ BA. 
2. Throughout an algebraic manipulation, a vector must always be 

treated as a 1-by-n matrix (or always as an n-by-1 matrix)-it can
not change from one fo1m to the other. 

3. (a· b)c ~ a(b · c). 

Section 2 .4 Exercises 

I 

• 

Summary of Exercises 
Exercises l-16 develop skill with simple matrix algebra manipulations. Ex
ercises 17- 23 deal with transposes and symmetric matrices. Exercises 24-34 
involve verifying rules of matrix algebra. 

1. Evaluate the following products involving the 1 's vector 1, the identity 
matrix I, and the ith unit vector e; = [ 0, 0, . . . , 1 . . . , 0, O]. Assume 
that all have size n. 
(a) 12 (b) 1 · 1 
(g) e, · ei ( i ~ j) 

(c) 11 
(h) 111 

(d) le; (e) 1 · e, 
(i) e;Iei (i =I= j) 

2. (a) Write the following system of equations in matrix form. 

• 

3x1 + 5x2 + 7x3 = 8 

2x1 - X2 + x3 = 4 

x 1 + 6x2 - 2x3 = 6 

• 

(b) Rewrite the matrix equation in part (a) to reflect the operation of 
bringing the right side over to the left side (so that the right sides 
are now O's) . . 

3. (a) Write the following system of equations in matrix form. 

2x1 - 3x2 = x1 

5x1 + 4x2 = x2 

(b) Rewrite the matrix equation in part (a) to reflect the operation of 
bringing the right-side variables over to the left side. Your new 
equation should be of the form Qx = 0, where Q is a matrix 
expression involving I, the identity 1natrix. 

Hint: See Example 1. 

4. Repeat Exercise 3, parts (a) and (b) for the following system of equa
tions . 

• 
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3x1 + 2x2 = 2x1 

4x1 - 3x2 = 2x2 

5. Consider the system of equations 

2x1 + 3x2 - 2x3 = 5y1 + 2y2 - 3y3 + 200 

x 1 + 4x2 + 3x3 = 6y 1 - 4y2 + 4y3 120 

5x1 + 2x2 - x3 = 2y1 - 2y3 + 350 

(a) Write this system of equations in matrix form. (Define the vectors 
and matrices you introduce.) 

(b) Rewrite in matrix form with all the variables on the left side and 
just numbers on the right. 

(c) Rewrite in matrix fonn so that x1 is the only term on the left in the 
first equation, x2 is the only term on the left in the second equation, 
and x3 is the only term on the left in the third equation (similar to 
the form of the Leontief economic model). 

6. (a) Consider the following system of equations for the growth of rabbits 
and foxes from year to year: 

R' 1 . SR . 2F + 1 00 

F' . 3R + . 9 F + 50 

Write this system in matrix form, where p = [R, F] and p' = 
[R', F']. 

(b) Write a matrix equation for p", the vector of rabbits and foxes after 
2 years. 

(c) Write a matrix equation for pC3
), the vector of rabbits and foxes 

after 3 years. 
(d) Using summation notation (2), write a matrix equation for p<n), the 

vector of rabbits and foxes after n years. 

7. (a) Write the rabbit-fox equations 

• 

R' = R + . IR - .15F 

F' = F + .2R - .3F 

in matrix form using p = [R, F], p' = [R', F'], and A 

.1 -.15 

. 2 - .3 • 

(b) Rewrite the equation from part (a) in the form p' == Qp, where Q 
is some matrix expression: 
Hint: Use the identity matrix I. 

(c) Let pc2
o) be the vector of population sizes 20 periods later. Express 

p<20> in terms of p, A, and I . 
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8. Show that if x0 is a solution to Ax 
Ax = rb. 

b, then rx0 is a sol.ution to 
• 

• 

9. Show that if x0 is a solution to Ax b and if x* is a solution to 
Ax = 0, then x0 + x* is also a solution to Ax = b. 

10. Let A and B be 2-by-2 matrices and x, y, z be 2-vectors such that 
Ax = By = [l, l], Ay = [I, O] , Bx = [O, l]. Determine z when 
(a) z = A(2x - y) (b) z = (A - B)x 
(c) z = (A + B)x - 2(A + B)y (d) z = (3A + B)(x + y) 
(e) z = [(A + B)y] · [(A + 3B)(x - y)]l 

11. Given a linear model of the form x' = Ax + b, let us expand the 
n-by-n matrix A into an (n + 1)-by-(n + I) matrix A* by including 
b, row vector O of O's and a I in entry (n + 1, n. + I) so that A* has 

the form A* = A b 
0 1 . 

We should also add to x an (n + 1 )st entry equal to 1; call the 
new vector x*, and now our linear model has the form x* = A *x*. 
Give the new A* for the following linear models. 
( a) x~ = 3x 1 + 2x2 + 10 (b) x~ = x 1 + 2x2 + 5 x3 + 20 

xi = 4x 1 - 5x2 + 8 x; = 2x1 - x2 - 2x3 - 10 

x; = 3x1 + 4x2 + 6x3 + 30 
. 

(c) Leontief model in Example 1. 

12. Show that if the second row of A is all O's, the second row in the 
product AB (if defined) is all O's . 

13. Show that if A is the transition matrix of a Markov chain with five 
states, lAl = 5. 

• 

Hint: Write IAI = (IA)l and use the result in Example 2. 

14. (a) Extend the reasoning in Example 2 to show that 1 · p" = I, p'' is 
the distribution after two periods. 
Hint: Write p" as A(Ap) and use the steps in equations (20) twice. 

(b) Prove by induction that the sum of the probabilities in p<n), the 
distribution after n periods, equals 1. 

15. (a) State the fact that for a Markov transition matrix A, the column 
sums in A2 equal 1 with a matrix equation involving 1. 
Hint: See equation (19). 

(b) Use equation (19) to prove the equation you wrote in part (a) . 
(c) Prove that the column sums in A3 equal 1 using matrix algebra 

[follow the reasoning in parts (a) and (b)]. 
(d) Use induction to prove column sums in An equal l. 

• 
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16. Let A and B be n-by-11 matrices. If C = AB and the second row of A 
is five times the first row of A(a~ = 5af), show that the second row 
of C is five times the first row of C. 

H · C R b e ·th R b e · il 1 ~ int: ompare c11 = a 1 • 1 w1 c21 = a2 • 1 , s1m ar y 1or c21 
versus c22 , and so on . 

• 

18. Why are the entries all equal to 6 on the main diagonal of RTR in 
equation (25)? 

19. Compute RRT in Example 3 to find a measure of how much different 
students share common views of their subjects. 

20. The faculties in the four divisions of the College of Arts and Sciences 
at Wayward University (Natural Science/ Mathematics, Biological Sci
ence, Arts & Humanities, Social Science) have take11 stands for or 
against the following five issues: 

NS/ 1\.1 Bio A&H SS 

(a) Wayward needs to change its name No Yes Yes Yes 
(b) Wayward has a friendly campus Yes Yes No No 
(c) CompSci 1 l 2 is too hard No No Yes Yes 
(d) The Alfred E. Neuman dorm is ugly No Yes Yes No 
(e) Wayward athletes should be better No No No Yes 

Compute a matrix of similarities benvee11 tlie divisiotzs (remember that, 
by symmetry, you on]y have to compute the entries on or above the 
main diagonal). 

21. Let A(G) denote the adjacency matrix of the graph in Figure 2.2 and 
let M(G) denote the incidence matrix of that graph [see equation (13) 

. of Section 2.3] . Show that entry (i, j) of M(G)M(G)r equals entry 
(i, j) of A(G), for i :/; j . Explain in words why this result is always 
true. 

22. (a) Compute AD for the matrices A and D given in the discussion of 
diagonal matrices. 

(b) Show that if D is a diagonal matrix, AD has the effect of multi
plying the ith column of A by the ith diagonal entry of D. 

23. Show that if A is symmetric, then A2 is symmetric. 

' 
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24. Prove that (B + C)A = BA + CA by mimicking the argument in the 
text used to show A(B + C) = AB + AC. 

25. (a) Verify (AB)c = A(Bc) for A and B arbitrary 2-by-2 matrices and 
C = [c1, C2]. . 

(b) Extend the result in part (a) to show (AB)C = A(BC) using the 
reasoning in equation ( 6). 

26. Show that the identity A(b · c) 2. (Ab) · c makes no sense by making 
up a 3-by-2 matrix A, a 2-vector b, and a 2-vector c . Compute the 
value of A(b · c) and then try to compute (Ab) · c. 

27. Show that the identity A(bC) ? (Ab)C makes no sense by making up 
matrices A, C and vector b with A 3-by-2 so that the matrix expression 
A(bC) makes sense (the sizes fit together properly), and then show that 
the sizes are wrong for (Ab )C . 

28. Verify that bl = b for any b = [b 1, b2 , . .• , h,,] . 

29. Verify that 1B = B for a 3-by-3 matrix 

b, 1 b12 b, 3 

B = b2, h 22 b23 

b 3,1 b 32 b 33 

by perf arming the matrix multiplication 1B. 

30. (a) For a given matrix 8, let bf denote the ith row of B. Show that 
1 · bf equals the sum of entries in the ith row of B. Show that Bl 
yields a vector whose ith position is the sum of the entries in the 
ith row. 

(b) Show tl1at 1B yields a vector whose }th position is the sum of the 
entries in the jth column of B. 

(c) Show that 1B1 equals the sum of all the entries in B . 

31. Give an example involving three 2-vectors to show that (a · b)c :/= 
a(b · c). 

32. Let e; denote the vector with a 1 in the ith position and O's elsewhere. 
What is the value of lAe;? 

33. (a) Why is the following identity false: (AB)2 = A 28 2? What is (AB)2 

actually equal to? 
(b) Can you find two nonzero matrices A, B for which (AB)2 = A 2B2? 

34. Why is the follo\ving identity false: (A + B)2 = A 2 + 2AB + B2? 
What is (A + B)2 actually equal to? 
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Scalar Measures of a Matrix: 
Norms and Eigenvalues 

The goal of this section is to express with a single number the magnifying 
effect a matrix A has when A multiplies a vector, as 1n p' = Ap. For 
example, will p' be about twice the size of p? We want to capture in one 
number the ''essence'' of multiplication by A. The first problem is how to 
measure the size of a vector. 

In matrix algebra, the word norm is the name used for the size of a 
quantity. For scalars, the standard norm is the absolute value lal. The most 
common norm for an n-vector a = [a1, a2 , .. . , an] is the euclidean 
distance !al of the point [a 1, a2 , ..• , an] from the origin. This distance is 
the square root of the sum of the squares of the a;' s. 

laJ = Y af + a~ + · · · + a~ (1) 

For example, if a = [ - 1, 2, 2], then lal = v' 12 + 22 + 22 == 

v'9 = 3. A set of vectors with easily computed norms are the unit vectors 
ei, which have a 1 in the ith position and O elsewhere. Clearly, formula ( 1) 
gives leil = 1. 

Because it uses the euclidean distance, the norm in ( l) is called the 
euclidean norm. Although the euclidean norm has a nice geometrical in
terpretation, this norm is often tedious to compute. Since there are other 
vector norms that are easier to compute and more natural for our work, the 
euclidean norm has limited value in linear models considered in this book. 
Two natural ways to measure the size of a vector are the sum of its entries 
and its largest entry. Since norms need to be nonnegative, we use absolute 
values in defining the sum and largest-entry norms . 

• 

Sum nor111: lals = I la;I Maximum norm: lalmx = max {la;I} 
r 

For example, I[ - 1, 2, 2Jls = 1 + 2 + 2 == 5 and I[- 1, 2, 21lrnx == 
max {1, 2, 2} = 2. Any probability vector will have sum norm = 1-this 
is what we would expect for such a vector. The unit vectors e; have a value 
of 1 for both these norms, just as they did for the euclidean norm. We now 
write the euclidean norm as lale to avoid confusion. 

The norm IIAII of a matrix A is a bound on the magnifying effect A 
has when it multiplies some vector. We define IIAII to be the (smalles~) bound 
so that 

IAxl < IIAII · lxl (2) 
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Thus 

IIAII = max 
all x 

!Axl 
lxl 
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(3) 

We assume that x ~ 0 in (3). 
There is an immediate extension of (2) to powers of A. 

(4) 

Since the magnifying effect depends on how the size of the vector is 
n1easured, for each of our three vector nonns we get a corresponding matrix 
norm: a euclidean matrix norm IIAlle, a sum matrix norm IIA11s, and a max 
matrix norm IAllmx. Each of these three matrix norms has its own special 
properties. 

As with the euclidean norm for vectors, the euclidean norm for matri
ces is the most commonly used matrix norm in linear algebra and has the 

· best theoretical properties. However, the euclidean norm of a matrix is very 
difficult to calculate, while the sum and max norms are easy to determine. 

Theorem 1. The sum matrix norm IIAlls equals the largest column sum of 
A (in abs~lute value), and the max matrix norm IIAllmx equals the largest 
row sum of A. That is, 

(i) IIAlls = max (lafls) (ii) IIAllmx = max (laf 1s) 
J I 

The proof of Theorem l, part (i) is given below [part (ii) is left to the 
Exercises]. First let us illustrate these formulas . 

• 

Example 1. Sum and Max Norms of a Matrix 

Use Theore1n l to determine the sum and max norms of A. 

1 2 3 

A= 4 5 6 

7 8 9 

The last column has the largest column sum, so the sum matrix norm 
of A is IIAlls = 3 + 6 + 9 = 18. The last row has the largest row 
sum, so the max matrix norm of A is IIAllmx = 7 + 8 + 9 = 24. 

Let us see how these norms bound the magnifying effect of mul-
tiplying a vector x by A. Since IAxl :5 IIAII • lxl, using the sum and 
max norms, we have 

• 
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We can attain the sum norm bound in (5) using e3 = [O, 0, l], with 
le3 1s = 1. The bound for Ae3 is 

and 1Ae3 ls equals this bound: 

• l 2 3 0 3 

Ae3 = 4 5 6 0 6 so 
(6) 

7 8 9 1 9 

1Ae31s = 3 + 6 + 9 = 18 

The reader should check that we attain the max norm bound of 
24 with the 1 's vector x = 1 = [ 1, 1, 1]. • 

The use of a unit vector and the 1 's vector to achieve the norm bounds 
in (5) always works for positive matrices. 

Theorem 2. Let A be a matrix with nonnegative entries. 
(i) Sum norm: If the jth column of A has the largest sum, unit vector 

ej achleves the sum norm bound: !Aeils = IIA11s1ei1s• 
(ii) Max norm: The 1 's vector 1 achieves the max norm bound: 

IAlJrnx = IIAllmxlllmx· . 

Proof of Theorems I and 2, part (i): First we note that in the definition 
(3) of the sum norm IIAII = max (!Axis/ lxls), it is sufficient to consider 
only vectors x with !xis = l. For if !xis = k, then y = ( 1 / k)x has 
sum norm 1 and IAYls/ IYls = !Axis/ Jxls• 

For concreteness, we work with the matrix A in Example 1. We 
want to find an x, lxls ---: 1, that maximizes \Axis ( = IAxls/ lxls). Let 
us write the matrix-vector product Ax in the following form: 

1 2 3 

Ax= 4 5 6 

7 8 9 

3 

+ x, 6 

9 
(7) 

With lx1l + lx21 + lx3I = l, we must pick the x;'s to make the linear 
combination of column vectors in (7) as large as possible. Clearly, (7) 
is maximized when the X; associated with the largest column--..column 
31---is 1 (and the other xj's are 0). Thus the maximizing x is [O, 0, 1) 
and the sum norm of (7) with this x is laf ls, the sum of the third 
column's entries. This reasoning is valid for any matrix. • 

A simple alteration of the 1 's vector is required to achieve the max 
norm when A has negative entries (see Exercise 25). 

• 
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Example 2. Norm Bound on Growth in 
Rabbit-Fox Population Model 

Ch. 2 Matrices 

Example 3 of Section 1. 3 started with the rabbit-fox growth model . 

or 

R' = R + .2R - .3F 

F' = F - . lF + . IR 

R' 
F' 

1.2 - .3 R 

.1 .9 F 

(8a) 
I 

(8b) 

Let p = [R, F], p' = [R', F'] and A be the matrix of coefficients in 
(8b). )'he sum norm (largest absolute-value column sum) and max 
norm (largest absolute-value row sum) of A are 

· IIAlls = 1.3 IIAllmx = l · 5 (9) 

Using (2), we have IP'I = IAPI < IIAI · IPI, or by (9), 

and 
• 

(10) 

When we started with R = 100, F = l 00, we found that the popu
lations declined to extinction-we did not get close to the norm bounds. 
When we started with R = 100, F = 50, the populations grew 
initially. Let us get a bound from (10) on this growth. For p = 
[ I 00, 50], we have !Pis = 150. So ( 10) yields the sum norm bound 

IP'ls < l.3IPIs = 1.3 X 150 = 195 

From (8a) we compute R ' = 105, F' = 55, so IP'ls = 160. Thus for 
p = [ 100, 50], the sum norm bound is a decent estimate. 

Bound ( 4) can be used for the population p<k) after k periods: 

• 

Exa,nple 3. Sum Norm of a Markov 
Transition Matrix 

Since the sum norm equals the largest column sum and the entries in 
every column a.f sum to 1 in a Markov transition matrix, it follows 
that such a matrix A has sum norm IIAlls = I . Because powers of a 
transition matrix have column sums of 1, all powers also have a sum 
norm of 1. 

Any probability vector p achieves the sum norm bound: 
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or (since IIAlls = 1) 

since the vectors p and Ap ( = p ') both have sum norm 1. • 

-~~tilk~llB 
Example 4. Sum Norm of Demand Matrix in 

Leontief Economic Model 

The Leontief economic model, given in Example 2 of Section 1 . 2, has 
an input constraint that the (nonnegative) entries in each column df of 
the demand matrix D sum to < 1. This meant that it cost less than 1 
dollar (of inputs) to produce l dollar worth of thejtb product. It follows 
immediate} y that 11D Is < 1. 

In Section 3. 4 we will see how 11D11s < 1 guarantees that the 
Leontief model al ways has a solution. • 

The following properties are true for any matrix norm: 

lrl lxl = lrxl and \Ir All = Ir\ · IIAII 
IIABII < IIAII · 11B11 
IIA kll < <IIAll)k 

IIA + BIi < IIAII + IBII 

( 11) 

(12) 

One of the most important uses of norms is to determine error bounds. 

Example 5. Use of Matrix Norm in Error Bounds 

Consider the following growth model for the numbers of computers C 
and dogs Din successive years: 

C' = 3C + D 

'D' = 2C + 2D 
(13) 

The sum norm !Alls of the coefficient matrix A is 5 ( = the sum of 
coefficients in the first column). If c == [ C, D] is the initial numbers 
of computers and dogs and c' = [C', D'], then c' = Ac. 

Suppose that there is an error in determining c and we mistakenly 
use the initial vector b, where b = c + e here e is the vector of 
errors. Then the error 1 year later is 

b' - c' = Ab - Ac (14) 
= A(b - c) = Ae 

Taking ( sum) norm bounds, we have the error bound 

(15) 

• 
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If we know that the sum of the errors is no more than 2, then our error 
after 1 year is at most Slels = 5 · 2 = l 0. 

Following the model for n years, we let c<11
> denote the numbers 

of computers and dogs after n years. Then 

and after n years, the error is 

= A"(b - c) (16) 

Taking norms, we have the error bound 

For example, suppose that c = [20, 10) but b = (22, 11], so 
e = l2 , lj with lels = 3. Then computing c' and b' , we find that 

c' = Ac = 

and 

b' = Ab = 

3 1 

2 2 

3 1 

2 2 

20 70 

10 60 

22 

I I 

77 

66 

and b' - c' = (7, 6), with lb' - c'ls = 13. The sum norm bound 
on this error is, from ( 15), 

lb' - c' Is < l!Allslels = 5 · 3 = 15 

This bound of 15 compares well with the observed error of 13. If we 
had iterated n times, the error between bC") = A"b and c<11> = A"c 
would be bounded, using ( 17), by IIAll:lets = 511 

• 3. 
Repeating the analysis above using the max norm yields 

lb' - c' lrnx ~ IIAllmxlelmx = 4~ · 2 = 8 

This max bound of 8 compares well with the observed max error 
of 7. • 

The norm IIAII provides a single-number bound for the magnifying 
effect of multiplying a vector x by a matrix A. When A is a square matrix, 
sometimes multiplying by A has exactly the same effect as multiplying by 
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• 

. 
a single number A; that is, for some vector u, Au equals AU. When Au = 
X.u (and u =I= 0), the vector u is called an eigenvector of A (eigen is the 
German word for ''proper'') and the scalar A is called an eigenvalue of A. 

Example 6. Eigenvalues in a Growth Model 

Consider again the growth model (13) for computers (C) and dogs (D) 
from year to year. 

C' = 3C + D 

D' = 2C + 2D 
(l 8) 

If initially we had C = 1, D = 1, then we compute C' = 4, D' = 
4 . Letting C = 4, D = 4, we obtain C' = l6, D' == 16. Whenever 
[C, D] = [a, al. then [C', D'] = [4a, 4a]. So 4 is an eigenvalue of 
(18) and any vector of the form [a, a] is an eigenvector. 

Observe that 

A2[a, a] = A(A[a, a]) = A([4a, 4a]) = [16a, 16a] 
• 

and in general, 

Note that if initially we bad the (nonsense) vector [ C, D] 
[I, -2], then [C', D'] = [1, -2]. So 1 is also an eigenvalue of (18) 
with eigenvector [I, -2] (or any multiple of [1, -2]). • 

Example 7. Stable Probability Vector for 
Weather Markov Chain 

In Example I of Section l. 3 we introduced the following Markov chain 
for sunny and cloudy weather: 

Tomorrow 
Sunny 

Cloudy 

Today 

Sunny Cloudy 
3 
4 

1 
4 

1 
2 

1 
2 

We claim that p* = [~, ½] is a stable probability distribution for this 
transition matrix A. That is, 

Ap* = 
3 1 
4 2 

1 l 
4 2 

2 
3 
1 
3 

3 X 2 + 1 X .! 4 3 2 3 

~ X 5 + ½ X ½ 

2 
3 

l. 
3 

= p* 

So Ap* = Ip*, and p* is an eigenvector of A with eigenvalue l. • 
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In the frog Markov chain (Example 2 of Section l . 3) we found by 
experimental computation that the probability vector p* = (. l, .2, . 2, .2, 
. 2, . l) had the property that Ap* = p* for the frog transition matrix A. 
Again this p* was an eigenvector with eigenvalue I. 

This property of matrix multiplication acting like scalar multiplication 
for certain vectors happens for all matrices. It is the key to understanding 
the behavior of many linear models. An n-by-n matrix usually has n eigen
values, each with an infinite collection of eigenvectors. 

Observe that if u is an eigenvector of A with Au = AU, then any 
mttltiple ru of u is also an eigenvector, since A(ru) = r(Au) = r(Au) = 
A(ru). 

The following example shows how eigenvectors provide a simplifying 
way to understand matrix-vector computations. 

Example 8. Eigenvectors as a Coordinate System 

The computer-dog growth model from Example 6 has the form 

x' = Ax 
' 

where A= 
3 1 

2 2 
X - [C, D] 

x' [C', D'] 

Earlier we saw that the two eigenvalues and associated eigenvectors 
of A are A1 = 4 with u = [I, l] and A2 = 1 with v = (1, -2]. 

Suppose that we want to determine the effects of this growth 
model over 20 periods with the starting vector x = [ 1 , 7]. Let us 
express x as a linear combination of u and v. By a method to be 
explained shortly, we find that 

x = 3u - 2v (i.e., [1, 7] 3(1, l] - 2fl, -2]) 

With matrix algebra, we can write 
• 

Ax == A(3u - 2v) = 3Au - 2Av 

= 3(4u) - 2(1 v) (since u, v are eigenvectors) 

= 12u - 2v (19) 

For 20 periods, we have 

A20x = A20(3u - 2v) == 3A20u - 2A20v 

= 3(420u) - 2(120v) (20) 
== 3 · 420(1, l] - 2(1, -2] 

== [ 3 · 4 20
, 3 · 4 20

] - l 2, - 41 

Note how the eigenvector with the larger eigenvalue swamps the other 
eigenvector. The relative effect of the other eigenvector is so small 
that it can be neglected. So after n periods we have 

• 
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(21) 

• 

This is a lot easier than multiplying A"x out directly for various n. • 

Let us generalize the result in Example 8. Suppose that u and v are 
eigenvectors of a 2-by-2 matrix A with eigenvalues X. 1 and X.2 , respectively, 
with A 1 >. A.2 > 0. Suppose we can express the vector x as a linear con1-
bination of u and v (e.g ., x = au + bv). Then using the laws of matrix 
algebra, the matrix-vector products Ax and A2x can be calculated as 

Ax = A(au + bv) = aAu + bAv = aX. 1u + bX.2v (22) 

A2x = A 2(au + bv) = aA2u + bA2v = aX.fu + bX.~v 

and more generally, 

(23) 

As noted in Example 8, for large n, X.7 will be much larger than A2, since 
A1 > A2 , so we have 

(24) 

This is clearly a very simple way to follow growth models over many 
periods. 

Theorem 3. Let A* be the largest eigenvalue of A (strictly larger in absolute 
value than other X.'s) and u* a corresponding eigenvector. Then for 
any vector x, the expression A nx approaches a multiple of u * as n 
becomes large. • 

There is an implicit message about A in writing a vector x as a linear 
combination of eigenvectors and in saying that An approaches a multiple of 
u*. The latter statement says ttiat somehow, A11 must be closely related to 
u*. In Section 5.5 we show when A is symmetric that A can be decomposed 
into a set of ''simple'' matrices generated by the different eigenvectors, and 
that An approaches the ''simple'' matrix generated by u*. In Sections 3.1, 
3.4, and 5.5 we learn different ways to find eigenvalues and eigenvectors 
of a square matrix. 

The one missing step for us at this point is how to determine a and b 
so that x = au + bv. Recall from Chapter 1 that anytime two variables 
must be determined, the calculations-are bound to involve two linear equa
tions in these two unknowns. 

If x = [x 1, x2], u = [u 1, u2l, and v = [v1, v2], the statement x = 
au + bv is actually a system of equations 

• 

= a (25) 

• 
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x1 = u1a + v1b 

x2 = u2a + v2b 
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• 

In the computer-dog growth model with x 
v = [ 1, - 2], this system of equations becomes 

[l, 7], u [I, 1], 

1 =la+ lb 

7 = la - 2b 

• 

which can be solved by elimination, yielding a = 3, b == -2. 
In closing, we observe that the norm of a matrix (any norm) provid~s 

an upper bound on the size of eigenvalues. The norm is a bound on the 
magnifying effect of a matrix A: IAxl < IIAII · lxl. If Au = AU, so !Aul = 
IAllul, it follows that IX.I < IIAII- Check that this was true in Example 6. 
Typically, the largest eigenvalue (in absolute value) IAI is very close to IIAII 
(in any norm). One can show (see Exercise 30) that the sum and max norms 

a b 
of a 2-by-2 symmetric matrix A of the form equal the largest 

b a 
(absolute) eigenvalue. 

~'"""""'~·~:'~rm'~ •'.Ft,£~• ..,,. 
D .. ~., •""it\~--.~. ~:&aUiYW\1~ 

Example 9. Norm and Eigenvalues of a 
Symmetric 2-by-2 Matrix 

We claim that x1 = (1, l] and x2 = [- 1, l] are eigenvectors of.the 
matrix 

A= 
3 2 

2 3 

Computation shows that Ax 1 =. [5, 5] = 5x 1 and Ax2 = [ - I , 1] 
x2 . Thus 5 and 1 are the eigenvalues associated with x 1 and x2 . 

As asserted above, the larger eigenvalue of such a symmetric 
2-by-2 matrix equals its norm (for all three matrix norms). The larger 
eigenvalue is 5, so IIAII = 5. Checking, we see that 5 is the sum of 
each column and row, so by Theorem 1, 5 is the sum and max norm 
of A. • 

Section 2.5 Exercises 

Summary of Exercises 
Exercises 1-25 involve the norms of vectors and matrices, with Exercises 
13-25 being of a more ''theoretical'' nature. Exercises 26-31 discuss the 
determination of eigenvalues and eigenvectors and their use in computing 
A1.:x. 

1. Show that the euclidean norm of a equals~- • 
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2. Give the euclidean norm, sum norm, and max norm of the. fallowing 
vectors. 
(a) (1, 1, l] (b) [3,0,0] (c) [-1, 1,4] (d) ( - 1.4, 3] 
(e) [4, 4, 4, 4] 

3. The distance between two vectors a, b is defined to be the norm of 
their distance la - bl. 

• 

(a) What is the distance between the following vectors l2 , 5 , 7] and 
[3, -1, 4] using the euclidean norm, sum nom1, and max norm? 

(b) Explain in words what the distance between two vectors in the sum 
norm measures. 

( c) Repeat part (b) for the max nonn . 

4. Give the sum and max norms of the following matrices . 

(a) 
1 4 

5 3 

-5 4 6 

(b) 
0 3 

- 5 3 

I 2 2 

(c) 6 l 3 

5 1 2 

(d) 8 0 2 

-6 7 7 

5. (a) For each of the matrices in Exercise 4, give the vector x* such that 

IAx*ls = IIA11s · lx*ls • 
(b) For each of the matrices in Exercise 4, give the vector x* such that 

jAx*lmx = IIAllmxlx*lmx · 

6. (a) What is the sum norm of the following matrix? 

2 

A= - 3 

4 - 5 

3 3 
4 1 -1 

(b) If v is a vector with sum norm = 3, give an upper bound on the 
sum noon of Av. 

(c) Oive a vector with sum norm = 3 for which the bound in part (b) 
is achieved. 

(d) If w is a vector with sum norm = 5, give an upper bound on the 
sum norm of A 2w. 

7. (a) What is the max norm of the following matrix? 

I 

1 3 2 

A= 2 1 3 

I I I 
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(b) If v is a vector with max norm = 4, give an upper bound on the 
max norm of Av. . 

(c) Give a vector with max norm = 4 for which this bound in part (b) 
is achieved. 

(d) If w is a vector with max norm = 6, give an upper bound on the 
max norm of A 3w. 

8. In the rabbit-fox model in Example 2, give a bound on the size of 
p<5> = A5p in the sum and max norms when p = (100, 100]. 

9. (a) In the following rabbit-fox models, 
(i) R' == R + .lR - .ISF (ii) R' = R + .2R - .Sf 

F' = F + . lR - . l 5F F' = F + . lR - .2F 

Determine the sum and max norms of the coefficient matrix A. 
(b) If the current vector of population sizes is p == [20, 20], determine 

bounds (in sum and max norms) for the size of p' = Ap. Compute 
p' and see how close it is to the norm bounds. 

(c) Compute a sum norm bound on the size of the population vector 
after three periods, p<3> = A 3p. 

10. (a) In the following model for the growth of rabbits, foxes, and hu
mans, 

R' = R + .3R - . lF - .2H 
. 

F' = F + .4R - .2F - .3H 

H' = H + . IR + . IF + . lH 

determine the sum and max norms of the coefficient matrix A. 
(b) If the current vector of population sizes is p = [ 10, 10, 1 0], de

termine bounds (in sum and max norms) for the size of p' = Ap. 
Compute p' and see how close it is to the norm bounds. 

( c) Give a sum norm bound on the size of population vector after four 
periods, p<4). 

11. In Example 5, suppose that we assume c = [ 15, 5] when the correct 
value is actually [ 14, 7]. What is the maximum size that the error could 
be after 3 years (using the sum norm)? 

12. In the rabbit-fox model in Example 2, suppose the initial vector of 
p = [100, 100] actually should have been [95, 103). How large an 
error is possible in p', in pC3) (using the sum nonn)? 

• 

13. Whereas Example 5 discussed the absolute size of errors, it is often 
more interesting to consider the relative size of errors. The relative error 
in b is lb - cl/lcl if b is used when c really should be used. (Use the 
sum norm.) 
(a) If R' == R + F, F' = 3R - 4F and p = [R, F] was set equal to 

[3, l] when it really should have been [2, 2), what is the relative 
error in p and what is the relative error in p'? 
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(b) If R' == 2R - 3F? F' = -5R + 7F and p = [R, F] was set 
equal to [5, 5] when it really should have been [6, 4], what is the 
relative error in p and what is the relative error in p'? 

14. (a) Describe those vectors for which the euclidean norm and max norm 
are equal. Explain the reason for your answer. 

(b) Describe those vectors for which the sum norm and max norm are 
equal. Explain the reason for your answer. 

(c) Describe those vectors for which the euclidean norm, um norm, 
and max norm are all equal. Why must these be the only vectors 
with this property? 

15. We prove that lal,n'( :5 I ale :5 lals. 
(a) Show that the max norm of a vector a is always less than or equal 

to the euclidean norm of a. 
(b) Show that the euclidean norm of a vector a is always less than or 

equal to the sum norm of a. 

16. Let a be an n-vector. 
(a) Show that jals :5 11!almx. (b) Show that lals < Ynlale• 

17. Show that la · bl :5 laL, · lblmx. 

18. (a) Show that la + bl<; < lals + Ibis• 
(b) Repeat part (a) for the max norm . 

19. Explain why the sum norm and max norm of a symmetric matrix are 
the same (symmetric means au = a

1
;). 

20. Let AT be the transpose of A (A7 is obtained from A by interchanging 
rows and columns). Show that IIATllmx = IIA11s and IIA r ls = IIAllmx. 

21. (a) Show that IIA + Blls :5 IIAlls + l!Blls• 
(b) Repeat part ( a) for the max norm. 

• 

22. (a) Use the fact JAxls :5 IIAllslxls to show that IJABlls < IIAll~IIBII~. 
(b) Use part (a) and Exercise 20 to show that IIABllmx < IIAll,nxllBllmx· 

Necessa,~y fact: (AB)f = er AT. 

23. If A is a matrix that is all O's except one entry that has value a, show 
that IIAl\s = IIAllmx = lal · 

24. (a) Give the adjacency matrix A(G) for this graph G. 
b 

e 

a 

C 
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(b) What is the sum norm of A(G)? 
(c) Explain in words an interpretation that can be given to the sum 

norm of the adjacency matrix of a graph. 

2 5 
25. (a) Show that for the matrix A = , a 2-vector v = [a, b] with 

1 3 

0 < a < I, 0 < b < I will maximize the max norm of Av by 
setting a = b = 1 . 

(b) Generalize your argument to show that for any 2-by-2 matrix A 
with nonnegative entries and any 2-vector v with max norm 
lvlmx = 1, the value of IAvlrnx is maximized when v = [ 1, I] and 
IAvlmx = maximum row sum (in absolute value) of A. 

(c) Explain how to modify v if A has negative entries. 
Hint: Possibly change one ( or both) of the I 's in v to - 1 's. 

(d) Generalize parts (b) and (c) to n-by-11 matrices . 

26. (a) The matrix 
1 1 

0 2 
has eigenvectors u 1 = [ 1, 1] a.nd u2 = 

[ 1, O]. What are the corresponding eigenvalues for these eigen
vectors? 

(b) The matrix 
1 

-2 
-2 

has eigenvectors u1 = [1, l] and u2 = 
1 

[ 1, - 1]. What are the corresponding eigenvalues for these eigen
vectors? 

( c) The matrix 
1 6 

- 2 -6 
has eigenvectors u 1 = [- 2, I] and 

u2 = [ - 3, 2]. What are the corresponding eigenvalues for these 
eigenvectors? 

( d) The matrix 

-4 4 4 
-1 1 2 
-3 2 4 

• 

has eigenvectors ut = [2, 0, I], u2 = [6, 4, 5], and u3 = 
[4, 3, 2). What are the corresponding eigenvalues? 

27. Verify for each Markov transition matrix A that the given vector is a 
stable probability vector. 

½ 2 

(a) A= 3 [½, ½] 2 1 ' 
p= 

3 3 

1 .1 

(b) A= 4 2 
p = [~, ~] 3 1 ' 4 2 
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1 1. 0 
3 2 

( c) A = J O i , p == (fr, /r, 1
31] 

0 ½ ½ 

28. The matrix 
2 5 
6 1 

has eigenvalue A. 1 = 7 with eigenvector u 1 

[ 1, 1] and A.2 = - 4 with u2 = [ - 5, 6]. 
(a) We want to compute A3v, where v = [- 2, 9]. Writing v as v = 

3u 1 + u2 , compute A 3v indirectly as in Example 8. 
(b) Give an approximate formula for Anv. 
(c) Use the method discussed following Example 8 to determine a and 

b so that the vector v = (2, 13) can be written as v = au 1 + bu2 , 

and use this representation of v to compute A 3v. 

29. The matrix A 
1 l 

0 2 
has eigenvectors n1 = [ 1, 1] and u2 = 

(1, O]. 
(a) We want to compute A4 v, where v = [3, 1]. Writing v as v 

uL + 2u2, compute A4v indirectly as in Example 8. 
(b) Give an approximate formula for Anv. 
(c) Use the method discussed following Example 8 to determine a and 

b so that the vector v = [6, 9] can be written as v = au 1 + bu2, 

and use this representation of v to compute A 5v. 

a· b 
30. Show that if A is a 2-by-2 symmetric matrix of the form , then 

b a 

the _eigenvalues of A are a + b and a - b. Verify that [ 1, 1] and 
(1, -1] are the associated eigenvectors. 

Note: a + b = I\Alls = IIA\lmx • 

31. Show that if A. is an eigenvalue of a matrix A, then A. 2 is an eigenvalue 
of A2

• 

Efficient Matrix Computation 

Computational Complexity and 
Error Analysis 

In this section we discuss computational details of matrix multiplication. A 
lot of arithmetic must be done when two matrices are multiplied, and despite 
the great speed of modern computers, theoretical shortcuts are still needed 
when large matrices must be multiplied repeatedly. It is also important to 
know the relative complexity of different basic matrix operations. For ex
ample, which is faster, squaring an ,i-by-n matrix A or solving the system 

I 

• 
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Ax == b of n equations in n unknowns? (Would you have guessed that 
normally solving Ax = b is faster?) 

Before looking for shortcuts, let us first determine the computational 
complexity of matrix multiplication, that is, count how many entry-by-entry 
multiplications and additions are required to multiply an m-by-r matrix A• 
times an r-by-n matrix B. Each entry in the product AB is obtained by 
forming a scalar product af · by of a row af of A with a column b.f of B. 
Since af and b.f are both r-vectors, their product requires r multiplications 
and r - 1 additions. There are mn entries to be computed in AB, each 
requiring r multiplications and r - I additions. Thus in total we have 

Theorem 1. The matrix product AB of the m-by-r matrix A and the 
r-by-n matrix B requires mnr multiplications and mn(r - 1) additions. 

Corollary A. (i) The matrix product of two n-by-n matrices requires n3 

multiplications and approximately n3 additions. 
(ii) The matrix-vector product Ax of an m-by-n matrix A times 

an n-vector x requires nm multiplications and m(n - 1) additions. 

Proof of (ii). Treat x as an n-by-1 matrix. • 

Corollary B. If the sizes (numbers of rows and columns) of two matrices 
are doubled, the number of multiplications in the matrix product in-
creases by a factor of 8. · 

Proof. If A' is 2m-by-2r and B' is 2r-by-2n, then by Theorem 1, the 
number of multiplications is (2m)(2n)(2r) = Smnr. • 

The reader should verify Corollary B by squaring a 4-by-4 matrix and 
then squaring an 8-by-8 matrix on a computer. The second calculation should 
take eight times as long as the first. 

A matrix is called sparse if most of its entries are 0. Although the 
percentage of 0-entries to qualify as sparse is not defined precisely, most 
people use the figure of 80%. Large matrices in practical problems often 
have over 99% 0-entries. The point is that if a matrix is sparse, substantial 
savings in computation should be possible by forming only nonzero products. 

We shall consider two approaches for reducing the computation time 
in sparse matrix multiplication. The first approach is symbolic, using matrix 
algebra, and it also works on nonsparse matrices with special patterns. The 
second approach involves data structures to represent sparse matrices effi
ciently. 

First let us say a few words about the numerical stability of matrix 
multiplication. We want to know how much small errors, both errors in 
estimating the values of matrix entries and roundoff en·ors in computation, 
can influence the result of a single matrix mt1ltiplication or a sequence of 
multiplications, as in computing powers of a matrix. 

There is nothing inherently bad about a single matrix multiplication 
except for the magnification of errors inherent in subtraction (if some terms 
in a scalar product are positive and some negative). Subtraction can be very 
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lethal if some small numbers in the data have only one or two significant 
digits. For example, consider the scalar product 

[245, - 149] · [.2, .3] = 245 X .2 + ( -149) X .3 

= 49.0 - 44.7 = 4.3 

The result of 4.3 is meaningless for the following reason. Since both the 
terms .2 and .3 have only one-digit accuracy, 245 x .2 = 49.0 and 
149 x .3 = 44.7 are only accurate to one significant digit. That is, the 9.0 
in 49. 0 and the 4. 7 in 44. 7 are essentially random numbers. Hence the 
subtraction result, 49.0 - 44. 7 = 4.3, has no meaning. An indication that 
subtraction-induced error could have occurred is if the magnitude of an entry 
in the matrix product is less than the magnitude of entries in the input 

• matnces. 
A long series of matrix multiplications may result in small errors build

ing up into large errors, just as large errors can occur in repeated scalar 
multiplication. For example, if we need to multiply 1.15 times itself 10 
times, the correct answer is 1.15 10 = 4.045558. But if we round 1.15 to 
two significant digits as 1.1 or 1.2, we get answers of 1.1 10 = 2.6 and 
1.210 = 6.2. 

Partitioning of Matrices 

Any vector a can be partitioned into two or more subvectors, such as 

(1) 

For example, if a= [l, 2, 3, 0, 0, 0, 1, 2, 31 and if a' ll , 2, 3] and 
03 is the three-entry zero vector, we can write a as [a' , 03 , a']. 

A matrix A can be partitioned into submatrices , such as 

(2) 

or 

A (3) 

or 

A* 
A = -

• (4) 

For example, we might partition 
• 
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1 2 3 4 I 1 1 
·1 A1 

2 3 4 5 1 1 - A* • - -
3 4 5 6jO 0 

Ao 
4 5 6 7 0 0 

- - -
1 l 0 0 I 1 1 

A1 Ao A1 l 1 0 0 I 1 

where A 1 is a 2-by-2 matrix of l's and A 0 is a 2-by-2 matrix of O's. 

The partition of a matrix A will typically correspond to different com
ponents of the underlying model . A partition of A in form of (3) would arise 
in a Markov chain transition matrix if the states divided in some natural way 
into two groups, group S 1 and group S2 • The partition in (2) arises naturally 
if the columns of A represent two different types of variables. For exan1ple, 
the Leontief supply-demand equations (see Example 3 of Section 2. 2) were 
written in matrix notation as 

X1 .4 .2 .2 .2 X1 100 

X2 .3 .3 .2 . 1 X2 50 
x = Dx + c or + 

100 
(5) 

X3 . 1 .1 0 .2 X 3 

X4 0 . 1 . 1 0 X4 0 

The right-hand-side numbers in these equations could be combined into one 
expanded matrix by appending c as the last column: 

D( = [D c] ·(6) 

Correspondingly. we expand x by adding an additional entry with value I, 
x' == [x, 1). Now (5) becomes 

Xi .4 .2 .2 .2 100 

.3 .3 .2 .1 50 
x = D'x' 

X2 
or 

0 X3 .1 . 1 .2 100 

X4 0 . 1 . I 0 0 

Example 1. Partitioning the Adjacency Matrix 
of a Graph 

Figure 2.4 a 

b 

C 

d 

XL 

X2 

X 3 (7) 

X4 

l 

e 

f 

g 

• h 
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The graph G in Figure 2.4 ha the f ollo\ving adjacency matrix: 

a h C d e f 

a 0 1 l 0 l 0 

b l 0 1 1 0 I 

C 1 1 0 1 0 0 

d 0 1 l 0 0 0 
A(G) = 

I 0 0 0 0 I e 

f 0 1 0 0 1 0 

g 0 0 1 0 1 l 

h 0 0 0 1 0 1 

A( G) has the nice partitioned fonn 

A(G) = 
A' I 

I A' ' 
where A' -

and I is the 4-by-4 identity matrix. 

g h 

0 0 

0 0 

1 0 

0 l 

1 0 

1 1 

0 1 

1 0 

0 l 1 0 

1 0 J I 

1 1 0 1 

0 l I 0 

(8) 

(9) 

• 

Partitioning is very useful in matrix multiplication because we can 
initially treat the submatrices like scalar entries. For example, if 

A= and B = ( 10) 

then 

AB= 
A, 1B1 I + A12B2, A11B,2 + A12B22 
A21B1.1 -~- A22B21 A21B12 + A22B22 

( 11) 

• 

Verification of ( 11) is left as an exercise. Of course, (11) requires that the 
number of columns in the A submatrices equal the number of rows in tl1e 
appropriate B submatrices. The situation with partitioni11g is sicnilar to all 
the matrix algebra rules represented in Section 2.4. Unless it is expressly 
prohibited, anything you would like to be true about partitioning is probably 
true. 

If some of the submatrices of A and B have nice forms (e.g., 0 or I) , 
the amount of work needed to compute the matrix product AB is greatly 
reduced. 

Example 1 (continued). Powers of a Partitioned 
Adjacency Matrix 

' 
Let us use ( 11) to compute the square of the partitioned adjacency 
matrix A(G) in (9). 
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A2(G) == 
A'A' + II A'I + IA' 

A'I + IA' A'A' + II (12) 
A' 2 + I 2A' 

2A' A'2 + I 

Computing A' 2 can be done by inspection faster than entering the 
numbers in a computer program. It just involves counting how many 
I-entries each pair of rows in A' have in common (this was explained 
in Example 1 of Section 2.3). So 

A'2 = 

2 1 I 2 

I 3 2 l 

1 2 3 1 

2 1 1 2 

and A'2 + I = 

3 l I 2 

l 4 2 1 

1 2 4 1 

2 1 1 3 

(13) 

Inserting A'2 + I and 2A' into the partition product in (12), we obtain 

a b C d e 1· g h 

a 3 1 I 2'0 2 2 0 I 
b 1 4 2 I I 2 0 2 2 

C 1 2 4 1 I 2 2 0 2 • 

d 2 1 1 3lo 2 2 o (14) 
A2(G) -----+-----

e 0 2 2 013 I 1 2 

f 2 0 2 2 I 1 4 2 1 
• 

g 2 2 0 2 I I 2 4 1 

0!2 h 0 2 2 1 1 3 

• 

Using partitioning, the only matrix product we had to calculate was 
A ' 2 , a 4-by-4 problem. By Corollary B, this is an eightfold savings 
over computing A3 directly. 

Suppose that we want to compute higher powers of A(G). The 
result will not be as nice, since the four 4-by-4 submatrices of A 2( G) 
are not as simple as those of A( G). Still the problem is easier than 
multiplying without partitioning. The computation of A3(G) using (11) 
is left as an exercise. • 

The pattern of nonzero entries in A( G) is typical of patterns found in 
a Markov chain transition matrix, a Leontief supply-demand matrix, or a 
constraint matrix in a linear program, where there ate interrelated clusters 
of states or industries, such as node sets {a, b, c, d} and {e, f, g, h} in G, 
with a small number of links between states in different clusters. See the 
Exercises for specific examples . 
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Data Structures for Sparse 
Matrices (OptionaV 

Various schemes can be used to store a sparse matrix (with most entries 
equal to 0). The objectives are 

1. To minimize the space needed to store the matrix by storing only the 
• 

nonzero entries. 
2. To speed matrix multiplication (and other matrix calculations) by en

abling us to compute only those terms in the product that will be nonzero. 

There are two general categories of sparse matrices. The first type of 
sparse matrix is a matrix in which the nonzero entries form a particular 
pattern. An example of such a pattern is the transition matrix A of the frog 
Markov chain. 

.50 .25 0 0 0 0 

.50 .50 .25 0 0 0 

0 .25 .50 .25 0 0 
A == 

0 .50 .25 0 
(15) 

0 .25 

0 0 0 .25 .50 .50 

0 0 0 0 .25 .50 

All the nonzero entries in A are grouped around the main diagonal. A 
matrix with such a pattern is· called a band matrix. The bandwidth of a 
band matrix is the smallest number w such that if a0 is a nonzero entry, then 
It - JI < w. The bandwidth of the matrix A in (15) is 2. 

In the ith row of a band matrix with bandwidth 1v, the nonzero entries 
occur in positions i - w + 1 through i + w - 1. For obvious reasons, 
band matrices such as A with iv = 2 are called tridiagonal matrices. Band 
matrices arise in many different settings. 

The matrix in Example l l of Section 2. 2 for filtering digital pictures 
was the following 12-by-12 tridiagonal matrix: 

• 

j J 0 0 0 0 0 0 0 0 0 0 6 6 
1 2 1 0 0 0 0 0 0 0 0 0 6 3 6 

0 i i J~ 0 0 0 0 0 0 0 0 3 6 

0 0 1 2 l 0 0 0 0 0 0 0 6 3 6 

0 0 0 1 2 1 0 0 0 0 0 0 6 3 6 

0 0 0 0 ¼ 2 1 0 0 0 0 0 ~ ~ 
F= 

0 0 0 0 0 1 2 1 0 0 0 0 6 3 6 

0 0 0 0 0 0 1 
6 

2 
3 

1 
6 0 0 0 

0 0 0 0 0 0 0 1 2 1 0 0 6 ~ 6 

0 0 0 0 0 0 0 0 1 2 b 0 6 3 

0 0 0 0 0 0 0 0 0 1 2 1 
6 3 6 

0 0 0 0 0 0 0 0 0 0 1 5 
6 6 

• 
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In Section 4. 7 a tridiagonal l 00-by-100 matrix arises when we approximate 
a differential equation with a finite-difference system. 

• 
The natural way to store a band matrix A is to store just the subvectors 

a1 of nonzero entries in each row, so that the ith row of A is of the form 
af == [O, a1, O]. For example, for the frog Markov chain al = a! == [.25, 
. 5, . 25]. We also must store the subvectors of nonzero entries in each column. 

When we are multiplying two band matrices A and B together (with 
bandwidths w and w', respectively), there will be many cases where the 
bands of A and B do not overlap, so that the vector product will be 0. This 
will happen if i + w - 1 > j - Jv' or if j + iv' - I > i - w. [Check 
this for A = B = F, the matrix in (15).] When the bands do overlap, the 
lower bound for k in the summation will be max(l, i - w + l, j - l-V' 

+ 1 ); finding the upper bound js left as an exercise. 
Note that in calculating powers of the transition matrix A in (15), we 

could compute A 2 as the product of two tridiagonaf matrices. However, the 
result A2 is not tridiagonal , so to compute A3 = AA2 and higher powers 
we would be multiplying a tridiagonal matrix A times a regular matrix. 

The second type of sparse matrix data structure is for a matrix whose 
nonzero entries are randomly located. 

Example 2. Squaring a Sparse Matrix 

Consider the example of the l 6-by-16 0-1 matrix M in ( 16) that has 
only 32 1 's among its 16 x 16 == 256 entries (about 12%). M par
titions into four identical 8-by-8 matrices, which we call N. 

1 2 3 4 5 6 7 8 9 A B C D E F G 

I 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 

2 0 0 1 0 0 0 0 1 I o 0 1 0 0 0 0 I 

3 0 0 0 0 0 0 0 o I o 0 0 0 0 0 0 0 
• 

4 0 0 0 0 0 0 0 1 I o 0 0 0 0 0 0 1 

5 l 0 0 0 0 0 0 0 I I 0 0 0 0 0 0 0 

6 l 0 0 1 0 0 0 o I 1 0 0 1 0 0 0 0 

7 0 0 0 0 1 0 0 o I o 0 0 0 1 0 0 0 

8 0 0 0 0 0 0 0 o I o 0 0 0 0 0 0 0 -- - olO o -- (16) 
9 0 0 0 0 0 1 0 0 0 0 1 0 0 

A 0 0 1 0 0 0 0 1 lo 0 1 0 0 0 0 1 

B 0 0 0 0 0 0 0 0 lo 0 0 0 0 0 0 0 

C 0 0 0 0 0 0 0 1 lo 0 0 0 0 0 0 I 

D l 0 0 0 0 0 0 0 I 1 0 0 0 0 0 0 0 

E I 0 0 1 0 0 0 0 I 1 0 0 1 0 0 0 0 

F 0 0 0 0 1 0 0 0 lo 0 0 0 1 0 0 0 

G 0 0 0 0 0 0 0 0 lo 0 0 0 0 0 0 ·O 
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To limit row and column names to one symbol, we use the notation 
A = 10 B = 11 C = 12 D = 13 E = 14 F = 15 G == 16 in ' ' ' ' ' ) 

( l 6) . 
For each row and each column of N, we make lists R, and Ci of 

the nonzero positions. For example, the fir t few row lists for N would 
be R, == (6), R2 = (3, 8), R3 = ( ). 

Suppose that \Ve want to co1npute the square of M. In ter1ns of 
N, 

I N NIN 
M2 = - -

NIN NIN ( 17) 
N2 + N2 I N2 + N2 N' I N' 

-- -

N2 + N2 N2 + N2 N' I N' 

where N' = 2N2
• So to square M we only have to compute the square 

of N. 
Recall that when we multiply N times N, entry (i, j) in N2 is 

simply the number of positions \Vhere the row nf and column n; of 
N are both 1 (see Exarnple 1 of Section 2.3). To determine ho\v n1any 
l's nf and nf have in common, we simply look at our lists of 
I-entries for nf and n; and see ho\v many positions the e two list5 
have in cocnmon. Notice that no actual multiplication ever occur in 
finding the matrix product of two sparse 0-l matrices. Using the lists 
of I-entries to perform the matrix multiplication typically requires only 
one-tenth the time of nortnal matrix multiplication , \vhen n1ultiplying 
two 15-by- l 5 0- l matrices with around· l 0% I -entries (savings are 
greater for larger or sparser matrices). 

Using lists of 1-entries, we compute 

0 0 0 0 0 1 0 () 0 0 0 0 0 l 0 0 

0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 I 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

N2 = 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 I 
0 0 0 0 1 0 0 0 0 1 0 0 0 () 0 () 

l 0 0 . 1 0 0 0 0 1 0 0 1 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 I 0 0 0 

0 () 0 0 0 0 0 (} 0 0 0 0 0 0 0 0 
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I 0 0 1 0 0 0 0 ( 18) 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 1 0 I 
1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

The entries in M2 are obtained from N2 as shown in ( 17). • 

If the nonzero entries in M were not always I, then for each position 
in a row or column list we must record the number together with its position. 
For example, if the first three rows of M were 

1 

2 

3 

1 

0 

0 

0 

2 

0 

0 

0 

3 

0 

2 

0 

4 

0 

0 

0 

5 

0 

0 

0 

6 

4 

0 

0 

7 

0 

0 

0 

8 

0 

7 

0 

9 A B 
0 0 0 

0 0 0 
0 I 0 

C D 

0 0 
0 -2 
0 9 

E F 
0 0 
0 0 
0 0 

G 

0 

0 

0 

then the first three row lists would each be a pair of lists: R 1 = (6), R~ 
(4); R2 == (3, 8, D), R; = (2, 7, -2); R3 = (A, D), R3 = (1, 9), where 
R; is the list of nonzero positions in row i and R~ is the list of values of 
these nonzero positions. 

When we multiply two sparse matrices M and N that are not 0- 1 
matrices, we start with the procedure above of comparing lists for mf and 
nf to find out in which positions mJ and n.f are both nonzero . But now we 
multiply the two numbers when two nonzero positions match and add up 
all such products to obtain entry (i, j) in MN. 

The main work in multiplying two sparse matrices stored in this 
fashion is comparing the lists R;, and Ci for matching positions (there is 
lots of testing for matches and few cases of an actual match when we 
multiply) . If list Ri has s positions (of nonzero entries) and Cj hast positions, 
the two lists can be checked for all possible matches with s + t - I 
comparisons (this basic fact about data structures is left as an exercise) . If 
A is an m-by-r matrix with probability p 1 of an entry being nonzero, then 
on average, row af has p 1r nonzero entries. Similarly, if 8 is an r-by-n 
matrix with probability p 2 of an entry being nonzero, then, on average, 
column bf has p2r nonzero entries (r is the size of af and b.f). So on 
average, the scalar product af · bf requires p 1r + p2r - l comparisons. 

We have to perform mn such scalar products to obtain all entries in 
the product AB, so in total this is mn(p 1r + p2r - 1) = 11111r(p 1 + p2 -
1/ r) comparisons. Recall that mnr operations (entry-by-entry multiplica-

• 
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tions) are required for normal matrix multiplication. For example. if p 1 and 
p2 = . I and r = 15, then (p1 + p2 - 1/ r) = .13, so the computational 
effort \vill be around one-eighth as much using these data structures. 

The methods presented here make it possible to construct a mathe
matical model with a 100,000-by-20,000 rnatrix to, say, describe the distri
bution and use of all forms of energy by all sectors in tl1e U.S. economy. 
Often, no more than l in 1000 of the entries in such a matrix is nonzero; 
further, the matrix can be partitioned extensively. The combination of par
titioning and data structures can reduce the time of sparse matrix operations 
by a factor of 1,000,000. 

Section 2.6 Exercises 

' 

Summary of Exercises 
Exercises 1 and 2 involve the speed of matrix n1ultiplication. Exercises 3-15 
deal with partitioned matrices. Exercises 16-21 involve band matrices, and 
Exercises 22 and 23 involve sparse matrices. 

1. I low many multiplications are required to perform the following n1atrix 
operations? 
(a) Square a 10-by-10 matrix. 
(b) Square a 100-by-100 matrix. 
(c) Multiply a 20-by-5 matrix times a 5-by-20 matrix. 
(d) Multiply a 5-by-20 matrix ti1nes a 20-by-5 111atrix. 
(e) Cube a 10-by-10 matrix. 
(f) Multiply a 10-by- l O matrix times itself l 0 times. 

• 

2. (a) Suppose that you had to compute the product ABC, where A is 
8-by-4, B is 4-by-8, and C is 8-by-5. You can either multiply 
A times B and then multiply the product AB times C, or yot1 can 
multiply B times C and then multiply A times the product BC. 
How many operations are involved each way in computing ABC? 
Which way is faster? 

3. 

(b) Repeat part (a) for the product ABC, where A is 10-by-8, B is 
8-by-4, and C is 4-by-6. 

Partition the following matrices into appropriate submatrices. 

2 2 2 2 1 1 1 I I 0 1 0 0 1 0 1 

2 2 2 2 1 1 1 J 0 1 0 I 1 0 l 0 

I I 1 l 2 2 2 2 l 0 1 0 0 I 0 l 

1 I l l 2 2 2 2 0 1 0 l l 0 1 0 
(a) (b) 

2 2 2 2 1 l l I 2 0 2 0 0 1 0 J 

2 2 2 2 1 l l l 0 2 0 2 l 0 I 0 

1 1 l 1 2 2 2 2 ,, 0 2 0 0 l 0 1 ..,; 

I 1 1 l 2 2 2 2 0 2 0 2 1 0 1 0 

• 
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1 1 2 2 0 l 0 0 0 2 2 3 0 3 0 

1 l 2 2 1 0 1 0 0 2 2 0 3 0 3 

2 2 1 I 0 1 0 l 0 l 0 3 0 3 0 
(c) (d) 

2 2 l l 0 l 0 0 1 0 1 0 3 0 3 

1 1 l I l 0 l 1 0 I 0 0 0 0 0 

l 1 l l 0 1 0 0 1 0 1 0 0 0 0 
I 

4. Write the following systems of equations in matrix notation as 
x = Dx*; define D, x, and x*. 
(a) .t1 = 3x1 + 4x2 + 100 (b) x, = x, + . 3x1 .4X2 + 100 

x2 = 2x1 - 3x2 + 200 X2 = X2 - .2x1 + .3x2 + 200 

(c) Pi = 2p, - P2 + 100 

P2 = Sp, + 3p2 + so 
l = P1 + P2· • 

5. In equation (7), alter D' by adding another row so that the equation has 
the form x' = D"x'. 

6. Write the adjacency matrices of the following graphs and define a par
titioned form of the matrices. 
(a) G 1 b _e _ __,.f (b) G2 a • 

b C 

d g 

e 

• 

d 

h 

g (d) G4 a d --------------
b f b e h 

C g C f l 

d h 

7. Consider the following Markov chain model . 

.4 H 

B (.: F G 

D E 
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In the maze, a person in any given· room has equal chances of leaving 
by any door out of the room (but never remains in a room) . Write the 
Markov transition matrix for this maze. Write the matrix in partitioned 
form. 

8. In a Leontief economic model, we n1ight consider three commodities 
A, B, C in two different countries. Suppose that there is the following 
interindustry demand matrix D for the three con1modities in each coun
try . 

A B C 

A .2 .3 .2 

D=B . 1 0 .3 
l , .2 .2 . l 

In addition, to produce a dollar's worth of each commodity in tl1e second 
country requires a input .1 dollar of commodity A from country l . 
Similarly, each first country commodity requires . I dollar of the second 
country's commodity A. The consumer demand in the first country for 
the three commodities is [ 50, l 00, 50), and the consumer demand in 
the second country is l l 00, 200, I 00 J. 

Write out the system of equations for this Leontief model. Also 
write the right side of these equations as D' x' ~ define D'. 

9. Determine the square of the matrix in Exercise 3, part (b). 

10. Determine AA7 for the matrix in Exercise 3, part (a) (AT denotes the 
transpose of A - witl1 rows and columns interchanged). 

11. (a) Partition the matrix 

I I 

1 0 

0 1 

0 0 

A = 0 0 

0 0 

0 0 

0 0 

0 0 

in terms of tl1e matrix 

and the zero matrix O . 
• 

0 0 0 0 

I 0 0 0 

1 0 0 0 

0 2 2 0 

0 2 0 2 

0 0 2 2 

0 0 0 0 

0 0 0 0 

0 0 0 0 

I I 0 

B = 1 0 1 

0 I 1 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

3 3 0 

3 0 3 

0 3 3 

• 



154 

• 

t 

Ch. 2 Matrices 

(b) Write A2 and A3 in partitioned form in terms of B and 0. 
(c) Write out A2 entry by entry. How many multiplication operations 

are required to write out A 2 using the advantages of the partitioned 
form? How many multiplication operations if A2 was done nor
mally? 

( d) Compute A 2v where v = [ 1 , - 1 , 1, 0, 1 , 0, 1, - l , 1] . 

12. Compute the square of each adjacency matrix in Exercise 6 using the 
partitioned form of the matrix. 

13. Suppose that the adjacency matrix A(G) of a graph G has the partitioned 
form 

• 

A(G) 

where J3 is a 3-by-3 matrix with each entry 1. 
(a) Draw G. 
(b) Write out all the entries in A3(G) . 

14. Determine the partitioned form of A3(G) in Example 1 [in terms of A' 
and I, just as A 2( G) is expressed in ( 12)]. 

15. (a) Let 

1 2 0 

A= -1 3 1 

0 1 2 

and B 

1 2 

3 4 

1 0 

Partition A into three 3-by- l submatrices and B into three 1-by-2 
submatrices, and use this partition to c0mpute the product AB. 
Compute the matrix product AB the normal way and compare the 
arithmetic in the two methods. 

(b) Extend part (a) to show that in any matrix product AB, the 
m-by-r matrix A can be partitioned into r submatrices each con
sisting of one of A's columns and the r-by-n matrix B partitioned 
into r submatrices each consisting of one of B's rows. Explain in 
words the effect of this partitioned product [generalize the com
parison you made in part (a)]. 

16. Compute the square of the frogger transition matrix in (15). 

• 
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. 
17. Compute the square of the filtering matrix F. 

18. Compute the square of the following band matrices. 

2 l 0 0 0 0 2 0 1 0 0 0 0 

0 2 1 0 0 0 0 2 0 1 0 0 0 

(a) 
0 0 2 1 0 0 l 0 2 0 l 0 0 

0 0 0 2 1 0 (b) 0 l 0 2 0 0 1 

0 {) 0 0 2 ] 0 0 1 0 2 0 I 

0 0 0 0 0 2 0 0 0 1 0 2 0 
() 0 0 0 1 0 ? -

19. Suppose that in the frog Markov chain there were 12 lanes in the su
perhighway, not 4. In addition, there are still the left and right sides of 
the road. 
(a) Describe the new Markov transition matrix by telling the bandwidth 

and the values of the entries on, and just off, the main diagonal. 
The entries in the first and fourteenth columns should al o be de
scribed. 

(b) Describe . the square of this Markov transition matrix in the same 
terms as given in part (a) . 

20. Suppose that we define a sequence of values a 1, a2 , a3 .. ..... a8 such 
that the weighted running average (a; _ 1 + 2a; + a1 + 1) / 4 = Si, for 
i = 2, 3, ... , 7 and for i = 1, we use (a1 + a2)/2 = 5 and similarly 
for i = 8, (a7 + a8)/2 = 35. 
(a) Write out tl1is system of equations for the unknown a;. 
(b) Given that a8 should be 35, solve the system in part (a). 

21. What is the band\\iidth. of the square of a k-bandwidth matrix? 

22. (a) Compute the squares of the following sparse matrices. 

l 0 0 0 I 0 0 I () 0 
0 0 0 I 0 0 0 0 I 0 

0 l 0 0 0 0 0 0 0 1 
(i) (ii) 

l 0 0 0 0 1 0 0 0 0 

l 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 I 0 0 0 

(b) Compute the cubes of the matrices in part (a). 

23. (a) Give a partitioned form of this 12-by-12 sparse matrix. 

0 0 

0 0 

0 0 

1 0 

0 1 

0 0 

• 
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2 0 2 0 0 0 0 0 0 0 0 l 
0 2 0 2 0 0 0 0 0 0 I 0 
0 0 2 0 2 0 0 0 0 I 0 0 
0 0 0 2 0 2 0 0 1 0 0 0 
2 0 0 0 2 0 0 l 0 0 0 0 
0 2 0 0 0 2 1 0 0 0 0 0 
0 0 0 0 0 I 2 0 2 0 0 0 
0 0 0 0 1 0 0 2 0 2 0 0 
0 0 0 1 0 0 0 0 2 0 2 0 
0 0 1 0 0 0 0 0 0 2 0 2 
0 I 0 0 0 0 2 0 0 0 2 0 
l 0 0 0 0 0 0 2 0 0 0 2 

(b) Compute the square of this matrix using the partitioned form and 
sparse matrix multiplication. 

(c) Give a formula for the nth power of the upper right 6-by-6 sub
matrix . 

• 
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Solving Systems of Equations 
with Determinants 

In this chapter we discuss the central mathematical problem of linear models, 
solving a system of linear equations. The models introduced in previous 
chapters will be used to motivate and illustrate the computational techniques 
and mathematical concepts . Much of the theory about solutions to systems 
of linear equations will be delayed until Chapter 5. First, in Chapter 4, we 
use the methods from this chapter to solve systems of linear equations arising · 
in various applications. 

In this first section we consider an algebraic approach involving de
terminants for solving a system of linear equations. Determinants produce a 
useful formula for solving two equations in two unknowns. Although the 
method does not yield efficient computational schemes for larger systems, 
it does yield important information about when such systems have solutions 
and about eigenvalues of the coefficient matrix. A more general method for 
solving linear equations is discussed in Section 3.2. 

Recall that the quadratic equation ax2 + b_r:, + c = 0 has the solutions 
x = ( 1/2a)(- b + V b2 - 4ac ). We seek similar formulas for solving a 
system of linear equations. Consider the following system of two equations 
in two unknowns: 

• 

ax + by = e 

ex+ dy = f 

' 
(l) 

157 
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Let us solve (1) for x and y. Multiplying the first equation by d and the 
second by b and then subtracting, we obtain 

adx + bd), = de 

- (bcx + bd)' = bf) 

(ad - bc)x = de - bf 

Solving for x, we have 

de - bf 
X = ---

ad - be 

Substituting (2) in the first equation of ( l) and simplifying, we obtain 

af - ce 
y == 

ad - be 

(2) 

(3) 

Formulas (2) and (3) give us immediate solutions to any system of two 
equations in two unknowns. For example, the system 

2x - 3y = 4 

X + 2y = 9 
(4) 

is solved using (2) and (3) (with a = 2, b = -3, c = 1, d = 2, e.= 4, 
f = 9). 

• 

x = de - bf = 2 X 4 - ( - 3) X 9 = ~ = 5 
ad - be 2 X2 - (-3)Xl 7 

Y = af - ce 2 x 9 - 1 x 4 = 14 = 2 
ad - be 2 X 2 - ( -3) X 1 7 

• 

By using various techniques, it is possible to extend these formulas to 
obtain expressions for the solutions to three equations in three unknowns 
and more generally ton equations inn knowns. However, these expressions 
become huge, and evaluating them takes far longer than Gaussian elimination 
(which is presented in Section 3 .2). 

Formulas (2) and (3) have important theoretical uses. The critical part 
of the formulas is their denominators, which are the same: ad - be. This 
denominator is called the determinant of the system. It turns out that the 
expressions for the solution of three equations in three unknowns also have 
common denominators. This result holds in general for the solution of any 
system of n equations in 11 unknowns. Tl1e deter,ninant of· tl1e 11-by-n ,natrix 
A is defined to be the de1zomi11ator in the algebraic expressions for the 
solution of the S)'Stem Ax = b. Formulas such as (2) ·and (3) give a unique 
solution to the system of equations, provided that the determinant is nonzero. 
-- The determinant is like the expression b2 

- 4ac under the square-root 
sign in the quadratic fonnula; recall that b2 

- 4ac is called the discriminant. 

• 
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The discriminant must be nonnegative for the quadratic equation to have 
real solutions. Here the determinant must be nonzero for a unique solution. 

Rewriting system (I) with matrix subscripts, we have 

or in matrix notation, 

where 

A 

Now (2) and (3) become 

a 1 1 x 1 + a 12 X2 = b 1 

a 2 ,x1 + a 22 X2 = b2 

Ax b 

' 
b 

X2 

X -

G1 ib2 - a2,b, 

a1 ,a22 - a 12a 2 , 

The determinant det(A) of the 2-by-2 matrix A is written as 

det(A) 

(5) 

(6) 

In the 2-by-2 case, det(A) is simply the product of the two main 
diagonal entries minus the ·product of the tw·o off-diagonal entries. Since 
every square matrix can be interpreted as the coefficient matrix of a system 
of linear equations, every quare matrix has a determinant. 

We can write the numerators in the expression for x1 and x2 as deter
minants of the matrices obtained by replacing the first and second columns, 
respectively, of A by the vector b. That is, let 

and taf bj (7) 

' Then 

det(A1) 
bi a1 2 

a22b1 - a12h2 
bi a22 (8) 

det(A2) 
al 1 b, 

a11b2 - a 2 1h1 --
b2 a21 
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The expressions in (8) are exactly the numerators in (5). So using det(A1) 

and det(A2), our formulas for x 1 and x2 are 

det(A1) 
X = 1 det(A) 

and 
det(A2) 

X = 2 det(A) 

• 

The numerators in systems of n equations in n unknowns tum out to have 
the same form as for two equations . That is, if we define A; to be the matrix 
obtained from A by replacing the ith column af by the right-hand-side vector 
b, 

A; = [ a f, af, . . . , b, a f + 1 , • • . , a;] 

then the solution to Ax = b is 

Cramer's Rule 

det(A,) 
X = 

' det(A), 
i = 1,- 2, .. . > 11 

Applying Cramer's rule to the system of equations in (4), 

2x - 3y = 4 

X + 2y = 9 

we obtain 

4 -3 
9 2 4 X 2 - ( - 3) X 9 35 

X1 - - - - 5 - - -
2 X 2 - ( -3) X ] 7 ' 2 -3 

1 2 

2 4 • 

l 9 2X9-4Xl 14 
X2 = - - - 2 - -

7 7 2 - 3 
l 2 

the same solution as that we obtained earlier. 

(9) 

(10) 

As long as the denominator does not vanish, the determinant formula 
in (10) provides a unique solution to the equation. 

Theorem 1. Let A be an 11-by-n matrix and let b be an arbitrary ,z-vector. 
If det(A) # 0, the system of equations Ax = b has a unique solution 
given by Cramer's rule. 

• 
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Theorem l says nothing about what happens if det(A) = 0. If det(A) 
= 0 but one or more det(Ai) ¥= 0, then no solution is possible. However, 
if all det(A;) == 0 as well as det(A) == 0, then the fonnulas in (10) become 
0/0-undefined-and solutions may be possible. The following examples 
from Chapter 1 illustrate this situation. 

--~-.,~Jlf£!'f.9 
Example 1. Canoe with Sail Revisited 

In Example 4 of Section l . l we modified the standard high school 
algebra problem about the speed of a canoe and the speed of tl1e stream 
by placing a sail at the front of the canoe and giving equations for the 
canoe's speed C and the wind's speed W when going upwind (into the 
wind) and downwind . 

Upwind: 

Downwind: 

C +kW -== V 

C + W = D 
( 11) 

In Section 1.1 we solved these equations by elimination. Now 
we can solve (11) by using Cramer's rule, where b = (U, D) and 

A == 
1 k 

1 1 

We calculate 

det(A) 
l k 

l 1 
-I·l-k·l 1 - k, 

U k 
det(A 1) == D l 

• 

and so, by Cramer's rule, 

U - kD 
C = 1 - k 

U·l-k·D = U-kD 

lXD-Uxl = D-U 

and 
D-V w == ---
1 - k 

(12) 

In Section 1.1 we tried the value of k = I and found that the 
equations (11) had no solution (for V ¥= D); the formulas in (12) have 
zero denominators. That is, fork = I, det(A) = I - I = 0. When 
k = 1, the two rows of A are equal and the two eqt1ations in (11) 
represent paraJ lel lines that never intersect. 

We also tried letting k == . 75. For values of U = 5, D == 7 the 
system becomes · 

Upwind: C + .75W = 5 

Downwind: c+ W=7 

• 
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We obtained the solution C = - 1, \V = 8, but a negative value 
makes no sense in the real world. The problem is that although 
det(A) = 1 - .75 ¥ 0, det(A) is still close to 0. Informally, the 
system almost has no solution, so the answer is unreliable. In any 
2-by-2 system, · when det(A) is much smaller than det(A 1) and 
det(A2), tl1e answer should be treated with suspicion. • 

The link between equal rows and det(A) = 0 mentioned in Example 
l is true for all square matrices. By a symmetry argument, the result also 
holds for columns . 

Propositi.on 1. If one row (column) of an n-by-n matrix A equals, or is a 
multiple of, another row (column), then det(A) = 0. · 

Example 2. Stable Rabbit-Fox 
Populations Revisited 

In Example 3 of Section 1.3 we considered a linear growth model for 
rabbit and fox populations: 

R' == R + bR - eF 

F' = F - dF + e'R 
(13) 

Here R, F are current population sizes and R', F' are the sizes 1 month 
later. We set R' = R and F1 = F to solve for stable (unchanging) 
population sizes, and obtained 

bR - eF = 0 

e'R - · dF = 0 
(14) 

Obviously, R = F = 0 is a solution to (14), but we want ''non
trivial'' (nonzero) solutions. We found them in Chapter I by ad hoc 
means. Now we can use determinants. Let 

A= 
b 

e' 

-e 

-d 
b 

so det(A) = , 
e 

- e 
== b( - d) - ( - e )e' 

-d 
= -bd + ee' 

Then by Theorem 1, if det(A) =fa 0, ( 14) has a unique solution. Clearly, 
R == F = 0 is such a solution. For other solutions we must have 
det(A) = 0. Cramer's rule would now give R = det(A 1)/det(A) == 
0/0 (undetermined), and similarly for F [note det(A 1) = det(A2) = 0 
since the right side in (14) is OJ. To have det(A) = 0, we require that 

det(A) = -bd + ee' = 0, 
e d 

or -
b e' 
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The equality of these ratios is just an algebraic way of saying 
that the first row in ( 14) must be a multiple of the second row. Such 
a relation between the rows when det(A) = 0 was predicted by Prop
osition 1. When e / b = d/ e', one can check that any R, F pair with 
R = (e/b)F = (d/e')F is a solution to (14). 

In Section 1. 3 we considered the system 

.1R - .15F = 0 

.1R - .15F == 0 
(15) 

In (15), solutions are of the form R = ( .15/. l)F = ~F. • 

We now consider determinants of a 3-by-3 matrix and more generally 
an n-by-n matrix. Remember that the determinant of a square matrix A is 
defined to be the algebraic expression that appears in the denominator when 
we algebraically solve the matrix equation Ax = b. 

One can show that the determinant of a 3-by-3 matrix A is calculated 
by multiplying the numbers lying on the 6 ''diagonals'' in the augmented 
3-by-5 array shown below. The products marked by solid lines have plus 
signs and the products marked by dashed lines have minus signs . 

Warning: This process does not apply when 11 > 3. 

Example 3. Solving the Refinery Equations by 
Cramer's Rule 

In Section 1. 2 we discussed a system of equations for controlling the 
production of three refineries: 

det(A) 

20x1 + 
10x1 + 
5x1 + 

20 4 4 
10 14 5 

5 5 12 

4.,t2 + 
14x2 + 
5x., + .. 

4x3 = 
5x3 = 

12x3 = 

500 
850 

1000 

= 20X 14X 12 + 4X5X5 
+ 4X IOxS - 4X 14X5 
- 4Xl0Xl2 - 20X5X5 

3360 + 100 + 200 - 280 
- 480 - 500 

= 2400 
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To determine x1 using Cramer's rule, we need det(A 1) (recall that A 1 

is obtained from A by replacing the first column of A by the numbers 
on the right side of the equations). 

500 4 4 
det(A1) = 850 14 5 

1000 5 12 

We compute x1: 

= 500X 14X 12 + 4X5X 1000 
+ 4X850X5 - 4X 14X 1000 
- 4 X 850 X 12 - 500 X 5 X 5 

= 84,000 + 20,000 + 17,000 
- 56,000 - 40,800 - 12,500 

I 

= 11,700 

det(A 1) 

det(A) 
11,700 == 

4 
7 

2,400 8 

lt is left as an exercise for the reader to determine x2 and x3 • • 

Even for 3-by-3 determinants, the calculations are messy. It gets so 
complicated beyond 3-by-3 that one has to resort to a general form of de
scription of a detenninant ( we are lucky that such a description even exists). 

Computational Definition. The deterniinant of an n-by-n matrix A is 
formed by adding or subtracting all possible products of 11 entries in
volving one entry from each row and each column (there is a technical 
rule of signs for determining whether the product gets a plus or minus 
sign). 

The reader should check that our formulas for 2-by-2 and 3-by-3 de
terminants involved all products of this sort. A counting argument shows 
that there are n ! [ = n(,z - l )(n - 2) · . · · 3 x 2 x l] such products in an 
11-by-n determinant. For example, a 10-by-10 determinant has 10! = 
3,628,800 products. For this reason, one never solves a large system of 
equations using determinants. 

There is one special class of matrices that arises frequently in theory 
and appJications for which the determinant is very easy to compute. A square 
matrix is upper triangular if all entries below the main diagonal are zero, 
such as 

2 4 1 

A= 0 1 7 

0 0 2 

(17) 

A lower triangular matrix has O's above the main diagonal. 

Proposition 2. If A is an upper or a lower triangular matrix, det(A) 
a 11 a22 • • • ann, the product of entries on the main diagonal. 
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Proof. Except for the product of main-diagonal entries. any other prod
uct of n entries, each in a different row and column, will have to 
contain an O entry below ( or above) the main diagonal, so all such 
other products are O. • 

By Proposition 2, det(A) = 2 x l x 2 = 4 for the matrix A in ( 17). 
A special upper (and lower) triangular matrix is the identity matrix I (with 
1 's on the main diagonal and O's elsewhere). Then by Proposition 2, 
det(I) = l. 

In Section 3. 2 we shall learn how to transform any square matrix A 
into an upper triangular matrix U in a mariner tl1at does not change the value 
of the determinant. Using Proposition 2, we will then be able to compute 
det(A) simply by taking the product of the main-diagonal entries of U. 

There is one additional nice property of determinants that we will need 
later in Section 3.2. 

Proposition 3. The determinant of a matrix product is the product of the 
determinants: 

det(AB) = det(A) det(B) 

It was noted at the start of this section that one of the chief reasons 
for studying determinants was their role in finding eigenvalues of a matrix. 
Recall from Section 2.5 that the defining equation for an eigenvalue A and 
its eigenvector u is 

• 

Au= AU or Au - AU == 0 

or 

(A - Al)u = 0 (18) 

Given the eigenvalue X., we can determine u by solving the system of 
equations in ( 18). More important, we can use ( 18) to determine tl1e eigen
values of A. To do this, we recall from Theorem 1 that if det(A - Al) ¥= 
0, then (18) has only one solution, namely n = 0. Since an eigenvector 
cannot be the zero vector 0, to get eigenvalues we need to choose A so that 
det(A - Al) = 0. 

Theorem 2. The values A that make the det(A - Al) = 0 are eigenvalues 
of A. The associated eigenvector(s) for A are the nonzero solutions to 
(A - Al)x = 0. 

To prove Theorem 2 requires vector space theory developed in Chapter 
5. For any matrix A, det(A - Al) will be a polynomial in X., called the 
characteristic polynomial of A. The zeros of the characteristic polynomial 
of A are the eigenvalues of A. Remember that the eigenvector associated 
with an eigenvalue A is actually a family of eigenvectors: If Au == AU~ then 
for any r, A(ru) = Aru. 



166 

• 

• 

Ch. 3 Solving Systems of Linear Equations 

Example 4. Determining Eigenvalues 
and Eigenvectors 

Consider the system of computer-dog growth equations from Section 
2.5. 

C' = 3C + D 

D' = 2C + 2D 

or c' == Ac, where A = 3 1 

2 2 

In Section 2. 5 the eigenvalues and eigenvectors were given without 
any explanation of how they were found. Let us calculate them now. 
By Theorem 2 the eigenvalues are the zeros of the characteristic poly
nomial det( A - Al): 

3 - X. I 
det(A - X.I) = 

2 2 
_ X. = (3 - X.)(2 - X.) - 1 · 2 

= (6 - 5X. + X. 2) - 2 

= 4 - 5A. + A.2 

= (4 - A.)(l . - X.) (19) 

So the zeros of det(A - X.I) = (4 - X.)(l - A.) are 4 and 1. 
· To find an eigenvector u for the eigenvalue 4, we must solve the 

system Au = 4u or, by matrix algebra, (A - 4 l)u = 0, where 
---

A - 41 = 3 - 4 1 
2 2 - 4 

We find that 

--
-1 

2 

- U I + Uz = 0 ~ U I = u2 

2u1 - 2u2 = 0 

l 

-2 

The second equation here is just - 2 times the first equation (so it is 
superfluous). Then u is an eigenvector if u 1 = u2 , or equivalentJy if 
u is a multiple of [l, J]. 

It is left as an exercise for the reader to verify that v = [ 1 , - 2] 
is an eigenvector for X. = I by showing that this v is a solution to 
Av = v or (A - l)v = 0. - • 

Example 5. Eigenvalues and Eigenvectors for 
Rabbit-Fox Population Model 

Consider the rabbit- fox growth model 

R' = R + . lR - .15F, 

F' = F + . lR - .15F 

• 
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or 

R' 
F' 

--
I + . l 

. 1 

- .15 

1 - .15 

R 

F 
(20) 

which we studied in Section 1 . 3. Let us find both eigenvalues and 
associated eigenvectors u, v, so that we can write a starting population 
vector pin terms of u and v, p = au + bv and use these eige11vectors 
to compute p Ck), the population vector for k periods. 

We first compute det(A - X.I), the characteristic polynomial of 
A. 

det(A - Al) = 
l . l - X. 

. 1 

- .15 
_
85 

_ "- = (I.I - A)(.85 - X.) 

- . 1( -. 15) 

= A2 - 1.95A + .95 (21) 

By factoring or the quadratic formula, we find the zeros to be A = 1 
and X. == .95. 

To find an eigenvector u associated with· X. = 1, we solve 

(A - l)u == 0: .15u2 = 0 ~ u1 = lii2 u = [3, 2] 

.15Ll2 = 0 (22) 

So nonzero multiples of u = [3, 2) are eigenvectors for X. = 1-that 
is, stable population vectors. 

For completeness, we solve for the eigenvector of A = . 95: 

(A - .951)v: . J5v2 = 0~ V1 = Vz 

. } V2 = 0 

v = [ 1, lJ 

(23) 

So nonzero multiples of v = [ 1, 1] are eigenvectors of A = . 95. 
With the eigenvalues and eigenvectors, we can now explain the 

behavior of this model that we observed in Section 1. 3. In doing so, 
we illustrate tl1e basic role of eigenvalues and eigenvectors in describ
ing the long-term behavior of dynamic systems. 

In Section 1.3 we started with the [R, F] pair = [50, 40] and 
followed our model [ equations (20)] for many periods: 

0 months: 50 rabbits, 40 foxes 

1 month: 49 rabbits, 39 foxes 

2 months: 48 rabbits, 38 foxes 

3 months: 47 rabbits. 37 foxes 
• • • 
• • • 
• • • 

10 months: 42 rabbits, 32 foxe (24) 
• • • 
• • • 

• • • 
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20 months: 37 rabbits, 27 foxes 
• • • 
• • • 
• • • 

50 months: 31.5 rabbits , 21.5 foxes 
• • • 
• • • 
• • • 

100 months: 30. 1 rabbits, 20.1 foxes 

Let us express the starting vector p == [ 50, 40] in terms of the 
eigenvectors u = (3, 2] and v = [l , l]: p == au + bv: 

50 3 l 
40 == a 2 + b l or 

3a + b = 50 

2a + b = 40 
(25) 

By Cramer's rule, we find that a == 10 and b = 20. Thus 

p = l0u + 20v (26) 

Then using (26) to co1npute the population sizes in (24) gives 

p' = Ap == l0Au + 20Av == I0(lu) + 20(.95v) 

= 10[3, 2] + 19[1 , 1] = [49, 39] 

and 

pCk> = Akp = l0Aku + 20Akv == I0(lku) + 20(.95kv) 

- 10[3, 2] + 20X .95k[l , I] 

= [30, 20] + . 95k(20, 20] (27) 

The second term . 95k[20, 20) in the last line of (26) slowly goes 
to 0, leaving the stable populatioQ vector [30, 20] . With (27), the 
behavior in table (24) is completely explained! 

If we generalize the calculation in (27) and the starting vector p 
has the eigenvector representation p = au + bv, then 

pCk> == Akp = aAku + bAkv == au + b x .95kv (28) 

= [3a, 2a] + .95k[b, b] 

So the long-term stable population is [3a, 2a l. The critical num
ber is a. To find a for the general starting vector p = [R, F], we 
substitute [R, F] for [50, 40] in (25) and apply Cramer's rule. 

R 1 

det(A 1) 
F 1 R - F 

a = - = =R-F -
det(A) 3 1 3 - 2 

• 2 1 • 



Sec. 3.1 Solving Systems of Equations ,vith Determinants 169 

Section 3.1 Exercises 
• 

• 

' 

Summary of Exercises 
Exercises 1- 21 involve properties of determinants and their use in solving 
systems of equations, with Exercises 13-21 involving theory. Exercises 
22-28 involve using detenninants to find eigenvalues. Exercises 29-34 
present theoretical properties of the characteristic polynomial, including the 
Cayley-Hamilton theorem. Exercises 35 and 36 introduce the euclidean 
norm of a matrix. 

1. Compute the determinant of the following matrices. 

(a) 
I 3 

5 -2 
(b) 

2 4 
-3 -6 

(c) 
3 2 

1 0 

2. Find the (unique) solution to the following systems of equations, if 
possible, using Cramer's Rule. 
(a) x + y == 34 (b) 2x - 3y = 5 (c) 3x + y == 7 

2x - y = 30 -4x + 6y == 10 2x - 2y == 7 

3. Consider the two-refinery production of diesel oil and gasoline. The 
second refinery has not been built, but when it is built it will produce 
twice as much gas as diesel oil from each barrel of crude oil . We have 

Diesel oil: 

Gasoline: 

10x1 + ax2 = D 
5.,t° 1 + 2ax2 == G 

where a is to be determined, Dis demand for diesel oil, and G is demand 
for gasoline (and X; is number of barrels of crude oil processed by 
refinery i, i == 1, 2). Solve this system of equations to determine x 1 

and x2 in terms of a, D, G using Cramer's rule. 

4. Consider the two-refin~ry production of diesel oil and gasoline. The 
second refinery has not been built but when it is built it will produce 
15 gallons of gasoline and k gallons of diesel oil from each barrel of 
crude oil. We have 

Diesel oil: 

Gasoline: 

10x1 + kXi == D 

Sx, + 15x2 == G 

where k is to be detennined , D is demand for diesel oil, and G is demand 
for gasoline (and X; is number of barrels of crude oil processed by 
refinery i, i == 1, 2). Solve this system of equations to determine x, 
and x2 in terms of k, D, G using Cramer' s rule. What value of k yields 
a nonunique solution? In practical terms, what does this nonuniqueness 
mean? 

5. Which of the following systems of equations have nonzero solutions? 
If the solution is not unique, give the set of all possible solutions. 
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(a) 3x + 4y == 0 

6x + 2y = 0 

(b) 4x - y == 0 

4x - y == 0 

(c) 2x - 6y = 0 

-x + 3y = 0 

6. When the right-hand side is nonzero and the determinant is 0, there 
may be no solution to the system of equations. Which of the following 
systems of equations have no solution? 

(a) 3x + 2y = 2 

6x + 4y == 2 

(b) 2x - 3y = 2 

2x - 3y == 2 

(c) 2x - 6y = 4 

-x + 3y == -2 

7. Compute the detenninant of the following matrices. 

1 1 1 

(a) 1 2 1 

3 1 I 

2 

(b) 0 

2 

0 - 1 
0 3 
0 -1 

0 1 0 

(c) I 2 1 

2 5 2 

1 0 1 
(d) 0 2 2 

1 2 3 

2 1 0 

(e) 0 0 2 

2 2 2 
(f) 

.l 
6 
1 
7 

.l 
8 

1 1 
1 8 

¼ 1 
9 

1. _l 
9 10 

8. In which matrices in Exercise 7 is one row or column a multiple of 
another (so that by Proposition 1, the determinant will be 0)? 

9. Use Cramer's rule to solve for x2 and x3 in Example 3. 

10. Solve the following systems of equations using Cramer's rule. 

(a) 2J"t - y + 2z == 4 

.x + 3z == 6 

2y - z = 1 

(C) - X + 3y - Z == 4 

2x - y = 6 

X + Z = 3 

(b) x + y + z = 3 

2x + 3y + z == 9 
-x - y - z = -4 

• 

11. Consider the following system of equations for the growth of rabbits 
(R), foxes (F), and humans (H) . 

R' = R + .3R - . lF - .2H 

F' = F + .4R - .2F - .3H 

H 1 == H + . IR + .1 F + . lH 

We want to see if stable population sizes are possible (when R' = R, 
F' == F, H' = H). Set up the stable populatio~ system of equations 
[similar to (15) in Example 2] and compute the determinant to see if a 
nonzero solution is possible (do ,iot try to find a stable solution). 

12. Repeat Exercise 11 with the syste~ 
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R' = R + .3R - .2F - .2H 

F' = F + .4R - .2F - .4H 

H' = H + .2R + . lF + . lH 

13. If you double the first row in the system 

ax + b}' = e 

ex + dJ1 = f 

show using Cramer's rule that the solution does not change. 

14. If you double the first column in the system 

ax+ by = e 

ex+ dy = f 

show using Cramer's rule that the value of x is half as large and the 
value of y is unchanged. 

15. (a) If you interchange the rows of a 2-by-2 matrix A, show that the 
detenninant of the new matrix is - 1 times the det(A). 
Hint: Use (6). The same is true for interchanging columns. 

(b) If you interchange the first two rows of a 3-by-3 matrix A, show 
that the detenninant. of the new matrix is - 1 times the det(A). 
Hint: Use (16). 

16. From the computatjonal definition for a determinant, deduce that for 
any square matrix A, its transpose AT (obtained by interchanging rows 
and columns) has the same determinant as A. (Thus A7x = b has a 
unique solution if and only if Ax = b does.) 

17. From the computational definition for a detenninant. deduce that any 
square matrix A with a row (or column) of all O's has det(A) = 0. 

18. (a) From the computational definition for a determinant, deduce that 
if B is a square 3-by-3 matrix obtained from A by doubling every 
entry in the second row of matrix A, then det(B) = 2 · det(A). 

(b) More generally, if every entry in a row (or column) of an ,1-by-n 
matrix A is multiplied by a constant k, the determinant of the 
resulting matrix equals k · det (A). 

19. Compute the determinant of the following matrices. 

2 3 7 8 0 0 0 0 l 2 0 0 0 

0 3 9 1 2 0 -0 0 0 0 3 0 0 
(a) 

0 0 1 5 
(b) 

4 5 0 0 (c) 0 0 0 1 0 

0 0 0 4 3 4 5 0 0 0 0 0 2 

2 0 0 0 2 

• 

• 
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20. Let A and B be arbitrary 2-by-2 n1atrices . Using (6), show that 
• 

det(AB) = det(A) det(B) . 
• 

21. In the following figure, the area of the triangle ABC can be expressed 
as 

• 

area ABC == area ABB'A' + area BCC'B' 
- area ACC'A' 

(X J 'J' I ) 

I 
(X3, J'3) I I 

CI . I I 
I I I 
I I I 

• • • A' B' C' 

(*) 

Using (*) and the fact that the area of a trapezoid is one-half of the 
distance between the parallel sides times the sum of the lengths of the 
parallel sides , show that 

1 x, Yt I 

) '2 . I area ABC = - x2 2 
1 

22. Determine an eigenvector associated with A = l in Example 4 . 

23. (a) Compute the eigenvalues of each of the following matrices. 

(i) 

(iv) 

4 0 
2 2 

4 

1 

-1 

2 

(ii) 
I 2 

3 4 

(v) 

0 

3 

-2 

. (iii) 

2 

-1 

2 

2 l 

2 3 

I 

-3 
3 

(b) Determine an eigenvector associated with the largest eigenvalue, 
using the method in Example 4, for the matrices in part (a). 

24. (a) For the following rabbit- fox models, determine both eigenvalues. 

• 

(i) R' == R + .lR - .3F (ii) R' == R + .3R - .2F 

F' == F + .2R - .6F F' = F + . l5R - . IF 

(b) Determine an eigenvector u associated with the largest eigenvalue 
in each system in part (a). 

(c) Determine the other eigenvector ,, (associated with the smaller ei
genvalue) for each systen1 in part (a) . 

• 



Sec. 3.1 Solving Systems of Equations with Determinants 173 

• 

• 

(d) If the initial population is x = [ 10, 10], express x<k) as a linear 
combination of u and v, as in equation (27), for each system in 
part (a). Use this expression to describe in words the behavior of 
this model over time. 

25. The following system of equations was the first rabbit-fox model ana
lyzed in Section 1. 3. 

R' = R + .2R - .3F 

F' = F + . IR - . lF 

Determine the dominant eigenvalue and an associated eigenvector . 

26. (a) For the following rabbit- fox models, determine both eigenvalues. 
(i) R' == R + . IR + . IF (ii) R' = R + 2R - 3F 

F' = F + .2R + . IF F' = F + l .5R - 4.5F 

(b) Determine an eigenvector u associated wjth the largest eigenvalue 
in each system in part (a). 

(c) Determine the other eigenvector v (associated with the smaller 
eigenvalue) for each system in part (a). 

(d) If the initial population is x == [IO, 1 O] express x<k) as a linear 
combination of u and v as in equation (27), for each system in part 
(a) . Use this expression to describe in words the behavior of this 
model over time. 

27. The following growth model for elephants (E) and mice (M) predicts 
population changes from decade to decade. 

E' 3E + M 

M' 2E + 4M 

(a) Determine the ejgenvalues and associated eigenvectors for this sys
tem. 

(b) Suppose initially that we have p = [E, M] = [5 , 5]. Write p as 
a linear combination of the eigenvectors. 

~ 

(c) Use the information in part (b) to determine an approximate value 
, for the population sizes in eight decades. 

28. The following growth model for computer science teachers (T) and 
programmers (P) predicts population changes from decade to decade. 

T' = T - P 

P' = 2T + 4P 

(a) Determine the eigenvalttes and associated eigenvectors for this sys
tem. 

(b) Suppose initially that we have p = [T, P] == [IO, l 00]. Write p 
as a linear combination of the eigenvectors . 

• • 
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(c) Use the infonnation in part (b) to determine an approximate value 
for the population sizes in 12 decades. . 

29. Verify that the constant term in a characteristic polynomial is det(A). 

30. Let A be a 2-by-2 matrix with all positive entries and det(A) # 0. Show 
that the eigenvalues of A must be positive real numbers. 

31. Show that the product of the eigenvalues of a 2-by-2 matrix A equals 
det(A). 

Hi,zt: The product of the eigenvalues is the constant term in the char
acteristic polynomial det(A - Al). Note that this result is true for 
matrices of any size. 

• 

32. Show that the sum of the eigenvalues of a 2-by-2 matrix A equals the 
sum of the main-diagonal entries of A. 

Hint: These quantities are both the coefficient of A in the characteristic 
polynomial det(A - h-1). Note that this result is true for matrices of 

• any size. 

33. (a) 

(b) 

a q . 
For a matrix A = 

0 
b , show that eigenvalues are a and b. 

Generalize the result in part (a) to show that in any upper triangular 
matrix, the eigenvalues are just the entries on the main diagonal. 

Hint: Recall that the determinant of such a matrix is simply the 
product of the main-diagonal entries. 

34. This exercise illustrates a famous result in linear algebra known as the 
Cayley-Hamilton theorem, which says that a square matrix A satisfies 
its characteristic equation, det(A - Al) = 0. 

2 1 
(a) Let A == . So det(A' - X-1) = (2 - A)(2 - A.) -

I 2 

1 · 1 = A 2 
- 4A + 3. The characteristic equation of A is then 

X. 2 - 4A. + 3 = 0. Verify that A satisfies its characteristic equation 
by setting X. = A and showing that A 2 

- 4A + 31 = 0. 
(b) The characteristic equation can be factored to (A - 3)(A - 1) = 

0. Check that (A - 3l)(A - I) = 0. 
(c) Following the same steps as in part (a), check that the matrix 

3 1 
A = for the computer-dog model satisfies its character-

2 2 

istic equation. 

35. The euclic.Jean norm !!Alie of A satisfies !Axle < IIAlle · lxle, where I le 
denotes the euclidean distance norm of a vector. If A is a symmetric 
matrix, it can be proved that IIAlle equals the largest eigenvalue of A (in 
absolute value). Compute the euclidean norm of the following matrices 
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and compare this value with the sum norm and max norn1 of these 
matrices. · 

(a) 
2 -1 

-1 2 
(b) 

-5 2 

2 -5 
(c) 

0 3 

3 0 

36. The euclidean norm (see Exercise 35) of a nonsymmetric matrix A is 
equal to the square root of the largest eigenvalue (in absolute value) of 
the symmetric matrix A7 A ( where A 7 is the transpose of A). Compute 
the euclidean norm of the following matrices and compare this value 
with the sum norm and max norm of these matrices. 

(a) 
1 2 

2 0 
(b) 

3 0 

1 1 
(c) 

-1 1 

2 4 

Solving Systems of Equations 
by Elimination 

(d) 
0 4 
3 0 

In this section we develop the general procedure of elimination for solving 
any system of 11 equations in n unknowns-to find the unique solution, if 
one exists, or to show that no unique solution exists. Elimination was devised 
by Karl Friedrich Gauss around 1820 to solve systems of linear equations 
that arose while solving a regression model (such as the one introduced in 
Section 1 . 4) to estimate locations in survey mapping. The method of elimi
nation was used in the beginning of Section 3 .1 to find a general solution 
to a system of two equations in two unknowns. 

The solution by elimination involves two stages. The first is to trans
f orrn the given system (as far as possible) into an upper triangular system 
such as 

2.xl + X2 - X3 = l 

X2 + 4X3 = 5 

.t3 = 2 

The second stage is to use back substitution to obtain values for the un
knowns. 

x3 = 2 ~ x2 + 4(2) = 5 or x2 = - 3; and 

x2 = - 3, x3 = 2 ~ 2x1 + (2) - ( -3) == 1 or x 1 = 3 

The solution vector is thus x = [3, - 3, 21. 
The elimination transf onnations in the first stage are based on the 

following two simple properties of equations: 

1 . If we multiply both sides of an equation by a constant this does not 
-affect the possible solutions to the equation. 
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2. If we add two equations together (add the left sides together and add the 
right sides together), any solution to both of the original equations is also 
a solution to the combined equation. 

Combining these two properties repeatedly, we construct a ne\V set of 
easily solved equations whose solution will be a solution to the original 
system of equations . 

Principle of Gaussian Elimination. Subtract multiples of the ith 
equation to eliminate the ith variable from the remaining equations, 
for i = 1, 2 , . . . , ,1 - 1 . 

The best way to show how Gaussian e1imination works is with some 
exan1ples. Then we state the procedure in algebraic terms. 

• 

v~·t~•~ . . '>-,~\lrA~'-¾ ~ ., .., ~ . 

Example I. Gaussian Elimination Example 
We start with a very simple system of two equations in two unknowns. 

(a) 

(b) 

X + y = 4 
2x - ), = -1 

To eliminate the 2x term from (b), we subtract 2 times (a) from (b), 
and obtain the following new second equation: 

(b) 

- 2(a) 

(b') = (b) - 2(a) 

2x- y == -1 

- (2x + 2y = 8) 

0 - 3y == -9 

Our new system of equations is · 

(a) _t + y = 4 

(b ') - 3y == - 9 

By properties 1 and 2, any solution to (a) and (b) is also a solution 
to (a) and (b'). Further, we can reverse the step C_!eating (b'). That is, 
(b') == (b) - 2(a) implies that (b) = (b') + 2(a). Thus (b) is formed 
from (b') and a multiple of (a), so any solution to (a) and (b') is a 
solution to (a) and (b). 

But (b') is trivial to solve, and gives 

y = 3 

Substituting y = 3 in (a), we have 

x + 3 = 4 ~ x == 4 - 3 l • 

, 
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I 

' 

The reader should check that x = 1, y = 3 is a solution to (a) 
and (b). • 

Example 2. Gaussian Elimination for 
Refinery Problem 

Recall the refinery problem introduced in Section 1. 2 with three refin
eries whose production levels had to be chosen to meet the demands 
for heating oil~ diesel oil, and gasoline. 

-
Heating oil: (a) 20.x 1 + 4x2 + 4~-r3 500 

Diesel oil: (b) 10x1 + 14x2 + 5.t 3 850 (1) 

Gasoline: (c) 5x1 + 5x2 + 12.,r3 = 1000 

Use multiples of equation (a) to eliminate x 1 from (b) and (c). First, 
subtract½ times (a) from (b) to eliminate the lOxl term from (b) and 
obtain a new second equation (b'). 

(b) 

-½(a) 

(b') = (b) - ½(a) 

10x1 + 14x2 + 5x3 = 850 

- (10x1 + 2x2• + 2x3 = 250) 

0 + 12x2 + 3x3 = 600 

In a similar fashion we subtract¼ times (a) from (c) to eliminate 
the 5x1 term from (c) and obtain a new equation (c'): 

(c) 

-lea) 
(c') = (c) - l(a) 

5x1 

- (5X1 

+ 5x2 + 12x3 = 
+ X2 + X3 = 

4x2 + l lx3 = 

Our new system of equations is now 

(a) 

(b') 

(c') 

20x1 + 4x2 + 4x3 = 500 

12x2 + 3x3 = 600 

4 x2 + l lx3 = 8 7 5 

• 

1000 

125) 

875 

(2) 

Next we use equation (b') to eliminate the 4x2 term from (c') 
and obtain a new third equation (c"). 

(c') 

- ~(b') 

llx3 = 875 

X3 == 200) 

(c'') = (c') - ¼(b') 

Our new system of equations is 

10x3 = 675 

(a) 

(b') 

(c") 

20x 1 + 4x2 + 4~t3 == 500 

12x2 + 3x3 == 600 

10x3 == 675 

• 

(3) 

• 



178 Ch. 3 Solving Systems of Linear Equations 

By properties l and 2, any solution to the original system (I) is 
a solution to the new system (3). Furthermore, by reversing the steps 
in going from ( 1) to (3) [ so that ( 1) is formed from linear combinations 
of the equations in (3) l, we also have that any solution to (3) is a 
solution to (1 ). 

Now (3) is in upper triangular form and we can solve using back 
substitution. From ( c") we have 

X - 675 - 671 3 - 10 - 2 

and giving this value for x3 in (b '), we have 

l2.t2 + 3(67~) = 600 

or 

• 
12X2 = 600 - 202~ ~ X2 = 33¼ 

and substituting these values for x3 and x2 in (a), we have 

20X I + 4(33!) + 4(67½) = 500 

or 

500 - 402~ . y 
X = ---- = 4s 

20 

• 

So the vector of production levels of the three respective refi
neries is (4i, 33!, 67½). Recall that in Section 1.2, by trial and error 
we had obtained the estimated solution vector (5, 33, 68)-a pretty 
good guess. • 

Example 3. System of Equations Without 
Unique Solution 

Suppose that we change the third equation in Example 2 so that our 
system is now 

(a) 

(b) 

(c) 

20x1 + 4x2 + 4x3 = 500 

10x1 + 14x2 + 5x3 = 850 

After eliminating x1 from (b) and (c) as above, we have 

(a) 
(b') 
(c ' ) 

20x1 + 4x2 + 4x3 = 
12x2 + 3x3 = 

-12x2 - 3x3 = 

500 
600 

- 600 

(4) 

(5) 

• 
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Next we add (b') to (c') to eliminate the - 12x2 term, but this elimi
nates all of (c') . 

(c") = (c') + (b') 0 == 0 

That is, equation (c') is just minus (b'). We have only two equations 
in three unknowns. This system has an infinite number of solutions, 
since we can pick any value for x3 and then knowing x3 we can de
termine x2 from (b') and then x1 from (a). 

Let us reconsider ( 4) with the third equation replaced by 

(c) 10 .. t 1 - l0x2 - .. t 3 = 300 

then ( c ') would have been 

(c') 

Now when we use (b') to eliminate the - 12x2 term in (c) , we get 

(c'') = (c') - (b') 0 = 650 

That is, (b') and (c') are inconsistent equations, and this new system 
has no solution. 

The reader should check that the coefficient matrix in ( 4) has 
determinant 0. The reason is that the first row minus the second row 
equals the third row. • 

Suppose that we have a system of ,i equations in n unknowns 

Q l 1X1 + a12X2 + • • • + al n J"(n -= bi 

a21X1 + a22X2 + • . • + G2n~'<11 bi 
• • • • • 
• • • • • 
• • • • • (6) 

a,-1X1 + a,-2X2 + • • • + a i ,,xn b-I 
• • • • • 

• • • • • 

• • • • 

a,, 1x 1 + an2X2 + • • • + ann~tn - bn -

Since the first equation begins a 11x1 + · · · and the ith equation begins 
a;1x1 + · · ·, then multiplying the first equation by a ;1/ a 11 will yield a new 
equation that begins a;1x1 + · · · , that is, 

• 
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equals 

(7) 

Subtracting (7) from the ith equation in (6) yields 

(8) 

By performing the steps in (7) and (8) for i = 2, 3, ... , n, we can eliminate 
the x1 term from every equation except the first, so that now, the second 
through nth equations will form a system of n - l equations in n - 1 
unknowns. We repeat the elimination process with this n - 1-by-n -1 sys
tem, eliminating the x2 term from the third through nth equations. We con
tinue this method of eliminating variables until we finally have one equation 
in x

11
-which is trivial to sol,1e. 
Once xn is known, we can work backwards to detennine the value of 

xn _ 1 , then of xn _ 2 , and so on, as in the previous examples. We are assuming 
here that when it is time to eliminate xj from equations j + 1 through n, 
the coefficient of xj in the current jth equation is nonzero; otherwise, we 
cannot use the jth equation to eliminate xj from other equations. We discuss 
the case where this coefficient is zero shortly. 
· Since Gaussian elimination involves only coefficients, the variables are 

just excess baggage. Thus, after stating a problem in equation form, we can 
perform the elimination algorithm on the coefficient matrix augmented with 
the right-side vector. 

Let us try out Gaussian elimination in this fo1mat on a familiar larger 
system, of four equations in four unknowns . 

• Example 4. Solving Leontief 
Supply-Demand Equations 

Use Gaussian elimination to solve the supply-demand equations intro
duced in Section 1.2 for a sample Leontief economic model. 

Industrial Demands 
Consumer 

Supply Energy Constr. Transp. Steel Demand 

Energy: Xi= .4X1 + .2x2 + .2X3 + .2x4 + 100 

Construct.: X2 = .3X1 + .3x2 + .2X3 + . lX4 + 50 
(9) 

Transport.: . lx1 + . lx2 + + .2X4 + 100 X3 = 
Steel: X4 == + . lx2 + . lX3 

Bringing the x,' s over to the left side of the equations, we have the 
system 

• 
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(a) .6x1 - .2x2 - .2X3 - .2X4 == 100 
(b) - .3x1 + .1X2 - .2X3 - . lX4 = 50 ( 10) 
(c) - . lx1 - . lx2 + X3 - .2x4 = 100 
(d) - .lx2 - .lx3 + X4 = 0 

Changing notation to the augmented coefficient matrix yields 

(a) .6 - .2 -.2 - .2 100 

(b) - .3 .7 - .2 - .1 50 
(10') 

(c) - .1 - .1 1 - .2 I 100 
(d) 0 - .1 - .1 I 0 

First we use multiples of equation (a) to eliminate the x1 ter1n from 
equations (b), (c), and (d), that is, to make entries (2, l), (3, l), and 
(4, 1) zero. 

(a) .6 - .2 - .2 - .2 100 
(b') == (b) + i(a) 0 .6 - .3 - .2 100 
(c') == (c) + ~(a) 0 - .133 .967 - .233 116.67 

(d) 0 - . l - . I 1 0 

. ., (11) 

Next we make entries (3, 2) and (4, 2) zero. 

(a) .6 -.2 - .2 - .2 100 
(b') 0 .6 - .3 - .2 100 

(12) 
( c") == ( c') + ~(b ') 0 0 .9 - .218 I 138.86 

(d") = (d') + l(b') 0 0 - .15 .967 16.67 

Final} y, we make entry ( 4 , 3) zero. 

(a) .6 - .2 - .2 - .2 100 
(b') 0 .6 - .3 - .2 100 

(13) 
(c'') 0 0 .9 - .218 I t38.86 

( d"') == ( d") + ~( c") 0 0 0 .920 39.81 

System (13) is an upper triangular system that is equivalent to (10), in 
the sense that both systems have the same solutions . In equation form, 
(13) is 

(a") .6x1 - .2x2 - .2x3 - .2X4 = 100 

(b"') .6x2 - .3x3 - .2x4 = 100 
(13') 

( c"') .9x3 - .278x4 == 138.86 

( d'") .920x4 = 39.81 
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Using back substitution, we obtain 

Xi == 325.3, X2 = 264.9, X 3 = 167.7 , X4 = 43.3 

As expected, these numbers are close to the estimated answer we 
obtained by iterated trial and error in Section 1. 2. • 

When we have another right-side b* for which the system Ax = b 
must be solved, it is natural to save some of the information used from the 
solution of Ax == b, since the operations performed in elin1ination depend 
only on the left-side coefficients, not on the right-side vector. For example, 
for a new set of consumer demands in the Leontief model above, all that 
would change in ( 13) would be the numbers on the right side . 

There are two natural sets of information to save. First is the final 
reduced set of the coefficients [e.g., the coefficients in ( 13) I; there is no 
need to compute these numbers again. Second is the collection of multipliers 
used to subtract the jth equation from the ith equation (i > j ), since we 
must perform these subtractions on the new right numbers . 

Let U denote the upper triangular matrix of coefficients in the final 
reduced system, and let L be the matrix of multipliers iii telling how many 
times equation j is subtracted from equation i. For reasons to be explained 
shortly, we set lu = 1. 

Example 5. L and U Matrices for Re-solving 
Refinery Equations 

Consider the system of equations from Example 2: 

• (a) 20x1 + 4.x2 + 4.x3 500 

(b) l0x1 + 14x2 + 5x3 850 

(c) 5x1 + 5x., + - 12x3 1000 
• 

whose final reduced system was 

(a) 

(b') 

(c") 

20x1 + 4x2 + 4x3 = 500 

+ l2x2 + 3x3 = 600 

10x3 = 675 

The reduced system matrix U is 

20 4 4 

U = 0 12 3 

0 0 10 
• 

• 

(14) 

(15) 

( 16) 

Recall that in Example 2 we eliminated x 1 from equations (b) and (c) 
in (16) by subtracting ½ times (a) from (b) and ! times (a) from (c). 
Thus 121 = ~ and 13 1 = l . Next we eliminated x2 from the last equation 

. 
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by subtracting! times (b') from (c'). Thus /32 = ½. Putting l's on the 
main diagonal, we have 

1 0 0 

L = ½ I 0 

! ~ 1 

(17) 

To solve (14) for another right-side vector b*, simply perform 
the elimination steps on b* specified by L to get the final right-side 
vector b** and then solve the reduced system Ux = b** b)' back 
substitution, 

For example, suppose that b* = [400, 500, 6001. Then repeati11g 
the elimination steps (using L) on the new right sides, we have 

(a) 

(b) 

(c) 

(a) 

(b') = (b) - ½(a) 

(c') = (c) - l(a) 

(a) 

(b') 
• 

(c") = (c') - ½(b') 

The new reduced system is 

= 400 

= 500 
== 600 

= 400 
== 300 
= 500 

= 400 

= 300 

= 400 

(a) 

(b') 

(c") 

20x1 + 4x2 + 4x3 = 400 

12x2 + 3x3 = 300 

· 10~t3 = 400 

Using back substitution, we find 

Then 

and finally 

'Y - 400 -- 40 
-'"3 - 10 

300 - 3(40) 
X2 = - 15 

12 

• 

400 - 4(15) - 4(40) 

20 
180 == 9 
20 

So the new olution is [9, 15, 40]. 
• 

(18) 

• 
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The reader can check that for the Leontief system in Example 4, the 
matrices U and L are 

• 

• 
I 

.6 - .2 - .2 - .2 1 0 0 0 

.6 1 0 0 0 - .3 - .2 1 -2 u == L == (19) 
0 0 .9 ' 1 2 0 - .278 1 -6 -9 

0 0 0 .920 0 1 l 1 -6 -6 

Note that ignoring the 1 's on L's main diagonal, the data in L and U 
can be stored together in one square matrix. 

Now we state a remarkable theorem. 

Theorem I. Given any n-by-n A, let the matrices L, U be as defined 
above. Then 

A = LU (20) 

Note that we are assuming that A's rows are arranged so that no O's occur 
on the main diagonal during elimination. Theorem 1 is proved at the end of 
Section 5.2. 

Let us check (20) for L and U in Example 5. We want to multiply: 

1 0 0 20 4 4 

LU == ½ 1 0 

i ½ 1 

0 12 3 

0 0 10 

(21) 

• 

Let us compute LU by the definition of matrix multiplication, which 
says that the ith row in LU equals lfU (where If is the ith row of L). So 
the first row of the product LU in (21) is 

20 4 
If U = [ l O O] 0 12· 

4 

3 == [20 4 4] 

1'he second row is 

20 4 4 
l~U == [~ 1 O] 0 12 3 

0 0 10 

The third row is 

0 0 10 

= ~ [ 20 4 4] + 1 [0 12 3] 

= [10 14 5] 

20 4 4 

(22a) 

(22b) 

11 u == [ l ! I] 0 12 3 

0 0 10 

== l[20 4 4] + ~[0 12 3) 

+ 1[0 0 10] 

= (5 5 12] . (22c) 
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• 

Putting the three rows of LU computed in (22a), (22b), and (22c) together, 
we have A. 

The proof of this theorem is a generalization of the computation done 
in (22a), (22b), and (22c). In the elimination process, we are forming new 
equations as linear con1binations of the original equations. Conversely~ the 
original equations are li11ear combinations of the final reduced equations. 
The latter property is exactly what the computations in (22a), (22b), and 
(22c) illustrate. For exan,ple, (22b) shows that a~, the second row of A, is 
the following linear combination of U's rows: af = iuf + u~. 

The LU decomposition of a square matrix has many important uses. 
It also yields a simple formula for the determinant of a square matrix and 
also allows us to prove t11at elimination always finds a solution to Ax = b 
if one exists. 

Theorem 2. For any square matrix A, 

det(A) = z, 11 • u22 • • • Lt1111 (23) 

That is, det(A) equals the product of main diagonal entries in U, where 
U is the reduced-system matrix in the decomposition A = LU. 

Proof. (i) Since A == LU, then det(A) = det(L) · det(U), by the 
product 1ule for determinants (Proposition 3 of Section 3. 1) . 

(ii) det(L) = 1, and det(U) = product of U's main diagonal 
entries, since the dete1111inant of a lower or upper triangular matrix 
(like L or U) is just the product of the main diagonal entries (Propo
sition 2 of Section 3. l). 

Combining parts (i) and (ii) we have formula (23). • 

Implicit in this theorem is the fact that if one ( or more) of the main 
diagonal entries in U is 0, then det(A) = 0 and Ax = b does not have a 
solution or the solution is nonunique. (Remember that we are assuming that 
the rows of A are arranged ,to avoid O's on the main diagonal during elimi
nation, unless a whole row of O's occurs.) When this happens, the elimi
nation process fails, as happened in Example 3. Conversely, if det(A) # 0, 
the elimination cannot fail. Thus we have proven 

Theorem 3. For any n-by-n matrix A and any 11-vector b, Gaussian elimi
nation finds the unique solution to Ax = b if such a unique solution 
exists. 

We close this section by presenting a variation on Gaussian elimination 
that is a little slower bul eliminates the need to do back substitution. This 
method is known as Gauss-Jordan elimination, but in this book we shal) 
call it the method of elimination by pivoting. Pivoting yields a convenient 
way to calculate the inverse of a matrix (in Section 3 .3) arid arises in the 
solution of linear programs. 

Elimination by pivoting uses the equation i to eli1ni11ate X; fro,n all 
other eqi,ations before, as well as after, equation i (Gaussian elimination 

' 
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only eliminates x,. in equations after equation i). It also divides equation i 
by au, so that the coefficient of X; in the new equation i is l. . 

We use the term pivot on entry aii (the coefficient of xi in equation i) 
to denote the process of using equation i to eliminate xi from all other 
equations (and make 1 be the new coefficient of xi in equation i). 

Example 6. Elimination by Pivoting 

Let us rework Example 2 using elimination by pivoting. 

(a) 

(b) 

(c) 

20x1 + 4x2 + 4x3 = 500 

10x1 + 14x2 + 5x3 == 850 

5x1 + 5x2 + 12x3 == 1000 

(24) 

We begin by expressing (24) in terms of an augmented coefficient 
matrix. 

(a) 

(b) 

(c) 

20 4 4 
10 14 5 

5 5 12 

500 

850 

1000 

(24') 

Now we make entry ( 1, 1) one and the rest of the first column zeros. 

(a') = (a)/20 

(b') = (b) - I 0(a') 

(c') = (c) - 5(a1
) 

1 1. 
5 

0 12 

0 4 

l 
5 

3 

I 1 

25 
600 

875 

(25) 

Next we make entry (2, 2) one and the rest of the second column zeros . 

(a") = (a') - !(b") 

(b") = (b')/ 12 

(c") = (c') - 4(b") 

1 0 2t 
0 l 

0 0 

1 
4 

IO 

15 

50 

675 

(26) 

Finally, we make entry (3, 3) one and the rest of the third column 
zeros. 

(a,,) = (a') - 2
3o(c"') 

(b"') = (b") - l( c"1
) 

( c'") = ( c11
) I 10 

1 0 0 4~ 

o 1 o I 33! 
0 0 1 67½ 

(27) 

Note that the upper triangular system of equations corresponding to 
(27) yields a solution directly, without back substitution. 

Xi == 4i 
X2 = 33} 

x3 = 67½ 

(27') 

• 
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Actually, in elimination, one can use any equation to eliminate x; from 
the other equations. We illustrate the idea with elimination by pivoting, but 
it also applies to Gaussian elimination. 

Example 7. Solution with Off-Diagonal Pivoting 

Let us repeat Example 6 but with the numbers in equations (b) and (c) 
changed: · 

(a) 20 4 4 500 

(b) 10 2 5 850 (28) 

(c) 5 5 9 525 

We want to make entry (l, I) one and the rest of the first column 
zeros. 

(a') == (a)/ 20 

(b') == (b) - I0(a') 

(c') == (c) - S(a') 

I .!. 1.. 25 5 5 

o o 3 I 600 

048400 

(29) 

Since entry (2, 2) is zero, we cannot pivot on it . Furthermore, 
we cannot pivot on entry ( 1, 2) since we have already pivoted on an 
entry in the first row. Thus we must pivot on entry (3, 2) and make it 
one while the rest of the second column becomes zeros . 

(a") == (a' ) - ~ ( c") 

(b") = (b1
) 

(c") == (c')/ 4 

Finally, we pivot on entry (2, 3). 

(a"') == (a") + ~(b") 

(b"') == (b")/ 3 

( c"') == ( c") - 2(b") 

l 0 

0 0 

0 1 

• 

l 0 

0 0 

0 1 

_ 1. 5 
5 

0 

l 

0 

3 I 600 

2 100 

45 

200 

- 300 

(30) 

(31) 

We read off the solution, x1 == 45, x2 == - 300, x3 = 200. • 

We close with two important comments about elimination. The first is 
how to handle the problem of entry (i, i) being O when ive 1-vant to use it to 
eliminate X ; from the folloiving equatio11s-this occurred in (29) . The solu
tion is to pivot on another nonzero entry, say entry (lz, i), in the ith column· 
in (29), we pivoted on entry (3, 2) . An equivalent step is to interchange the 
ith equation with the hth equation~ after the interchange~ entry (i, i) is 
nonzero. In (29) we would interchange equations (b') and (c'). Such an 
interchange works for Gaussian elimination as well as elimination by pivot-
• 1ng. 

• 
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Second, note that 011e l·annot pivot t,vic:e i,z tlze same ro~v. For example, 
in system (30), if we pivoted on entry (3\ 3) , then when we used the third 
equation to eliminate x3 terms from other equations, we would be reintro-
ducing x 2 terms into the other equations (see Exercise 21). · 

The LU decomposition exen1plifies a very important aspect of com
puter science. In the LU decomposition. we transfer much of the work in 
solving the system Ax = b into a ' '"data structure ' problem. We '·store'' 
A in the decomposed form of a lower and an upper triangular matrix , L and 
U. Computer science examines how one processes complex sets of infor
mation (in Europe, the subject is often called i1ljortnatics) . How data are 
organized (or preprocessed) into data structures is often more important in 
information processing than the subsequent computations. 

The LU decomposition is also a n1atrix algebra example of tl1e com
puter science insight-that computer programs can be viewed as a special 
form of data. That is, programs are stored as a string of O,s and 1 ~s just like 
other data (before progra111s were stored as data, co111puters had to be rewired 
for each new set of computations). The matrix L contains the elimination 
multipliers, part of the Gaussian elimination ·'program," which are used to 
reduce any rigl1t-side vector b to b* after wl1ich back substitutio11 solves 
Ux = b*. Premultiplying the reduced-form matrix U by L to obtain A is 
another instance where L acts I ike a program- the ith row of L times U 
reconstructs the ith row of A a a linear combination of U's rows: 

• 

Matrix multiplication makes it possible to use matrices as both data 
and programs, just like a computer. By pre- and postmultiplying data matrix 
by the proper ''progra1n'' matrices, one can do almost anything. At the core 
of such computations is having the right data representation or data structure, 
be it a matrix decomposition or some other transformed form of the matrix. 
The key stage in virtually all modem numerical algorithms involving matri
ces is the preprocessing, to get the right representation of the data . 

• 

Section 3.2 Exercises 

Summary of Exercises · 
Exercises 1- 16 involve Gaussian elimination computations. Exercises 17- 20 
involve word problems. Exercises 21- 25 are theoretical . 

I. Solve the foil owing S)'Stems of equations by Gaussian elimination. 
(a) x + )1 = 5 (b) 2 .. r - 3y = 4 (c) 3x - y = 0 

X - 2y = 4 3x + 2y = 5 - 2x + y = 2 

2. In each of the following sets of three equations, show that the third 
equation equals the second equation minus some multiple of the first 
equation: (c) = (b) - r(a) for some r. 

• 
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t 

(i) (a) X + 2)1 = 4 

(b) 3x + y = 9 

(c) x - 3y = l 

(iii) (a) 2x + y - 2z = - 5 

(b) 3x - y + z = 8 

( C) 6 .. t + . 5 y - 2z = . 5 

(ii) (a) X - ) ' + Z = 2 
(b) x + y - z = 3 

(c) - 2x + 4y - 4z == - 3 

3. Solve the following systems of equations using Gaussian elimination. 
( a) 2x 1 - 3x2 + 2x3 = 0 (b) - x 1 - x2 + x3 = 2 

x 1 - x2 + x3 = 7 2x1 + 2x2 - 4x3 = - 4 

-x 1 + 5x2 + 4x3 = 4 x 1 - 2x2 + 3.t3 = 5 

(c) -x1 - 3x2 + 2x3 = - 2 (d) 2x1 + 4.t2 - 2x3 4 

2x1 + x2 + 3x3 = ! x 1 - 2-t2 - 4x3 - l 

5x1 + 4x2 + 6x3 + 12 - 2x1 - .'t2 - 3x3 - 4 

(e) x1 + x2 + 4x3 == 4 

2x 1 + x2 + 3x3 = 5 

5x 1 + 2.t2 + 5x3 = 11 

(f) 2x1 - 3x2 - x 3 = 2 

3x 1 - 5x2 - 2x3 = - I 

9x 1 + 6x2 + 4x3 = l 

4. Solve the problems in Exercise 3 using elimination by pivoting 
(Gauss-Jordan elimination). 

S. (a) Write the LU decomposition for each coefficient matrix A in Ex-
ercise 3. · 

(b) Multiply L times U to show that the product is A, for each coef
ficient matrix A in Exercise 3. 

6. Find the determinant of each matrix in Exercise 3 using Theorem 2. 

7. Re-solve each system in Exercise 3 with the ne\v right-hand-side vector 
[ 10, 5, l O] using the numbers in the L and U matrices you found in 
Exercise 5. 

8. For the right-side vector b = [ 1, 2, 3], solve the system of equations 
Ax = b, where instead of A, you are given the LU decomposition 
of A. 

l O 0 

(a) L == 1 1 0 , 

2 3 l 

l 0 
(b) L == - 2 1 

4 - l 

2 l l 

U = 0 3 2 

0 0 - 2 

0 I -2 

0 , U = 0 5 
l O 0 

2 

2 

2 

9. Solve the following systems of equations using Gaussian elimination 
and give the LU decomposition of the coefficient matrix. 

• 
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(a) X1 + 3x2 + 2x3 - X4 = 7 

X1 + X2 + X3 + X4 = 3 

2x1 - 2x2 + X -3 X4 = -5 

X1 3x2 - X3 + 2.x4 = - 4 

(b) 3X1 + 2x2 + X3 3 

X1 + X2 X4 = 2 I 

2x1 + X2 - X3 + X4 = -3 

X1 + X2 + X3 + X4 = 0 

(c) Xi + X2 - X3 X4 = 4 

2x1 + .-"t4 = 8 

3X1 - 2x4 = 3 

4x1 - 2x2 + X3 + 3x4 == 15 
• 

10. Exercise 9, part (c) can be simplified by first solving the second and 
third equations for x1 and x4 , and afterward solving for x3 and x4 • Solve 
Exercise 9, part ( c) this way. 

11. Given the LU decomposition of an n-by-n matrix A, how many mul
tiplications are required to compute A as the matrix product LU (allow-
ing for known O's in L and U)? · 

12. Determine whether each of the following systems of equations has a 
unique solution, multiple solutions, or is inconsistent. 

(a) 2x - 3y = 6 

-6x + 9y = 12 

(C) X1 X2 + X3 = 5 
x1 + 3x2 + 6x3 == 9 

- x1 + 5x2 + 4x3 = 10 

( e) x1 + x2 + 2x3 = 3 

- x1 2X2 + X3 = 8 
X 1 X2 + 8X3 = 25 

(b) x 1 + 2x2 + 3x3 = 10 

2x1 - x2 + 4x3 = 20 

5x2 + 2x3 = 0 

( d) x 1 + x2 + 2x3 == 0 

2x 1 + x2 - 3x3 = 0 

- X 1 + 2x2 + X3 = 0 

(f) x 1 + 2x2 + 3x3 = 5 

3x1 - x2 - 2x3 = - 3 

- 5x 1 + 4x2 + I 0x3 = 14 

13. Use Gaussian elimination to solve the following variations on the refin
ery problem in Example 2. Sometimes the variation will have no so
lution, sometimes multiple solutions (express such an infinite family of 
solutions in terms of x3), and sometimes the solution will involve nega
tive numbers (a real-world impossibility). 

(a) 20x1 + 4x2 + 
8x1 + 3x2 + 

4X3 = 500 (b) 

5x3 = 850 = 850 

+ 12x3 = 1000 

• 
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' 

• 

14. 

15. 

(c) 6x 1 + 2x2 + 2x3 = 500 

3x1 + 6x2 + 3x3 = 300 

3x1 + 2x2 + 6x3 = 1000 

(d) 8x1 + 4x2 + 3x3 = 500 

4x1 + 8x2 + 5x3 =- 500 

12x2 + 6x3 = 500 

Solve each system of equations in Exercise 3 with elimination by piv
oting in \vhich off-diagonal pivots are used-to be exact, pivot on entry 
(2, 1), then on (3, 2), and finally on (1, 3). 

Solve the following systems of equations by Gaussian 
When you come to a zero entry on the main diagonal 

elimination. 
interchange 

equations as appropriate. 
( a) x1 + 2x2 + 3x3 == 6 

(c) 

2 .. ~1 + 4x2 + 5x3 = 12 

2x1 + 5x2 - 3x3 == 10 

X2 + X3 + X4 = 6 

- X3 - Xt1 = 5 

2X2 + X4 = 4 

-½ + X3 - X4 = 3 

(b) 

(d) 

x, 

-2x1 

X2 + X3 = 0 

X3 + X4 == 1 

- X4 = 2 

= 3 

16. The following systems of equations are large, but their special tridi
agonal form makes them easy to solve. Solve them . 
(a) X1 - X2 == 2 

(b) 

- X 1 + 2X2 - X3 == 0 

2x1 

X1 

+ 

X2+2X3 - X4 

X2 

- X3+2X4 -x 5 

- X4 + .. t5 

=0 
=0 
=? -

I 

+ 2x2 + .. t3 1 

Xi+ 2 .. t3 + X4 1 

X3 + 2X4 + X5 = 1 

X4 + 2x5 = 1 

17. The staff dietician at the California Institute of Trigonometry has to 
1nake up a meal with 600 calories, 20 grams of protein, and 200 mil
ligrams of vitamin C. There are three food types to choose from: rubbery 
jello, dried fish sticks, and mystery meat. They have the following 
nutritional content per ounce. 

Calories 

Protein 

Vitamin C 

I 

• 

Jello 

10 

1 

30 

Fish Sticks 

50 

3 

10 

Mystery Meat 

200 

• 2 I 

0 
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Set up and solve a system of equations to determine how much of each 
food should be used. 

18. A furniture manufacturer makes tables, chairs, and sofas. In one month, 
the company has available 300 units of wood, 350 units of labor, and 
225 units of upholstery. The manufacturer wants a production schedule 
for the month that uses al I of these resources. The different products 
require the following amounts of the resources. 

Wood 

Labor 

Upholstery 

Table 

4 

3 

2 

Chair 

I 

2 

0 

Sofa 

3 

5 

4 

Set up and solve a system of equations to determine how much of each 
product should be manufactured. 

19. A company has a budget of $280,000 for computing equipment. Three 
types of equipment are available: microcomputers at $2000 a piece, 
terminals at $500 a piece, and word processors at $5000 a piece. There 
should be five times as many terminals as microcomputers and two 
times as many microcomputers as word processors. Set this problem up 
as a system of 3 linear equations and solve to determine how many 
machines of each t)'pe should there be. 

20. An investment analyst is trying to find out how much business a secre
tive TV manufacturer has. The company makes three brands of TV: 
Brand A , Brand B , and Brand C. The analyst learns that the manufac
turer bas ordered from suppliers 450,000 type- I circuit boards, 300,000 
lype-2 circuit boards and 350,000 type-3 circuit boards. Brand A uses 
2 type-I boards, 1 type-2 board, and 2 type-3 boards. Brand B uses 3 
type-1 boards, 2 type-2 boards, and 1 type-3 board. Brand C uses l 
board of each type. How many TV's of each brand are being manufac
tured? 

21. This exercise shows why each pivot (in eli1nination by pivoting) must 
be in a different row. 
(a) In Example 7, make the third pivot on entry (3, 3) instead of on 

entry (3, 2). Can you still read off the solution? 
(b) In Exercise 3, part (b), make the following sequence of pivots, 

entry (3, 1), entry (2, 2), then entry (2, 3). Does this provide a 
solution to the system of equations? . 

22. For what values of k does the following refinery-type system of equa
tions have a unique solution with all X; nonnegative? 
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• 
6.x 1 + 5x2 + 3.x3 == 500 

4 .. '.tt + X2 + 7 -t3 600 

5x1 + kx2 + 5x3 == 1000 

23. For an arbitary 2-by-2 system of equations 

ax+ by = r 

ex + dv = s 
~ 

(a) Determine the LU decomposition of the coefficient matrix A. 
(b) Verify that L times U equals A. 

24. Use Theorem 2 to show that in Ax 
then det(A) = 0. 

b, if one row of A is all O,s, 

25. Consider the following 3-by-3 matrix whose entries are functions. Find 
the LU decomposition of this matrix and find its determinant. 

3x 6x2 ex 

x2 x3 xex 

6 3.x e~/ x 

Computer Projects 
26. Write a computer progran1 to perform Gaussian elimination on a system 

of 11 equations in n unknowns ( watch out for O's on the main diagonal). 

27. Write a computer program to perform elimination by pivoting on a 
system of n equations in n unkno,vns (watch out for 0 pivots). 

The Inverse of a Matrix 
• 

In this section we study a general method for solving a system of equations 
Ax = b for any b ~ instead of for one particular b as in Sections 3. 1 
and 3.2. 

Any matrix A has an additive inverse, the negative - A ( obtained hy 
changing the sign of all entries), such that 

A + (-A) = 0 

A multiplicative inverse A- 1 has the property 

AA- 1 = I and 

where I is the identity matrix. Inverses allow us to ''solve'' a system of 
• equations symbolically the way one solves the scalar equation ax = b by 

.dividing both sides by a, obtaining .. T = a - 1 b. 
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Tlieorem 1. If A has an inverse A- 1, then the system of equations 
Ax == b has the solution x == A - 1b. 

Proof. As in the one-variable case, we divide both sides of Ax = b 
by A, that is, multiply both sides by A- 1: 

(1) 

Using matrix algebra and the fact that A - 1 A = I, we can rewrite the 
left side of (1), A - 1(Ax), as x. The details of this rewriting are 

Combining (1) and (2), we have the desired result: x = A - 1b. • 

A matrix A is invertible if it has an inverse. In many books the term 
no11singular is used instead of invertible; a singular matrix has no inverse. 
Some matrices are invertible and some are not. Much of the theory of linear 
algebra centers around conditions that will make a matrix invertible. We 
note that if a matrix A has an inverse A- t, the inverse is unique (see Exer
cise 17). 

In Section 3. l we saw that finding a (unique) solution to a system of 
linear equations was dependent on whether the associated coefficient matrix 
A had a nonzero determinant. Now we have another sufficient condition, 
the existence of A - 1. 

We will show shortly how to calculate inverses, when they exist. First, 
let us verify that certain matrices do and do not have inverses. 

Example 1. Matrices With and Without Inverses 

(i) Matrix A == 
3 1 

has the inverse A - 1 == 
4 2 

1 

-2 
-½ 

3 • 
2 

(For the present, do not worry how this inverse was found.) Mul
tiplying A times A- 1

, we have 

3 1 1 1 3Xl + l X - 2 3x-½+1xf - 2 -.a -
4x-½+2xj 4 2 -2 4Xl + 2X -2 2 

1 0 

0 1 

The reader can verify that if A- 1 precedes A, again A- t A = I . 

(ii) We claim that the matrix B = 
l 4 

2 8 

• 

has no inverse. 
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The key to our claim is the observation that the second row is 
twice the first row. 

b~ = 2bf (3) 

where bf denotes the ith row of B. 
Suppose that C were the inverse of B, so that BC == I = 

1 
O . If cf and cf are the two columns of C , the n1atrix product 

0 I 

BC is the following collection of scalar products: 

BC == bf· cf 

b~ · cf 

1 

0 

0 

1 
(4) 

From (3), bf · cf = 2bf · cf. So the second row of 
BC, [b~ · cf, b~ · c~, must be twice the first row, 
[bf · cf bf · cf], but the second row of I is not twice its first 
row. '"fhis contradiction shows that no inverse can exist. • 

Example 1, part (ii) shows that if one row of A is a multiple of another 
row, no inverse can exist. This result complements Proposition 1 of Section 
3. l, which says that if one row is a multiple of another, det(A) = 0 (so no 
unique solution to Ax = b exists). 

Remember that the inverse of a matrix, when it exists, is unique. The 
following example shows how to compute the inverse of a matrix. 

Example 2. Computing Inverse of 
a 2-by-2 Matrix 

Consider the 2-by-2 matrix A and its (unknown) inverse X: 

A = 
3 1 
4 2 ' 

We require that AX = I: 

AX= 
3 1 

4 2 

X = 

l 0 

0 I 
= I (5) 

We determine X ( = A - 1
) a column at a time. First we set 

Axf, the first column in product AX of (5), equal to the first column 
of I: 

Axe - e. 
1 - 1 • 

• 

1 

0 
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or 

• 

3x I I + X2 I == 1 

4X11 + 2X21 = 0 

Similarly, the second column yields the system 

3X12 + X22 == 0 

4x12 + 2X22 = 1 

• 

• 

(6a) 

(6b) 

Using elimination by pivoting on the augmented coefficient ma
trix for ( 6a), we obtain 

- 2. For (6b) we obtain 

SO X 1 2 == - ½' X22 == ! . 

I 0 
0 1 

1 0 

0 1 

1 

-2 
(7a) 

(7b) 

Substituting these values for xu back into X ( == A - 1), we have 

1 
-2 

1 
-2 

3 
2 • 

Although elimination is the preferred way to solve a system of equa
tions, Cramer's rule yields an easy-to-remember formula for solving the 
equations for the inverse of a 2-by-2 matrix. For a general 2-by-2 matrix A, 
the system of equations Axf == e1 [like (6a)l has the solution by Cramer's 
rule: 

det(A) 
a22 

det(A) det(A) 
-a21 

det(A) 
(8) 

The simple form of the numerator comes from having a right-side 
vector of [ 1 , O]. The same simplification occurs in solving Axf == e2 by 
Cramer's rule (we have the same system of equations except that the right
side vector is now [O, 1 ]). The reader should check that with (0, 1], (8) now 
yields the solution: x12 = -a12/det(A), x22 == a 11 /det(A). 

These single-number numerators lead to the following general formula 
for the inverse of a 2-by-2 matrix: 
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For,nulafor Inverse of a 2-by-2 Matrix 

If A == 
' 

- I - J 
then A - det(A) 

a22 -a,2 

-a21 G11 
(9) 

In words, a 2-by-2 inverse of A is obtained as follows: Diride all 
e1ztries of A by the determi11a11t, then interchange the nvo diagonal e11tries 
and clzange the sign of the two off~diago11al er1tries . 

The method in Example 2 for finding the inverse of A a column at a 
time can be applied to any matrix. 

Theorem 2. Let A be an 11-by-n matrix and e1 be the jth unit ,z-vector, 
eJ = [0, 0, . . . , 1, ... , OJ. If the 11-vector xJ is the solution to the 
matrix equation 

• 

Ax. == e. 
:, J ( 10) 

for i = 1, 2, ... , n, then the n-by-11 matrix X with column vectors 
xi is the inverse of A. 

A - l = X == [ X l , X2, . . . , xn] ( 11) 

Note: If the systems Axi == eJ do not hal,e solutions, A does not have 
an Lit verse. 

Recall that when we solve a sy tern of equations by elimination, the 
right sides play a passive role. That is, usi,ig a different right side b does 
not l'hange any of the calczilations i11volvi11g t/1e coefficie11ts. If affects only 
the final values that appear on the right side. Thus, when we performed 
elimination by pivoting on the coefficient matri~ in (7 a) and (7b) of Example 
2, we could have simultaneously applied the elimination steps to a11 aug
mented coefficient matrix [A I] that contained both right-side vectors. The 
computations would be 

3 I I I 0 
4 2 0 I 

J ~ 
0 i 

~ 0 

-3 1 
1 0 I I 
0 1 -2 3 

2 
( 12) 

So starting with [A I], elimination by pivoting yields [I A - 1]. 

' 

Computanon of the Inverse of an n-by-n Matrix A. Pivot on entries 
(1, 1), (2, 2), ... , (,z, n) in the augmented matrix [A I]. The 
resu1ting array will be [I A - 1

] . 
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In Section 3. 2 we learned that the LU decomposition can be used to 
solve Ax == b for several different h's. The LU decomposition and pivoting 
on the augmented matrix [A I] are equally fast ways to find the tnverse. 
In hand computation, the augmented matrix method is easier. 

Example 3. Inverse of a 3-by-3 Matrix 

Let 

1 0 2 

A== 2 4 2. 

1 2 6 

We compute the inverse using pivoting on the augmented matrix 
[A I]. 

(a) 

[A I] == (b) 

(c) 

Thus 

(a') == (a) 

(b') == (b) - 2(a) 

(c') = (c) - (a) 

(a'') = (a') 

(b") = (b')/ 4 

( c'') = ( c') - 2(b") 

(a'") = (a") - 2(c"') 

(b"') = (b") + (c'")/2 

(c'") = (c")/5 

A- 1 --

1 0 2 l O 0 

2 4 210 1 0 

1 2 6 0 0 1 

1 0 2 I 

0 4 -21 -2 
0 2 4 -1 

I 0 2 1 

0 1 1 1 -2 -2 

0 0 5 0 

1 0 0 1 

0 1 0 1 
-2 

1 
5 
1 
5 
1 0 0 1 0 -1o 

I .l 2 
5 -5 

1 1 1 
-2 5 To 

0 1 1 -10 5 

0 0 

1 0 

0 l 
(13) 

0 0 
1 0 4 

-½ 1 

2 
-5 

1 
To 
1 
5 

• 
If we have to solve a system of equations Ax = b for many different 

right-hand sides, it is useful to know A - 1
• For each new b', we find the 

solution of Ax = b' as x == A - 1b'. The inverse also lets us determine how 
a small change Lib in b will affect our solution x. 

• 
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Example 4. Use of Inverse in Multiple 
Right-Hand Sides 

In Example 5 of Section 3. 2 we solved the refinery system of equations 
by pivoting along the diagonal. Let us use the same sequence of pivots 
with the augmented matrix [A I] to compute the inverse. 

(a) 

(b) 

(c) 

(a') == (a)/20 

(b') == (b) - l0(a') 

(c') = (c) - 5(a') 

(a") = (a') - (b")/5 

(b") = (b')/12 

(c") == (c') - 4 (b") 

( a'") = ( a") - to( c'") 

(b"') == (b") - l( c"') 

(c"') = (c")/10 

20 4 4 l 0 0 

10 14 5 I 0 l 0 

5 5 12 0 0 1 

1 1 l 1 0 0 5 5 20 

0 12 3 I 1 
-2 I 0 

0 4 11 -¼ 0 I 

1 0 _a_ 7 1 
20 120 -60 

0 1 1 l --h ...L 
4 12 

0 0 10 1 1 
-12 -3 

1 0 0 2
1
4
4to 7 

-600 

0 1 01 19 11 
-480 120 

0 0 1 1 1 
- 120 -30 

The inverse is, in decimals, 

.05958 - .01166 - .015 

A- ' = - .03958 .09167 - .025 

- .00833 - .03333 . l 

( 14) 

0 

0 

1 

-do 
-to 

1 
To 

( 15) 

If we were given ~ right-hand-side vector for the refinery system, 
say the vector b' = [300, 200, 100], then the solution can be obtained 
by computing x = A- 1b'. 

X = A - 1b' == 

--

.05958 -.01166 -.015 

- .03958 

-.00833 

.09167 
-.03333 

- .025 

. l 

300 

200 

100 

.05958 X 300 - .01166 X 200 - .015 X 100 

- .03958 X 300 + .09167 X 200 - .025 X 100 

- .00833 X 300 - .03333 X 200 + .1 X 100 

17.87 - 2.33 - 1.5 

- 11.87 + 18.33 - 2.5 -

-2.50 - 6.67 + 10 

14.0 

4.0 

.8 

(16) 

• 
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Observe that if 6.b = [ 1, 0, 0], the solution Ax = A - 1 db = 
(A- 1 )f, where (A - 1 )f denotes the first column of A- 1• If we wanted 
to increase production by one unit of the first product-change b to 
b + ~b-the solution changes from x to A- 1 b + A - 1 Ab = x + 
Ax. Thus the change equals Ax, which is (A- 1)f. Similarly, the second 
and third columns tell how the solution will change if we need 1 more 
unit of the second or third product. In sum, the columns of A - 1 show 
us how the solution x changes when the right-side vector b changes. 

For example, to find the solution x* when we change from 
b = [300, 200, 100] to b' = [300, 300, 100), we take the solution 
x = A- 1b = [14.0, 4.0, .8) computed in (16) for band change it 
by A- 1 Ab, where Ab = b' - b == [0, 100, 0]. So 

300 300 0 
x* == A - I 300 = A - 1 200 + A- 1 100 

100 100 0 

14.0 - 1.2 12.8 
(17) 

- 4.0 + 9.2 13.2 -

.8 -3.3 -2.5 • 

The next two examples interpret the role of the inverse in two familiar 
linear models. 

• 

Example 5. Decoding Alphabetic Messages 

In Example I of Section 1 . 5 we introduced a scheme for encoding a 
pair of letters L 1, L2 as a coded pair C1, C2 • Recall that each letter is 
treated as a number between 1 and 26 (e.g . , BABY is the numeric 
sequence 2, 1, 2, 25) and arithmetic is done mod 26. We considered 
the following instance of this scheme: 

C1 = 9L 1 

C,2 = 7L1 

+ 17L,, (mod 26) -
+ 2L2 (mod 26) 

(18) 

If L 1 == E ( == 5) and L2 = C ( == 3), this pair of letters would be 
encoded as the following pair C 1, C2: 

C1 = 9x5 + 17x3 == 96 - 18 (mod 26) = R 

C2 =7x5+ 2X3=41-15 (mod26)=0 

In matrix form, with c = (C 1, C2), l == (L
1
, L

2
), and E 

9 17 
7 2 

, (18) becomes 

c = El (mod 26) 

The person who receives the coded pair c will decode c back into the 

• 
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• 

two original message pair I by using the inverse of E: 

.. 

To use the fonnula (9) for a 2-by-2 inverse, we first compute 

det (E) = 9 X 2 - 7 X 17 = - 101 = 3 (mod 26) 

since - 101 = -4 · 26 + 3. 
Observe that 3 x 9 = 27 = 1 (mod 26), and therefore 

1/ det(E) == 5 = 9 (mod 26) (note that division mod 26 is not always 
well defined, but the numbers in this case were chosen so that di vision 
would work) . By (9) , we have 

E 1 = 9 
2 -17 

- 7 9 

So the decoding equations are 

9 X2 
- 9 X7 

18 3 

15 3 

-9 x 17 

9 X 9 

(mod 26) 

L, = 18C1 + 3C2 (mod 26) 

L2 = 15C1 + 3C2 (mod 26) 

For example, the pair R, 0 ( = 18, 15) is decoded using ( 19) as 

L1 = 18 X 18 + 3 X 15 = 324 + 45 = 369 

= 5 (mod 26) = E 

L,, = 15 X 18 + 3 X 15 == 270 + 45 = 315 -
= 3 (mod 26) = C 

( 19) 

So R, 0 decode back to the original pair E, C, as required. • 

Example 6. Reversing a Markov Chain 

The transition matrix A in a Markov chain is used to compute the 
probability distribution p' in the next period from the current proba
bility distribution p according to the matrix equation 

p' == Ap (20) 

Suppose that we want to run the Markov chain backwards
earlier in time-so that the relation in (20) becomes reversed and p' 
is used to determine p. Then the new transition matrix should just be 
A - 1 , since solving (20) for p yields 

p = A - Ip' 
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We now try to invert the Markov chain for the frog-in-highway model 
introduced in Section 1. 3. The transition matrix augmented with the 
identity matrix is 

.50 .25 0 0 0 0 I t 0 0 0 0 0 

.50 .50 .25 0 0 0 1 0 0 0 0 0 

0 .25 .50 .25 0 0 ,o 0 1 0 0 0 
(21) 

0 0 .25 .50 .25 0 0 0 1 0 0 0 

0 0 0 . 25 .50 .so I o 0 0 0 1 0 

0 0 0 0 .25 0 0 0 0 1 .50 0 

As usual we pivot down the main diagonal on entry (I, 1), then on 
(2, 2), then (3, 3), then (4, 4) , then (5, 5), and finally (6, 6). After 
the first five pivots, we have 

1 0 0 0 0 -1 10 -8 6 -4 2 0 
-2 I 0 I 0 0 0 -16 16 - 12 8 -4 0 

0 0 1 0 0 - 2 12 -12 12 -8 4 0 
I (22) 

0 0 0 1 0 -2 - 8 8 - 8 8 - 4 0 

0 0 0 0 l -2 4 - 4 4 -4 4 0 
01 0 0 0 0 0 - 1 1 - 1 1 -1 1 

The elin1ination process fails because entry (6, 6) is 0. Recall that a 
similar difficulty arose when we were performing elimination in Ex
ample 2 of Section 3. 2. The failure of the elimination process means 
that the transition matrix A is not invertible. Some Markov transition 
matrices are invertible, but their inverse will have negative entries and 
not make sense as a Markov chain-see the Exercises. 

A Markov chain cannot run backward. To see why, let p' be a 
unit vector, say, e6 = [0, 0, 0, 01 0, 1]. A moment's thought shows 
that there is no vector p such that Ap = e6 . That is, there is no 
distribution for the frog in the previous period that would force the 
frog, witl1 certainty, to be in state 6 now. • 

There is a simple algebraic way to explain the computation of the 
inverse in Examples 3 to 6. We write the original system of equations 
Ax = bas · 

Ax = lb (23) 

In Example 4 with the refinery problem, (23) is 

20 4 4 X1 

10 ]4 5 X2 (24) 

5 5 12 X3 

• 
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Then we perform elimination by pivoting to convert A to I and get 

Ix = A- 1b 

In Example 4 this is 

1 0 0 

0 1 0 

0 0 1 

.05958 - .01166 

-.03958 .09167 

- .00833 - .03333 

-.015 

-.025 

.1 

(25) 

(26) 

Similarly trying to reverse the Markov chain, we wanted to convert 
Ap = Ip' into Ip = A- 1p'. 

We next turn to some theory about inverses . 

Theorem 3. Properties of the Inverse 

(i) If A and B are invertible matrices, AB is invertible and 

(AB) - 1 = B- 1A- 1 

• 

(ii) If A is an invertible matrix, A- 1 is invertible and 

(iii) If A is an invertible matrix, so is its transpose Ar and 

Proof of (i). The reasoning given here is typical of proofs involving 
inverses. Since the inverse of a matrix is unique-this fact is critica]
we only need to check that AB ti1nes B - 1 A- 1 is I. 

(AB)(B- 1A- 1) = A(BB - 1)A- 1 = AIA- 1 = AA - 1 = J • 

Next we show the links between inverses, determinants, and solutions 
of systems of linear equations. First note the following relation between the 
determinants of A and of A- 1 (assuming that A- 1 exists). The identities 

det(AB) = det(A) · det(B) 

together imply 

and AA- 1 = I 

det(A) · det(A -1) = det(AA - 1) = det(I) = 1 

Thus 

- I - } 
det(A ) - det(A) and 

1 
det(A) = det(A- •) (27) 
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Theorem 4. Fundamental Theorem for Solving Ax = · b. The follow
ing four statements are equivalent for any n-by-n matrix A. 

(i) For all b, the system of equations Ax == b always has a unique 
solution. 

(ii) The system of equations Ax = lb can be converted, using elimi-
nation by pivoting, to the system Ix = A- 1 b. 

(iii) A has an inverse. 
(iv) det(A) =I= 0. 

Proof 
(i) ~ (ii): The elimination by pivoting in (ii) is equivalent to si

multaneously solving Ax = ei for j = 1, 2, . . . , n and 
Ax = ei can be solved by (i). 

(ii) ~ (iii): Obvious. 
(iii) ~ (iv): If A - 1 exists, then formula (27) says that det(A) 

1/det(A - 1
) # 0. 

(iv) ~ (i): As noted in Theorem 1 of Section 3 .1, when det(A) ¥= 
0, Cramer's rule gives a unique solution to Ax = b. • 

We have the following useful corollary. 

Corollary . 
(i) If for some b, the system of equations Ax = b has two solutions, 

then A is not invertible. 
(ii) Conversely, if A is not invertible, then f.Gl=..ttll b, Ax = b has 

either no solution or else multiple solutions. 

We conclude this section by incorporating inverses into the eigenvalue
based analysis of growth models that was developed in Sections 2. 5 
and 3.1. 

,~'.\l#fPJt!JR 

Example 7. Computer-Dog Growth 
Model Revisited 

In Section 2.5 we introduced the computer-dog growth model 

x' = Ax 
' 

where A= 
3 1 
2 2 

X = [C, D] 

x' = [C', D'] 

The two eigenvalues and associated eigenvectors of A were A 1 = 4 
with u = [ l , I] and A2 = 1 with v = [ 1, - 2]. 

Our starting vector was x = [ l, 7]. We expressed x as a linear 
combination, x = au + bv of u and v. For this x, it is 

x == 3u - 2v (i.e., ll, 7) = 3[1, l] - 2(1, -2)) (28) 

Then 
• 
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Ax == A(3u - 2v) = 3Au - 2Av 

= 3(4u) - 2( Iv) (since u, v are eigenvectors) 

= 12u - 2v (29) 

After k periods, we have 

Akx = Ak(3u - 2v) 3Aku - 2Akv 

= 3(4ku) - 2(1kv) (30) 

= 3 · 4k[l, I] - l2, -41 • 

We no,v describe in matrix notation the three basic steps in the eigen
value-based analysis of growth models, as illustrated in Example 7. 

Step 1. Express x as a li,zear combination of eige,1vectors, as in (28) . 
This step, which involves solving a system of equations, can be expressed 
in terms of an inverse. If x = [x1, x2], u == [u I , u2l, and v == [v 1, v2], the 
statement x == au + bv is equivalent to 

== a 

or 

x = Uc, where U 

By using inverses, the solution to x = Uc is 

C = u- 1x 
• 

' b 

(31) 

Step 2. Giverz c = [a, b], n1z,ltiply a by X. I a,1d b by X.2 • We can write 
this step in matrix notation as follows: 

or c' (32) 

where DA is the diagonal matrix of eigenvalues. 

-• I 
Step 3. Express Ax as a li,zear combi,zatio,i of eigenvectors. 

Ax = aX. 1 Uc' (33) 

I 

.where tJ is the matrix with eigenvectors as columns (see above). 
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Combining the three steps (31), (32), and (33), we have 

Ax== Uc' = U(DAc) = unAu -1x 

This equation is true for any x, and hence we have 

A = uoAu- 1 

(34) 

(35) 

Furthermore, as in (30), powers of A have a similar form (verification is 
left as an exercise): 

(36) 

For the computer-dog matrix, (35) becomes [ we compute the inverse u- 1 

using the determinant-based formula (9)]. 

A= 

and (36) becomes 

3 1 

2 2 

Ak == 
1 

1 

I 
l 

1 

- 2 

I 
-2 

4 0 
0 l 

2 
3 

½ 

l 
3 

- ! (37) 

(38) 

Equations (35) and (36) formalize in single matrix equations our 
eigenvector-based computations for a growth model. They also give us a 
simple way to compute powers of any matrix A-provided that we know 
the eigenvalues and eigenvectors of A . 

• 

Theorem 5. If A is an n-by-n matrix with n distinct eigenvectors 
u1, u2 , ... , un and associatedeigenvaJues jX. 11 > IX-21 ~ · · · 2:: jX.,,j, 
then • 

and 

where U is an n-by-n matrix whose jth column is ~;· 

Stating (39) in words, 

multiplication by A 

is equivalent to: 

(39) 

(i) converting to eigenvector coordinates-multiplying by u- 1 does this; 
then · 

(ii) multiplying those coordinates by the eigenvalues-multiplying by DA 
does this; and finally 

(iii) converting back to standard coordinates-multiplying by U does this . 
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The fonnula A = UD" u- 1 for computing Ax can be visualized with 
the following diagram: 

• 

X 
A 

Ax= UD~u- 1x 

u-1 
u 

u- lX --------~ 

This eigenvalue decomposition of a matrix, often called diagonaliza
tion of A, is extremely important. Beside simplifying the computation of 
powers of a matrix, it can also be applied to other functions of a matrix A. 
In differential equations (Section 4.3), the expression eAt arises frequently 
and can be evaluated vvith the help of (39). This decomposition will be 
discussed further in Section 5 .5, where we also present methods to find all 
the eigenvalues of a matrix . 

We note that like the LU decomposition, the eigenvalue decon1position 
is an example of using proper representation of the matrix and an example 
of a matrix product being a ''program'~ (see the end of Section 3.2). If we 
want to solve systems such as Ax = b, the LU decomposition is the right 
way to ''store'' A. If we want to raise A to various powers, the eigenvalue 
decomposition is the appropriate way to ''store'' A. Computing Akx as 
cuntu- I )x is a case where the matrix product UD{ u- I is a ''program') 
telling us how to compute Akx through a sequence of three distinct steps. 

We now apply Theorem 3 to our rabbit-fox model to rework the com
putations done at the end of Section 3. I . 

·,. -· ·c~. 
~•• l"L • • •• , ••.'. • ~-.,.J- .--.•,t,_..,,..w., 

Example 8. Rabbit-Fox Growth Model Revisited 

The growth model we have used repeatedly is 

R' = R + . lR - . l5F 

F' = F + . IR - . l 5F 

or p' = Ap 

where A = l . I 
. ] 

- .15 

.85 

In Section 3. I we found the eigenvalues and eigenvectors to be 

X. 1 = 1, u, = [3, 2] A2 = .95. U2 = [1, 1] 

• 

(40) 
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U = 
3 l 

2 1 s 
' D>-- = 

• 

1 0 

0 .95 ' 
u-1 = 1 

- 2 

• 

-1 

3 

where again the 2-by-2 inverse formula (9) is used for u- 1• 

(41) 

Suppose that our starting vector is p == [ 50, 40] and we want to 
determine the population vector after 20 periods. Then we must com
pute 

where Df0 = 
1 0 

0 .3585 

We evaluate (42) from right to left. That is, first compute 

C = u- 1p = 
1 -1 

- 2 3 
50 

40 

10 

20 

(42) 

(43) 

Recall from Example 7 that this vector c is the set of weights a, b on 
the eigenvectors. Next we multiply this vector of weights times D~0: 

c' = D~0c = 
1 0 

0 .3585 

10 

20 

10 

7.17 
(44) 

Finally, we use c' to form a linear combination of the eigenvectors: 

p<20) == A 2°p == Uc' = 3 1 
2 1 

3 
10 

2 

• 

10 

7 .17 

+ 7.17 
1 

1 

37 

7 • 

Section 3 .3 Exercises 

Summary of Exercises 
Exercises 1-17 involve computation of inverses and interpretation of entries 
in an inverse; Exercise 4 gives an important geometric picture of inverses. 
Exercises 18- 27 examine properties of inverses. Exercises 28 and 29 deal 
with the existence of solutions and appJications of Theorem 4. Exercises 

• 

30- 37 deal with eigenvalues and Theorem 5. 

1. Verify for the matrix A in Example 1, part (i) that A- 1 A = I. 

2. Write the system of equations that entries in the inverse of the following 
matrices must satisfy. Then find inverses (as in Example 2) or show 
that none can exist (following the reasoning in Example 1). 
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1 1 0 I 2 l - 1 3 
(a) (b) (c) (d) 

1 0 I 0 7 4 2 -6 

1 2 l l 1 0 3 2 1 

(e) 2 4 2 (f) 0 I 1 (g) 1 1 1 

2 5 1 I 2 1 7 6 5 

3. (a) Write out the system of equations that the first coltimn of the inverse 
of A must satisfy, where 

l O 2 

A == 0 I 3 

l O 4 

(b) Determine the first column of A - 1; use part (a) and Cramer's rule. 

4. This exercise gives a ''picture'' of how when two columns of A are 
almost the same, the inverse of A almost does not exist. For the fol-

x I I c 
lowing matrices A, solve the system A 

O 
. Then plot x 1a 1 

X 2 

and x2af in a two-dimensional coordinate system and show geometri-

c C } C C cally how the sum of vectors x 1a I and x2a 2 is 
O 

(here a 1 , a 2 denote 

the two columns of A) . 

(a) 
2 3 

I 2 
(b) 

2 3 

2 2 
(c) 

8 10 
7 7 

(d) 
8 9 

7 7 

S. (a) Find the inverse of the transition matrix A for the weather Markov 
chain (introduced in Example I of Section 1.3), where 

3 ] 
4 2 
1 1 · A = • 

4 2 

(b) If pis today' s weather probability distribution and p0 is yesterday ' s 
distribution, show that p0 = A - 1p. 

(c) Find yesterday ' s weather probability distribution if today's weather 
probability distribution is 
.(i) p == [i, ½] (ii) [~, ½] (iii) (0, l] 

(d) Use a computer program to determine the weather probability dis
tribution 20 days ago for the current distributions 1n part (c) . 

6. (a) Find the system of equations for decoding the following encoding 
schemes . 

(i) C1 = 3L1 + 5L2 (ii) C1 = 11L1 + 6L2 

C2 = 5L 1 + 8L2 C2 = 8L 1 + 5L2 

(iii) C1=2L1 + 3L2 

C2 = 7L 1 + 5L2 

Hi11t: The inverse of 7 is - 11 ; the inverse of - 11 is 7 . 

• 
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(b) Decode the coded pair EF in each of these schemes. 

• 

7. Use elimination by pivoting to find the inverse of the following matri
ces. 

2 - 3 

(a) l - l 

-1 5 

-1 - 3 

(c) 2 1 

5 4 

1 l 4 

(e) 2 1 3 

5 2 5 

• 

2 

l 

4 

2 

3 

6 

- 1 - 1 I 

(b) 2 2 - 4 

1 - 2 3 

2 4 - 2 

(d) 1 -2 - 4 

- 2 -1 -3 

2 -3 -1 

(f) 3 -5 - 2 

9 6 4 

8. For each matrix A in Exercise 7, solve Ax = b, where b -
[ l O, 10, l 0). 

9. For each matrix A in Exercise 7, how much will the solution of 
Ax == b change if b is changed 

IO. 

(a) From the vector [b 1, b2 , b3] to the vector [b1, b2 + 1, b3 ]? 
(b) From the vector [b 1, b2 , b3] to the vector [b 1, b2 , b3 -. 2]? 
(c) From the vector [b 1, bi , b3] to the vector [b1, b2 + 1, b3 - I]? 

Use elimination by 
' 

pivoting 
matrices. 

I l 

2 0 
(a) 

3 0 

4 - 2 

I 3 

(c) 
1 1 

2 -2 

- 1 - 1 

0 1 

0 -2 
I 3 

2 - 1 

I 1 
1 -1 

1 - 3 -1 2 

to find the • of the following inverse 

3 2 l 0 

l 1 0 -1 
(b) 

2 1 -1 I 
• 1 1 l 1 

11. (a) Find the inverse of the tridiagonal matrix 

l -1 0 0 0 
-1 2 - l 0 0 

0 -1 2 -1 0 

0 0 -1 2 -1 

0 0 0 -1 2 
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' 

Note that the inverse is not tridiagonal or in any way sparse. 
(b) Change entry (1, 1) from a l to a 2 and repeat part (a). Does this 

small change affect the inverse substantially? 

12. Reverse the following Markov chains. Then find the ''distribution'' in 
the previous period if the current distribution is [ .5 0 .5]. Is this 
distribution really a probability distribution? 

.5 0 0 
(a) .5 1 .5 -

0 0 .5 

.5 .25 0 
(b) .5 .5 .5 

0 .25 .5 

.4 .3 .3 

(c) .3 .4 .3 

.3 .3 .4 

13. Try to find the inverse of the frogger Markov chain when there are five, 
not six states (three lanes of highway). 

14. (a) Describe those n-by-n Markov transition matrices A* (for each n) 
that have an inverse A* - 1 such that if pis a probability distribution, 
then p0 = A* - 1 p is always a probability distribution. 

(b) Give an informal argument why no other such reversible Markov 
chain can exist (the reasoning is similar to that used in Exam
ple 6). 

15. (Continuation of Exercise 17 in Section 3. 2) The staff dietician at the 
California Institute of Trigonometry has to make up a meal with 600 
calories, 20 grams of protein, and 200 milligrams of vitamin C. There 
are three food types to choose from: rubbery jello, dried ~sh sticks, and 
mystery meat. They have the following nutritional content per ounce. 

Calories 

Protein 

Vitamin C 

Jello 

10 

1 

30 

Fish Sticks 

50 

3 

10 

Mystery Meat 

200 

.2 

0 

(a) Find the inverse of this data matrix and use it to compute the amount 
of jello, fish sticks, and mystery meat required. 

(b) If the protein requirement is increased by 4, how will this change 
the number of units of jello in the meal? 

(c) If the vitamin C requirement is decreased by k milligrams, how 
much will this change the number of fish sticks in a meal? 

16. (Continuation of Exercise 18 in Section 3. 2) A furniture manufacturer 
makes tables, chairs, and sofas. In one month, the company has avail
able 300 units of wood, 350 units of labor, and 225 units of upholstery. 
The manufacturer wants a production schedule for the month that uses 
all of these resources. The different products require the following 
amounts of the resources . 

• 
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Wood 

Labor 

Upholstery 

Table 

4 

3 

2 

Chair 

I 

2 

0 

Sofa 

3 

5 

4 

, 

(a) Find the inverse of this data matrix and use it to determine how 
much of each product should be manufactured. 

(b) If the amount of wood is increased by 30 units, how will this change 
the number of sofas produced? 

(c) If the amount of labor is decreased by k, how much will this change 
your answer in part (a)? 

17. (Continuatjon of Exercise 20 of Section 3. 2) An investment analyst is 
trying to find out how much business a secretive TV manufacturer has . 
The company makes three brands of TV set: brand A, brand B, and 
brand C. The analyst learns that the manufacturer has ordered from 
suppliers 450,000 type I circuit boards, 300,000 type 2 circuit boards, 
and 350,000 type 3 circuit boards. Brand A uses 2 type- I boards, 1 
type-2 board, and 2 type-3 boards. Brand B uses 3 type-1 boards, 2 
type-2 boards, and 1 type-3 board . Brand C uses 1 board of each.type. 
(a) Set up this problem as a system Ax = b. Find the inverse of A 

and use it to detennine how many TV sets of each brand are being 
manufactured. 

(b) If the number of type 2 boards used is increased by 100,000, how 
will this change your answer in part (a)? 

(c) If the number of type l boards is decreased by 10,000k, how much 
will this change your answer in part (a)? 

18. Why must a matrix be square if it has an inverse? 

19. Verify that for any invertible matrix A, the inverse of the inverse A- 1 

is A. 

20. Verify that the inverse of AT is (A- 1)r. 

Hint: Use the multiplication rule for tranposes, (CD)r = D7Cr. 

21. Show that the inverse of a matrix is unique. 

Hint: If B and C are inverses of the matrix A, compute BAC two 
different ways as (BA)C and as B(AC). 

22. Show, by the reasoning in Example 1, that if a matrix has a row ( or 
column) that is all O's, then the matrix cannot have an inverse. 

23. (a) Following the reasoning in Example 1, show that 

• 
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.. 

1 ·2 3 

l 4 5 

1 6 7 

cannot have an inverse because the third column is the sum of the 
other two columns. 

(b) Generalize the argument in part (a) to show that if one row (column) 
is a linear combination of two others, af = caf + dafz, then the 
matrix cannot have an inverse. 

24. In Theorem 1, show that the solution x = A- 1b is unique, that is, 
there cannot exist a different vector x' with Ax' = b. 

Hint: Multiply both sides of Ax' = b by A - t. 

25. Find the inverse of a diagonal matrix 

al I O 0 
0 022 0 

0 0 a33 

Hint: The inverse is also diagonal. 

26. (a) Use the following fact: The inverse of an upper triangular matrix 
(if the inverse exists) is itself upper triangular, to determine what 
the main diagonal entries must be in the inverse of the upper tri
a11gular matrix 

2 3 4 

0 4 2 
0 0 5 

(Do not use elimination by pivoting.) 
(b) Use the main-diagonal entries in the inverse from part (a) and the 

fact that the inverse is upper triangular. Determine the other entries 
in the inverse. 

(c) Consider how the computations to find the inverse in elimination 
by pivoting would go to show that the inverse of an upper triangular 
matrix must be upper triangular. 

27. (a) Determine the inverse of the matrix 

• 

1 0 0 0 

0 1 0 0 

a O I 0 
0 0 0 1 
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28. 

29. 

• 

Hint: The inverse has a simple form; try trial-and-error guesswork. 
(b) Generalize your result in part (a) to give the inverse of an n-by-n 

matrix with l's on the main diagonal and O's elsewhere except one 
position, entry (i, j), i ¥- j, whose value is a. 

Which of the following conditions guarantees that the system of equa
tio11s Ax = b has a unique solution; which guarantees that the system 
does not have a solution or that it is not unique, or guarantees nothing? 
Explain the reason for your answer. Assume that A is a square matrix. 
(a) A has an inverse. 
(b) det(A) = 0. 
(c) Ax = b' has a unique solution for some other b'. 
( d) Ax = b' has two solutions for some other b'. 
(e) b equals a column of A. 
(f) The first row of A is twice the last row of A. 

Which of the following conditions guarantees that a matrix A has an 
inverse; which guarantees that it does not have an inverse? Explain the 
reason for your answer briefly. 
(a) The determinant of the matrix equals 17. 
(b) A has twice as many rows as columns . 
(c) A is a 4-by-4 Markov chain matrix . 
( d) The first row of A is twice the last row. 
(e) The system of equations Ax = b can be solved for any b . 

2 1 2 
30. The matrix B = 

(a) Verify that u1 

A and B. 

; -: is the inverse of A 
-3 3 1 

1 
• 

2 
== [I, 1] and n2 = [ 1, - 1] are eigenvectors of both 

(b) Determine the eigenvalues of A and B. How are the eigenvalues 
of A and B related? 

31. Show that the eigenvectors of A - 1 must be the same as the eigenvectors 
of A. 

32. 

Hint: Use the fact that A - 1(Au) = u. 

Assuming that A and A - 1 have the same eigenvectors , show that the 
eigenvalues of A - 1 must be the reciprocals of the eigenvalues of A 
(i.e., 1/ A) . -
Hint: Use the fact that A - 1(Au) = u. 

33. Compute the representation UD~ u-1 of Theorem 5 for the following 
matrices whose eigenvalues and largest eigenvector you were asked to 
determine in Exercise 23 of Section 3. 1. 

(a) 
4 0 
2 2 

(b) 
1 2 

3 4 
(c) 

2 1 

2 3 
(d) 

4 

1 

- 1 

2 
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34. For a starting vector of p = [10, 10], compute p< 10> = A10p for each 
matrix A in Exercise 33 (use your representation of A found in Exercise 
33). 

35. (a) Given that A == UDA u- 1
' prove that A2 == UD~u- 1

• 

(b) Use induction to prove Ak = uotu- I. 

36. (a) Obtain a formula for A - 1 similar to A == UDA u - 1• 

Hint: Only the matrix DA will be different. 

(b) Verify your formula in part (a) for A = 
3 1 

2 2 

37. Show that A is not invertible if O is an eigenvalue. 

Solving Matrix Problems 
by Iteration 

• 

• 

In this section we show how simple iteration methods can be used first to 
deter1nine eigenvalues and eigenvectors, and then to solve systems of linear 
equations. We want to use an iterative method to find the largest eigenvalue 
(in absolute value) of a matrix A and an associated eigenvector. The largest 
eigenvalue is the largest root (in absolute value) of the characteristic poly
nomial det(A- 2 I ) . However, it is difficult to find the roots of polynomials 
beyond quadratics. Iterative methods are easier to use and yield both the 
largest eigenvalue and an associated eigenvector. 

In Section 2.5 we saw how the largest eigenvalue and its associated 
eigenvector dominate the long-ter111 behavior of a linear growth model. We 
briefly review the results we obtained for the computer-dog growth model. 

Review of Role of Largest 
Eigenvalues in a Growth Model 

• 

The growth model for computers (C) and dogs (D) from year to year 
was 

or 

x' = Ax 

C' == 3C + D 

D' = 2C + 2D 

, 
3 I 

wher A = 
2 2 

,-I ( 1) 

, 
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We saw in Section 2.5 that 4 is the larger eigenvalue with eigenvector 
u == [ I , I] ( or any multiple of [I, 1]), and 1 is the other eigenvalue 
with eigenvector v == [ 1, - 2]. 

We can write any vector x as a linear combination Oi u and v. 
(see Section 2.5 for details on how to do this). If the initial vector 
is x == [l, 7], we find that x == 3u - 2v (in other words, [1, 7] == 
3(1, l] - 2(1, -2J). If we want to iterate this model for 20 years, 
we can use u and v to compute A20x as follows: 

r 

A20x == A20(3u - 2v) == 3A20u - 2A20v 

3(420u) - 2(1 20v) 

== (3. 420 , 3. 420] - [2, -4] 

(2) 

The term [3 · 420 , 3 · 420] in (2) swamps [2, -4]. So in general, after 
n periods, we have 

or 

Anx = [3 · 411
, 3 · 411

] • 

Since A nx = [3 · 411
, 3 · 4 11

], A11x is approximately a multiple of the 
eigenvector [ I , 1]. This means that we can reverse the previous reasoning 
and find an eigenvector associated with the larger eigenvalue simply by 
iterating a growth model for many periods. 

Example 2. Determining Largest Eigenvalue and 
Its Eigenvector by Iteration 

In the computer-dog model of Example 1, let us iterate starting with 
xt0) == [ 1, 7]. We keep track of the growth rate from one period to 
the next (the sum norm is used). 

xCO) = [ 1, 7] 

x< l) = l 1 o, 16] 
Ix< 1 >I 
lx<O>j = 3.25 

x<2> == [ 46, 52] 
1xc2 >I 

Jxo >j = 3.77 

x<3) = [190, 196] 
jx<J >j 

Ix< 2) I = 3 . 94 

x<4> == [766, 772] 
Jx<4>J 
jx<3Jj = 3. 98 
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X(S) [3070, 3076] 
X(5) 

3.996 lx<4) 

x<6) = [12,286, 12,292] 
lx<6>1 

3.999 
lx<s >I 

x<7> = [49,150, 49,156] 
lx(7)1 

3.9998 
lx<6)1 

From the ratios of the nonns of the successive iterates, it is clear that 
the growth rate is converging to 4. The two components of the suc
cessive iterates are approximately equal; that is, they are multiples of 
[ 1, 1]. So we conclude that the largest eigenvalue is 4 and its eigen
vectors are multiples of (1, 1]. • 

When the sizes of the iterates x<k) get large, one can scale them back 
by dividing their entries by the largest entry (so that their max no11n is 1). 
For example, x<6> = [12,286, 12,292] would be scaled by dividing by the 
larger entry, 12,292, to obtain x:~<6> = [. 9995, 1]. 

It is common practice to call the largest eigenvalue (in absolute value) 
the dominant eigenvalue because of the way it dominates the behavior of a 
growth model. Summarizing our method, we have 

Finding Dominant Eigenvalue and Associated Eigenvector of x' = 
Ax by Iteration. For any starting vector x<0>, compute successive it
erates x<k> until the ratio x<k) /lx<k- 1 >j converges to a fixed value. This 
value is the (absolute value) of the dominant eigenvalue and x<k> is an 
associated eigenvector. If x<k) becomes too large, ''scale'' it by divid
ing x<k> by its largest entry. 

Note that this iterative method was exactly how we found the stable 
probability distribution p~~ = [.I, .2, .2, .2, .2, . l] for the frog Markov 
chain (implicitly, the largest eigenvalue was 1). 

A geometrical illustration of the convergence of Akx to an eigenvector 
corresponding to the dominant eigenvalue is given in Figure 3. I . Using the 

3 I 
matrix A = 

2 2 
in the computer-dog growth model, we plot what 

happens to the set of vectors x in the first and third quadrants of the Cartesian 
plane when we iterate with A: x, Ax, A2x, A3x. Figure 3.2 follows a 
particular vector x0 through such iteration. 

We next try our iterative scheme on a 3-by-3 matrix. Note that for 
3-by-3 matrices, there is no simple formula available for finding eigenvalues 
as roots of the characteristic equation det(A - X.I). 
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Example 3. Dominant Eigenvalue in a 
3-by-3 Matrix 

Let us expand our computer-dog growth model to include goats. 

C' - 3C + D + G 

D' - 2C + 2D 

G' + D + 2G 

We start iterating with x<0> == [l , 1, 1]. 

X (l) == [5 4 3] 
' ' 

Ix< I> !-, 
(0) == 4 

X s 

x<2) == [22, 18, 10] 

xC3> == [94, 80 , 38] 

x<4> == [400, 348, 156] 

219 

Let us scale x<4 ) == [400, 348, 156] by dividing by its largest entry: 

x*<4> == [ 1 . 00 , . 8 7 , . 3 9] 

x<s> == [4.26, 3.74, 1.65] 
jxCS> s 

lx*<4)1s = 4.26 

x<6) == [ 18 . l 7 , 16. 00 , 7 . 04] 
x<6)1s 

== 4.27 
lx<5>ls 

x<7> == [77.55, 68.34 , 30.08] 
x<7)1s 

== 4.27 
lx<6)1s 

So the dominant eigenvalue is 4. 27. The scaled f or1n of x<7) is (rounded 
to the nearest hundred) [1, .88, .38]. • 

Instead of taking the ratio of the sum no11ns of successive iterates to 
approximate the dominant eigenvalue A.*, it is more accurate to use the 
following ratio, called the Raleigh quotient. 

x<k> • x<k+ t ) 

A.*== ---x<k) • x<k> or 
X (k) • Ax(k) 

x<k) • x<k> (3) 

Applying the Raleigh quotient with just k == 2 in Example 3, we get 

x<2J . x<3) - 3888 = 4 282 
x<2> • x<2> 908 · 
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Solving a System of Equations by Iteration 

Our initial discussion will center around the Leontief economic model pre
sented in Section 1.2. This model balanced supplies of a set of commodities 
against the demand for the commodities, demand by industry (as input for 
supplies produced), and demand by consumers. The sample model we in
troduced in Section 1.2 was 

_ Supplies 

Energy: Xi== .4x1 

Construct. : X2 == .3x1 

Transport.: X3 == • IX1 

Steel: X4 == 

or in matrix notation 

where 

.4 .2 

.3 .3 
D 

. 1 . 1 
0 . 1 

Industrial Demands 

+ .2x2 + .2X3 + 
+ .3x2 + .2x3 + 
+ . lX2 + + 
+ . lx2 + . lX3 

x==Dx+c 

.2 . 2 

.2 . 1 
0 .2 

and 

. 1 0 

.2X4 + 

. lX4 + 

.2x4 + 

C == 

Consumer 
Demand 

100 
50 

100 

100 
50 

100 

0 

(4) 

Recall that there was an input constraint that the sum of the coefficients 
in each column of D be < 1. This means that the sum norm of D (the sum 
norm is the largest column sum) is < 1 : 

ID Is < 1 

We can rewrite x == Dx + c as x - Dx == c or 

(I - D)x == c 

We can solve (5) algebraically with inverses to obtain 

x == (I - D)-•c 

(5) 

(6) 

We shall now give an algebraic forniula for computing (I - D) - 1
. 

Lemma. Let A be a matrix such that IA < 1 (any matrix nor1n can be 
used). Then 

• 
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00 

(I - A) - 1 = I Ak = I + A + A2 + A3 + . . . (7) 
k = O 

Here AO = I just the way for any scalar r, r0 = 1. Formula (7) is 
simply the matrix for1n for the geometric series 

1 00 

-- = L al.. = 1 + a + a2 + a3 + · · · (8) 
l - a k=O 

Recall that this series converges only when lal < 1 . The verification of 
(7) is similar to the way (8) was verified in high school-simply multiply 
I - a times the infinite series and show that the product equals 1 
[ equals I in (7)]. 

Since 11D11s < 1, we can use (7) to compute (I - D) - 1• Recall that 
IIDklls < I D11~, but 1D11~ • 0 ( since II DIis < 1). Then the sum norrn ( the largest 
column sum) of Dk approaches 0, so the individual entries of Dk approach 
0. Thus we only need to calculate the sum L Dk up to, say, the twentieth 
power of D-the remaining powers will be small enough to neglect. 

Using the sum L Dk is not a very efficient way to compute (I - D) - 1 

for most matrices. However, tl1e formula is simple and easy to program. 
The method also has the advantage of avoiding roundoff-error problems: The 
iterated multiplications will not magnify possible errors in values of the 
coefficients; instead, the errors shrink, since the entries in Dk all approach 
0. Finally, this method guarantees that one can always solve a Leontief 
economic model for any D and any c (provided that IIDlls < 1). 

Theorem 1. Every Leontief supply-demand model x = Dx + c has a 
solution of nonnegative production levels for every nonnegative c and 
every nonnegative D, provided that !Dils < 1. 

The nonnegativity is very important, since a negative solution is es
sentially no solution. Nonnegativity follows from (7): All entries in the 
powers Dk will be > 0 (since all entries in D are > 0), so all entries in 
L Dk= (I - D)- 1 are> 0. Also, c > 0, so all entries in (I - D) - 1c are 
> 0. 

f~:w, . •· Sl·i~111ra: · . "] 
Example 4. Solution of a Leontief Mo_del 

We solve the Leontief model in (4) by using formula (7) to solve 
(I - D)x = c. We list below the first powers of D up to D7 plus D20

, 

and the sum of the right-hand side of (7) up to D20 (using a computer 
program). 

.24 .18 .14 .14 .164 .13 .098 .094 

02 = 
.23 .18 .13 .13 D3 = 

.159 .126 .095 .09 

.033 .07 .07 .06 .03 .055 .044 .031 

.04 .04 .02 .03 .03 .025 .019 .016 
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.114 .091 .068 .065 .080 .064 .048 .046 

D4 = . 111 .088 .066 .063 os = .077 .062 .046 .044 
.038 .031 .023 .022 .027 .021 .016 .015 
.021 .017 .013 .012 .015 .OJ 2 .009 .009 

.056 .044 .033 .031 .039 .031 .023 .022 

D6 = .054 .042 .032 .031 
0 1 = .038 .030 .022 .022 

.019 .015 . 011 .011 .013 .010 .008 .007 

.010 .008 .006 .006 .007 .006 .004 .004 

.0004 .0003 .0002 .0002 

0 20 = .0004 .0003 .0002 .0002 

.0001 .0001 .0001 .0001 
(9) 

.0001 .0001 .0000 .0000 

Summing powers of D from I up through D"0 , we have 

2.183 . 811 .664 .650 
20 1.056 I .898 .644 .530 

(l-D) - 1 =2:Dk= ( 10) 
.352 .315 1.167 .335 k= O 

.141 .221 . 18 l 1.087 

The entries in powers of~ D are decreasing quickly enough so that the 
numbers in ( I 0) are accurate to the three decin1al places sl1own. 

With ( 10) we can now solve the Leo11tief 1nodel for x, the vector 
of the production levels for the four product . 

2.183 . 811 .664 .650 100 

x = (I - D) - 1c = 1.056 1.898 .644 .530 50 

.352 . 315 1.167 .335 100 

.141 .221 . 181 1.087 0 

2.183Xl00+ .811X50+ .664Xl00+ .650 X0 

l.056X 100 + l.898 X50 + .644X 100 + .530 X0 

.352 X 100 + .315 X50 + l.167 X 100 + .335X0 

. 141 X 100 . 221 X 50 + .181 X l 00 + l . 087 X 0 

• 

218.3 + 40.55 + 66.4 + 0 

105.6 + 94.9 + 64.4 + 0 

35.2 + 15.75 + 116.7 + 0 

14. 1 + 11. 05 + 18.] + 0 

( 11 a) 

( 11 b) 
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• 

325 units of energy 

265 units of construction 

168 units of transportation 
(I le) 

43 units of steel 

The ter1ns in (I - D) - 1 allow us to see how the consumer 
demand affects the interindustry demands. For example, the total de
mand for energy, the first sum in ( 11 a) , is 

2.183 X 100 + .811 X 50 + .664 X 100 + .650 X 0 

This sum says that each of the I 00 units of consumer demand for 
energy requires 2.183 units of energy to be produced, each of the 50 
units of consumer demand for construction requires . 811 unit of energy 
to be produced, and so on. • 

If we do not need the inverse (I - D) - 1 (to solve the Leontief system 
for many different consumer vectors) but just want the solution for one 
specific c, we can shorten our effort by rewriting ( 11 a) in terms of the powers 
of D. 

x == (I - D) - 1c == L Dk c == L Dkc (12) 
k k 

Computing the sum of Dkc's is faster than first computing the sum of Dk's 
and then multiplying by c: We compute the vector De; then by multiplying 
this vector by D we get D2c, then D3c, and so on, with each stage involving 
a matrix-vector product rather than matrix-matrix. It is left as an exercise 
for the reader to re-solve the Leontief problem using (12) (again stop at 
D2oc). 

There is another way that we can recast the solution of (I - D)x = 
c. The method is called solution by iteration. This is the method we used 
in Chapter 1 to get an approximate solution to the Leontief model. Iteration 
was also used to compute the stable distribution vector p:~ = [. 1 , . 2, . 2, 
.2, .2, .1] of the frog Markov chain in Section 1.3. There we repeatedly 
computed the next-state distribution p<k> using the transition equations 

p<k) = Ap<k- 1) 

and p Ck) converged top*. Let us recall how iteration with the Leontief system 
worked. We use the system of equations 

x == Dx + c ( 13) 

We guess values x<0) for the vector x, then substitute x<0 ) in the right side 
of (13) and compute Dx<0> + c. We check to see if Dx<0> + c equals the 
left side x CO). If not, we set x< 1 > equal to 
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x< 1 > = Dx(0> + c 

Suppose that we ''guess'' x<0
> = c; that is, we just produce enough to 

meet consumer demand. In our sample Leontief model in (4), c is the vector 
[100, 50, 100, OJ. Let us compute Dx<0 ) + c for this n1odel, with x< 0> = c 

[ I 00, 50, 100, OJ . 

Dx<0) + c = 
• 

. 4X 100 + .2X50 + .2X 100 + .2 X0 

.3X 100 + .3X50 + .2X 100 + .] XO 

. 1 X 100 + . 1 X 50 + + . 2 X 0 

70 + 100 

65 + 50 

15 + 100 

15 + 0 

. l X 50 + . l X 100 

170 

115 

115 

15 

+ 

100 

50 

100 

0 

This vector does not equal x<0), so we set x( 1 
> = [ 170, 115, 115, 5]. This 

new estimate of the production levels equals consumer demands c plus the 
interindustrial demands De to meet the consumer den1and. 

We now compute Dx(l) + c . 

Dxc 1> + c = 

. 4X 170 + .2X 115 + .2 X 115 

.3XJ70 + .3X115 + .2 X 115 

.1 X 170 + .1 X 115 + 
.1X]l5 + . 1 X 115 

117 + 100 

110 + 50 

31.5 + 100 

23 + 0 

217 

160 

131. 5 

23 

+ 
+ 
+ 

Then we continue with the iteration~ and we set 

.2 X 15 

.1 X 15 

.2 X 15 

x<2) = Dx< 1> + c = [217, 1601 131.5, 23] 

and in general we set 

x<k + 1> = Dxck> + c 

100 

50 
+ 100 

0 

( 14) 

In ter111s of a computer program, we are repeatedly performing the assign-
1nent statement 

x ~ Dx + c 

Every i11crease in production levels results in a further increase in the 
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interindustry demand Dx. The question is: Will this process converge to a 
solution x* such that x* = Dx* + c? In Chapter 1 we claimed that this 
iteration process did converge. Let us now give a theoretical justification for 
convergence. 

C 'd hr . . ' " "' h ons1 er t ee successive iterates . . , x , x , x , . . . , w ere 

x'' = Dx' + c and x'" = Dx" + c 

Then 

x"' - x" = (Dx" + c) - (Dx' + c) = Dx" - Dx' = D(x" - x') (15) 

Since 11D Is < 1, taking norrns in ( 15), we have 

x'" - x"ls < IIDlls x" - x'ls < Ix" - x'ls 

This means that D lessens the change in x<k) from iteration to iteration and 
the change will eventually shrink to zero. 

If x* is the solution so that x* = Dx* + c (Theorem 1 guarantees 
this solution exists), then replacing x" by x* in (15), we have 

x'" - x* = (Dx" + c) - (Dx* + c) == Dx" - Dx* = D(x" - x*) ( 16) 

and 

(17) 

so the iterates are getting closer and closer-that is, converging-to solu
tion x*. 

The following table gives the values we get in this iteration process 
(with the numbers rounded to integers). 

x<O) == [100, 50, 100, OJ 
X(l) = [170, 115, 115, 15] 
x<2) = [217, 160, 132, 23] 

x<3> = [250, 192, 142, 29] 
x(4> = [273, 214, 150, 33] 
x<6> = [300, 240, 159, 38] 

x<B> == [313, 253, 163, 41] 
x<IO) == [319, 259, 166, 42] 
x<12> = [322, 262, 167, 43] 
x<20> = [325,265,168, 43] 
x(25> = [325, 265, 168, 43] 

All further x<n), n > 20, equal x<20>. This is the same answer that we obtained 
previously in (1 lc) using the geometric series approach. 
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Note that we started with a very poor estimate xC0
) == e. Suppose that 

we had started with the more thoughtful guess of 

X(O) == [300, 200, 200, 50] 

Then iterating, we obtain 

X(l) [310, 245, 160, 40] 

x<2) [313, 253, 164, 41] 

x<3) [317, 256, 165, 42] 

The first iteration is already quite close to the correct solution and, after 
three iterations, all entries are only 2% away from the true solution. 

Now we show how this iterative approach is actually equivalent to the 
previous geometric series solution method. Recall xCO) == e and then 

Then 

xC1) == Dx<0) + e == D(e) + e 

x<2) == Dx< 1) + e == D(De + e) + e 

== D2e + De + e 

Continuing, we find that 

11 

x<n) == one + on- le + · · · + De + e == I Dkc (18) 
k=O 

So this iterative method is just computing the partial sums in the geo
metric series for (I - D) - 1e [ see ( 12)]. 

A starting value xC0) other than c speeds, or slows, convergence but it 
cannot prevent convergence. We note that large real-world economic models 
ar·e always solved by iterative methods, not by the elimination methods 
taught in standard mathematics books (the reason is that iteration goes 
quickly in real-world problems where the matrix D is mostly O's). 

We now ask the question: Can we adapt this iterative technique to 
solving general systems of equations? The following theorem tells how to 
convert a system of equations into a form similar to a Leontief system. 

Theorem 2. Given the system of equations Ax == b, let D == I - A, so 
A == I - D. Let the system be rewritten as 

(I - D)x == b or x==Dx+b (19) 

If ID I I - All < 1 (in any matrix norn1), the iteration method 

xCk) == DxCk- 1) + b (20) 

converges to the solution of Ax == b. 
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With this conversion, 1D11 < 1 guarantees the iteration (20) converges 
to (I - D) - 1b, the required solution. 

Example 5. Iteration Solution of an Oil 
Refinery Model 

We return to our oil refinery model. Each refinery produces three 
petroleum-based products, heating oil, diesel oil, and gasoline, and .,ti 
is the number of barrels of petroleum used by the ith refinery. 

20xt + 4x2 + 4.,t3 

10x1 + 14x2 + 5x3 

5x1 + 5x2 + 12x3 

500 

850 

1000 

(21) 

Let A be the coefficient matrix in (21) and b be the vector of 
right-side demands. Theorem 2 does not apply to the system Ax = b, 
since our favorite norm, the sum norm, of D ( = I - A) is 34 (the 
largest column sum). We want to rewrite the equations in (21) to make 
Theorem 2 apply. 

To make the column sums or row sums of I - A less than 1, 
we can divide each column ( or row) of A by its largest entry. Dividing 
entries in the columns this way is equivalent to changing the units of 
the variables. That is, dividing the first column by 20 (its largest entry) 
is equivalent to replacing x 1 (the number of barrels of input to refinery 
I) by x~ = 20x1 (input measured in -io of a barrel). 

For all three columns we have 

.,t~ = 20x1, (22) 

and hence 

x' I 
Xi = 20' 

x~ .... 

14' 

This change of variables divides the coefficients in the first column by 
20, the coefficients in the second column by 14, and the coefficients 
in the third column by 12. ~ 

x' 
4 I 4 

I 500 + 14 X2 + 12 X3 1 

10 I 

20 _ti + x~ + 
5 

' 12 X3 
850 (23) 

5 
' 

5 x; 20 X1 + x' + 1000 
14 2 

It is very important that in the new system the main-diagonal entries 
are all 1. 

• 
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Now we can try to use Theorem 2. If A' is the new coefficient 
matrix in (23), the system for iteration x' == (I - A')x' + b, or 

' X1 
4 ' 

-14 X2 

4 
' 12 X3 + 500 

, - 10 , 5 
' 850 (24) X2 - - 20 Xi 12 X3 + 

I 5 
' 

5 , + 1000 .,t3 - 20 X1 14 X2 

Note the nice fonn of (24): Each equation expresses one V?.riable in 
tem1s of the other variables. The main-diagonal entries on the right 
side are 0 because the main-diagonal entries in (23) are 1. 

In the matrix of coefficients I - A' on the right side of (24), the 
sum of the (absolute values) in each column is < I. Thus II - A' Is 
< 1, so Theorem 2 guarantees that iteration based on (24) will con
verge. 

For simplicity we let xC0
) == O. Iterating with (24), we get (num

bers are rounded to the nearest integer in this table) 

X(l) [500, 850, 1000] 

xC2) [ -76, 183, 571] 

xC3) [257, 650, 953] 

x~) [-3, 324, 70~ 

x<5) [I 73, 559, 757] 

• 
• 

• 

X(lO) = [84, 447, 797] 

x< 11 ) [ I 06, 4 7 5, 819] 

• 
• 

• 

x<20) == [97,463, 810] 

x<21 ) == [98, 464, 810] 

x<22) == [---97 .5, ---463. 75, ---810] 

(25) 

and no further change 

Observe how our iterates oscillate above and below the final solution. 
This is due to the minus signs in (24). The reader should try to interpret 
the iteration process in terms of an iterative method a refinery manager 
might use to try and find the correct operating levels for the three 
refineries. 

Converting xc22) back into our original variables, we have . 
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x' 97.5 
- 41 X1 == 

I 

20 20 - 8 

x~ 463.75 
== 33~ X2 = 

14 14 

x~ 810 
67~ X3 

12 12 • 

In Example 2 we could also have rewritten the system of equation (21) 
by dividing each row ( each equation) by its largest entry. This yields 

4 4 
X1 + 20 X2 + 20 X3 25 

10 5 850 
14 X1 + X2 + X3 = (26) 

14 14 

5 5 1000 
12 X1 + -x + 

12 2 X3 = 12 

Rewriting (26) in the form x == (I - A")x + b", we have 

4 4 
X1 = -20 X2 20 X3 + 25 

10 5 850 
(27) X2 == - X 14 X3 + 14 l 14 

5 5 1000 
X3 = --x 

12 l 12 X2 + 12 

Observe that the sum of the second row of coefficients in (27), - ½SI + 
1- 1

541 is > 1, so the max nor1n is not < 1 as required. The first column 
sum is also greater than 1, so Theorem 2 does not apply to (27). 

Dividing the ith row by the coefficient of X;, as in (26)-(27), has the 
advantage that it does not involve a change of variables. In (27), we are 
simply solving the first equation of the original system for x1 (in te11ns of 
the other variables), solving the second equation for x2 , and solving the third 
equation for x3 . For a general system of equations 

al 1X1 + a12X2 + • • • + a1nXn 
- b1 -

a21X1 + a22X2 + • • • + a2nXn - b2 (28) -

• • • • • 
• • • • • 

• • • • • 

an 1X 1 + Qn2X2 + • • • + a,,nxn - bn -

the row equations for iteration become 

... 
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- . 

- .. 
x., - (29) 

• • 
• • 

• • 

Iteration using this system is called Jacobi iteration. 

It can be proven that iteration scheme (29) derived from row division 
converges if and only if the iteration scheme derived from column division 
[ as in (24)] converges. The following theorem states what conditions must 
hold for this iteration scheme to work, that is, conditions so that after row 
or column division the max or sum nor1n will be < 1. 

Theorem 3. Jacobi iteration using the system (29) converges if either of 
the following two conditions hold: 
(i) For each row i , the coefficient a1i of xi is larger than the (absolute 

value) sum ot· the other coefficient in the row: 

or 

j 

i r6j 

each; (30) 

(ii) For each column j, the coefficient a_i.i of .,t j is larger than the (ab
solute value) sum of the other coefficients in the column: 

each) (31) 
I 

i ~ j 

The reader should check that condition (31) was satisfied in the refinery 
problen1. It is a straightforward exercise to cl1eck that (31) guarantees that 
after column division [ as in (23 )-(24)] the resulting matrix D" == I - A" 
will have sum norm < I , and that (30) guarantees that after row division 
the max no1111 of D' == I - A' is < 1. 

There are other iteration methods based on more advanced theory (see 
numerical analysis references). Exercise 17 mentions a simple way , called 
Gauss-Seidel iteration, to speed up the convergence of Jacobi iteration. 

We conclude this section by linking the iteration, x<k> == Ax<k 1 >, for 
the dominant eigenvector at the start of this section with the iteration in 
Theorem 2, x<k> == Dx<J. 1 > + b, for solving the system (I - D)x == b. 
The following trick converts the latter iteration into the former. 

Define the (,1 + 1 )-vector x'~ and the (11 + 1 )-by-(n + 1) matrix D}f~ : 
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x* [x' 1] [ X l' X2' . . . ' x/1' 1] (32) 

D* 
D b 

0 1 

For example, for the Leontief matrix D in (4), D* is 

. I .2 .2 .2 100 

.3 .3 .2 . I 50 

D* . I . 1 0 .2 100 

0 . 1 . 1 0 0 

0 0 0 0 1 

The reader should check that 

x*<k) = D*x*Ck- 1) is equivalent to x Ck) == Dx<k- 1) + b 

Then the iteration scheme x<k) == DxCk- t) + b of Theorem 2 will converge 
to a solution in which for large k, 

if and only if for large k, 

But the latter condition for the x*'s means that the dominant eigenvalue of 
D* is 1. 

Theorem 4. The iteration scheme x<k) == Dx<k - 1 > + b for solving 
(I - D)x = b converges to a solution if and only if the dominant 
eigenvalue of the augmented matrix D* [see (32)] is 1. 

Section 3 .4 Exercises 

Summary of Exercises 
Exercises 1-5 involve iterative methods for deter111ining the largest eigen
value and its eigenvector. Exercises 6-9 involve solutions by sum of powers. 
Exercises I 0-15 deal with iterative methods to solve a system of equations. 
Exercises 16 and 17 introduce related iterative methods, and Exercise 16 
introduces the Gauss-Seidel iteration. 

1. Use iteration to determine the dominant eigenvalue and an associated 
eigenvector for the following systems of equations. 

(a) 
1 1 

0 2 
(b) 

1 -2 

-2 1 
(c) 

1 3 

-2 6 

-4 4 4 
(d) -1 1 2 

-3 2 4 
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Use [1, 2] or [1, 2, 0] as your starting vector. This means that for part 
(a), you iterate the system 

x' I lx1 + 
0 + 

Use the Raleigh quotient to refine your estimate of the dominant eigen
value. 

2. Repeat the iteration in Exercise 1 using the vector [ 1 , 1] or [ I , 1, 11 as 
a starting vector. How does this affect the speed of convergence to the 
dominant eigenvector? For one of the matrices .. you do not converge to 
the dominant eigenvector-why? 

3. (a) Use iteration to determine the domina11t eigenvalue and an associ
ated eigenvector for the following system of equations. Use [ J, 0] 
as your starting vector. 

x' . 707.,t - . 707y 

' 
y' . 707x + . 707)> 

(b) Plot the successive iterates on x-)1 graph paper. Try other starting 
vectors. State in words the effect in x-y coordinates of this linear 
model. 

(c) Solve the characteristic equation det(A - ~I) = 0 to deterrnine 
the eigenvalues for this matrix of coefficients. You are finding out 
that imaginary eigenvalues correspond to rotations. Note that . 707 
= sin 45° = cos 45°. 

4. (a) Use iteration to determine the dominant eigenvalue and an associ
ated eigenvector for the following system of' equations. Use [ 1, I] 
as your starting vector. 

x' 

y' 

2x - )' 

3x - 2v ., 

(b) Repeat the iteration starting with [ 0, 1]. 
(c) Solve the characteristic equation det(A - X.I) = 0 to determine 

the eigenvalues for this matrix of coefficients. Does this give you 
any hints about what was wrong in the iteration procedure in 
part (b)? 

5. (a) Use iteration to deter111ine the dominant eigenvalue and an as
sociated eigenvector for the following systen1 of equations. Use 
[ 1, 0, 0] as your starting vector. You have to iterate a long time 
to get the iterates to stabilize at an eigenvector. 
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x' + 4y + z 

y' = .4.t 

z' .6y 

(This is a population growth that we will stt1dy in Section 4.5; here 
x is number of babies, y number of adolescents, and z adults.) 

(b) The other two eigenvalues of this system are - 1.118 and - .152. 
How do these eigenvalues help explain the slow convergence of 
the iteration procedure? 

Hint: See equation (2). 

· 6. Suppose that we want to solve the same Leontief system as was solved 
in Example 4, but now the con umer demand vector c has been changed. 
Use the formula in equation ( 1 la) with the following new e's to deter
mine the new vector x of production levels. 

7. 

(a) c = [50, 50, 50, 100] (b) c == (0, 100, 0, 0] 
(c) c = [0, 0, I 00, OJ (d) c = [O, 0, 50, 50] 
( e) c == [ 1 00, 10, l 0, l 00] 

Use the sum-of-powers method in equations (10)- (11) to solve the 
following Leontief systems . 
(a) X i == . lx 1 + .2 .. t 2 + .2 .. t 3 + 100 

X 2 == .2x1 + . lx., - + 100 

X3 .2x1 + . lX3 + 100 

(b) X1 .3x1 + . Ix., + .2X3 + 100 -
X2 == . lx 1 + . lX2 + . lX3 + 100 

X 3 = . Jx1 + . lX3 + 100 

Use computer programs for both systems; convergence is fast because 
the norm of D is small-yott only need to go tip to the sixth power of 
the coefficient matrix D. 

8. Find the inverse of the following matrices by writing them in the form 
I - D and using the sum-of-powers method on D. Check the accuracy 
of your answer by using the determinant-based formula for the inverse 
of ~ 2-b)1-2 matrix (see Section 3 .3) . 

(a) 
.7 - .2 

- .4 .8 
(b) 

. 6 .3 

.2 .5 
(c) 

.6 0 

0 .5 

9. Try using the sum-of-powers method to solve the follo\ving system of 
equations. Why does the method fail? 

• 

. .ti = .4X1 + .3x"J + - .4x3 + 100 

X2 = .3x, + .4x2 + .6x3 + 100 

X3 = .7x1 + .8X2 + .SX3 + 100 

' 

. 
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• 

10. Use the iteration method in equation (14) to soJve the Leontief systems 
in Exercise 7. , • 

11. Consider the following systems of equations. 
(i) 7x1 + x2 + 2x3 = 30 (ii) 6x1 + 3x2 + x

3 
= 15 

x 1 + 5x2 + 3x3 = 10 2x1 + 5x2 + 2.t 3 = 50 

2x1 + 3x2 + 8x3 = 12 x1 + x2 + 4x
3 

= 10 

(a) Use the forn1ulation in (29) to rewrite the systems in the form 
x = Dx + b with 11D11 < l. 

(b) Solve this system by iteration as described in Theorem 2, starting . 
with x<0) = [O, 0, 0). 

(c) Repeat part (b) with starting vector x<0> = [100, 100, 100). 

12. In the two systems of equations in Exercise 11 , divide each column by 
the main-diagonal entry and rewrite as x' = Dx' + b, as done in 
Example 5. Then solve the systems by iteration, starting with x<0) = 
[O, 0, O]. Are the iterates the same as in Exercise 11 (allowing for the 
changes of variable)? 

13. Consider the system of equations Ax = b, where 

and b = [10, 20, 30] 

• 

9 

A= -3 

4 

4 -3 

3 10 

8 -3 

(a) Rearrange the equations (rows) and divide each equation by appro
priate numbers so that this system can be rewritten in the form 
x = Dx + b with 11D11 < 1. 

(b) Solve this system by iteration as described in Theorern 2. 

14. (a) For which of the following systems of equations does Theorem 3 
apply [is (30) or (31) satisfied]? 

(i) 3x1 - 4x2 = 2 

2X1 + X2 = 4 

(iii) 2X1 + X2 == 3 

4X1 - X 2 = 5 

(ii) 6x 1 + 2x2 - x3 = 4 

X1 + 5X2 + X3 = 3 
2x1 + x2 + 4x3 = 27 

(b) In the systems where Theorem 3 does not apply directly, try to 
rearrange the rows and/ or divide the rows or columns by the largest 
coefficient to make Theorem 3 apply. 
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(c) Try the iterative method for solving each system. Does the method 
work on a system where Theorem 3 could not be made to apply? 

15. (a) Suppose that we use a starting vector x<0) == w in the iteration 
scheme x<k+ 1> == Dx<k) + c. Using the same reasoning as led to 
equation (18), find f(!nnulas for x<t), x<2), and x<n) in terms of D 
and w. 

(b) Use your formula for x<n) in part (a) and the fact that 11D11 < 1 to 
show that the starting vector does not influence the finai values in 
the iteration process. 

16. A well-known method to speed up the convergence of Jacobi iteration, 
called Gauss-Seidel iteration, is to use the new valite of x1 obtained 
from the first equation in the second and third equations (in place of 
the previous value of x1); similarly, the new value for x2 is used in the 
third equation. In the refinery problem, the first two equations in (24) 
are 

17. 

x~ 
X , _ 1ox' 

2 - -14 1 

Starting with x<0> = [O, 0, 0], we would compute xi as 2
40(0) - 2i(O) 

+ 500 = 500. Then we use this value of 500 for x~ in the second 
equation to compute x; as /c,(500) - /o-(0) + 750 == 550. The third 
equation would use the values for both x 1 and x2 just computed. 
(a) Use Gauss-Seidel iteration on the refinery problem [ the three equa

tions in (24)] starting with x<0) == [O, 0, O] . How many iterations 
are required to attain the solution vector [ 135, 263, 868]? 

(b) Use Gauss-Seidel iteration to solve the Leontief system in Exam
ple 4. 

(c) Use Gauss-Seidel i!eration to solve tl)e system of equations in Ex
ercise 11, part (i). 

Another method of iteration is to average the two previous iterates. In 
an iteration process such as (25), where the iterates are oscillating above 
and below the final solution, such an averaging will increase conver
gence. On the other hand, when the iterates are increasing as in the 
Leontief system, this averaging method will slow down the conver
gence. 
(a) Use this method of averaging the two previous iterates to re-solve 

the refinery equations [equations (24)] starting again with x<0) = 
[0, 0, 0]. How many iterations are required to attain the solution 
vector [135, 263, 868]? 

(b) Use the method of averaging to re-solve the Leontief system in the 
text. How many iterations are required to attain the solution? 
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Numerical Analysis of 
Systems of Equations 

Computational Complexity of Solving 
Systems of Linear Equations 

In this section we Jook at some of the numerical difficulties and shortcuts 
that are possible during elimination computations. Numerical linear algebra 
is a large, growing field (see the References). We sha,1 just touch on some 
of the basic results. Our discussion will concern systems of n equations in 
,z unknowns, but generally our results also apply to systems of m equations 
in n unknowns. 

The first issue we address is the computational complexity of elimi
nation: How many arithmetic operations are required to solve a system of n 
equations in n unknowns (when the answer is unique)? We shall measure 
computation in terms of the number of multiplications required ( division will 
be treated as equivalent to multiplication); the number of additions and sub
tractions is always about the same as the number of multiplications. 

The fundamental computation in Gaussian elimination is subtracting a 
multiple lki of row i from row k, k = i + l , i + 2, . . . , n: this operation 
makes entry (k, i) zero. Each entry in row i must be multiplied by lk; and 
then subtracted from the corresponding entry in row k, fork > i. There are 
,i - i + 1 entries in row i (the entries to the right of the main diagonal 
plus the right side value) involved, and ,z - i rows below row i. So there 
are approximately (,i - i + 1 )(,z - i) multiplications; for simplicity, we 
say about (n - i)2 multiplications. To perform elimination of .,t1, x2 , ••• , 

. 
xn _ 1 requires 

3 

(n - 1 )2 + (n - 2)2 + · · · + (1 )2 = } multiplications 

When elimination is finished, it takes one division to compute xn, one 
multiplication and one subtraction (and one division) to compute xn - 1, and 
generally k multiplications and k subtractions to compute x,, _k• Altogether, 
back substitution requires about 122 /2 multiplications. For large n, ,i2 /2 is 
negligible beside n3 /3. · 

Now let us quickly go over the operation count for elimination by 
pivoting. The one difference is that a variable X; is now eliminated from all 
the other n - 1 rows; in addition, every entry in the pivot row is divided 
by the pivot entry. It takes (11 - i + l )n multiplications to eliminate xi 
from all other rows. Summing over all i, we get a grand total of about n3 /2 
multiplications. There is no back substitution. 

If we want to compute the inverse by pivoting, then each row will 
require (11 - i + n) multiplications, for n (instead of I) right-side terms. 
The total number of multiplications works out to about 11

3
. One can use 

Gaussian elimination with n right-hand sides and multiple back substitution 
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but the back substitution now is 11 times more complicated~ the total process 
also requires about 11

3 multiplications. 
We summarize our discussion with a theorem. 

Theore,n 1. A system of ,z equations in 11 unknowns requires approximately 
n3/3 multiplications (and subtractions) to solve by Gaussian elimina
tion and n3 / 2 multiplications to solve by pivoting. Either method re
quires approximately n3 multiplications to invert an 11-by-n matrix. 

If-we are solving Ax = b for several different right-hand sides, then 
the best method is the LU method. presented in Section 3 .2, of storing 
elimination multipliers in Land the final reduced matrix in U. Applying the 
multipliers in L to a new b* will require about ,12 / 2 n1ultiplications. As 
noted above, back substitution also requires 112/ 2 multiplications. Thus, us
ing Land U, we can solve the new system Ax = b* with just 112 multipli
cations. This is the same number of multiplications required to compute the 
matrix-vector product A - 1b* the solution using the inverse (assuming that 
A - 1 is known). However, the result with L and U will have less roundoff 
error: Using A - 1 necessariJy introduces some additional error. 

In Section 3.4 we introduced the Jacobi iteration method for solving 
a system of equations. Each iteration requires a matrix-vector multiplication 
that takes n2 operations. If the matrix is sparse, fewer operations are required 
(see Section 2.6). The problem is that we do not know how many itera
tions will be necessary to converge to the solution. When n is large 
and the coefficient 1natrix is spar e, an iteration method i likely to be 
much faster. · 

Solving Tridiagonal Systems 

Let us next consider how much more quickly elimination can be perforn1ed 
for a well-structured sparse matrix. In particular, let us look at a triadiagonal 
matrix, whose only nonzero.entries are on the main diagonal and just to the 
left and right of the mai11 diagonal. 

Look at the form of a tridiagonal matrix before and after the elimination 
step for X;. A * indicates a nonzero entry. 

• i + 1 1 

* * 0 0 

0 * * 0 0 

B 0 0 • • 

E • • 

F 
. 

0 0 * 0 0 I a .. 
" 

0 • + 1 0 l * * * 0 0 

R 0 * * * 0 0 

E * * * 

• 
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• 
i + 1 l 

* * 0 0 

0 * * 0 0 

A 0 0 • • 

F • • 

T • 0 0 l a .. 
ll * 0 0 

, 

E i + l 0 0 C * 0 0 

R 0 * * * 0 0 

* * 8 • 

The only alteration was that entry (i + 1, i) became 0 , and entry 
(i + l , i + 1), marked with a C, changed to a new nonzero value-only 
entry C's new value must be computed, together with a change in the right 
side of row i + l. This requires only two multiplications and two subtrac
tions, plus one division to find the elimination multiplier. 

Back substitution for each row in the reduced system will require one 
multiplication, one subtraction, and one division, since each row in the 
reduced system looks like qx; + rx;+ 1 = s (where X;+ 1 is already known) , 
soxi = (s - rx; + 1)/ q. Together, we have 

Theorem 2. An n-by-n tridiagonal system of equations can be solve,d by 
Gaussian elimination in just 5n multiplications and 3n subtractions. 

This is an incredibly fast result. Compared with the normal n3 / 3 mul
tiplications in Theorem l , this means that solving a 50-by-50 tridiagonal 
matrix requires about 250 multiplications versus over 40,000 operations for 
a full 50-by-50 matrix. Savings are possible on any band matrix. 

Let us illustrate the speed of elimination on a tridiagonal matrix we 
have seen frequently in this book. 

• 

Exa,nple 1. Computing the Stable Probability 
Distribution for the Frog 
Markov Chain 

We return to the familiar frog Markov chain that has six states (rep
resenting different positions in the highway). The transition matrix is 

.50 .25 0 0 0 0 

.50 .50 .25 0 0 0 

A == 
0 .25 .50 .25 0 0 

(1) 
0 0 .25 .50 .25 0 

0 0 0 .25 .50 .50 

0 0 0 0 .25 .50 

• 



• 
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By letting this Markov chain run for many iterations, we found 
in Section 1. 3 that the probability distribution approached a stable 
distribution p* with the property Ap* = p*. In matrix algebra ter
minology, p* is an eigenvector of A with eigenvalue 1. Let us solve 
the matrix system 

Ap = P or, equivalently, 

That is, 

- .50p1 + 
.50pl 

.25p2 

.50p2 + .25p3 

.25p2 - .50p3 + .25p4 

.25p3 - .50p4 + 
.25p4 -

(A - l)p = 0 

== 0 

== 0 

=0 
.25p5 == 0 

.50p5 + .50p6 = 0 

.25p5 - .50p6 = 0 

(2) 

Use Gaussian elimination. To eliminate p 1 from equation (2), we add 
the first equation in (2) to the second and obtain 

- .50p, + .25p2 

- .25p2 + .25p3 

.25p2 - .50p3 + 
.25p3 -

= 0 

= 0 

== 0 

.50p4 + .25p5 == 0 

.25p4 - .50p5 + .50p6 == 0 

.25p5 - .50p6 = 0 

(3) 

To eliminate p2 from the third equation in (3), we add the second 
equation to the third. 

- .5Qpl + .25p2 = 0 

- .25p2 + .25p3 = O 
- .25p3 + .25p4 = 0 

(4) 
.25p3 - .50p4 + .25p5 = 0 

.25p4 - .50p5 + .50p6 == 0 

.25p5 - .50p6 = 0 

A simple pattern is emerging of simply adding the ith equation to the 
(i + l )st equation. To eliminate p3 from the fourth equation in (4), 
we add the third equation to the fourth and after that we eliminate p4 

from the fifth equation by adding the fourth equation to the fifth. After 
these two further elimination steps, we have 
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- .5Qpl + .25p2 

- . 25p2 + .25p3 

- .25p3 + .25p4 

= 0 

== 0 

- .25p4 + .25p5 

=0 

=0 
- .25p5 + .50p6 = 0 

.25p5 - .50p6 = 0 

(5) 

Now however, we are on the verge of a problem we had back in Section 
3.2.: The last equation in (5) is just the negative of the fifth equation. 
When we add the fifth equation to the sixth equation to eliminate p5 , 

we obtain 

=0 
- .25p, + .25p3 == 0 

- .25p3 + .25p4 = 0 

- .25p4 + .25p5 = 0 
(6) 

- .25p5 + .50p6 == 0 

0 == 0 

Multiplying all equations in (6) by 4 and bringing one term in each 
equatipn to the right side, we have the simple system 

2p1 = P2, 

p3 = p4, 

Ps = 2p6, 

P2 = p3, 

P4 = Ps, 
0 = 0 

(7) 

Our problem is that an eigenvector is really a family of eige~vectors: 
Any multiple of an eigenvector is again an eigenvector. We can give 
any value q to p 1, then from (7), 2p1 = p2 implies that p2 == 2q and 
further that p5 == p4 = p 3 = p2 == 2q. Then 

• 

p = [q, 2q, 2q, 2q, 2q, q] (8) 

But we want a special eigenvector, one that is a probability dis
tribution-whose entries sum to 1. Requiring that the components in 
p sum to 1 , we have the constraint 

q + 2q + 2q + 2q + 2q + q = 1 or 

~ q = .l 

Thus our stable distribution is 

p* == [ .1, . 2, . 2, . 2, . 2, . l] 

lOq == 1 

This is the same result we got by iteration in Section 1. 3. • 

• 
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The simple nature of the elimination process in (2)-(6) shows that if 
the frog were on a 10-lane superhighway yielding a 12-by- l 2 transition 
matrix, the computations to find the stable distribution \vould still be easy 
(the n-lane problem is solved in Section 4.4). Tridiagonal systen1s arising 
from Markov chains and other real-world problems often have a simple 
elimination pattern. For example, in Section 4.7 we hall easily solve a 100-
by- IOO tridiagonal system. 

·one of the dangers in elimination in general sparse matrices (not band 
matrices) is fill-in. Fill-in is the creation of new nonzero entries during the 
elimination process, the loss of spar ene s. Every nonzero entry created 
below the main diagonal will require additional computation to eliminate it 
later. In elimination by pivoting, nonzero entries above the main diagonal 
also cause extra work. To illustrate the trickiness of fill-in, observe what 
happens in elimination by pivoting when we re-solve the stable probabilit)'' 
distribution in Example 1. 

Exa,nple 2. Sparse Matrix Fill-in 

After pivoting on entry ( 1, 1 ), we have the same result as in (2) except 
that the first row is (l _ - .25, 0, 0, 0~ OJ, since we divide the pivot 
row by the pivot entry. After pivoting on entry (2, 2) ~ we obtain 

(a) Pi - .50p3 =0 
• 

(b) P2 - p3 = a 
(c) - .25p3 + .25p4 =O 

(9) 
(d) .25p3 - .50/J4 + .25p5 =- 0 

(e) .25p4 - .50p5 + .50p6 = 0 
(f) .25p~ - .50p6 = 0 

When we pivot on entry (3, 3), we have to remove the nonzeros in 
entries (1, 3) and (2, 3). The result is 

(a') = (a) + .5(c') P1 .50p4 == 0 

(b') = (b) + (c') Pi P.i = 0 

(c') = (c)/( - .25) = 0 p3 p4 
(10) 

(d') = (d) - .25p4 + .25p5 = 0 

(e') = (e) .25/74 - .50115 + .50p6 = 0 

(f') = (f) .25p5 - .50p6 = 0 

We just pushed the nonzero entries over one column and now will 
have to deal with them on the nexJ pivot. So \\'hen it is time to pivot 
on entry (i, i) in tl1is syste1n, the e11tries abo\'e the n1ain diagonal in 
column i will all be nonzero. When we used Gaussian elimination in 
Example 1, we never had such problems. • 

• 
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Stable Elimination 
• 

We consider now the problem of the stability of computations during elimi-
nation. Will roundoff errors tend to grow and make the solution computed 
inaccurate, or will the errors stay small? The answer is that some systems 
of equations are inherently unstable, while others are very dependent on the 
order of the equations; that is, reordering the equations and variables can 
sometimes greatly reduce roundoff error. We shall discuss ways to choose 
a good arrangement and to estimate the underlying stability of the system 
of equations. 

To see how computations with systems of equations can be stable or 
unstable depending on the order of the equations or variables, consider the 
following example. 

• 

Example 3. Roundoff Error in 
Elimination Computations 

Gaussian elimination on the system 

yields 

.OOOlx + y == 1 

X + y == 2 

.OOOlx + y = 
-9999y = 

I 
- 9998 

from which we have y = . 9999, so back substitution yields 

.OOOlx + .9999 == 1 ~ x == l 

But suppose that roundoff error in the elimination had produced 

.OOOlx + y = 
- 10,000y = 

1 

10,000 

yielding y = 1. Now back substitution gives 

.OOOlx + 1 = 1 ~ x = 0 

( 11) 

(12). 

(13) 

Although they value stays about the same, the difference in x values 
is very significant: (12) yields x = I, and (13) yields x = 0. 

The problem came from the small size . 000 I of a coefficient of 
x in (11 ). This coefficient is the pivot entry in elimination by pivoting. 
The antidote is to avoid pivoting on small entries. In the case of system 
(11), we should pivot on the coefficient of x in the second equation or 
on the coefficient of y in the first equation. In Gaussian elimination 
terms, we should interchange either the equations or the variables. 
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Interchanging equations, we get 

X + y = 2 
.OOOlx + y = 1 

and Gaussian elimination gives 

X + y = 2 

.9999v = .9999 
• 

(14) 

(15) 

yielding y = . 9999 and x = 1.0001. Now there are no roundoff-error 
problems: A small error in the computations in (15) will yieJd only a 
small error in the values of .t and y. 

Interchanging the order of the variables in (11), we get 

y + .OOOix = I 

y+ x = 2 

Now Gaussian elimination gives 

V + .QQQ].,t == 1 ., 

.9999x == 1 

(16) 

(17) 

again yielding x = 1.0001 and y = . 9999. Again, a small error in 
computations in ( 17) has a small effect on x and y. 

What a difference the rearrangements make! • 

The immediate conclusion \vould seem to be to pick an entry that is 
largest in its row and column for the pivot, and perform an exchange of 
equations and/ or variables to get this entry up to the first coefficient in the 
first equations. 

Unfortunately, the situation is more complicated than that. Suppose 
that we multiply the first equation of ( 11) by 104 and multiply the second 
equation by 10 - 4 . Further, let us replace x by s = lo - 4x and y by 
t = I04y (so x = 104s, y = I0 - 4t). These scaling transformations convert 
(11) into 

or 

104 {. 000 1 ( 104 s) + ( 10 - 4t) == 1 } 

10- 4{(104s) + (10 - 4t) = 2} 

104s + t = 104 
( 18) 

The coefficient of s in the first equation is now the largest coefficient in 
(18), but these scaling changes have not really changed the aritl1metic. If 

• 

• 
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we solve ( 18) with possible roundoff error in the fourth significant digit , as 
above in ( 13) , the solution of ( 18) ,vill be . 

S = 0, t = 104 ~ X == 104 S == 0, y = 1 o- 4 t = } ( 19) 

the same error as before. 
To undo the confusion caused by (18), it is important before making 

any pivot choices (i .e., rearrangement of equations or variables) to scale the 
coefficient matrix: Multiply equations and rescale variables by constants 
chosen to make the largest entry in each equation and each column the same 
size, say, equal to l . Then pick an entry that is largest in its row and column 
for the pivot. After eliminating one variable from the other equations, repeat 
this process for the remaining n - 1 equations in n - 1 unknowns; and so 
on for each successive choice of pivot entry. . 

Example 4. Stable Elimination 

Let us apply the preceding advice to system ( 18). 

104s + t = 104 
( 18) 

s + 10 8t = 2 X IO 4 

We divide the first equation by 104 to obtain 

s + 10- 4 t = 1 (20) 
s + l O - 8t = 2 X 1 o-4 

The largest entry in each equation is 1, but the column of coefficients 
for t are all too small. Let us replace t by y = 1 o-4t. Then (20) 
becomes 

s + y = l (21) 
s + .0OOly = .0002 

Now we could pick y in the first equation or s in the second. Let us 
pivot on the y term in the first equation. Interchanging the order of the 
variables, we have 

y +s == 1 

.000ly + s == .0002 

Gaussian elimination gives 

y+ s == 1 

.9999s == .0001 

(22) 

(23) 

yieldings = .0001 and y = .9999. Recall that x = 104s, so x = I. 
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The reader should check that sn1all errors in (23) lead to a small change 
in the answer. • 

We repeat the rule ot~ stable elimination. This rule is called complete 
pivoting in the numerical analysis literature. 

. 
R11.le of Stable Elin1i1iatio1z. First apply scaling lo rows and colu111n 
as necessary to make the largest entry in each row and column equal 
to l. 

An entry that is the largest (in abso)ute value) entry in its row 
and column should be chosen for the pivot. Interchange equations and 
variables to make the pivot the first entry in the first equation. Now 
eliminate the first variable from the remaining equations. 

Repeat this whole process for each round of elimination. 

Let us look next at the question of inaccurate solutions from the view 
of the ''person on the street'' who needs to solve a systern of equations. He 
or she will probably not worry about inacct1racy until it happens. So the key 
question is: HO\V do you know if the solution x* that you computed to the 
system of equations Ax = b is accurate? The answer is simple. If x* were 
the true solution, Ax* would equal b. A in1ple measure of error is the 
vector E: 

E == Ax* - b (or Ax* = b + E) (24) 

A true solution makes E equal 0. If E is unacceptably large, one should re
solve the system from scratch using a stable eJimination method just given . 

• 

Optional 

Maybe you alread)' used this method. but the system was inherently unstable . 
Then the best way to proceed is to correct x* as follows. If x0 is the true 
solution, our error in x*, e = x* - x0 , ~atisfies the equation 

Ax* - Ax.0 

(b + E) - b 

= E 

(25) 

So we should solve the equation Ae = £ (by the stable elimination 
method) and subtract our solution e* from x* to get a corrected solution 
x** = x* - e* for the original system. 
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Condition Number of a Matrix 

Now we tum to the study of inherently unstable system~. We saw a case of 
instability back in Section 1.2 with the canoe-with-sail equations, which had 
the form 

x1 + kx2 = b1 

X1 + X2 = b2 
(26) 

When k became close to 1, these two equations represented almost 
parallel lines. A small change in the value of k near 1 has a large effect on 
where these lines will intersect. The choice of pivots is not at issue here. 

In Section 3 .1 we obtained Cramer's rule, a determinant-based for
mula, for the solution to a system of equations. This formula involves di
vision by the determinant of the coefficient matrix. For the coefficient matrix 
A in (26), det(A) = I · l - k · 1 = l - k. As k ~ 1, det(A) ~ 0. So 
in Cramer's rule we are almost dividing by O and problems will abound. 

The critical issue is not just the size of the det(A) but the size of 
det(A) relative to the size of the entries in A (which are used in the numerator 
in Cramer's rule). 

A more rigorous analysis of errors needs to use the norm of the coef
ficient matrix A. Recall that 

IIAII max IAxl 
lxl 

here lxl and IAxl are the sizes of these vectors n1easured by s01ne norm (the 
euclidean norm, the sum norm, or the max norm, introduced in Section 2.5). 
IIAII is the maximum magnifying effect that matrix multiplication can have 
on a vector. Recall that the sum norm IIAlls is simply the largest column sum 
and the max norm IA lmx is the largest ~ow sum. In both norms, the sums 
are of the absolute values of the entries. 

For any vector x, 

IIAxll < IIAII · lxl • (27) 

Suppose that E represents a matrix of errors (either in recording data 
or roundoff errors): The true matrix A has become the matrix A + E. Then 
let us see how changing A to A + E changes the solution to the matrix 
equation Ax = b. Suppose that xis the solution to the correct equation and 
x + e represents the solution to the altered equation. Thus we have 

Ax = b and (A + E)(x + e) = b (28) 

We now derive a bound on the relative size of e in terms of the relative 
size of E, a bound of the form 

't 
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lei < c(A} IIEII 
Ix + el - IIAII (29) 

We derive (29) by subtracting the first equation in (28) from the second 
to obtain 

(A + E)(x + e) - Ax = b - b = 0 or 

or 

Ae = -E(x + e) 

Ae + E(x + e) = 0 

(30a) 

(30b) 

We assume that A is invertible ( or else the solution is not unique). Then we 
can solve (30b) for e. 

e = -A- 1E(x + e) 

Taking norms in (31) and using (27), we have 

lel = jA- 1E(x + e)I:::;; jjA - 1Ell · Ix+ el 

(3 1) 

(32) 

Now we use the fact given in Section 2.5 that for any matrices A, B: 
IIABII < IJAII · IIBII- With it, we have 

IIA - l Ell < IIA - 1
11 • IIEII • (33) 

Combining (33) with (32), we have 

le :5 IIA - 1EII · Ix + el < IJA- 111 · IIEII · Ix + el (34) 

Dividing by Ix + el yields the bound we were seeking . 
• 

!el -s !IA - 1 II · IIEII 
x + el 

Equation (3 5) can be rewritten as 

lei < (!IA - 1 II · IIAII) !!Ell 
Ix + el IIAII 

(35) 

(36) 

So the constant in (29) turns out to be c(A) = IIA - 1 II • IIAII. This product 
c(A) is called the condition number of the matrix A. A small condition 
number means that the matrix is well behaved and yields stable computations 
during elimination, since by (36) small errors in A can only produce small 
errors in the solution vector. 

The condition number can also be shown to bound the effects on x of 
an error in b, when A(x + c) == b + e'. 
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Js < c(A) le' I 
lxl - lbl (37) 

The exact value of the condition number is dependent on which matrix 
norm we use. 

Example 5. Condition Number of 
Canoe-with-Sail Problem 

' 

The canoe-with-sail equations in (26) have the coefficient matrix 

A == 
1 k 

l 1 
(38) 

We \1/ant to study the sensitivity of a solution x of Ax = b to 
small errors in the value of k when k is close to 1. From the preceding 
discussion, we compute the condition number c(A) = IIAllsllA- 1lls, 
using the sum matrix norm. The sum norm of A is the largest column 
sum (remember absolute values). When k is close to 1, the sum of 
each column js 2 or about 2; so we say that !IA Is = 2. Computing the 
inverse of A (by the determinant-based inverse formula for a 2-by-2 
matrix in Section 3. I), we have . 

1 -k 
1 - k 1 - k 

A - 1 - (39) -
- 1 1 

I - k 1 - k 

Again with k close to 1, the sum of (the absolute values) of each 
column in A - 1 is about 2/(1 - k). So let IIA- 1lls == 2/(1 - k). Then 

• 

c(A) = IIA11s • IIA- 1
11s = 2 · l 

2 4 

I - k 
(40) 

Fork == . 15, c(A) == 4/(1 - . 75) = 16, so (where IIA11s == 2) 

le < c(A) IIE I = 16 IIEI = &IIE I (41) 
Ix + el IIAII 2 

Thus a small error of, say 1
1
2 in the value of k, with I IE ls == 1

1
2 

( the error matrix E for A is all O's except for -h in k's entry) could 
lead to a large percentage error in the solution x + e of up to 
8( 1

1
2) = 67%. Recall that back in Section 1.2, changing k from 

l to ~ changed the solution of Ax == (5, 7] from x = [- l, 8] 
to x' ( = x + e) = [l, 6]. So in this case, leis/Ix + els 
(2 + 2)/(1 + 6) == 57%. • 

• 



~~ec. 3.5 Numerical Analysis of Systems of Equations 249 · 

• 

For a geometric picture of why matrices with rows (or c?lumns) that 
are almost equal are ill-conditioned (unstable) (see Exercise 4 of Section 
3.3). 

• 

Example 6. A Well-Conditioned System 

Consider the refinery system of equations introduced in Section 1. 2 
whose coefficient matrix is 

20 4 4 

A == 10 14 5 

5 5 12 

In Example 5 of Section 3. 3, we computed its inverse to be 

.05958 -.01166 -.015 

A - 1 = - .03958 .09167 - .025 

- .00833 - .03333 . I 

Taking the maximum (absolute value) of the column sums, we have 
IIAlls == 35 (first column) and IIA - 111s = .14 (third column). Thus the 
condition number of A is 

c(A) = IIA11s11A - 'lls = 35 X .. 14 = 4.9 

• 

This is a reasonably well conditioned matrix. For the demand vector 
b = [500, 850, 1000] we have used in this refinery model, we found 
(in Section 3. 2) that the solution x of Ax == b was 

If we change entry (2, 3) of A from 5 to 7 to get A', the error matrix 
E [a matrix of all O's except entry (2, 3) is 2] has IIElls = 2. The error 
bound (35) gives 

lels IIEII~ 2 
Ix + els < c(A) IIAlls == 4·9 35 == ·

28 (42) 

So a is change in the norm of A can yield a 28% error in the nonn of 
the solution. Solving A'x' = b for the same b, one would obtain 

x~ = 6 .5 .'.t; == 19. 7 x; == 72.3 

Let x' == x + e, where lx'I == Ix + el == 98.5; then 

e = x' - x == [6.5 - 4.8, 19.7 - 33.2, 72.3 - 67.5] 
= [ I . 7, - 13. 5, 4. 8] 
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with lels = 20. Thus lels/lx + els == 20/98.5 = .20, which is not far 
from the maximum percentage error of .28 given in (42). • 

In the Exercises the reader has the chance to examine how the solution 
to Ax = b is affected by small changes in a coefficient of A, for a variety 
of well-conditioned and ill-conditioned matrices. 

Section 3 .5 Exercises 

• 

• 

Summary of Exercises 
Exercises 1-12 concern the speed of elimination computations and elimi
nation on tridiagonal matrices. Exercises 13- 17 involve choice of pivots. 
Exercises 18-27 deal with the condition number of a matrix; it is assumed 
tl1at the sum norm is being used. (Note that the word problems in Exercises 
24- 26 use inverses that would have been computed in Exercises 15- 17 of 
Section 3 .3.) 

1. Let A be an 8-by-8 matrix. How many multiplications (approximately) 
are required to perfonn each of the following operations? 
(a) Con1pute A2 . (b) Solve Ax = b. (c) Compute A - 1• 

2 .. Let A be an n-by-n matrix . How many multiplications (approximately) 
are required to perform each of the following operations? 
(a) Compute A3. (b) Solve Ax = b. 
( c) Iterate x <k + 1 > = Ax<k) 10 times. ( d) Compute A - 1 . 

3. Let A be a 200-by-200 tridiagonal matrix. How large must k be so that 
squaring a k-by-k n1atrix takes as many multiplications as solving 
Ax = b? 

4. Solve the following tridiagonal syste1ns of equations. 

(a) X i x., 1 

- xl + 2x2 - X3 0 

- x 2 + 2x3 - X4 - - 1 

- X 3 + 2x4 
- X 5 --- 1 

- x + 2x 4 5 x6 = 1 

- xs + 2x6 = -2 

(b) Xi + X2 1 
?x .., 1 + X2 + X3 0 

2x2 + X3 + X4 0 

3x3 + 2x4 + X5 0 

2x4 + 3x5 + x6 = 0 

2x5 + 3x6 = -4 

• 
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5. Repeat Exercise 4, part (a) with the last equation changed to - ~Ys + 
x6 = - 2. You now get a set of solutions. Express these solutions in 
tenns of x6 . 

6. Find the stable distribution ( as done in Example 1) for Markov chains 
with the following transition matrices. 

½ A 0 0 0 0 2 2 0 0 0 0 3 3 
2 l. l 0 0 0 1 i 2 0 0 0 3 3 3 3 3 

0 1 1 1 0 0 0 1 l 2 o· 0 3 3 3 6 6 3 
(a) (b) 

0 0 1 ¼ 1 0 0 0 .1. 1 ? 
0 .. 

3 3 6 6 3 

0 0 0 1 1 2 0 0 0 1 t 2 
3 3 3 6 :l 

0 0 0 0 J. 1 0 0 0 0 .l l 
3 3 6 3 

2 2 0 0 0 0 0 1 0 0 0 0 3 3" 2 

l ~ 2 0 0 0 1 0 1 0 0 0 3 3 2 

0 1 i i 0 0 0 ½ 0 1 0 0 
(c) 

6 
(d) 

2 

0 0 ! 1 1 0 0 0 1 0 l 0 6 6 2 2 
• 

0 0 0 2 l l 0 0 0 1 0 1 ~ 6 2 

0 0 0 0 2 2 0 0 0 0 1 0 3 3 2 

• 7. Expand the frog Markov chain from 6 states to 20 states (all the middle 

• 

columns, like the midd]e columns of the current 6-state transition ma
trix). Solve for the stable distribution. 

8. Expand the frog Markov chain from 6 states to n states (all the middle 
columns, like the middle columns of the current 6-state transition ma
trix). Solve for the stable distribution. 

9. Suppose that you have an 10-by-J O matrix that has a tridiagonal forn1 
except for one row. . 
(a) Explain why if this row is the last row, the speed of solving 

Ax == b with a tridiagonal matrix is barely affected. 
(b) Explain why if this row is the first row, the speed of solving 

Ax = b can become proportional to n2 operations. 

10. (a) Verify that finding the inverse of an ,1-by-,1 matrix will take about 
,z3 multiplications (or divisions) using elimination by pivoting. 
Hint: Because of special right sides, only tz3 /6 steps are used on 
right sides during the elimination procedure. 

(b) Verify that finding the inverse of an n-by-11 matrix will take about 
113 multiplications ( or divisions) using Gaussian elimination with 
back substitution. 

11. Show that for a band matrix with bandwidth w, Gaussian elimination 
takes approximately 1112,1 multiplications (or divisions) . 
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12. (a) Find A - 1 for the upper triangular matrix 

A 

1 2 3 4 

0 1 l 2 

0 0 2 4 

0 0 0 1 

using back substitution l or equivalently, pivoting on the augmented 
matrix [A I], except start with entry ( 4, 4), then entry (3, 3), 
(2, 2), (l, 1)). 

(b) Generalize the computation in part (a) to show that the inverse of 
an n-by-n upper triangular matrix requires about nf multiplications 
(or divisions) to compule. 

(c) Generalize the computation in part (a) to show that the inverse of 
an upper triangular matrix is upper triangular. 

13. Solve by regular Gaussian elimination the following systems of equa
tions with three significant digits (i.e., 2.002 becomes 2.00 and .9996 
is rounded to 1.00). 
(a) .00lx - y = 1 (b) .00lx + 2y = 1 (c) .002x - 3y = 1 

3x + y = 0 -2x - y = 3 4x + y = 1 

14. Re-solve the problems in Exercise 13 using the stable elimination rules 
for rearranging rows and columns and scaling. Compare your solutions 
to the ones obtained in Exercise 13. 

15. Solve by regular Gaussian elimination the following systems of equa
tions with three significant digits. 
(a) .OOlx + y - z = l (b) x + .OOly + z = I 

x+2y+ z = 2 

-x- y+2z=3 • 

2x + .OOiy + z = 3 

-x + 3y + z = 0 

16. Re-solve the problems in Exercise 15 using the stable elimination rules 
for rearranging row and columns and scaling. Compare your solution 
to the one obtained in Exercise 15. 

17. Take the wrong answer x* you obtained for each problem Ax = b in 
Exercise 13 and compute the right-side error £ = Ax* - b (the right 
side obtained by Ax* minus the true right side). Solve Ax = E (using 
the stable elimination rules) and subtract the solution e* from x* to get 
a more accurate answer x** = x* - e*. Compare the answer x** with 
the answer you obtained from this problem in Exercise 14. 

For Exercises 18-27 involving the co,zdition 11umber of a matrix, al~vays 
i,se the si,m nor,n. 

18. What is the condition number of the n-by-n identity matrix? 
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• 

. 19. Determine the condition number of the following matrices . Comment 

• 

on whether or not small errors in data of each matrix A can result in 
large errors in the solution of Ax = b. 

(a) 
l 3 
2 4 

(b) 
2 -3 

- 2 1 

1 - 3 
(c) -

-? 6 .. 

1 1 1 
3 4 5 
1 1 1 (d) 4 5 6 

¼ 1 1 
~ 7 

20. In the matrix A in Example 5. if k is changed from .8 to .85, how large 
a relative error in the solution to Ax = b is possible? 

21. (a) In the refinery problem in Example 6, if entry (1, 1) is changed 
from 20 to 10 (yielding matrix A'), how large a relative error in 
the solution to A'x = b is possible? 

(b) Solve the system A'x = b for the A' in part (a) and compare the 
actual relative error with the relative error bound given in part (b). 

22. (a) Compute the condition number of 

1 

A = 2 

] 1 

4 - 1 

1 -1 2 

(b) Solve Ax == b .. where b == [1, 2, 3]. 
(c) Suppose that we change entry (2, 1) from 2 to 1 to get a new A. 

How large a relative change in solution of Ax = b is possible with 
this change in A? [use the condition number estimate (36)1. 

(d) Solve Ax = b for this new A, and compare the observed relative 
change to the one predicted in part ( c). 

(e) The large condition number of A in part (a) means that this matrix 
is close to being non invertible, that is, that some combination of 
t\vo rows of A almost equals a third ro\v-show that ~ of the sum 
of two of the rows almost equals the other row. 

23. Answer parts (a) and (b) using equation (37) in the text. 

24. 

(a) If b = [2, 1] is changed to [2, 2], how large a change can lhi 
yield in the solution to Ax = b for A in Exercise 19 part (a)? 

(b) If b = [ 1, 2, 3] is changed to [2, 2, 3], how large a change can 
this yield in the solution to Ax = b for A in Exerci e 22? 

(c) Derive the bound !el/Ix + el < c(A){je'I/ hj} in equation (37) hy 
following the reasoning in equations (30) and (32) to obtain !el < 

!IA- 1 II · le' I, then divide by lxl (~ lbl/llAII). 

(This is a continuation of Exercise 17 of Section 3.2 and Exercise 15 
of Section 3.3.) The staff dietician at the California Institute of Trjgo
nometry has to make up a meal with 600 calories, 20 grams of protein. 
and 200 milligrams of vitamin C. There are three food types to choose 
from: rubbery jello, dried fish sticks, and mystery meat. They have the 
following nutritional content per ounce. 
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Calories 

Protein 

Vitamin C 

Jello 

10 

1 

30 

Fish Sticks 

50 

3 

10 

Mystery Meat 

200 

.2 

0 

If there is at most a 5% error in (sum) norm of any column in this 
matrix of data A, how large a relative error can occur in solving the 
dietician 's problem? 

25. (This is a continuation of Exercise 18 in Section 3. 2 and Exercise 16 
in Section 3.3) A furniture manufacturer makes tables, chairs, and so
fas. In one month, the company has available 300 units of wood, 350 
units of labor, and 225 units of upholstery. The manufacturer wants a 
production schedule for the month that uses all of these resources. The 
different products require the following amounts of the resources . 

Wood 

Labor 

Upholstery 

Table 

4 

3 

2 

Chair 

1 

2 

0 
• 

Sofa 

3 

5 

4 
• 

If the amount of wood needed to make a table was accidentally entered 
as 3 in~tead of 4, bow large a relative error in the solution to this 
production problem is possible? 

26. (This is a continuation of Exercise 20 of Section 3.2 and Exercise 
17 of Section 3. 3.) An investment analyst is trying to find out how 
much business a secretive TV manufacturer has. The company makes 
three brands of TV set: brand A, brand B, and brand C. The analyst 
learns that the manufacturer has ordered from suppliers 450,000 type 1 
circuit boards, 300,000 type 2 circuit boards, and 350,000 type 3 circuit 
boards. Brand A uses 2 type-I boards, 1 type-2 board, and 2 type-3 
boards. Brand B uses 3 type-1 boards, 2 type-2 boards, and l type-3 
board. Brand C uses 1 board of each type. 

If there were a mistake in getting the type 1 circuit board orders 
• 

and the analyst thought 350,000 boards were ordered instead of 450,000 
boards, how large a relative error in the solution to this TV production 
problem is possible? 

. 
27. Show that for any invertible matrix A with condition number c(A) (using 

the sum norm), c(A) > I. 

Hint: Use the fact that IIABII < I All · IIB I . 
• 



A Sampling of 
Linear . odels 

Linear Transformations in 
Computer Graphics 

In this chapter we discuss some linear models in greater detail. Three of 
these models were introduced in Chapter 1, Markov chains, linear program
ming , and population gro\vth . Using matrix algebra and solution techniques 
learned in the previous chapters, we shall be able to analyze and solve these 
linear models. 

A general solution for most of the models in this chapter requires one 
to solve a system of li11ear equations~ in matrix form, solve Ax = b. In 
solving some of these systems of linear equations, various theoretical diffi
culties will arise. Those problems will motivate the theory of solutions to 
systems of linear equations, which is discussed in Chapter 5. 

A common use of linear models is to predict the values of a set of 
variables in the future as a linear function of the variables' current values. 
A Markov chain is such a model, as was the rabbit-fox population model . 
Other models of this type are presented in this chapter. These models assume 
the matrix form • 

w' == Aw (I) 

or more generally (in future examples) 

• 

255 
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w' = Aw + b (2) 

• 
where w is the vector of current values and w' the vector of future values. 
In this section we give a geometric interpretation of ( 1) and (2). 

A linear transformation T of the plane maps each point w = (x, )') 
into a point w' = T(w), where T(w) = Aw, for some 2-by-2 matrix A. A 
linear transformation inn dimensions is defined the same way (A is then an 
n-by-11 matrix). When linear transformations are programmed on a computer, 
they can be used to move figures about and create the special visual effects 
we have come to associate with computer graphics. In this section the reader 
will learn how to build up complicated graphics effects out of simple trans
formations. 

It will sometimes be convenient in this section to drop matrix notation 
and write w' = T(w) == Aw to represent tl1e pair of linear equations 

x' = ax + b)' 

y' = c·x + dy 
(3) 

A slightly more general transformation, corresponding to w' = 
Aw + b, is an affine linear transformation. 

x' = a .. t + by + e 

) 'I == C .. t + dy + f 
(4) 

Clearly, all linear transformations are affine linear transformations (with 
e = f == 0). Shortly, we will see that affine linear transformations lack 
some very important properties that linear transformations have. 

Figure 4.1 b, c, and d show the effect of transformations T1, T2 , and 
T3 • respectively, on the square in Figure 4. la whose corners are A = 
(0, 0) B = (1, 0). C == (1, 1), D (0, 1). 

T1: x' == 2x + 4 
(5) 

y' = 3y + 2 

T2: x' = cos 45°x - sin 45°y == .707x - .707y 
(6) 

y' = sin 45°x + COS 45°y = .707x + .707y 

T3: x' = x+y 
(7) 

y' =y 

Transformation T1 doubles the width and triples the height of the square and 
also moves it 4 units to the right and 2 units up. Transformation T2 has the 
effect of revolving the square 45° counterclockwise about the origin, but 
does not change the square's size . Transformation T3 slants the y-axis and 
lines parallel to it by 45°. To help understand the effect of these transfor-

• 
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• 
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Figure 4.1 (a) Unit square. (b) Square transformed by 7 1• (c) Square tran<;formed 
by T2 • (d) Square transformed by r .,.. 

mations, readers should evaluate T, . T 2 , and T 3 at point C ( - [ I , 1 J) of the 
square in Figure 4.1 a. Exercise 31 sho\vS that revolvi11g a JJoint about the 
origin al\vays has the form (6). 

There is an important computational question to ask about transforming 
a square or any figure built out of line segments. ls it sufficient to compute 
just the new coordinates of the comers, and then connect these new corners 
with straight lines to obtain the full transformed figure? Fortunately. the 
answer js yes. This result is a simp]e con equence of two basic law~ of 
1natrix algebra. We state these laws in linear transformation form as a 
theorem. 



258 

• 

Ch. 4 A Sampling of Linear Models 

Theorem 1. Let T be a linear transformation with w' = T(w) and v' = 
T(v). Then for any scalar constants r ands, 

(i) T(w + v) = T(w) + T(v) = w' + v' 
(ii) T(rw) == rT(w) = rw' 
(iii) T(rw + sv) == rT(w) + sT(v) == rw' + sv' 

When Theorem 1, parts (i) and (ii) are rewritten in matrix form with 
T(w) = Aw , they become the familiar matrix laws A(w + v) = Aw + 
Av and A(rw) = r(Aw). Theorem l , part (iii) is just a combination of parts 
(i) and (ii). Theorem 1 is not true for affine linear transformations T(w) = 
Aw + b-parts (ii) and (iii) fail (see Exercise 33 .for counterexamples). 
Theorem 1, part (iii) generalizes to linear combinations of three or more 
points. 

If w and v are the two endpoints of a line segment L , any point t on 
L can be written as a linear combination of wand v of the form 

t = rw + ( 1 - r )v , for son1e r, 0 < r < 1 (8) 

The constant r is the fraction of the distance t is from w to v. For example, 
if t were halfway between wand v , then r = .5. When wand v are mapped 
by some linear transformation T to points w' and v', the line segment be
tween them will be all points of the form 

t' = rw' + ( 1 - r) v' , for some r, 0 < r < 1 (9) 

By Theorem 1, part (iii), we see that if tis as in (8), then t' [ = T(t)] is the 
expression in (9) . So linear transformations map lines into lines. This result 
is also true for affine linear transformations lit is easily verified using matrix 
algebra (see Exercise 32)]. 

Theorem 2. An affine linear transformation T maps line segments into line 
segments. 

Theorem 2 allows us to compute transformations of straight-line figures 
simply by transforming comers of figures and then drawing lines between 
the transformed corners. · 

In computer graphics applications, Theorem 1 says that if the coordi
nates of comers, or other critical points, in a figure can be expressed as 
linear combinations of the coordinates of some ' ' key'' points, then to trans
form the figure we only need to apply the linear transformation to the co
ordinates of these key points; the coordinates of other points can quickly be 
obtained from the coordinates of the transformed key points. 

Theorem 1 restated the basic fact of matrix algebra that vector addition 
and scalar multiplication are preserved by matrix-vector multiplication. 
Another almost-as-easy consequence from matrix algebra is the fallowing 
result. 
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' 

Theorem 3. If T1 and T2 are two affine linear transformations, the com
posite transformation w" = T2(T1(w)), obtained by mapping w to 
w' = T1(w) and then mapping w' to w" = T2(w'), is also an affine 
linear transf onnation. 

Proof. Let T1(ll') be the mapping w' = A1 w + b1 and T2(,v) be the 
mapping w' = A2w + b2 . Then using matrix algebra, T2(T1(w)) can 
be written 

-
T2(T1(,v)) = A2(A 1w + b1) + b2 

= A2A1w + A2b1 + b2 

( 10) 

Then T2(T1(w)) is the affine linear transfor1nation T3(w) = A3w + b3 , 

where 

• 

and (11) • 

This theorem was easy to prove using matrix algebra. Without it, we · 
would have to substitute one system of equations for affine linear transfor
mation T I into another system of equations for affine linear transformation 
T2-a giant mess! 

Theorem 3 lets us build up complicated transformations out of simpler 
transformations that revolve, expand distances along the x - or .)1-axis , move 
left (right) or up (down), slant axes, and other cl1anges. Another use is in 
creating animated motion. If the rotation T2 [in equation (6)) used an angle 
of 1 °, we would obtain a linear transformation T~ that would revolve, say, 
a square around the origin by 1 °. If we repeatedly applied r; 360 times, we 
would obtain an ''animated'' sequence of figures that create one full revo
lution of the square around the origin . 

• 

Exa,nple I. Transforming a Set of Squares 

Draw a figure F consisting of a set of eight unit squares whose comers 
are at points (g, h), g = 1, 2, 3 and h == - 2, - I, 0, 1, 2 (see Figure 
4.2a) . Observe that the coordinates of all comer points are linear com
binations of the coordinates of the lower-left comer (1, -2) and the 
'' change in coordinates'· points ( 1 , 0) and (0 , 1) . For example, the 
point (2, 2) = (1, -2) + 1(1, 0) + 4(0 , 1). Now let us transform 
F first by applying the linear transformation T2(T3(x, y)) (T3 followed 
by T2), and second by applying the linear transformation T3(T2(x, y). 
The transformed figures are drawn in Figure 4.2b and c. For conven
ience, we restate T2 and T3 here: 
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, 

(b) 

Figure 4.2 (a) Grid. (b) Grid trans
formed by T3 followed by T2 . 

(c) Grid transformed by T2 fallowed 3 

by T3• 
'} -

1 

0 

-J 

(c) 

x' = cos 45°x - sin 45°y == . 101x - . 701y 

}
1

' = sin 45°x + cos 45°y == .101x + .707y 

X
1 = X + y 

)1' == y 

• 

(6) 

(7) 

We successively apply T2 and T3 in both orders to the key points 
( 1 , - 2) , ( I , 0) , and ( 0, I ) . 

T2(T3(1, -2)) == (.707, -2.121) T3(T2(1, -2)) == (1.414, -.707) 

T2(T3(1, 0)) == (.707, .707) T3(T2(1, 0)) = (1.414, .707) 

. T2(T3(0, 1)) = (0, 1.414) T3(T2(0, 1)) = (0, .707) 

We use Theorem l , part (iii) to obtain the other comers as linear 
combinations of the transformed key points. For example, since the 
point (2, 2) = (1, -2) + 1(1, 0) + 4(0, 1), then 

T2(T3(2, 2)) = T2T3( 1, - 2) + 1T2T3(1, 0) + 4T2T3(0, 1)) 

= (.707, - 2.121) + 1(.707, .707) + 4(0, 1.414) 

= (1.414, 4.242) 

• 
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Note that changing the order of the transformations changes 
the composite transformation . Composing linear tran formations is 
not commutative! This is because matrix multiplication is not com
mutative . • 

There are many geometric properties of figures that we might hope 
affine linear transformations would preserve: an angle at a corner, the area 
of a square, and the distance of each point from the origin. Each of the 
properties is satisfied by some but not all of T,, T2 , T3 , defined above. With 
a little thought, the reader should be able to guess conditions on affine linear 
transformations which make each of these properties true . 

Another interesting property is reversibility- if u' = T(u), does there 
exist another transformation r- 1 such that u == r - 1(u')? That is, does T 
have an inverse? r - 1 should exist if the matrix used to define T has an 
inverse; details are left as an exercise. 

Next let us consider transformations to represent three-dimensional 
figures in two dimensions. Any time one draws a three-dimensional figure 
on a piece of paper or displays it on a computer screen, one is performing 
such a transformation . A transformation (x', y') = T(.,t, )', z) that maps a 
three-dimensional figure into two dimensions is really operating in three 
dimensions, but the z-coordinate always becomes zero [i.e. , (x', ) ' ', 0) = 
T(x, y , z)]. 

The simplest type of linear transformation from three to two dimen
sions is a projection onto the x-y plane (or onto the x-z or y-z planes). This 
has the form T(x, y , z) = (,t, y)- just delete the z-coordinate. A more general 
projection would project three dimensional space pnto some plane that is 
not parallel to any pair of coordinate axes. Figure 4.3 illustrates such a 
projection of two dimensions onto one dimension. Here we have proiected 
the x-y plane onto the (one-dimensional) line x = y using the transformation 

Figure 4.3 Projecting x-y plane 
onto line)' = .x. 

• 
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.5x + .5y 

.5x + .5), 
( 12) 

The atTows in Figure 4.3 show how sample points are projected onto 
this line. When three-dimensional points are projected onto a plane, the 
situation is similar to Figure 4.3, but in three dimensions it is harder to 
illustrate with a figure . In Chapter 5 we will learn more about projection 
mappings. (We note as an aside that there is no \vay to reverse a projection, 
that is, there is no affine linear transformation that maps a line onto the 
whole plane, since by Theorem 2 lines are always mapped onto lines; sim
ilarly, a plane cannot be mapped linearly onto all of three-dimensional 
space.) 

1"he following two examples illustrate a standard way to map three 
dimensions into two, as well as a way to map two dimensions into three. 

Example 2. Projection of a Cube into the Plane 

.Y y 

,, .. 2 

• 

(a) (b) 

Fig,,re 4.4 (a) Three-dimensional unit cube . (b) Projection of unit cube into x-y 
plane. 

• 

Devise a linear transformation that projects the three-dimensional unit 
cube shown in Figure 4.4a into the (x , y)-plane so that the cube looks 
just the way it is drawn on the (t\vo-din1ensional) page of this book in 
Figure 4.4a. In Figure 4.4a the z-axis is represented as a line at a 30° 
angle to the x-axis . Moreover, distances along the z-axis in Figure 4.4a 
are drawn with half the length of distances along the x- or y-axis . So 
the projection we want acts on a point (.x, )', z) as follows: Tl1e 
z-coordinate should alter the x, y coordinates in the direction of a 30° 
angle above the .t -axis and the distance of the displacement should be 
half the value of the z-coordinate. 
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See •Figure 4. 4b. 

x' == x + ½ cos 30°z = x + .433z 

y' = y + ½ sin 30°z == y + .25z 

Example 3. Revolve a Letter Around the x-Axis 

• 
• 
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(13) 
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Devise a set of linear transformations that take the letter L (for Linear) 
in Figure 4.5a and revolve it 5° around the ,t -axis, then 10°, then 15°, 
and so on, around the x-axis, to make an animated movie of the L 
revolving around the x-axis. The revolution around the x-axis takes 
place in three dimensions. Let us agree to represent the transf armed L 
in two dimensions using the projection T' given by ( 13). That is, we 
treat the L as a figure in three dimensions, then successively revolve 
it 5° around the x-axis and display the results at each stage in two 
dimensions using T' . 

Figure 4.5. (a) Letter L . (b) Let-
ter L revolved 50° about x-axis 
and projected back onto x-y 

plane. (c) Letter L revolved 50° 
about x-axis, then shrunk by T10 

and projected onto x-y plane. 
(d) Letter L revolved 150° about 
x-axis, then shrunk by T30 and 
projected onto x-y plane. 
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The comers of Lare (1, 3), (1, 0), (2, 0), which in three di
mensions become (1, 3, 0), (1, 0, 0), (2, 0, 0). Revolving L around 
the x-axis is similar to revolving a figure in the (x, y)-plane around the 
origin; this is what T2 did, at the beginning of this section. We keep 
the x-coordinate fixed and revolve they- and z-coordinates the way T2 

did. Thus the required linear transformation T in three dimensions is 

T: x' = x 

y' = cos 5°y - sin 5°z 
z' sin 5°y + cos 5°z 

(14) 

First we apply T to the corners of L, (1, 3, 0), (1, 0, 0), 
(2, 0, 0), and then apply T again to the transformed corners and con
tinue applying T. Each time we apply T, we display Lin two dimen
sions by using the projection T'. The original L and the result after 
applying T 10 times, a 50° revolution (and then applying T'), are shown 
in Figure 4.5a and b. Note that T leaves corners (1, 0, 0) and 
(2, 0, 0) unchanged. • 

The result w* of applying T 10 times to an initial 3-vector u could 
also be computed by multiplying u by the tenth power of the matrix of 
coefficients in (14). Of course, the smart way to obtain a 50° rotation is just 
to substitute cos 50° and sin 50° in (14). 

There are several variations on the transformation in Example 3 that 
are used in computer graphics. ln practice, we would probably want to 
transform a whole set of letters that spell out a word. We might shrink or 
magnify the letters by an amount r as they revolve; we use the transformation 
(x", y", z") = (rx', ry'. rz') composed with T .. We might want the letters 
to recede back into the distance, away from the (x, y)-plane. This can be 
accomplished by increasing the z-coordinate a little more each time and 
shrinking the letters a little (in all coordinates). The following affine linear 
transformation could be used after k applications of T. 

(x", y", z") = (.95kx', .95ky', .95kz' + . lk) (15) 

Note that Tk has the undesirable affect of shrinking the x-coordinate toward 
the left (toward the origin). Figure 4.5c shows the result of applying T 10 
times followed by T10; Figure 4.5d shows the result of applying T 30 times 
followed by T10 (again T' is used to get planar depictions). 

Let us add a warning about roundoff errors. A small error in computing 
(14) (to revolve the letter L) may become a noticeable error after dozens of 
iterations of (14). One easy way to eliminate this type of error is on every 
tenth iteration to compute the new coordinates of the transformed L directly 
from the original coordinates, (1, 3), (1, 0), (2, 0), by performing a 50° 
rotation [as noted above, do this by using cos 50° and sin 50° in (14)]. This 
method of eliminating an accumulation of errors by ''updating'' is used 
frequently in many different types of linear models . 

• 
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Hopefully , Examples 1, 2, and 3 have given the reader a sense of how 
to generate a variety of transformations to move figures around in two and 
three dimensions. We have tried to provide the reader with the basic tools. 
We leave the creation of more interesting graphics transformations as 
projects for the readers (some simple graphics projects are suggested in the 
Exercises). Please note how extremely tedious animated graphics wot1ld be 
without computer programs to map sets of points repeatedly , as in Exatnple 
3, and to build a complex transformation from a sequence of simple trans
formations, as pennitted by Theorem 3. 

There is one very important problem in computer graphics that we 
have not discussed-the hidden surface problem. In Figure 4.4 we show all 
the corners and edges of the cube, but actually some are not visible because 
they lie at the back of the cube. The problem of determining which corners, 
edges, and surfaces of an object are visible is tricky and its solution relies 
heavily on linear algebra; even determinants are involved. 

In earlier chapters we saw how eigenvectors can simplify the compu
tation in iterating the system x' = Ax. We now give a geometric interpre
tation of how eigenvectors simplify a linear transformation T(,v) = Aw. 
Recall that an eigenvector u of a matrix A has the property that multiplying 
u by A has the effect of multiplying u by a scalar. That is , there is some 
scalar ~, called an eigenvalue of A. such that Au = X.u . Since matrix A 
and the linear transformation T(w) = Aw are really '' the same thing,,' 
we will speak interchangeably about a vector u being an eigenvector of A 
or of T. 

Eigenvectors allow us to break a linear transformation into simple 
parts. (This reverses our previous goal of building up complicated transfor
mations from simple ones.) The idea is to change to a coordinate system 
based on the eigenvectors of A, as was done in Example 8 of Section 2.5 , 
and apply T in tenns of this new coordinate system (in Section 3. 3 we 
showed that converting to eigenvector coordinates was equivalent to writing 
A in the form UD~U- 1). 

• 

Example 4. Eigenvector Coordinates to Simplify a 
Linear Transformation 

Consider the linear transfonnatio11 T, 

x' = X + y 

y' == ½x + iy 
( 16) 

The standard (.x, y) coordinate system expresses a point as a linear 
combination of the point ( l, 0)-the dista11ce along tl1e x-axis-and 
the point (0, 1 )1-ithe distance along the y-axis. That is, ( .. t, ) ') = 
x(l, 0) + y(O, 1). Now let us use a coordinate system in which points 
are expressed as a linear combination of two eigenvectors of T (these 
are magicaJ ly provided by the author). They are u 1 = ( 1, J) and 
u2 = ( - 2, l). Applying T to u1 and u2 , we have 

• 
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T( 1, I) = (2, 2) = 2( 1 , 1) 

T( -2, 1) = (- 1, ~) = .5(- 2, 1) 

We want to give an arbitrary point (x, y) new coordinates (r, s) such 
that 

(x, y) = r( 1, 1) + s( - 2, 1) (17) 

Since T mt1ltiplies vector (1, I) by 2, then by Theorem 1, T also 
multiplies vector r(l, 1) (for any r) by 2; similarly for multiples of 
( -2, I). In a coordinate system (r, s) based on (1, 1) and (-2, 1), 
T becomes 

r' = 2r 

s' = .5s 
(18) 

It will require some work to convert a point in standard (x, y) 
coordinates [based on points (1, 0) and (0, 1)] to this new coordinate 
system based on (1, 1) and ( -2, 1). But if Tis to be applied repeat
edly, the simple form (18) of T in the new coordinates is worth the 
effort of conversion. Writing (17) as a system of equations for the 
coordinates, we have 

X l -2 
= r 

y l 
+ s 

I 

or 

w = Et where E = I -2 
' t = 

• ' 1 I 

Here E is the matrix whose columns are the eigenvectors. 

Solving ( 19) for r and s, we obtain 

t = E- 1w: r == 

s = 

• 
(19) 

r 

s 

(20) 

Let us consider the effect of repeatedly applying T to the point 
(1, 0) [given in (x, y) coordinates]. Using (20), we convert (1 ~ 0) to 
(}, -½) in (r, s) coordinates. Now we repeatedly apply T to(}, - ~) 
using (18). We get the sequence of points [in (r, s) coordinatesl 

(1, - ~), (i, - ~), (~, - 1
1
2), (g, - 2

1
4), •.. 

Each application of T doubles the first coordinate and halves the second 
coordinate ( see Figure 4. 6). So after k applications of T we get 
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Figure 4.6 Repeated application of Tin Example 4 to point p = (0, 1). Points 
Tk(p) using s, t coordinates are shown. 

If we want to express the coordinates of this point (rk, sk) back in the 
origi11al (x, y) coordinates, we simply convert back with ( 19) to obtain 

(2 i) 

For large k, 2k is much much larger than A (~)k, so we can neglect the 
latter term (the effects of computer roundoff will eventually drop the 
smaller term for us). 

In the long term, the largest eigenvalue always dominates the 
effects of all other eigenvalues (as was discussed in Section 2.5). In 
this case we have 

(22) 

• 

This simple result would have been much harder to obtain without 
the change of coordinates. Clearly, using eigenvector-based coordi
nates can make calculations with linear transf orrnations much easier . 

• 
• 
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Note: The interested reader should consult one of the computer graph
ics references at the end of the book for more information about this fasci-
nating application of linear algebra. · 

Section 4.1 Exercises 

Summary of Exercises 
Exercises 1-24 call for the construction of various affine linear transfor
mations and plotting their effect on certain figures . Exercises 25-27 have 
eigenvector-coordinate computations. Exercises 28- 33 involve associated 
theory. 

1. Construct affine linear transformations to do the following to tl1e square 
in Figure 4. 1 a. 
(a) Rotate the square 180° counterclockwise around the origin (in the 

plane). 
(b) Move the square 7 units to the right, 3 units up, and double its 

width. 
(c) Make the vertical lines of the square slant at a 45° angle (l1eight 

unchanged): 

(d) Reflect the square about the y-axis. 
• 

2. Write out the affine linear transformations in Exercise 1 in the form 
u' == Au + b, giving A and b. 

3. Compute the new coordinates of the corners of the square in Figure 
4. 1 a for each of the transformations in Exercise l. 

4. If Tis the triangle with comers at (-1, 1), (1 , 1), (1, -1), draw T 
after it is transformed by each of the transformations in Exercise l. 

5. Apply each of the transformations of Exercise 1 to the grid in Figure 
4. 2a and plot your answer. 

6. The following exercise verifies which types of affine transformations 
are commutative. All transformations act on the x-y p1ane. Let 

Ta double the x-coordinate: x' = 2x, y ' = y . 
Tb double the y-coordinate: x' = x, y' = 2y. 
Tc reflect about the y-axis: x' = - x, y' = y. 
Td reflect about the x-axis: x' == x , y ' == -}'. 
Te shift x-value 2 units: x' = x + 2, y' == y. 
T1 shifty-value 3 units: x' = .x, y' = y + 3. 
Tg rotate 45° around the origin ( = T2 in (6)1. • 
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(a) Compute T0 Tc and TcTa· Do these two transformations commute? 
(b) Compute Tb Te and TeTb. Do these two transformations commute? 
(c) Compute TbTJ and T1Tb. Do these two transformations commute? 
(d) Compute TbTR and TgTb. Do these two transformations con1mute? 
(e) Compute TdTg and T

8
Td. Do these two transformations commute? 

(f) Compute TcTJ and T1Tc. Do these two transformations commute? 
(g) Compute TeT,. and T8 Te. Do these t\VO transformations commute? 

7. Construct affine linear transformations to do the following to the ~quare 
in Figure 4. la and plot the square after the transformation is performed. 
(a) Double the width of the square (double x coordinates) and rotate it 

90° around the origin. 
(b) Reflect the square about the y-axis and then reflect about the 

• x-axis. 
(c) Move the square 7 units to the right, 3 units up, and the11 rotate 

the square 180° counterclockwise around the origin . 

8. Reflect the square in Figure 4. la about the line y = .. t. Give your 
transformation. 

9. Reflect the square in Figure 4. la about the line y 
transformation . 

2. Give your 

10. Rotate the square in Figure 4. la 90° about the point (~, 0) by first 
moving the square so that its center is at the origin, then rotate it 90°, 
and finally reverse the initial 1nove. Give your transformation. 

11. Rotate the grid in Figure 4 . 2a 90° counterclockwise about the point 
(3, I). 

Hi11t : See Exercise 10. 
Give your transformation. 

12. Rotate the square in Figure 4. la 45° about its center. 

Hitzt: See Exercise 10. 
Give your transformation. 

13. By squaring the associated matrix , determine the transformation of re
peating twice the transformations in Exercise 7, parts (a) a11d (b). Plot 
the square in Figure 4 .1 a after applying each squared transformation. 
Finally, describe in words the effect of the squared transformations . 

14. Cube the matrix associated with the linear transformation in Exercise 
1, part (a) and verify that the resulting linear transformation is the same 
as the original one (rotating 180° three times is the same a. r(ltating 
180° once) . 

15. Square the matrix associated with the projection linear transformation 
T' as (13) and verify that the square equals the original n1atrix. Explain 
this result in words. 

' 
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Devise an affine linear transfor1nation to project any (x, y) point onto 
the following lines. 
(a) y == -x 
(c) y == X + 2 

• 

(b) 

(d) 

y == 2x 
y = 3x - 8 

• 

17. (a) Verify that .:c' = 2x - y, y' = 2x - y projects any x-y point onto 
the line y' = x' and that the projection is not perpendicular like 
(12), but rather, the line segment from (x, y) to (2x - y, 2x - y) 
has a slope of 2. 

(b) Construct a projection T that maps any x-y point w onto the line y 
== 2x so that the line segment from w to T(w) has a slope of l. 

18. Give the x-)1 coordinates of the corners of the following x-y-z figures 
after they are projected onto the x-y plane using projection T' in (l?) 
and draw the figures (in the x-y plane). 
(a) A triangle with comers (1, I, 0), (1, 0, 1), (0, 1, 1) . 
(b) A pyramid with base (0, 0, 0), (2, 0, 0), (0, 0, 2), (2, 0, 2) and 

top at ( 1 , 2, 1) . 

19. Construct a linear transformation to do the fallowing to the letter L in 
Figure 4.5a. 
(a) Revolve it 30° around the y:..axis. 
(b) Revolve it 10° around the z-axis. 
(c) Revolve it 30° around the y-axis and then 30° around the z-axis. 

20. Give the composite linear transformation of performing the revolution 
T in Example 3 followed by the projection T' in (13). 

21. Revolve the grid in Figure 4.2a 30° around the x-axis and project onto 
the x-y plane [using T' in (13)) (plot this). 

22. Revolve the square in Figure 4. la 60° around the x-axis (in three di
mensions), then shrink all coordinates to half-size and project it onto the 
x-y plane using T' in ( 13). 

23. (a) Construct a linear transformation to revolve an object 30° around 
the line of points (x, 1, 0) (the line is parallel to the x-axis with 
y = 1, z = 0). 
Hint: See Exercise 8. 

(b) Apply the linear transformation in part (a) to the grid in Figure 
4.2a and project the result onto the x-y plane with projection T' in 
( 13). 

24. Construct a linear transformation to make an animated movie in which 
in each successive frame the object 
(a) Revolves 30° around the y-axis and shrinks its x- and y-coordinates 

by 10%. 
(b) Revolves 10° around the y-axis, shrinks all coordinates by 10%, 

and then moves 2 units along the z-axis. 
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25. 

26. 

27. 

28. 

Repeat Example 4 to find the approximate point after k transf onnations 
using T in ( 16) if the initial point is 
(a) ( 3, 2) (b) ( - 1 , l) ( c) ( - 2, - 1 ) 

Find the eigenvalues and associated eigenvectors of the following linear 
transformations (use the method in Section 3. 1). 
(a) x' = 3x + y, y' = 2x + 2y (b) T' in (13) 
(c) T2 in (6) 
Hi11t: Eigenvalues are complex. • 

(d) T3 in (7) (e) T1 in (5) 

Use your results in Exercise 26, part (a) to find the result of applying 
that transformation 5 times to the point [5, 2] and the approximate value 
of applying it 20 times. 

This exercise gives a ''picture,' of how, when two columns of A are 
almost the same, the inverse of A almost does not exist. For the fol-

lowing matrices A, solve the system A x, 
X2 

1 

0 
. Then plot 

x1af and x2af in a two-dimensional coordinate system and show geo-

c C l C C metrically how the sum of vectors .. t 1a t and x2a2 is 
O 

(here a 1 , a2 

denote the two columns of A) . 

(a) 
2 3 

I 2 
(b) 

2 3 

2 2 
(c) 

5 6 
6 7 

(d) 
8 9 
7 8 

29. A linear transformation w' = T(w) = Aw can be reversed if A is 
invertible. Then the reverse transfonnation is T*(w) = A - 1w. Find the 
reverse transformation, if possible, for 
(a) T3 in (7) (b) T2 in (6) (c) T' in (13) 

30. An affine linear transformation w' = T(,v) = Aw + b can be reversed 
if A is invertible. 
(a) In matrix notation, what is the inverse transformation T*(w) for 

T(u) = Aw + b (so that T*T is the identity transformation)? 
(b) Find the inverse transformation for T1 in (5). 

' 31. Consider the point u = ( 1, 0) and suppose that we want to rotate it 8° 
counterclockwise around the origin. Then its new position will be dis
tance 1 from the origin and at an angle of 0° ( with respect to the 
x-axis). Using a similar argument for the point v = (0, 1 ), show that 
for u' = Au and v' = Av to have the right values, A must be 

A= 
cos 0° - sin 0° 

sin 0° cos 0° 
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32. Verify that affine linear transformations map lines into lines by showing 
if u' = T(u) == Au + b, points of the form w == ru + (1 - r)v' are 
mapped into points of the form w' == ru' + (1 - r)v', where u' 
T(u) and v' = T(v), and O < r < 1 . 

33. Make up counterexamples to show that Theorem 1, parts (i) and (ii), 
are false for affine linear transformations ( virtually any affine example 
will do). 

Linear Regression 

One of the fundamental problems in building Jinear models is estimating 
coefficients and other constants in the linear equations. For example, in the 
refinery model introduced in Section l . 2 we stated that from 1 barrel of 
crude oil the first refinery would produce 20 gallons of heating oil, 10 gallons 
of diesel oil, and 5 gallons of gasoline. These production levels would vary 
from one batch of crude oil to another and might also vary depending on 
how much crude oil was being processed each day. The numbers given are 
estimates, not precise values. The first important work in linear algebra grew 
out of an estimation problem. 

In 1818 the famous mathematician Karl Friedrich Gauss was commis
sioned to 1nake a geodetic survey of the kingdoms of Denmark and Hanover 
(geodetic surveys create very accurate maps of a portion of the earth's spher
ical surface). In making estimates for the positions of different locations on 
a map, Gauss developed the least-squares theory of regression that we 
present in this section. This theory yields a system of linear equations that 
must be solved. To solve them, Gauss invented the algorithm we now call 
Gaussian elimination, presented in Section 3.2. This method is still the best 
way known to solve systems of linear equations. It should be noted that not 
only did this survey project cause Gauss to start the theories of statistics and 
linear algebra, but to compensate for the slightly nonspherical change of the 
earth, Gauss was also led to develop the theory of differential geometry! 
The following equation summarizes this paragraph. 

one good application + one genius == important new mathematics (*) 
• 

Let us return humbly to the problem of estimating coefficients. Recall 
the linear model from Example 2 of Section 1.4 for predicting C, the college 
grade average of a Scrooge High School graduate, in terms of the student's 
Scrooge High average S. The proposed model was 

C = 1.1 XS - .9 (1) 

The constants in (1) were chosen to ''fit'' as closely as possible data about 
eight graduates. The heart of these 111odels is the choice of the constants. 

Let us restate the problem of finding a linear model such as (1) in the 
following standardized fom1: 
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Li,iear Regression Model. Given a set of points (x1, ) 1
1), (x2 , y2) , 

.. . , (xn, Yn), find constants q and r such that the linear relation 

(2) 

gives the best possible fit for these points. 

The point (x;, Y; ) is the estimate for (x;, Y;). The name ''regression," 
which means movement back to a less developed state, comes from the idea 
that our model recaptures a simple relationship between the X ; and tl1e Y; 
.which randomness has obscured (the variables regress to a linear relation
ship). A model involving several input variables is called multiple linear 
regression. If we try to fit the data to a more complex function, such as 
y = q2x2 + q 1x + r or y = eqx, the model is called nonlinear regression. 
We shall concentrate first on simple linear regression. Once this is well 
understood, we can extend our analysis to the multiple regression problem 
(using matrix algebra). We shall also show bow some problems in nonlinear 
regression can be transformed into linear regres ion problems. 

Example 1. Using the Model j = qx 

Let us consider a very simple regression problem. Suppose that we 
want to fit the three points (0, 1), (2, I), and (4, 4) to a line of the 
forn1 

"' y = qx (3) 

(see Figure 4. 7). The x-value might represent the number of semesters 
of college mathematics a student has taken and they-value the student's 
score on some test. There are thousands of other settings that might 
give rise to these values. The estimate (3) would help us predict the 

Figure 4.7 Regression estimates for points 
(0, 1), (2, 1), and (4, 4) . 

' 

V 
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l 

• 

_v = .1Sx + .5 

• 
y = .9x 

I 2 3 4 
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y-values for other x-values, for example, predict how other students 
might do on the test based on the amount of mathematics they have 
taken. 

The three points in this problem are readily seen not to lie on a 
common line, much less a line through the origin [ any line of the form 
(3) passes through the origin]. So we have to find a choice of q that 
gives the best possible fit, that is, a line y == qx passing as close to 
these three points as possible. 

What do ''best possible fit'' and ''as close as possible'' mean? 
The most common approach used in such problems is to minimize the 
sum of the squares of the errors. The error at a point (x;, y,) will be 
If; - YA = lqx; - YA, the absolute difference between the value qx; . 
predicted by (3) and the true value Y; (the absolute value is needed so 
that a ' 'negative' ' error and a ''positive' ' error cannot offset ea~h 
other). However, absolute valt1es are not easy to use in mathematical 
equations. Taking the squares of differences yields positive numbers 
without using absolute values. There is also a geometric reason we 
shall give for using squares. 

For the points (0, l), (2, 1), (4, 4), the expression 2 (Yi - Yi)2 

for the sum of squares of the errors (SSE) is 

SSE == (Oq - 1)2 + (2q - 1)2 + (4q - 4)2 

== 1 + (4q2 - 4q + l) + (16q2 - 32q + 16) (4) 

= 20q2 
- 36q + 18 

• 

The geometric justification for using a sum of squares is based 
on the following interpretation of our estimation problem. Let x be the 
vector of our x-values and y be the vector of our c~rresponding 
y-values. In this case, x = [O, 2, 4] and y = [l, 1, 4]. Further, let y 
be the vector of estimates for y. Equation (3) can now be rewritten 

" y = qx (5) 

That is, the estimates y = [y1 , y2 , y3] from (3) will be q times the 
x-values [O, 2, 4) . 

Think of x, y, and y as points in three-dimensional space, where 
y is a multiple of x. Then the obvious strategy is to pick the value of 
q that makes qx ( = y) as close as possible toy (see Figure 4.8). That 
is, we want to minimize the distance lqx - Yle (in the euclidean norm) 
in three-dimensional space between qx and y. This distance between 
qx = [Oq, 2q, 4q] and y = [1, 1, 4] is simply 

lqx - Yle == V(Oq - 1)2 + (2q - 1)2 + (4q - 4)2 (6) 

Comparing ( 4) and ( 6), we see that lqx - Ylt: is the square root of 
SSE. So minimizing SSE will also minimize the distance jqx Yle• 
Recall that in vector notation !al: equals a · a. So 

SSE = jqx - yj~ = (qx - y) · (qx - y) (7) 
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Figure 4.8 
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The value of q that minimizes 20q2 - 36q + 18 is found by 
differentiating this expression with respect to q and setting this deriv
ative equal to 0: 

dSSE = 
40 

_ 
dq q 36 = 0 ~ q = .9 (8) 

The desired regression equation is thus y = .9~t (see Figure 4.7). Using 
our regression equation Yi = .9x;, our estimate for (0, 1) is (0, 0), for 
(2, l) is (2, 1.8), and for (4, 4) is (4, 3.6) [the bad estimate for 
(0, 1) arose from the fact that any line y = qx must go through the 
origin] . So SSE = 12 + .82 + .42 = 1.80 and the distance in 
3-space between our estimate vector y and the true y is jy - y\ = 
YSSE = VT]o = 1.34. • 

Readers should pause a moment to get their geometric bearings. Ex
ample I started as a problem of estimating a relationship between some 
x - and y-values that we plotted in Figure 4. 7 in x -)' space. But then we 
considered a new geometric picture with three-dimensional vectors, farmed 
by the x-values, the y-values , and the y estimates. Let us present the data 
in a matrix: 

x-value y-value • 

First reading 0 1 

Second reading 2 1 

Third reading 4 4 
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In this new setting, our objective is to find a multiple q of the first 
column x that would estimate the second column y as closely as possible. 
Geometrically, we want to find a point p on the line formed by multi
plies x ( == [O, 2, 41)-p = qx, for some q-such that p is as close to 
y ( == [I, 1, 4) as possible . Point p ( = y) is the projection of y onto the 
line from the origin through x. 

• 

Example 2. Using the Model j = qx + r 

Let us fit the points in Example 1, (0, 1), (2, l), (4, 4), using the full 
linear regression n1odel (2): y == qx + r. We can also write our 
regression model as 

y = qx + rl: 

1 0 

1 = q 2 

4 4 

1 

+ r 1 
1 

(9) 

We want to find an estimate vector y as close to the vector y of 
y-values as possible in 3-space. Now y is forn1ed from a linear com
bination of the vectors x and 1. (The set of all possible linear combi
nations of x and 1 will be a plane.) 

Again we pick q and r by minimizing the sum of squares of 
errors, 

SSE = IY - Yl2 = I (y; - Y;)2 = ! (qx; + r - Y;)2 

= (0q + r - 1)2 + (2q + r - 1)2 + (4q + r - 4)2 

= (r 2 - 2r + 1) + (4q2 + r 2 + 4qr - 4q - 2r + 1) 
+ (l6q2 + r2 + 8qr - 32q - Br + 16) 

= 20q2 + 3r2 + 12qr - 36q - J2r + 18 (10) 

To minimize ( 10) with respect to q and r, we differentiate with respect 
to q and r and set the partial derivatives equal to O. 

It is left as an exercise for the reader to verify that the partial 
derivatives of SSE in ( I 0) with respect to q and r are 

aSSE = 40q + 12r - 36 = 0 
aq 

aSSE ar = 6r + l2q - 12 = 0 

or 

or 

40q + 12r = 36 

12q + 6r = 12 

Solving the pair of equations in ( 11) for q and r, we obtain 

q = .75, r = .5 

So our regression equation is 

9 == .75x + .5 
• 

(11) 

(12) 

(13) 
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(see Figure 4.7). This time our estimate for (0, 1) is (0, .5), for 
(2, 1) is (2, 2)~ and for (4, 4) is (4, 3.5), and SSE = .5" + 12 + 
.52 = 1.50. The distance IY - YI between our estimate vector y and 
the true y-value vector y is VSSE = -v'13o = 1.22. In Example 1 
the distance was 1.34. Thus, for these data, our fuller model provided 
little improvement over the simple 111odel y = qx. • 

If we were applying linear regression models (2) or (3) to ,z points. 
the x- and y-va]ues would form n-vectors and the distance IY - YI would be 
calculated in n dimensions (the reasoning is the same). These calculations 
would be quite tedious. However, nowadays we have computers to handle 
the tedium. It is as easy to program a computer to do regression on n points 
as it is on three points with the following observation. 

Proposition. The derivative of a sum of functions is the sum of the deriv
atives of each function. 

This proposition greatly simplifies talcing derivatives to find the min
imum of SSE. In the model y = qx, SSE has the following form for the set 
of points (xi, y,), i = l 2, ... , n: 

SSE = I (qxi - Y;)2 = I (q2x7 - 2qx;Y; + y~) (14) 

By the proposition, the derivative of SSE is the sum of the derivatives of 
the individual terms in (14): 

dSSE _ ~ (
2 2 

dq - ""' X;q - 2x;Y;) = 2(l x7)q - 2 ! X;Y, (15) 

Setting (15) equal to O (to find the minimizing value of q), we obtain 

Formula for Regression Model j = qx 

i X·Y· X • y 
q= ''=--

l x? x · x I 

(16) 

Let us informally rederive (16) using matrix algebra. Recall that 
SSE = (qx - y) · (qx - y). In vector calculus , we treat (qx - y) · 
(qx - y) like (qx - y)2 , and SSE's derivative is 

2x · ( qx - y) = 2qx · x - 2x · y 

If we set this expression equal to zero, we get 

2qx·x - 2x·y = 0 or qx · x = x · y , 

Hence we have directly q = x · y / x · x. 
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The simple form of the formula ( 16) for q was not apparent in the 
calculations we did in Example l. If we were working with IO or more 
points, it would clearly be much easier to do the general calculations just 
performed to obtain (16) and then plug in the given x- and y-values, rather 
than to multiply out all the squared factors in SSE and collect terms, as was 
done in equation ( 4) in Example I . General symbolic computations can make 
life a lot easier! This is what mathematics is all about. The details of an 
individual problem often hide a nice general structure for solutions. In pro
gramming terms, it is often easier to write a computer program to solve a 
general class of problems and use it to solve one specific problem, rather 
than write a specialized program for the single problem. 

The calculations for the regression model Y; = qxi + r are obtained 
similarly by generalizing the equations in Example 2. The partial derivatives 
of SSE can be shown to have the form (see Exercise l 0) 

assE 
iJq = 2(!. xt)q + 2(! x, )r - 2 I X;Y; 

aSSE -- = 2(1 x, )q + 2,zr - 2 2 Y; ar 

(17) 

We set the derivatives equal to O and solve this pair of equations for q and 
r. That is, we solve the equations 

where 

· a = 2 l Xf, 
C = 2 ~ .X~ ,, 

The solution is 

aq + br = e 

cq + dr = f 

b == 2 ~ x- e = 2 ~ x •Y • ~ ,, ,"-I I l' 

d = 211, f = 2 i )1 i 

Formula for Regression Model j = qx + r 

(18) 
• 

(19) 

Again we note the advantage of generality. Solving a pair of linear 
equations in tenns of constants a, b, and so on, and then substituting complex 
expressions for the constants of ( 18), is much easier than directly solving 
the specific syste1n of equations arising fro1n ( 17) . 
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Although the formulas in (19) are certainly complicated, they are still 
quite simple to program. In fact, because linear regression is so \\'idely used, 
many (nonprogrammable) hand-held calculators have built-in routines to cal
culate q and r. One simply enters successive (x;, )';) pairs. When a pair is 
entered, the calculator updates sums that it is computing for I. X;, I. xt, 
l Y;, and I X;Yi· After the last pair is entered, the user presses a Regression 
key and the calculator i11serts these sums into the formulas in ( 19). The 
follow1ng BASIC program shows how the calculator works. 

1 N=0: SX=0: SX2=0: SY=0: SXY=0 

10 INPUT X,Y 

20N=N+l 

30 SX = SX + X 

40 SX2 = SX2 + X*X 
50 SY= SY + Y 

60 SXY = SXY + X*Y 
70 IF Regression key not pushed THEN GOTO l 0 

100 D = N*SX2 - SX*SX 

120 PRINT ''R =''; (N*SXY-SX*SY)/D 

130 PRINT ''Q = ''; (SY*SX2-SX*SXY)/D 

140 END 

A word of warning about the formulas in ( J 9). Roundoff errors in 
computing the terms in the denominators of these formulas can sometimes 
seriously affect the accuracy of the results. In line 100 of the BASIC pro
gram, if N*SX2 and SX*SX were large numbers that were nearly equal, 
then their difference D may be very inaccurate. Also, one data point quite 
different from the rest ( caused by an unusual event or a recording e1Tor) can 
significantly affect the values of q and r; such points are called outliers. 
Exercise 5 illustrates the effect of outliers. 

We now show a convenient shortcut for the linear regression model 
y = qx + r. With a computer or calculator programmed to do regression, 
this shortcut does not save time. but it does eliminate roundoff-error diffi
culties. 

We shall perform an elementary transformation of .. t-coordinates. 

' -.t ; == _t; - X • 
I 

where .r = - l X; 
11 

(20) 

The term x we use to shift the ~t-coordinate is just the average of the X;. Note 
that if the x-coordinates are integers (as i~ common) and are equally spaced 
along the x-axis, their average will be the middle integer, if 11 is odd ( or 
midway between the middle two integers, if n is even). In the case in 
ExampJe 2, the average of ~:t, is (0 + 2 + 4)/3 = 2. Since they-values are 
unchanged, we are simply renumbering the x-axis (see Figure 4. 9) . 

• 



280 Ch. 4 A Sampling of Linear Models 

Figure 4.9 Figure 4 . 7 transformed so 
that x' = 0 is the mean of x' -values. 
The old regression line y = 0.15x + , 

y 

• 
0.5 becomes y = 0.15x' + 2, where the 
constant 2 is the mean of they-values . 

• 

-------+------------~ x' 
New x' - 2 - 1 0 I 2 3 

(old x) (0) ( l ) (2) (3) (4 ) (5) X 

• 

In the new coordinate system, the average of the x~ will be 0-that 
was the whole idea of the shift, to center the x-values around the origin. If 
the average of the x~ is 0, so is the sum of the ~t~ (since the average is the 
sum divided by ti). Now in (19) all products involving I X; are 0. The 
formulas for r and q in ( 19) simplify considerably , to become 

I x~y . 
q' - I l - L , 2 X · (21) l 

r' 
I = - l y; 
n 

• 

Here r' is just the average of the Y; , and q' is the same formula that we 
obtained in ( 16) for the regression model y == qx. Roundoff error can no 
longer distort the denominator in (21) as was possible in (19). 

Shifting the x-coordinate will not change the slope of a line, so q' 
equals q in the original model y = q;r. + r . The reader can verify with a 
geometric argument that r = r' - q I x;/ ,z. 

If we had also transformed they-values by their average, then r' = 0. 
However, the regression formula for q' does not simplify further if we 
transform they-values , so a y-transformation serves no purpose. Also, trans
forming just the y-values instead of the x-values will not simplify the de
nominator in (19) as happened in (21). 

Example 3. Predicting Printing Costs 

A copy center bases its fees on the number of (duplicate) units that 
have been ordered (a unit is 100 pages). Table 4.1 gives some sample 
fees. Based on these sample fees , what would be a reasonable charge 
for 15 units? 

Let us fit a line y = qx + r to these fl ve data points, ( 1, 6), 
(3 , 5.5), (5, 5) , (10, 3 .5) , (12 , 3), and then determine y when x = 
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Table 4.1 

Number of Units 

1 

3 

5 

10 

12 

Cost per Unit 

$6 

5.5 

5 

3 .5 

3 

15. Using the shortcut described above, we transform the coordinates 
by subtracting 6.2 ( = I x;/11) from each X;. Then (21) gives 

, l X~Y; 
q = ~ ,2 

"'- X · 
' 

(-5.2}X6 + ( - 3.2)X5.5 + ( - l.2)X5 +3.8X3.5 + 5.8X3 

(-5.2)2 + (-3.2)2 + (-1.2)2 + (3.8)2 + (5.8)2 

= - .3 
(22) 

and r' = I yi/5 = 4.6. Then 

q 2 X · 
q = q' = - .3 and r = r' - 1 = 4.6 - ( - .3)(6.2) = 6.5 n . 

Thus our regression model is y = - . 3x + 6. 5. And when x = I 5, 
we obtain v = - . 3 x 15 + 6. 5 = 2. • .., 

Next we give an example of a nonlinear regression problem and show 
how it can be converted into simple linear regression. 

Example 4. Nonlinear Regression 

Consider the following pairs of x- and y-values; the points are shown 
in Figure 4.1 Oa. The x-values could be the age of a wine and the 
y-values ratings by expert wine tasters. 

X 1 2 3 4 5 6 7 

y .4 .6 1.1 1.6 2.9 5 8 

Suppose that by inspection and experience we believe that the 
relationship between x- and y-values is best explained by an exponen
tial model 

(23) 

• 
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Figure 4.10 (a) Data points and curve y = ~e'"12. (b) Data transformation by 
y' = logy. 

Then we perform the following (nonlinear) transformation on the 
y-values. 

y' = logy . (24) 

The new data values are 

X I 2 3 4 5 6 7 

y' - .9 - .5 .1 .5 I . I 1.6 2.1 

Clearly, we have a fairly good linear fit here (see Figure 4.10b). 
(One can also plot the original data points on log paper.) We let .9; be 
the estimate for the transformed problem: 

y~ = log Y; = log re".x, = log r + qx; 

Letting r' = log r, we have the standard simple linear regression model 

y' = qx + r' (25) 

That is, the logarithm function (24) transforms exponential curves into 
straight lines. We can apply the formulas in (19) to determine q and 
r' from the transfonned data and insert these into (23) to get a model 
in the original coordinate system. We obtain 

q = ½, r' = - 1. 4 (r == e - 1 ·
4 = ¼) 

The curve y == ¼ex/i is plotted in dashed lines in Figure 4. IOa. • 

• 
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This technique can be used any time that there is a mapping that 
transforms the proposed regression model, such as (23), into a simple linear 
regression model. A statistician will test out several different regression 
models and settle on the one that gives the best fit (e.g., that minimizes the 
sum of the squares of the errors). 

Another way to perform nonlinear regression is to fit they values to a 
polynomial in x, such as Y; = axf + bx; + cx1 + d, where we treat x;, xr, and X; like the three distinct variables, v,, lV;, and X;, We cannot solve a 
problem with several variables on the right yet, but we will come back to 
least-squares polynomial fitting in Section 5.3. 

Opti,onal 

We conclude this section with a vector calculus derivation of the general 
multivariable regression model in which we allow y to be a linear function 
of several input values. The same results will be obtained in Section 5.3 
more simply using vector space techniques. 

To be concrete, we consider the following model for 9;: 

In matrix notation, we write 

• 

where q = [q 1, q2 , q3 , r] and X = [v w x 1]. 

(26) 

(27a) 

(27b) 

Now let us compute SSE and its derivative in terms of (27a). Later 
we do it in tenns of (27b). 

SSE = (q 1v + q2w + q3x + rl - y) (28) 
· (q 1v + q2w + q3x + rl - y) 

By the informal vector calculus used previously, 

The derivatives with respect to q2 and q3 and r will be similar. Multiplying 
v by the vectors in the parentheses in (29) and setting the result equal to O, 
we obtain 

q 1 V • V + q2 V • w + q3 V • X + rv . 1 = V • y (30) 

Three other similar equations will be obtained from the other three deriva
tives. This gives us four equations in the four unknowns q1, q2, q3 , and r 
that can be solved by Gaussian elimination. (Recall that it was this system 

• 

• 
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of equations of estimating regression unknowns that forced Gauss to develop 
Gaussian elimination.) 

Let us indicate how (30) and its sister equations can be obtained as a 
matrix equation. We write the SSE using (27b): 

SSE = (y - y) · (y - y) = (Xq - y) · (Xq - Y) (31) 

= Xq · Xq - 2Xq · y + y · y 

By matrix algebra Xq · y = X7 y · q ( see Exercise 14). Then by vector 
calculus, the derivative of xr y · q with respect to q is xr y. By more ad
vanced vector calculus, the derivative of Xq · Xq is 2(XTX)q. Thus 

dSSE = ? xrx) - 2xr dq _( q y (32) 

Setting (32) equal to O, we obtain the famous normal equations of regression . 

(33) 

whose solution, using inverses, is 

(34) 

The matrix expression (Xrx)- 1 xr is called the pseudoinverse of X, since 
it allows us to solve (approximately) the system Xq = y. Pseudoinverses 
are discussed in Section 5. 3. 

· Section 4.2 Exercises 

Summary of Exercises 
~xercises 1-8 involve regression models, Exercises 6-8 being nonlinear. 
Exercises 9- 14 are theoretical. 

1. Seven students earned the following scores on a test after studying the 
subject matter for different numbers of weeks: 

Student ABCDEFG 

Length of Study 0 1 2 3 5 6 

Test Score 3 4 7 6 10 6 10 

(a) Fit these data with a regression model of the form 9 = qx, where 
x is number of weeks studied and y is the test score. Plot the 
observed scores and the predicted scores. What is the sum of 
squares of errors? 
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(b) Fit these data with a regression model of the form y q~'C + r. 
Plot the observed scores and the predicted scores . What is the sum 
of squares of errors? 

(c) Repeat the calculations in part (b) by first shifting the x-values to 
·make the average x-value be O {see equations (21)). 

2. The following data indicate the numbers of accidents that bus drivers 
had in one year as a function of the numbers of years on the job. 

Years on Job 2 4 6 8 10 [2 

Accidents 10 8 3 8 4 5 

(a) Fit these data with a regression model of the form y = qx, where 
xis number of years experience and y is number of bus accidents. 
Plot the observed numbers of accidents and the predicted numbers . 
What is the sum of squares of errors? 

(b) Fit these data with a regression model of the form y = qx + r. 
Plot the observed numbers of accidents and the predicted nun1bers. 
What is the sum of squares of errors? ls this model significantly 
better than the model in part (a)? 

(c) Repeat the calculations in part (b) by first shifting the x-values to 
1nake the average x-value be O [ see equations (21) J . 

3. (a) Reverse the roles of y and x in Exercise 2-now y is number of 
years of experience-and fit the regression model y = q.t + r to 
these data. Plot the observed years experience and the predicted 
numbers. What is the sum of squares of errors? 

(b) Compare your results with those in Exercise 2, part (b) or (c)
why are the numbers not the same? 

4. (a) The following data show the GPA and the job salary (5 years after 
graduation) of six mathematics majors from Podunk U. 

GPA 2.3 3.1 2.7 3.4 3.7 2.8 

Salary 25,000 38,000 28.000 35,000 30.000 32,000 

Fit these data with a regression model of the form y == q.,t + r. 
Plot the observed salaries and the predicted salaries. Is the regres
sion fit reasonably good? 

(b) Repeat the calculations in part (a) by first shifting the x-values to 
make the average x-value be O [see equations (21)). 

5. Consider the following relationship between the height of a student's 
mother and the number of F's the student gets at Podunk U . 
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Student 

A 

B 

C 

D 

E 

F 

G 

II 
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Mother's Height 
(inches) 

62 

65 

59 

63 

60 

69 

63 

60 

• 

Number of F's 

2 

6 

I 

4 

11 

6 

1 

3 

(a) Determine q and r in the regression model y = qx + r (where x 
is mother's height and y is number of F's). 

(b) Delete student E from your study and repeat part (a). Does deleting 
E make much of a difference? 

(c) Repeat the calculations in part (b) by first shifting the .,t-values to 
make the average x-value be O [see equations (21)]. 

6. Consider the following set of data, which are believed to obey (ap
proximately) a relation of the form y = qx2 : 

x-value 1 2 3 4 5 6 7 

y-value .5 I 2 3 .5 7 9 12 

Perform a transformation y' = f(y) on y so that the regression model 
y' = q' x is fairly accurate. Then determine q', reverse the transfor
mation to determine q, and plot the curve y = qx2

• 

7. Consider the following set of data, which are believed to obey an inverse 
relation of the form y = q( 1 / x). 

Experience (x) 1 2 3 4 5 6 

Number of Accidents (y) 10 5 4 3 2 2 

Perform a transformation y' = f(y) on)' so that the regression model 
y' = q' x is fairly accurate. Then determine q', reverse the transfor
mation to determine q, and plot the curve y = q(l/x). 

8. Consider the following set of data, which are believed to obey a square 
root law y = qVx . 

• 
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Age JO 15 20 25 30 35 40 

Strength 7 12 13 16 17 19 20 

Perform a transformation y' = f(y) on y so that the regression model 
y' = q' x is fairly accurate. Then determine q', reverse the transfor
mation to detenni11e q, and plot the curve y == qVx. 

9. Verify the calculation of the partial derivatives in (II). 

10. Verify (17). 

11. Verify the expression for r = r' - q L x;/ n, where r' and q ( = q') 
are the regression coefficients in the transformed problem [sec (21 )] . 

12. Show that the formula for q and r makes the regression line y = qx + r 
go through the point (i, y), where xis the average x-value and y is the 
average y-value. 

Hint: First shift the x-values so that x = 0. 

13. In vector notation, the sum of squares to be minimized in the model 
y = qx + r is SSE = (qx + rl - y) · (qx + rl - y). Compute the 
vector derivative of this expression with respect to q and with respect 
to r [see (29)]. Show that the two derivatives are the same as the 
expressions in ( 17) . 

14. Verify that Xq · y = xry · q. 

Linear Models in the 
Physical Sciences and 
Differential Equations 

• 

The examples in this section deal with physical-science applications . Until 
two decades ago, the physical sciences were almost the only disciplines that 
used mathematics. In those days everyone who studied calculus also studied 
physics. Today the majority of American students who study calculus and 
related mathematics take little physics. For them, physical-science applica-

, tions of mathematics are very hard to follow, since these applications usual} y 
depend on a general familiarity with the physical problem being modeled. 
Further, because linear models play such a large role in the physical sciences, 
the right place to study them is in a physical science cot1rse where the 
mathematics and science are naturally integrated. On the other hand, students 
experienced with physical-science linear models can learn much by seeing 
how similar models are used in other disciplines. 
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For this reason, none of the models examined in depth in this book 
will come from the physical sciences. The linear models, such as Markov 
chains and growth models, that we shall repeatedly use to illustrate concepts 
are ''neutral'' models that are easily comprehended by all students. How
ever, for completeness in this section a few models based on basic physical 
laws will be presented. (Social scientists should consider this section as the 
book's '·College of Arts and Letters' distribution requirement in science.'') 

The same reasoning applies to differential equations. Students who 
will use differential equations in courses in their major should have a full 
course in differential equations. We will only sample the subject to see some 
basic ways that linear systems of equations arise in differential equations. 

Example 1. Balancing Chemical Equations 

In a chemical reaction, a collection of molecules are brought together 
in the proper setting (e.g., in boiling water) and they rearrange them
se]ves into new molecules. In this process the number of atoms of each 
element is conserved. If the molecules put into the reaction have a 
total of 12 hydrogen (H) atoms, the resulting set of molecules must 
also contain 12 H's. Consider the reaction in which permanganate 
(Mn04) and hydrogen (H) ions combine to form n1anganese (Mn) and 
water (H20): 

(1) 

where O represents oxygen. Let x 1 be the number of permanganate 
ions, x2 the number of hydrogen ions, x3 the number of n1anganese 
atoms, and x4 the number of water molecules. To have the same num
ber of atoms in the molecules on each side of the reaction, we obtain 
the system of equations. 

H: X2 = 2X4 

Mn: X1 = X3 (2a) 

0: 4x1 = X4 

or 
• 

X2 - 2x4 = 0 
Xi - X3 = 0 (2b) 

4X1 - X4 = 0 

Notice that we have four unknowns but only three equations. 
Let us solve this system using elimination by pivoting. We pivot 

on entry (2, 1) to obtain 

- 2x4 = 0 

=0 

- X4 = 0 
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We do not need to pivot in column 2. Next we pivot on entry (3, 3) 

X2 - 2x4 == 0 X2 = 2x4 

X1 lX -- 44- 0 or x, l. 
4X4 

X3 
1 

- 4X4 = 0 X3 
1 
4X4 

As vectors, the solutions in (3) have the form 

or (3) 
-

For example, if x4 = 4 , then -~2 = 8, x t = x3 = 1, and the reaction 
equatjon becomes 

The solution we obtain 1nakes the amounts of the first three types 
of molecules fixed ratios of the amount of the fourth type, which are 
free to give any value (i.e., x4 is a free variable). This makes sense in 
physical terms, since doubling our chemical ''recipe' ' of inputs should 
just double the output. 

In another series of pivots, say at entries (1 , 2)~ (2, 3), and 
(3, 4), we get x1 as the free variable. 

- 8x1 + X2 = 0 X2 - 8x1 -

- x, + X3 = O or x, - Xi -
• 

-4x1 + X4 = 0 X 4 = 4x1 

yielding solution vectors 

[x1, 8x1, x1, 4x1] or x 1[1 ~ 8, 1, 4] (4) 

In this solution the values of the last three variables are fixed ratios of 
the first variable. • 

Example 2. Currents in an Electrical Network 

In this example we compute the current in different parts of the elec
trical network in Figure 4.1 J a. There are three basic laws that are used 
to analyze simple electrical networks. The following review of ele
mentary physics summarizes the concepts behind these laws. A battery 
or other source of electrical power ''forces'' electricity through elec
trical devices , such as a light or a doorbell. The force applied to a 
device depends on two factors: (i) the resista11ce of the device- a 
measure of how hard it is to push electricity through the device; and 
(ii) the current, the rate at which electricity flows through the device. 
The fundamental law of electricity, due to Ohm, says 

Ohm's Law: force = resistance x current. 

• 
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Figure 4.11 (a) Electrical net
work. (b) Associated graph. 

Battery 

,__.,_+ ..... ,, ... _-----

• 

• 

Ligh t 14 vol ts 

l ohm 

I 

Doorbell 
I 

$ .,_ _ _., ____ , 

2 ohms 

Motor 

4 ohn1s (b) 

(a ) 

Force is measured in volts, current in amperes, and resistance in ohms. 
In terms of these units. Ohm's law is 

volts = ohms x amperes 
• 

A battery supplies a fixed force i11to a network. Batteries send their 
electricity out from a positive terminal and receive it back at a negative 
terminal. All the voltage (i.e., force) provided by a battery is used up 
by the time the electricity returns to the terminal. This property of 
voltage is called 

Kirchhoff's Voltage Law. In any cycle (closed path) in a network, 
the sum of the voltages used by resistive devices equals the voltage 
from the battery(ies). 

The final law says that current is conserved at any branch node. 

Kirchlioff' s Current Law. The sum of the currents flowing into any 
node is equal to the sum of the current fl.owing out of the node. 

Let us use these three laws to derive a set of linear equations 
modeling the behavior of currents in the network in Figure 4.1 la. Later 
we shal] express each of Kirchhoff's laws in the form of a matrix 
equation. 

Assume that the battery delivers 14 volts. Further let c1 be the 
current flowing through the section of the network with the battery and 
the light, whose resi tance is 1 ol1m; let c2 be the current through the 
section with the doorbell, whose resistance is 2 ohms; and let c3 be 

• 
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the current through the section with the motor, whose resistance is 
4 ohms. Currents flow in the direction of the arrows along these edges. 
By the current law, at node s we have the following equation: 

(5) 

Note that at node t we get the same equation. Next we use the voltage 
· law. Following the cycle, battery to light to doorbell to battery, we 
have 

voltage at light + voltage at doorbell = battery voltage (6a) 

We use Ohm's law (voltage = resistance X current) to determine 
the voltages at the devices. The battery voltage is 14. So (6a) becomes 

(6b) 

Following a second cycle, battery to light to motor to battery , we have 

(7) 

There is still a third cycle that we could use , node s to doorbell to 
node t to motor (going against the current flow) to node s. If we go 
against the current flow, the voltage is treated as negative. So the 
voltage law for this cycle is 

(8) 

Note that equation (8) is simply what is obtained when we sub
tract (7) from (6b) . Intuitively, the third cycle is the net result of going 
forward on the first cycle and then backward on the second cycle. 

We need to solve the three equations (5), (6), and (7) in the three 
unknown currents, which we \vrite as 

C1 - C2 - C3 = 0 
c·1 + 2c2 14 

+ 4c3 = 14 

Solving by Gaussian elimination, ,ve find 

c1 = 6 amperes, c2 = 4 amperes, 

(9) 

2 amperes ( 10) 
• 

A generaJ analysis of currents in networks involves a combination of 
physics and mathematics. The critical mathematical problem is proving that 
there wi 11 always be enough different equations to determine uniquely all 
the currents . 

• 
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Before leaving this problem, let us show how this problem. can be cast 
in matrix notation. Kirchhoff s current law can be restated in matrix form 
using the incidence matrix M(G) of the underlying graph (when batteries 
and resistive devices are ignored). Figure 4. 11 b shows the graph G associ
ated with the network in Figure 4.11 a. G contains two nodes s, t and three 
edges e1, e2 , e3 joining sand t. In this graph each edge has a direction; the 
directions for G are shown in Figure 4.11 b. The current C; in edge e; is 
positive if it flows in the direction of e, and negative if it flows in the opposite 
direction. 

Recall from Section 2. 3 that M( G) l1as a row for each node of G and 
a column for each edge. In the case of directed edges, entry mii = + 1 if 
the }th edge is directed into ith node, = - 1 if the jth edge is directed out 
from the ith node, and = 0 if the jtl1 edge does not touch the ith node. For 
the graph G in Figure 4 .11 b, M (G) is 

ei 

M(G) = s + 1 
t - 1 

-1 -1 

+ 1 + 1 

(11) 

Kirchhoff' s current law says that the flow into a node equals the flow 
out of the node, or in other words , the net current flow is zero. At node s, 
this means that 

(12) 

Observe that currents going into s are associated with edges that have + 1 . 
in row s of M( G), and currents going out are associated with edges that 
have - 1 in rows of M(G) . If m:,. denotes rows of M(G) and c is the vector 
of currents (c1, c2, c3), then (12) can be rewritten as 

ms · C = 0 (] 3) 

This equation is true for all rows of M( G). Thus ( 13) generalizes to 

Kirchhoff's current law: M(G)c = 0 (14) 

This result is true for any associated graph G. 
We can also define a special cycle matrix K( G) for G with a row for 

each cycle ( closed path) of G and a column for each edge. Let rj be the 
resistance in the }th edge. Then define entry k;j of K(G) = + r j if the ith 
cycle uses the jth edge traversing this edge in the direction of its arrow , - rj 

if the ith circuit uses the }th edge in the opposite direction of its arrow, and 
= 0 otherwise. For example, K(G) in Example 2 would be, with cycles 
listed in the order they were discussed, 

K(G) 
I 

1 

0 

2 0 

0 4 

2 - 4 • 
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As occurred in Example l, some circuits in a graph are always redun
dant and there is a simple rule for picking a minimal set of cycles for K( G). 
If k; is the ith row of K(G), then k; · c will be the voltages used on the ith 
cycle. If fi is the voltage force of batteries on the ith cycle, then Kirchhoffs 
voltage law becomes 

k- . C == f · I l (15) 

and if f is the vector of J;'s, we have 

Kirchhoff's voltage law: K(G)c = f (16) 

· Our current problem can now be stated: Solve the system of equations (14) 
and (16) for c. 

The next four exampJes involve differential equations. A common 
mathematical model for many dynamic systems, such as falling objects, 
vibrating strings, or economic growth, is a differential equation of the form 

(17) 

where y(t) is a function that measures the ''position'' of the quantity, y' (t) 
denotes the first derivative with respect tot (representing time), )'"(t) denotes 
the second derivative, and a 1 and a0 are constants. The differential equation 
is called Linear because the r1ght side is a linear combination of the function 
and its derivative. Solutions of (17) are functions of the form 

y(t) = Aek1 ( 18) 

where e is Euler's constant, and A and k are constants that depend on the 
particular problem. This form of solution also works if higher derivatives 
are involved in the linear differential equation. 

Example 3. Differential Equation for 
Instantaneous Interest 

The simple differential equation 

y'(t) = . lOy(t) ( I 9) 

describes the amount of money y(t) in a savings account after t years 
when the account earns 10% interest compounded instantaneously. 
Recall that y' (t) is the instantaneous rate of change, or graphically, the 
slope, of y(t). Thus ( 19) says that the instantaneous growth rate of the 
savings account is 10% of the account's current value. 

Recall that the derivative of ek' is kek'. Let us try setting y(t) = 
Aek' [as given in (18)]. Now (19) becomes 

kAek1 = .1 OAek' (20) 

• 
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Dividing both sides of (20) by AeJ.", we obtain k = .10. So the solution 
to (19) is · 

• 
y(t) = Ae·10, (21) 

The constant A is still to be determined because to know how much 
money we shall have after t years, we must know how much we started 
with. Suppose that we started with 1000 dollars. The starting time is 
t = 0. Thus we have (using the fact e0 = 1) 

1000 = y(0) = Ae0 = A 

Then the solution of (19) with y(0) = 1000 is 

y(t) = l 000e· 1°1 

ffiN@itifi:&-

E xamp le 4. Solving Second-Order Linear 
Differential Equations 

(22) 

(23) 
• 

Consider the following differential equation that might describe the 
height of a falling particle in a special force field. 

y"(t) = 6y' (t) - &y(t) (24) 

This differential equation is called a seco,zd-order equation because it 
involves the second derivative. To solve this equation, we also need 
to know the starting conditions, what are the initial height y(O) and the 
initial speed y' (0). Here the derivative y' (t) measures speed, that is, 
the rate of change of the height. Suppose in this problem that 

f(O) = 100 and f'' (0) = - 20 (25) 

We solve this problem in two stages. First we substitute (18) for 
y(t) in (24). 

d2 d 
- Aek' == 6 - Aekt - 8Aekt 
dt2 dt 

(26) 

Recall that the second derivative of ekt is k2ekc. So (26) becomes 

(27) 

If we divide by Aek', (27) becomes 

k2 =6k-8 or k2 
- 6k + 8 = 0 (28) 
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Equation (28) is called the characteristic equation of the linear dif
ferential equation (24). The roots of (28) are easily verified to be 2 
and 4 . So we have two possible types of solutions to (24) . 

y(t) = Ae4
' 

~ 

and y(t) = A' e2
' 

The constants A and A' can have any value and these solutions 
will still satisfy (24). In fact, it can readily be checked [see Exercise 
16, part (b)] that any linear combination of the basic solutions e21 and 
e41 is a solution. Thus 

y(t) = Ae41 + A' e21 (29) 

is the general form of a solution to (24). The constants A and A' depend 
on the starting values. From (25) we have 

which simplifies to 

100 = y(O) = Ae0 + A'e0 

- 20 = )'' (0) = 4Ae0 + 2A 'e0 

A+ A' 

4A + 2A' 

100 

-20 

(30a) 

(30b) 

In (30a), we obtain y' (0) by differentiating (29) and setting t == 0. 
Now we have our old ''friend,'' a system of two equations in two 
unknowns. We solve (30b) and obtain 

A = - 110 and A' = 210 

Substituting these values in (29), we obtain the required solution 

y(t) == - 110e4
' + 210e2

' 

(31) 

(32) 
• 

The calculations for any other second-order differential equation would 
proceed in a similar fashion: First substitute ( 18) in the differential equation 
to obtain the characteristic equation [ as in (28)] and solve for its roots; then 
determine A and A' from the pair of equations for starting values [as in (30)]. 
This method generalizes to kth-order differential equations; then the char
acteristic equation has k roots, we need k initial values, and we have to 

, solve k equations in k unknowns. 
For completeness, we note that if the two roots of the characteristic 

equation (28) were the same, such as 2 and 2, then the starting value equa
tions cannot be solved, since the two equations of (30a) will be the same . 
In the case of identical roots of the characteristic equation, y(t) instead has 
the form 

y(t) = Aerr + A' tert (33) 
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where r is the double root. It is an exercise to check that in the case of a 
multiple root (and only then), te'1 is also a solution to the differential equa
tion. 

Exa,nple 5. A System of Differential Equations 

Let us consider a pair of first-order differential equations which de
scribe motion of an object in x-y space with one equation governing 
the x-coordi nate and one the y-coordinate. 

x' (t) = 2x(t) - y(t} · 

y' (t) = - x(t) + 2y(t) 
(34) 

The starting values are x(O) = y(O) == 1. Let u(t) be the vector function 
u(t) == (x(t), y(t)). Then (34) can be written in matrix notation as 

u'(t) = Bu(t), where B = 
2 -1 

-1 2 

and u(O) == [ 1, 1] = 1. In Example 3 we saw that 

(35) 

y' (t) = by(t), y(O) = A ~ y(t) = Aeh1 (36) 

Substituting B for band 1 for A in (36), we obtain the solution to (35): 

u(t) = e8 cl (37) 
• 

A matrix in the exponent looks strange. But one definition of ex is in 
terms of the power series. 

x2 x3 
ex = 1 + X + - + - + 

2! 3 ! 

Xk ... + - + ... 
k! 

(38) 

Similarly, e8 is defined 
• 

B2 B3 
e8 = I + B + - + - + 

2! 3! 
• • • • • • (39) 

The power series (39) is well defined for all matrices. Although this 
power series of matrices may look forbidding, it is easy to use if we work 
in eigenvector-based coordinates so that B and its powers act like scalar 
multipliers (as in Bo = AU). Recall Theorem 5 of Section 3.3, which said 
that if U is a matrix whose columns were different eigenvectors of B and if 
DA is a diagonal matrix of associated eigenvalues, then 

B == un>-u- 1 (40) 
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Substituting with (40) for B in (39), we obtain 

eB 
UD2 u-• UD~ u- 1 

= 1 + uoAu- • + >.. + + 3! 
• • • 

2! 

+ 
UDt u- 1 

+ (41a) • • • 

k! 
0 2 D3 D* 

=U I+ DA + X +~+ A + u I (41b) • • • 
+ k! 

• • • 

2! 3! 
e~, 0 0 • • • 

0 e"-2 0 • • • 

== Ue0 >-u-• =U 0 0 e>..3 • • • u-1 (41c) 

• • • • • • 
• • • • • • 
• • • • • • 

The reason that e0 >- turns out to be simply a diagonal matrix with diagonal 
entries e>..1 , e>..2 , ••• , e>-n is that in ( 41 b ), the matrices D!/ k! are diagonal 
with entries x. 7 / k!, X.~/ k!, . .. and sun1ming these matrices we get a matrix 
whose entry (l , 1) is 1 + X. 1 + X.r/2! + X.{/3! + ... , which equals 
e"- 1; and similarly for the other diagonal entries . 

• 

Example 6. Converting a Second-Order 
Differential Equation into a Pair of 
First-Order Differential Equations 

Let us consider again the second-order equation from Example 4: 

y"(t) = 6y' (t) - 8y(t) (42) 

We convert (42) into a pair of first-order equations by introducing a 
second function x(t) defined · 

x(t) = y'(t) and thus x' (t) = )t"(t) 

Now ( 42) can be written as the pair of the first-order equations 

x' (t) = 6 .. t(t) - By(t) 

y'(t) = x(t) 

Defining the vector function u(r) = [ .. t(t), y(t)], we have 

u' (t) = Bu(t), where B = 
6 

1 

-8 
0 

' 

with initiaJ conditions from Example 4 of u(O) = [ - 20, 100] . 

(43) 

(44) 

(45) 



298 

• • 

• 
• 

Ch. 4 A Sampling of Linear Models 

As in Example 5, the solution to (45) should be 

u(t) = e1l1u(0) 

• 

(46) 

where e8t is defined by the power series 

t282 t3B3 
e81 = I + tB + - + - + 

2! 3 ! 
• • • • • • (47) 

Remember that we already know from Example 4 the solution 
of (42), so u(t) in (46) must equal 

u(t) == 
x(t) 

y(t) 

- 440e4
' + 4 20e2

' 

- 11 Oe4
' + 21 Oe2

' 
(48) 

where x(t) = y' (t) = - 440e41 + 420e2' is obtained by differentiating 
the solution for y(t). 

We now use the eigenvector-coordinates approach from Sections 
2.5 and 3.3 to show how the intimidating formula for u(t) in (46) is 
the same as (48). Since by (47) e8

' involves powers of B, the com
putation of multiplying e8 r times u(O) will be simplified if we express 
u(O) in terms of B's eigenvectors. 

In Section 3 .1 we learned how to find the eigenvalues of a matrix 
B-they are the roots of the characteristic polynomial det (B - ~1)-
and from them, the associated eigenvectors. The characteristic poly
nomial for B is A2 - 6A + 8 and its roots are 4 and 2. Eigenvectors 
u 1, u2 of B associated with the eigenvalues 4 and 2 are (Exercise 13): 

• 

u 1 = [ 4, 1] for A 1 = 4 u2 = (2, 1] for A2 = 2 

Writing u(0) = [- 20, 100] as a linear combination of u 1 and u2 ( we 
must solve the system u(0) = au 1 + bu2 for a and b (see Section 2.5 
for details), we obtain 

u(0) = [-20, 100] = - 1100 1 + 2l0u2 (49) 

We now can compute eB'u(O), which we rewrite using (47) as 

u(t) = e81u(O) 
t2 

= lu(0) + tBu(0) + -
1 

B2u(0) + 
2. 

• 

• • • 

Substituting u(0) = - l 10u1 + 210u2 in (50), we have 

(50) 

• 
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u(t) = I( - 11001 + 210u2) + tB( -1 lOuL + 210u2) 

t2 
+ 

2
! B2

( - l 10u1 + 21002) + • • • 

tk 
+ k! Bk( - I 10u 1 + 210u2) + • • • 

t2 tk 
-110 Int + tBu1 + Z! B2u1 + · · · + k! Bku1 + · · · 

• • • 

(51) 

But since u1 and u2 are eigen,1ectors, the term Bku 1 equals 4ku1, and 
Bku2 = 2ku2 • So ( 51) becomes 

t242 
-110 l + t4 + + • • • 

2! 
. 

1222 
+ 210 1 + t2 + + 2! 

4 
- l 10e4

' 
I 

2 
+ 210e21 

l 

- 440e4
' + 420e2

' 

-110e4
' + 210e2

' 

• • • 

+ ... 

• • • 

tk4k 
+ + • • • U I 

k! 

tk2k 
+ + • • • U2 

k! 

(57) 

Observe that for a different starting vector u*(O), we would get 
u*(0) = a'u 1 + b'u2 , for some a', b' and then the result in (52) 
would be u(t) = a' e41u 1 + b' e2'u2 . 

We now give a shorter derivation of this result using the matrix 
formula in ( 41) to handle the exponential series. For e8t

, ( 41) becomes 

(53) 

where e0 x1 is a diagonal matrix with diagonal entries e"'•1
• Recall that 

Uhas eigenvectors u1 and u2 as its columns. Thus 

U= 

t 

4 2 
l 1 

• 

and we compute u-1 = 
1 
2 - 1 

2 
(54) 

• 
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Using (53) to substitute for e8 ' in u(t) = eBu(O), we obtain 

u(t) = e8 'u(O) = Ue0 },.tu- 1u(O) 

4 2 e4
' 0 ½ - 1 

-
1 1 0 e21 -½ 2 

4 2 e41 0 -110 
-

1 1 0 e2
' 210 

4e4
t 2e2' - 110 

e4t e2r 210 

- 440e41 + 4 20e2
' 

-110e41 + 210e21 

• 

-20 

100 

• 

(55) 

•· 

The conversion of ( 42) to a system of first-order differential equations 
can be applied to any linear higher-order differential equation. 

Example 7. Converting a Third-Order Differential 
Equation into a System of Three 
First-Order Differential Equations 

Consider the third-order linear differential equation 

y"1(t) = y''(t) + 2y' (t) + 3y(t) 

We introduce the two new functions w(t) and z(t): 

w(t) == )'' (t) and z(t) == »'' (t) [ = y"(t)) 

Then (56) can be written 

z' (t) = z(t) + 2w(t) + 3y(t) 

(56) 

(57) 

(58) 

Defining the vector function u(t) = [y(t), w(t), z(t)], we can rewrite 
(57) and (58) as the matrix equation 

u'(t) = Bu(t): 

z' (t) 

w'(t) 

y'(t) 

I 2 3 z(t) 

I O O w(t) (59) 

0 1 0 y(t) 

The solution to (59) is u(t) == e8tu(O), which we would evaluate using 
eigenvectors , as discussed in Example 6. • 

• 
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Section 4.3 Exercises 

Summary of Exercises 
Exercises 1-4 are chemical reaction balancing problems. Exercises 5-7 are 
electrical circuit proble1ns. Exercises 8-18 involve differential equations, 
with Exercises 16-18 being theory questions. 

1. Write out a system of equations required to balance the following chetn
ical reactions and solve. Here C represents carbon, N represents nitro
gen, H represents hydrogen, and O represents oxygen. 
(a) N2H4 + N20 4 ~ N2 + H20 
(b) C6H6 + 0 2 ~ CO2 + H20 

2. Write out a system of equations required to balance the following chem
ical reaction and solve. 

where S represents sulfur, N represents nitrogen, H represents hydro
gen, and O represents oxygen. 

3. Write out a system of equations required to balance the following chem
ical reaction and solve. 

where Pb represents lead, N represents nitrogen, Cr represents chro
mium, Mn represents manganese, and O represents oxygen. 

4. Write out a system of equations required to balance the following chem
ical reaction and solve. 

where H represents hydrogen, S represents sulfur, 0 represents oxygen, 
Mn represents manganese, As represents arsenic, and Cr represents 
chromium. 

5. Determine the currents in each branch of the following circuit. 

1 
10 volts 

-
_--"",.,,.. _____ -..... ,, + 

i1 -----

I 

• 

• 
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6. Determine the currents in each branch of the following circuits, in which 
the incoming amperage ( on the left) is given . 
(a) _JVV\,........._ (b) 

i2 ) 12 

7. Determine the currents in each branch of the following circuit. The 
voltage in the battery is 19. 

i5 

+ 
19 - 1 

1 

1 1 

2 1 

8. So]ve the following first-order differential equations 1 with given initial 
values. 
(a) y'(t) == .5y(t), y(O) = 100 
(b) y'(t) - 4y(t) = 0, y(O) = 10 

9. Suppose that a population of bacteria is continuously doubling its size 
every unit of time. Write a differential equation for y(t), the size of the 
population. 

10. Solve the following second-order differential equations, with given ini
tial values. Use the method based on the characteristic equation (see 
Example 4). 

11. 

(a) y"(t) = Sy' (t) - 4y(t), y(O) = 20, y' (0) = 5 
(b) y"(t) == - Sy' (t) + 6y(t), y(O) == 1, y' (0) == 15 
(c) y"(t) = 2y' (t) + 8y(t), y(O) == 2 1 y' (0) == 0 

Convert the following differential equations into systems of simulta
neous first-order differential equations. Do noJ solve. 
(a) y"(t) == 5y' (t) - 4y(t) 
(b) y"(t) = - Sy' (t) - 6y(t) 
(c) y"'(t) = 4y11(f) + 3yi(t) - 2y(f) 
(d) y11'(t) = 2y' (t) + y(t) 

-

12. Check that 3 and l are the eigenvalues for B 
2 

-1 

- 1 

2 
in Ex-

ample 5 and that associated eigenvectors are l l, - 1] and [ l, 1). Solve 
the system of differential equations in Example 5 using the method in 
Example 6. 
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13. Check that 4 and 2 are the eigenvalues for B = 

1 

-8 
0 

in Example 

6 ~d that associated eigenvectors are [4, l] and [2, l]. Also verify 
(49). 

14. Re-solve the second-order differential equations in Exercise IO by con
verting them to a pair of first-order differential equations and solving 
by the method in Example 6 (you must find the eigenvalues and eigen
vectors). 

15. Solve the following pairs of first-order differential equations by using 
the solution technique in Example 6 (you must find the eigenvalues and 
eigenvectors). The initial condition is x(O) = )'(O) = 10. 
(a) x' (t) = 4x(t), y' (t) = 2x(t) + 2y(t) 
(b) x'(t) = 2x(t) + y(t), y'(t) = 2x(t) + 3y(t) 
(c) x'(t) = .. t(t) + 4y(t), y'(t) = 2x(t) + 3y(t) 

16. (a) Show that any multiple ry*(t) of a solution y*(t) to a second-order 
differential equation y"(t) = ay' (t) + b)1(t) is again a solution. 

(b) Show that any linear combination ry*(t) + sy0(t) of solutions y*(t), 
y0(t) to y"(t) = ay' (t) + b)1(t) is again a solution. 

17. Suppose that y0(t) is some solution to y"(t) - ay' (t) - b_v(t) = f(t) 
and y*(t) is a solution to y''(t) - ay' (t) - by(t) = 0. Then show that 
for any r, y0(t) + ry*(t) is also a solution to y"(t) - ay' (t) - bJ'(t) = 
f(t). 

18. Verify that y(t) = teA' is a solution to the differential equation y"(t) = 
cy' (t) + dy(t) whose characteristic equation k2 - ck - d = 0 has A 
as its double root. 

Note: If k2 - ck - d = 0 has A as a double root, the characteristic 
equation can be factored as (k - X.)2 = 0. This means that c = 2A 
and d = - X. 2 • Use these values for c and d in verifying that teA' is a 
solution. 

Markov Chains 

Markov chains were introduced in Section 1.3. They are probability models 
for simulating the behavior of a system that randomly moves among different 
''states'' over successive periods of time. If a Markov chain is currently in 
state Si, there is a transition probability au that I unit of time later it \vill be 
in state Si. The matrix A of transition probabilities completely describes the 
Markov chain. If p = [p 1, p 2 , .•. , Pn1 is the vector giving the probabilities 
p_; that Si is the current state of the chain and p' == [p;, p~, ... , p;,] is the 
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vector of probabilities p~ that Si is the next state of the chain, then we have 

p' = Ap (la) 

For a particular p ~, this is 

(lb) 

Example 1. Frog in Highway Revisited 

In Section 1.3 we considered the Markov chain for a frog wandering 
across a highway that was divided into six states. The transition matrix 
A was 

Current State 

1 2 3 4 5 6 

1 .50 .25 0 0 0 0 

2 0 .50 .25 0 0 0 

Next 3 0 .25 .50 .25 0 0 (2) 
A == 

0 State 4 0 0 .25 .50 .25 

5 0 0 0 .25 .50 .50 

6 0 0 0 0 .25 .50 

We started with probability vector p = l 1, 0, 0, 0, 0, O], that 
is, the frog started in state 1. We computed a table of the probability 
distributions after varying numbers of periods. In matrix notation, we 
computed 

for increasing values of k. We found that as k got large, p<k) converged 
to the probability vector 

p* = [.I, .2, .2, .2, .2, .I] (3) 

which satisfied the equation 

p* = Ap* (4) 

Thus p* is a stable (unchanging) probability distribution for this Mar
kov chain. In matrix terminology, p* is an eigenvector of A with 
associated eigenvalue 1. 

In Section 3 .5 we solved the eigenvector equations ( 4)-actually, 
we solved (A - l)p = 0-and obtained a general solution of the form 

[ q, 2q, 2q, 2q, 2q, q] (5) 

Making the components in (5) sum to 1 (to be a probability distribu-
• 
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tion), we obtained p* = [.1, .2, .2, .2, .2, .l]. So this p* is the 
unique stable distribution of the frog Markov chain. The fact was 
brought out in the Exercises of Section 1.3 that if the starting proba
bility vector p had been different, we still would have found that p<k> 
converged to this p*. 

Suppose that the starting probability vector were the }th unit vec
tor e1, with a 1 in the jth position and O' elsewhere (tl1e original p 
was e1). It was noted in Section 2.4 that for any matrix 8, 

Be- = b~ 
J J (bf == the jth column of B) 

Then 

(the jth column of Ak) (6) 

Since p<k) converges to p*, \Ve conclude that the jth column of A k 

approaches p*, fork large, 

. I . l . I . 1 .1 . 1 

.2 .2 .2 .2 .2 .2 

Ak~ .2 .2 .2 .2 .2 .2 
(7) 

.2 .2 .2 .2 .2 .2 

.2 ? . - .2 .2 .2 .2 

. 1 . 1 . 1 . 1 . 1 . 1 • 

Does this property of any starting probability vector converging to a 
stable probability distribution hold true for all Markov chains? The answer 
. 
1s no. 

• 

Example 2. Markov Chain Not Converging to 
Stable Distribution 

Consider the simple two-state Markov chain with transition matrix and 
starting vector 

A = 
0 1 
l 0 

and p = [ 1, 0] (8) 

It is easy to check that p<k) = [0, l] for k odd, and p<k> = [ 1, O] for 
k even. More generally, for a starting vector of p = [r, 1 - r] for 
any r, 0 < r < l, we have p Ck) = [l - r, r] fork odd, and p<*) = 
[r, 1 - r] fork even. Note that p0 = [.5, .5] is a stable vector (an 
eigenvector with eigenvalue 1), but this Markov chain will not con
verge to p0 ; if we do not start at p0 , we never get to p0 . 

The powers of A have a similar odd-even cyclic pattern, with 
Ak = A fork odd, and Ak = I fork even. • 
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So now the question is: Under what conditions does a Markov transition 
matrix A have a stable probability vector to which any starting vector will 
converge, or equivalently, when will the columns in powers of A all con
verge to a given probability vector as in (7)? The question is not tied to the 
existence of an eigenvector with eigenvalue 1, since in Example 2, [.5, .5] 
was such an eigenvector, but there was no convergence. Instead, the answer 
depends on the absence of any cyclic or other nonrandom pattern, as seen 
in Example 2. 

Definition. A Markov chain with transition matrix A is regular if for some 
positive integer h, the matrix Ah has all positive entries. 

The matrix in Example 2 was not regular. A regular Markov chain 
mixes, or randomizes, patterns so as to eliminate any cyclic behavior. If a 
Markov chain is regular, then every column of Ah has all positive entries, 
meaning that starting from state j it is possible after h periods to be in any 
of the states. The following theorem requires a lengthy, but not advanced, 
proof that may be found in any of the texts on Markov chains listed in the 
References. 

Theore,n 1. Every regular Markov chain with transition matrix A has a 
stable probability vector p* to which p<k) = Akp converges, for any 
probability vector p. All the columns of Ak also converge top*. 

One way to find the stable distribution of a regular Markov chain is, 
as done in Section 3.5, by solving (A - l)p = 0 and then picking the 
constant in the solution to make the components sum to 1 [ see equation ( 5)]. 
Another approach is to add the additional constraint 1 · p ( = I p;) == 1. 

• 

I 

(A - l)p = 0 

1 · p == I 

This is a set of n + 1 equations in n unknowns. 

Example 3. Solving for Stable Distribution 

(9) 

Consider a simpler Markov chain which involves just two states that 
represent two islands, isle 1 and isle 2, in _an isolated country. We are 
interested in the flow of money between these two islands. Assume 
that no money enters or leaves the country. Then a Markov chain 
should provide a reasonable model for currency flow. We shall perform 
a general analysis of this model rather than use specific values for the 
transition probabilities aij. Since columns must sum to 1; the transition 
matrix A can be written in terms of the off-diagonal entries thus: 

Current State 

1 2 

Next 1 1 - b a 
A == 

State 2 b 1 - a 
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We require 0 < a, b < 1 so that the Markov chain "''ill be regular. 
Let us solve (9) for this A. 

(A - l)p = 0: -bp1 + ap2 == 0 

bp 1 - aJJ2 == 0 (10) 

1 · p = l: P1 + P2 = 1 

The second equation in ( 10) is just tl1e first equation multipli~d by - 1. 
So the second equation is redundant, and we are back to the standard 
situation of two equations in two unknowns. When solved, they yield 
the stable distribution 

a 
Pi = a + b' 

b 
P2 = a + b (11) 

Note that (11) will always be well defined unless a and b are both 0, 
in which case we get the trivial Markov chain: Pi = Pt, Pi = P2· • 

For any Markov transition matrix, the system (A - l)p = 0 always 
has redundancy because the sum of the right-hand sides of all the equations 
is 0 (A has column sums of 1, but the - I term makes the column sums of 
A - I equal to 0) or, eqivalently, the last row is minus the sum of all the 
preceding rows. When such redundancy exists, the last row will be zeroed 
out in Gaussian elimination (the reasons for this are discussed in Section 
5. 2). Thus the last row can be replaced by the constraint 1 · p = 1, as 
implicitly happened in Example 3. 

However, Gaussian elimination is so simple in tridiagonal systems, 
like the frog Markov chain, that adding this new row creates as much trouble 
as it saves. We illustrate the advantage of a tridiagonal matrix with the 
following large-scale example. 

Example 4. Ann-State Frog Markov Chain 

Let us generalize the frog Markov chain to a chain with ,i states, where 
n is an arbitrary number. The system of equations (A - l)p = 0 is 

- .50pl + .25p2 
.50p1 - .50p2 + .25p3 

.25p2 - .50p3 + 
• • 

• 

- 0 -

- 0 -

.25p4 - 0 -

• • 
• • • 
• • • • 

.25Pn - 3 - .50Pn - 2 + .25Pn - l == 0 
.25Pn - 2 - .50p,, _1 + .50pn == 0 

.25pll 1 .50pll = 0 
(12) 
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Performing elimination in the first column requires us simply to add 
the first equation to the second . 

- .50p1 + . 25p2 = 0 

.25p2 + .25p3 = 0 

.25p2 - .50p3 + .25p4 =O 
• • • 

• • • • 
• • • • 

.25Pn- 3 - .50Pn- 2 + .25Pn - 1 = 0 

.25P11 - 2 - .50Pn- 1 + .50p11 = 0 

.25Pn - I .50pn = 0 

Similarly, for elimination in the second column we add the second 
equation to the third. 

- .50p1 + .25p2 = 0 

.25p2 + .25p3 = 0 
.25p3 + .25p4 = 0 

.25p3 - .50p4 + .25p5 =0 
• • • • 

• • • • 
• • • • 

.25Pn- 3 - .50Pn- 2 + .25Pn- 1 = 0 

.25Pn- 2 - .50Pn - 1 + .50pn = 0 

.25Pn- 1 .50pn = 0 

The situation when we come to perform elimination in the third column 
is the same as in the second column and again involves adding the 
third equation to the fourth. This situation will stay the same for every 
column from the second through the (n - I )st. After elimination in 
the first 11 - 1 columns, we have 

- .50p 1 + .25p2 

.25p2 + .25p3 

. 25p3 + .25p4 
• • 

• • • 
• • • 

. 25Pn - 2 + .25Pn - 1 

.25p11 _ I + 
0 

• 

- 0 
- 0 -

0 --
• 
• 
• 

= 0 

.50pll = 0 

= 0 
(13) 

Note that the (n - l)st equation in (13) is the negative of the original 
last equation, so the last equation is zeroed out when we perform 
elimination in the (n - l)st column. For concreteness, the reader may 

• 
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want to refer back to Example 1 of Section 3.5 , where we solved this 
system for the original frog Markov chain, where 11 = 6. 

Letting p n = q, we perform back substitution and find from the 
(n - l)st equation in (13) that .25Pn - I == .50p 11 ( == .50q) , so 
p,, _ 1 = 2q. Equations 2 through 11 - 2 in ( 13) say that successive 
P;, P,+ 1 pairs from p2 through Pn - I are equal . Since p11 _ 1 = 2q, all 
these p;'s equal 2q. Finally, we see that p 1 = q. So our solution has 
the form 

- [ q, 2q, 2q, . . . , 2q, 2q , q l 

The sum of the entries in this general solution is (2n - 2)q. For this 
sum to equal 1, we require that q = 1/ (2n - 2). So our stable 
distribution is 

. I 2 2 2 2 I 
p>.e = 2rt - 2' 2n - 2' 211 - 2' · · · ' 2ri - 2' 211 - 2' 211 - 2 

The effect of replacing the last equation in ( 12) by 1 · p = 1 is 
discussed in the Exercises. • 

Next we consider an important type of nonregular Markov chain, called 
an absorbing Markov chain. A state S; in a Markov chain is called an ab
sorbing state if au == I, that is, once you enter state S; you never leave it. 
A Markov chain with one or more absorbing states is called an absorbing 
Markov chain. • 

Example 5. A Gambling Model with 
Absorbing States 

Absorbing states complicate the behavior of a Markov chain and lead 
to a variety of different stable probabilities. Consider the following 
Markov chain for gambling, with states representing the gambler· s 
winnings. Each round, the gambler has a probability .3 of winning $1, 
. 33 of losing $1, and . 37 of staying the same. The gambler stops if 
he or she loses all of the money, and also stops if the winnings reach 
$6. So 0 and 6 will be absorbing states in this Markov chain. 

Current State 

0 1 2 3 4 5 6 

0 l .33 0 0 0 0 0 

1 0 .37 .33 0 0 0 0 

2 0 .30 .37 .33 0 0 0 
A == Next 3 0 0 .30 .37 .33 0 0 

(14) 

State 
4 0 0 0 .30 .37 .33 0 

5 0 0 0 0 .30 .37 0 

6 0 0 0 0 0 .30 1 

• 
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After playing a very long time, a person is certain to have 
stopped, either having gone broke or having won. Thus the stable 
probabilities should only involve the absorbing states O and 6, that is, 
the stable vector p* has the form 

P6 = P, Pt = l - p , and P* - p* - p* - p* - p* -- 0 1 - 2 - 3-4 - 5 

I 

By looking at the transition probabilities for states O and 6 alone, 

Next 0 
State 6 

Current 
State 

0 6 

l 0 
0 1 

(15) 

it is easy to see that any p* of the form in (15), with O < p < 1, is a 
stable vector. 

Before doing any mathematical analysis of absorbing Markov 
chains, let us explore the behavior of (14) by letting a computer pro-

Table 4.2 • 

Probability Distribution After k Rounds 

Rounds 0 1 2 3 4 5 6 

0 0 0 0 l 0 0 0 

1 0 0 .33 .37 .30 0 0 

2 0 .109 .244 .335 .222 .09 0 

3 .036 .121 .234 .270 .212 .100 .027 

4 .076 .128 .212 .240 . 193 . 101 .057 

5 .116 .115 .194 .216 . 177 .095 .087 

6 . 154 .107 . l 78 .196 .161 .088 .116 

8 .222 .090 .149 .164 .135 .074 .166 

10 .278 .075 .125 .137 .113 .062 .209 

15 .383 .048 .080 .088 .072 .040 .288 

20 .451 .031 .051 .056 .047 .026 .336 

25 .494 .020 .033 .036 .030 .016 .371 

50 .563 .002 .003 .004 .003 .002 .423 

75 .570 - o - o - o - o - o .428 

100 .571 - 0 - o - o - o --o .429 

• 
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gram produce a table of probability distributions over many rounds 
when we start with $3. Since $3 is halfway betwee11 losi1)g and win
ning, we could expect the chances of losing to be close to .5 , but a 
little above .5, since there is always .33-versus-.30 bias toward losing 
a dollar in any state. 

So if we start witl1 $3, the probability of eventually losing (before 
we reach $6) is p = . 571. Instead of repeating this computer simulation 
for other starting values, we shall now develop a theory that lets us 
calculate directly the probability of losing or winning, when \Ve start 
with different amounts of money. • 

The first step in our development is to divide the states of an absorbing 
Markov chain into two groups, the absorbing states and the nonabsorbing 
states. Assume that there are r absorbing states and s nonabsorbing states. 
If the absorbing states are listed first, the transition matrix A can be parti
tioned into the form 

A = Ab 
NAb 

Ab NAb 

I R 
0 Q 

( 16) 

where I is an r-by-r identity matrix, 0 is an s-by-r matrix of O's, R is an 
r-by-s matrix with entry r;i giving the probability of going from nonabsorbing 
state j to absorbing state i, and Q is the s-by-s transition matrix among the 
nonabsorbing states. The transition matrix ( 14) in. Example 5 becomes 

0 6 I 2 3 4 5 

0 I 0 t .33 0 0 0 0 

6 {) l I O O O O . 3() 
-----1--------------

I 0 O I .37 .33 0 0 0 A = ,, 0 
I (17) 

0 , .30 ·.37 .33 0 0 -
3 0 0 I 0 I .30 .37 .33 0 

4 {) 0 I 0 
I 0 .30 .37 .33 

5 () o I o 0 0 .30 .37 

Using the rule for matrix multiplication of a partitioned matrix from Section 
2.6 (just treat the submatrices like individual entries), we have 

A2 = I R 
0 Q 

I R 
0 Q 

I R + RQ 
0 Q2 

II+ RO 
IO+ OQ 

and multiplying A times A 2 , we find that 

• 

IR+ RQ 

OR+ QQ ( 18) 
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1 o l . s3 . t 9 . 04 o o 
0 l +' 0 0 . 03 . 16 . 48 
---- -------------
0 0 I . 16 . 20 . 12 . 04 0 

o o I . 1 s . 21 . 23 . 12 . 04 

0 0 1, 10 .21 .27 .23 .12 

o o I . 03 . 1 o . 21 . 27 . 20 

0 0 f O . 03 .10 . 18 . 16 

It is left as an exercise to check that for higher powers of A, the partitioned 
form is 

(19) 
where Rf = R + RQ + RQ2 + • • • + RQk- 1 

Note that Qk is the standard kth power of the nonabsorbing transition 
matrix Q, for play among the nonabsorbing states . 

As k gets large, the entrjes in Qk will approach 0, since over time the 
probability of not getting absorbed approaches 0. The important submatrix 
in (19) is Rf. Entry (i, j) of R:t is the probability of being in absorbing state 
i after k rounds if we start in nonabsorbing state j. Let us explain what this 
probability is in detail. To go from nonabsorbing state j to absorbing state 
i after k rounds, we can either go immediately on the first round from j to 
i-with probability rij-(and remain in absorbing state i), or we can wander 
among the nonabsorbing states for several rounds, ending up after w rounds 
in nonabsorbing state h-with probability given by entry (j, h) in Qw-and 
then go from state h to absorbing state i-with probability r;h ( and thereafter 
remaining in state i). The total probability of starting in a nonabsorbing state 
j, wandering among nonabsorbing states for w rounds, and then going from 
some nonabsorbing state to absorbing state i is given by entry (i, j) in RQw. 
Since the number w can range up to k - 1, we obtain the sum for Rf given 
in (19). 

The limiting matrix R* for Rt as k approaches infinity will give the 
probabilities rf1 that starting in nonabsorbing state j we eventually end up 
in absorbing state i. 

R * == R + RQ + RQ2 + · · · = R(I + Q + Q2 + · · ·) (20) 

-
R* is the matrix that would tell us in the gambling model the probability of 
eventually losing or winning, when we start with different amounts. 

There are two ways to compute R *. The first way is to compute Qk 
for all k up to some large number, say 50, and sum these matrices and 
multiply by R to obtain R * as in (20). The other way rewrites R * as 

R * = R(I + Q + Q2 + . . . ) == R(I - Q) - l (21) 

using the geometric series identity introduced in equation (7) of Section 3 .4. 
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We call (I - Q) - 1 the fundamental matrix of an absorbing Markov 
chain and use the matrix N to denote it. 

N = I + Q + Q2 + · · · = (I - Q) - I and R* = RN (22) 

We can calculate this inverse using elimination by pi voting. N is given 
in (24). 

The geometric series identity used in (21) required that IIQII < I for 
some matrix norm. The sum nonn IQlls (largest column sum) of Q in ( 17) 
is 1, and the max nonn is > 1. However, IIQII < l in the euclidean norm. 

The matrix N contains some very useful information by itself. It tells 
us the expected number of times we will visit (nonabsorbing) state i if we 
start in (nonabsorbing) state j. The reasoning is as follows. The average 
number of times we visit state i starting from state j after exactly one round 
is simply 0(1 - qu) + lq,1 == qii-the weighted average of visiting state i 
zero times and of visiting state i one time. The average number of times we 
visit state i starting from state j after exactly two rounds is 0( l - q~>) + 
1 q~J> = q~J>, where q~2> denotes entry (i, j) in Q2

. The average number of 
visits after exactly k rounds is entry (i, j) in Qk. Probability theory states 
that the average number of visits from state j to state i totaled over all rounds 
is simply the sum of the average number of visits on each specific round. 
So the expected number of times we visit nonabsorbing state i starting from 
nonabsorbing state j is the sum of the (i, j) entries in Qk for all Qk, that is, 
entry (i, j) in N. 

Furthe1more, if we sum the entries of the jth column of N-the ex
pected number of times, starting from state j, that we visit state I plus the 
expected number of times we visit state 2, and so on-we obtain the expected 
number of rounds until we are absorbed. The vector-matrix product lN 
computes the sum of each column of N. 

We summarize this wealth of information about absorbing Markov 
chains we can get from N with the following theorem. The term absorption 
is used in this theorem to mean going to an absorbing state. 

Theorem 2. Let N be the fundamental matrix of an absorbing Markov 
chain [N is defined in (22) 1. Then the following are true. 

(i) Entry ,iu of N is the expected number of times we visit the non
absorbing state i (before absorption) when we start in nonabsorb
ing state j. 

(ii) The }th entry in the vector IN gives the expected number of 
rounds before absorption when we start in nonabsorbing state j. 

(iii) Entry (i, j) in RN is the probability of eventually ending up in 
absorbing state i when we start in nonabsorbing state j. 

Example 5 ( conti,iued). A Gambling Model . 

With Theorem 2 we can answer a variety of interesting questions about 
this model. We must compute the matrix N by finding the inverse of 
I - Q, where Q is 

' 
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1 2 3 4 5 

1 .37 .33 0 0 0 • 

2 .30 .37 .33 0 0 
(23) 

Q· = 3 0 .30 .37 .33 0 

4 0 0 .30 .37 .33 

5 0 0 0 .30 .37 

Using elimination by pivoting (described in Section 3.3), we obtain 

1 2 3 4 5 

1 2.64 2.21 1. 73 1.21 .63 

2 2.01 4.21 3.30 2.31 1.21 

N == (I - Q) - 1 = 3 1.43 3.00 4.73 3.30 1.73 (24) 

4 .91 1.91 3.00 4.21 2.21 

5 .43 .91 1.43 2.01 2.64 

From (24) and Theorem 2, we see that if we started with $3, 
there would be 3. 3 rounds during an average gambling session when 
we would be in state 2 (when we would have $2). 

Next we sum the columns of N: 

1N = [7.42, 17.24, 14.19, 13.04, 8.42] (25) 

The third entry in (25) tells us that if we start with $3, we get to play 
about 14 rounds, on average, before the game ends. 

Finally, we compute R* = RN , where we see from (17) that R 
• 
1S 

1 2 3 4 5 

R = O .33 0 0 0 0 

6 0 0 0 0 .3 (26) 
1 2 3 4 5 

0 .87 .73 .57 .40 .21 
R* = RN= 

.60 6 .13 .27 .43 .79 

Entry (0, 3) of R* confirms our earlier simulation result that the prob
ability of going broke when we start with $3 is .57. • 

We close this section by noting that some of these results about ab
sorbing Markov chains can be applied to regular Markov chains with the 
following trick. Let A be the transition matrix of a regular Markov chain. 
We convert one state, say state p, into an absorbing state by replacing the 
pth column a~ of A by the pth unit vector eP. Now whenever we come to 
state p, we stay there. Our theory of absorbing Markov chains can be applied 
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to this modified transition matrix to detennine the expected nu1nber of rounds 
it takes to get to state p if we start from any other state j (and also the 
expected number of visits in any third state on the journey from j to p). 

If we convert two states p and r into absorbing states with unit vector 
columns, then we compute the relative probability of reaching p or r first 
when we start from some other state j. These calculations are requested for 
Example 1 in the Exercises. 

l . - &i'" • • ' ' • ~ # • - r ,l~"IC,. ~ • . . •-,.. .. ·••#"'!\~'l• 11_;.,1~ --~,i_, ... , 't • 

Example 6. Ice Cream Selection 

We surveyed a group of students eating blueberry, mint, and straw
berry ice cream about which flavor they \vould choose next time. Sup
pose that¾ of those eating blueberry would choose blueberry the next 
time, while the remaining quarter would choose strawberry. Responses 
from others yielded the following transition matrix: 

Current Flavor 

Blueberry Mint Strawberry 

Blueberry 3 1 0 4 2 
Next 

Mint 0 1 1 (27) 
Time 2 3 

1 2 Strawberry 0 4 3 

We treat the selection of flavors as a Markov process and pose 
the question: How many rounds does it take on average for a person 
to switch from strawberry to blueberry? 

To answer this question, we change the transition matrix in (27) 
by making blueberry an absorbing state. The modified transition matrix 
• 
IS 

b m s 

b 1 l 0 2 

0 l .1 A = nz 2 3 

0 0 2 s 3 

Then we find that 

N = (I - Q) - 1 

and 

I R 

0 Q 

1 1 
2 -3 

0 1 
3 

lN = [2, 5] 

with Q 

- 1 
2 2 

0 3 

1 
2 

0 

1 
3 

(28) 2 
:i 

By Theorem 2, part (ii), the second entry, 5, in IN is the average 
number of rounds until absorption (blueberry) when starting from 
strawberry. Moreover, by Theorem 2, part (i), the second column of 
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N tells us that on average a person starting with strawberry would 
choose strawberry three times (including the initial time) and choose 
mint twice before choosing blueberry. • 

With modest effort (see any textbook on Markov chains in the Ref
erences), one can also prove the following interesting result. 

Theore,,i 3. Let p* = [p!, Pi, . . . , p~] be the stabJe probability vector 
of a regular Markov chain. Then, if we start in ~tate i, the expected 
number of rounds before we return to i again is 1 /pt. 

Section 4.4 Exercises 

Summary of Exercises 
Exercises 1-14 concern regular Markov chains, their stable distributions, 
and long-term behavior. Exercises 15-25 involve analysis of absorbing 
Markov chains. 

1. Describe the behavior of the Markov chain 

0 l 0 

0 0 1 
1 0 0 

with starting vector [ 1, 0, O]. Are there any stable vectors? 

2. Which of the following transition matrices belong to regular Markov 
chains? Find a stable distribution for each chain. 

(a) 
0 ~ 
I 1 

2 
(b) 

~ 0 

~ I 

½ 1 0 

(c) 0 0 1 

½ 0 0 

3. Compute the stable distribution for the weather Markov chain intro-
duced in Section 1. 3 with transition matrix · 

Sunny 

Cloudy 

Sunny Cloudy 
3 
4 
1 
4 

1 
2 
1 
2 

4. The printing press in a newspaper has the following pattern of break
downs. If it is working today, tomorrow it has 90% chance of working 
(and 10% chance of breaking down). If the press is broken today, it 
has a 60% chance of working tomorrow (and 40% chance by being 
broken again). Compute the stable distribution for this Markov chain. 
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5. If the local professional basketball team, the Sneakers, wins today's 
game, they have a 5 chance of winning their next game. If they lose 
this game, they have a ~ chance of winning their next game. Compute 
the stable distribution for this Markov chain and give the approximate 
values of e11tries in A 100

, where A is this Markov chain's transition 
matrix. 

6. If the stock market went up today, historical data show that it has a 
60% chance of going up tomorrow, a 20% chance of staying the sa1ne, 
and a 20% chance of going down. lf the market was unchanged today, 
it has a 20% chance of being unchanged tomorrow, a 40% chance of 
going up, and a 40% chance of going down. If the market goes down 
today, it has a 20% of going up tomorrow, a 20% chance of being 
unchanged, and a 60% chance of going down. Compute the stable 
distribution for the stock market. 

7. Write down a Markov chain to model the following situation: Assume 
that there are three types of voters in Texas: Republicans, Democrats, 
and Independent. From one (national) election to the next, 60% of 
Republicans remain Republican and similarly for the two other groups; 
among the 40% who change parties, 30% beco1ne Independent and l 0% 
go to the other major party, except that the Independents who change 
all become Republicans. Determine the stable distribution among the 
lhree parties and from it give the approximate values of entries in A 1000 . 

8. (a) Make a Markov chain model for a rat wandering through the f o]
lowing maze if, at the end of each period, the rat is equally likely 
to leave its current room through any of the doorways. (It never 
stay where it is.) 

I 
1 A 2 

I--- --< 5 >- -
4 y 3 

I 

(b) What is the stable distribution? 

9. Repeat the questions in Exercise 8 for the following maze. 

1 ') 3 -

6 5 4 

I I 
I 

• 
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10. Find the stable distribution for Markov chains with the following tran-

• 

sition matrices. 

.l 1 0 0 0 0 2 2 0 0 0 0 3 3 3 3 
2 l l 0 0 0 ½ l 2 0 0 0 3 3 3 6 3 

0 1 1 1 0 0 0 1 1 2 0 0 
(a) 3 3 3 6 6 3 

(b) 
0 0 .l .l l 0 0 0 1 1 2 0 3 3 3 6 6 3 

0 0 0 1 l 2 0 0 0 1 1 2 
3 3 3 6 6 3 

0 0 0 0 1 1 0 0 0 0 l .l 
3 3 3 

2 2 0 0 0 0 0 1 0 0 0 0 3 3 2 

1 l 2 0 0 0 1 0 1 0 0 0 3 3 2 

0 ! 1 1 0 0 0 1 0 1 0 0 6 6 
(d) 

2 2 
(c) 

0 0 1 1 A 0 0 0 l. 0 1 0 6 6 2 2 

0 0 0 ~ J. 5 0 0 0 .l 0 1 3 6 2 

0 0 0 0 2 2 0 0 0 0 1 0 3 3 2 

11. Repeat Exercise 10, parts (a) and (d) with the number of states expanded 
from six ton, as done in Example 4. 

12. Determine the two eigenvalues and associated eigenvectors for the Mar
kov chain in the following exercises. Give the distribution after six 
periods for the given starting distribution p by representing p as a linear 
combination of the eigenvectors as was done in the end of Section 3 . 1 . 
(a) Exercise 3, starting p: Sunny 0, Cloudy 1. 
(b) Exercise 4, starting p: Working 1, Broken 0. 
(c) Exercise 5, starting p: Winning i, Losing½ . 

• 

13. Show that if A is a tridiagonal Markov transition matrix, then in solving 
(A - l)p == 0 by Gaussian elimination, the Lin LU decomposition of 
A is a matrix with 1 's on the main diagonal and - 1 just below the 
diagonal entries. That is, in Gaussian elimination one always adds the 
current row (times 1) to the next row. 

14. Re-solve the stable distribution problems in Exercise 10 with the last 
row of the matrix equation (A - l)p replaced by the constraint 
1 · p == 1 (the last row always drops out-becomes 0-and the addi
tional constraint that the probabilities sum to 1 can be put in its place). 

15. The following questions refer to the gambling Markov chain in Example 
5. If you started with $4, what is the expected number of rounds that 
you have $3, and what is the expected number of rounds until the game 
ends? 

16. The following model for learning a concept over a set of lessons iden
tifies four states of learning:/ == ignorance, E = exploratory thinking, 
S == superficial understanding, and M = mastery. If now in state I, 
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after one lesson you have ~ probability of still being in l and ½ proba
bility of being in E. If now in state E, you have¼ probability of being 
in I, ½ in E, and ¼ in S. If now in state S, you have l probability of 
being in E, ~ in S, and ¼ in M. If in M, you always stay in M (with 
probability J ) • 
(a) Write out the transition matrix for this Markov chain \Vith the ab

sorbing state as the first state. 
· (b) Compute the fundamental matrix N. 

(c) What is the expected number of rounds until mastery is attained if 
currently in the state of ignorance? 

In the folJowing maze suppose that a rat has a 20% chance of going 
into the middle room~ which is an absorbing state , and a 40% chance 
each of going to tl1e room on the left or on the right. 

4 

3 

(a) What is the expected number of times a rat starting in roo1n I enters 
room 2? 

(b) What is the expected number of rounds until the rat goes to the 
middle room? 

18. (a) Make a Markov chain model for a rat wandering througl1 tl1e fol
lowing maze if, at the end of each period, the rat is equally l~kely 
to leave its current room through any of the doorways. The center 
room i an absorbing state. (It never stays in the same room.) 

• 

I 

I I 
5 3 ') .. 

I I 
4 

(b) If the rat starts in room 4, what is the expected number of times it 
will be in room 2? 

(c) If the rat starts in room 4, what is the expected rounds until ab
sorption? 
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19. Consider the game of Ping-Pong with the following states:. 

' A: Player l is hitting the ball. 
B: Player 2 is hitting the ball. 
C: Play is dead because 1 hit the ball out or in the net. 
D: Play is dead because 2 hit the ball out or in the net. 

The transition matrix is 

1 2 3 4 

(A hitting ball) I 0 .9 0 0 

(B hitting ball) 2 .4 0 0 0 

(A hit ball out) 3 .6 0 1 0 

(B hit ball out) 4 0 . l 0 1 

If we start play with player A hitting the ball (in state I) 

• 

(a) What is the expected number of times player A hits the ball (before 
the point is over)? 

(b) What is the expected number of hits by A and B (before the point 
. )? ts over . 

(c) What is the probability that player A hits the ball out (i.e., that 
player B wins the point)? 

20. Repeat Exercise 18 for the following maze, in which rooms 1 and 5 
are absorbing. Start in room 2. 

2 

1 5 

3 4 

21. Repeat the Markov chain model of a poker game given in Example 5 
but now with probability 1 that a player wins 1 dollar in a period, with 
probability ¼ a player loses l dollar, and with probability ! a player 
stays the same. The game ends if the player loses all his or her money 
or if the player has 6 dollars. Compute N, lN, and RN for this problem. 

22. Three tanks A, B, and Care engaged in a battle. Tank A, when it fires, 
hits its target with hit probability ½. B hits its target with hit probability 
l, and C with hit probability i. Initially (in the first period), B and C 
fire at A and A fires at B. Once one tank is hit, the remaining tanks aim 
at each other. The battle ends when there is one or no tank left. The 
transition matrix for this game is (the states are the subsets of tanks 
surviving) · 

• 
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ABC AC BC A B C None 

ABC 5 
18 0 0 0 0 0 0 

AC 5 
18 

5 
Il 0 0 0 0 0 

BC 4 0 10 0 0 0 0 18 TB 

A 0 ~ 
12 0 I 0 0 0 

B 0 0 ~ 
18 0 1 0 0 

C 4 _J_ 2 0 0 1 0 18 12 18 

None 0 _J_ 
12 

1 
Ts 0 0 0 1 

(a) Determine the expected nun1ber of rounds that the battle lasts (start
ing from state ABC) . 

(b) What are the chances of the different tanks winning (being the sole 
surviving tank)? 

23. Compute A 3 and A4 , in partitioned form, for the partitioned matrix A 
in (17). 

24. Modify the frog Markov chain in Example 1 by making states l and 6 
absorbing states. Compute the probability, when started in state 3 of 
being absorbed in state l. Also compute the expected number of periods 
until absorption (in state 1 or 6). 

25. Modify the frog Markov chain in Example 1 by making state 1 an 
absorbing state. Starting from state 5, compute the expected number of 
periods until absorption and the expected number of visits to state 6 . 

Growth Models 

In this section we examine three models for growing populations. We have 
already seen a simple linear model, introduced in Section 1. 3, for the growth 
of two competing species, rabbits and foxes. Here we will study models for 
the growth of one species that is subdivided into different age groups. For 
simplicity we again let rabbits be the object of study in the models. However, 
our models apply to any renewable natural resource, from animals to fores ts, 
and to many human enterprises, be they economic or social. The first model 
has be~n applied to human populations to predict population cycles and to 
set insurance rates. 

Example 1. Age-Specific Population Model 

We want a model that breaks down a population into different age 
groups . Human population models commonly have about 20 age 
groups, with each age group spanning 5 years, plus a special group 
for the first year of life (since mortality rates for newborns are different 
from other young children) and a last group consisting of everyone 
past some advanced age, say 90 years. Each age group is really two 

• 
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groups, one for men and one for women. The study of the sizes of 
human populations is called demography. . 

To make matters simple, we will content ourselves here with a 
three-age-group model of rabbits . 

• 

y == young rabbits, up to 2 years old 

m == midlife rabbits, between 2 and 4 years old 

o = old rabbits, 4 to 6 years old 

Let one period of time equal 2 years. Our model for the next period's 
population vector a' = [y', rn', o'] in terms of the current population 
a == [y, m, o] is 

y' 4m + o 

rn' = .4y (1) 

0
1 .6m 

The first equation in ( 1) says that each midlife rabbit gives birth 
to 4 young each period and that each old rabbit gives birth to 1 young 
each period (of course, only females have babies, but in this initial 
model we are not differentiating between sexes). The second equation 
says that 40% of all young rabbits survive through their first 2 years 
(one period). The third equation says that 60% of midlife rabbits live 
through a period to become old rabbits. Finally, assume that all old 
rabbits die within 2 years. If L is the matrix of coefficients in (1), 

0 4 1 

L = .4 0 0 

0 .6 0 

then ( l) has the matrix form 

a' = La 

(2) 

(3) 

This population model is called a Leslie model. If there were 
more age groups, the matrix L of coefficients would have the form 

0 b2 b3 b4 • • • b,, 

Pi 0 0 0 • • • 0 

0 P2 0 0 • • • . 0 

0 0 p3 0 • • • 0 L= (4) 
0 0 0 p4 • • • 0 

• • • • • 
• • • • • 
• • • • • 

0 0 0 0 • • • Pn - 1 0 
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where b, is the number of offspring per individual in group i and Pi is 
the probability that an individual in group i survives on~ period to 
become a member of group i + 1. 

The model is somewhat like a Markov chain, except that the 
numbers h; are not probabilities. Rather than summing to 1, the three 
variables y, m, and o will grow larger or smaller over time. We want 
to know the behavior of this model over many periods. Will the total 
number of rabbits increase or decrease? Will there be any cyclic pat
terns in the population, such as a surge in the young one year followed 
a period later by a surge in midlifes, then the next period a surge in 
the young, continuing back and forth? Or after several periods, will 
there be a steady distribution of the population; for example, will the 
fractions of rabbits that are young, are midlife, and are old remain the 
same from period to period? 

The answers to these questions depend on the eigenvalues and 
eigenvectors of L. As we saw in Sections 2.5 and 3.4, tl1e lo,ig-ter,n 
population distribution Lka, for large k, will be a ,nultiple of the 
dominant eigenvector of L (the eigenvector associated with the largest 
eigenvalue), and the long-temz growth rate will be the dominarzt (larg
est) eigenvalue. Whether the mode] converges quickly to the dominant 
eigenvalue depends on how much the largest eigenvalue dominates the 
second largest eigenvalue. 

Table 4.3 

Period 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 1 

• 

• 

14 
• 

• 

19 

20 

Young 

100 

230 

190 

392 

359 

673 

669 

ll62 

1232 

2021 

2250 

3529 

7382 

33873 

42815 

Midlife 

50 

40 

92 

76 

157 

144 

269 

266 

465 

493 

808 

900 

2474 

9553 

13549 

Old 

30 

30 

24 

55 

47 

94 

86 

161 

160 

279 

295 

485 

980 

4602 

5732 

Total 

180 

300 

306 

523 

563 

916 

1024 

1589 

1857 

2793 

3353 

4914 

11836 

48028 

62096 

• 
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To start, let us examine the behavior of our model with a com
puter simulation. Starting with an initial population of 100 young, 50 
midlife, and 30 old, we compute a table of populations in successive 
periods using (l); we have rounded values to whole numbers in Table 
4.3. Initially, we see a very pronounced cycling behavior between 
young and midlife rabbits, and this in turn leads to an uneven growth 
in the total population-there is little growth between periods 1 and 2, 
between 3 and 4, or between 5 and 6. The cycling is much smaller 
after 20 periods but still present. If we run the model a little longer. 
we see that the population stabilizes with a distribution and growth 
multiplier 

Long-term distribution: 70% young, 21 % midlifes, and 9% old 

Growth multiplier: 1.334 (33.4% growth rate) (5) 

That is, the population vector in the next period is about I . 3 34 times 
this period's population vector. • 

Using more advanced techniques introduced in the Appendix to Section 
5. 5 ( or using the appropriate mathematical software),. we find that the 
eigenvalues of L in decreasing absolute size are 

A1 = 1.334, A.2 = - 1.118, A.3 = - .152 

and the dominant eigenvector (associated with A. 1) is 

ll1 = [.697, .209, .094] 

The fact that A2 is close to A. 1 in absolute size is why the simulation took a 
long time to stabilize at u 1 . 

In mathematics, the best way to understand a property of interest is 
.often to study cases where the property fails to be true. We shall now take 
this approach and look at a Leslie model whose group percentages do not 
converge to the dominant eigenvector. 

fflilf¾M4til~~ 
Example 2. A Cyclic Leslie Model 

Consider the following Leslie model: 

with the Leslie matrix 

y' 

m' .Sy 

4o 

o' .5m 

0 

L = .5 

0 4 

0 0 
0 .5 0 

-

(6) 

(7) 
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Let the initial population be 100 young and no midlife or old rabbits. 
Then the next period' s population is easily seen to have just 50 mid
lifes, the next following period just 25 old rabbits, and the third fol 
lowing period just I 00 young- returning to the initial population. This 
cycle will repeat over and over again, and there will never be a stable 
distribution of age groups-we have pure cycling. No matter what the 
sta11ing population is, it will repeat every three periods. Such cycling 
is very unusual and results from properties of the eigenvalues of this 
problem. 

Let us compute the eigenvalues of L in (7). Recall from Section 
3 .1 that the eigenvalues X. are the zeros of the determinant of the matrix 
(L - X.I). In this example, det(L - X.I) has a simple form that is easy 
to work with. 

- x. 0 4 

L - X.I = . 5 - A 0 (8) 

0 .5 - x. 

so 
• 

det(L - X.I) = ( - A)( - A)( - X.) + (4)(.5)(.5) (9) 

= -x.3 + 1 

Although the determinant of a 3-by-3 matrix involves taking six di
agonal products (see Section 3 .1), the three O's in (8) eli1ninate all but 
two of these products. 

Setting the determinant - X 3 + l equal to O, we get 

"A_3 = 1 (10) 

One obvious root of (10) is A = 1. But all cubic equations must have 
three roots. The other two roots, called roots of unity, involve complex 
numbers. They are -½ + (v1)i, where i = Y-1. These complex 
numbers have absolute value 1 also. So there are three dominant 
eigenvalties of size 1, instead of a single one as is usually the case. 
This is why there is not a single dominant long-term effect as occurred 
in Example 1. • 

Perpetual cycling occurs if there are several largest eigenvalues (in 
absolute size). If the largest eigenvalue is complex, we must get cyclic 
behavior- since complex zeros of a polynomial always come in conjugate 
pairs (c + id and c - id) of the same absolute value. The cyclic Markov 
chain in Example 2 of Section 4.4 had two largest eigenvalues. Recall that 
its transition matrix was 

A = 
0 1 

l 0 
(11) 
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for which det(A - X.I) = A 2 
- l. So its eigenvalues were 1 and - 1. 

The following theorem, whose proof is beyond the scope of this book, 
gives a condition for assuring noncyclic behavior in a Leslie model. 

Theorem. A Leslie growth model with matrix L given in ( 4) will have a 
unique largest eigenvalue that is a real number, and hence a stable 
long-term population distribution, if some consecutive pair b;, h;+ 1 of 
entries in the first row of Lare both positive, that is, if two consecutive 
age groups give birth to off spring. 

The condition in this theorem is satisfied in Example 1 but not in 
Example 2. 

Example 3. Harvesting a Renewable Resource 

This time we shall grow rabbits for profit, to sell some of the rabbit 
population every year. The goal will be to determine the proper pop
ulation size and distribution among age groups so that we can ''har
vest'' a given number of rabbits each year without depleting the pop
ulation. That is, we want a minimal-size collection of rabbits that will 
sustain a given harvest forever. This time we shall use a model that 
diffei:entiates between females and males. We shall again use three 
different age categories, but now the age spans in the groups will vary. 
The groups are 

bm = baby male rabbits (less than 1 year old) 

bf = baby female rabbits 

ym = yearling male rabbits (between 1 and 2 years old) (12) 

yf = yearling female rabbits 

am = adult male rabbits (2 or more years old) 

af = adult female rabbjts 

The time period is l year. In this model adults do not all die at the 
end of one time period but rather survive to the next year with prob
ability .75. We shall only harvest adults, hm male rabbits harvested, 
and hf female rabbits harvested. Let us try using the following equa
tions. 

bm' 

bf' 

ym' 

yf' 

am' 

af' 

.6bm 

.6bf 

.6ym + 
.6yf 

2af 

2af 

.75am - hm 

+ .75af - hf 

(13) 

If A is the matrix of coefficients on the right-hand side of (13), ex-
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t 

eluding tenns - hm and - hf, x and x' are the 6-entry vectors of 
current and next-period age-group sizes, and his the harvesting vector 
(0, 0, 0, 0, hm, hf), we have 

x' = Ax - b ( 14) 

For stable harvesting, we seek values for the variables in ( 12) 
such that specified amounts can be harvested from each group in a 
year [in (13) only am and af are harvested] and in the next year all the 
groups will be the same sizes, ready to be harvested again. Mathe
matically, this means that in (14), x' = x. So (14) becomes 

x = Ax - h 

With matrix algebra, we have 

or 

(A - l)x = h 

-bm 

- bf 

.6bm - ym 

.6bf - yf 

.6ym - .25am 

.6yf 

2af = 0 

2af = 0 

= 0 
= 0 

== hm 
- .2Saf = hf 

(15) 

(16) 

Let us also compare, in a very general way, the difference be
tween solving this model and the Leslie growth n1odel in Exa1nple I . 
The Leslie mode] is a dynamic growing model whose solution involves 
an eigenvalue problem, while here ,ve have a static model (one period 
is like the next period) who e solution involves solving a standard 
system of 11 equations in n unknowns. A Leslie model like ( 4) in 
Example 1 will converge to a constant distribution of ages in all but 
the most exceptional cases, whereas syste111 ( 15) can easily have no 
solution of constant population with harvesting. For example, if \Vith
out harvesting the population naturally decreases (i.e.~ IIAII < l ), then 
with harvesting it will decrease even faster and eventually become 
extinct. 

We cannot find a solution to (15) by iterating (13) and hoping 
for the variables to converge after many periods to the stable harvest 
distribution. The reverse happens: If you do not start with the right 
population, the populations over successive periods will move farther 
away from the desired answer. Such divergence means that one has to 
be very careful about roundoff errors in so1ving (16). 

Let us choose the values hm = hf = 100, and solve (16) by 
Gaussian elimination. We obtain (witl1 answers rounded to whole num
bers) 
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bm = 426, 

yf = 255, 
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bf = 426, 

am = 213, 

ym = 255, 

af = 213 
(17) 

Observe that while only females produce offspring, it appears that this 
model really groups males and females together, in that there are the 
same numbers of males and females in each age group. So far we have 
seen only that this equality occurs when hm = hf = 100. To see that 
it is true for hm = hf = k, for any k > 0, write (16) in matrix form 
as 

(A - l)x = kb*, where h* = (0, 0, 0, 0, 100, 100] (18) 

In (17), we have the solution x* = [426,426, 255, 255, 213, 213] 
to (18) when k = l: that is, (A - l)x* = h*. Then by linearity, 

A(kx*) = k(Ax*) = kh* (19) 

So when hm = hf = 100k, the stable population in our harvesting 
model will be kx* = [426k, 426k, 255k, 255k, 213k, 213k]. 

We see from ( 17) that the sex differentiation can be dropped from 
the original model in ( 13) when hm = hf, yielding the simpler model 

b' 

y' 

a' 

.6b 

2a 

.6 + .75a + h 

(20) 
• 

where b = baby rabbits, y = yearlings, a = adults, h = harvest. It 
was not at all obvious in advance that these two models would be 
equivalent. 

Suppose that hm ~ hf. lf we harvest twice as many of one sex 
as of the other, we obtain the results shown in Table 4.4 by re-solving 
( 16) for these new values of hm and hf. 

Table 4.4 

Harvest 

hm 

50 

100 

hf 

100 

50 

426 

212 

. . . 

426 

212 

Stable Population 

255 

127 

255 413 

127 . -93 

213 

106 

Surprise! Our model gives us a negative answer when we try to harvest 
twice as many adult males as females. Why did. this happen? What is 
the smallest ratio of harvested males to females that can occur? 

To get a fuller understanding of our harvesting model, let us 
compute the inverse of the coefficient matrix in ( 16) . 
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' 

-1 1.53 0 2.55 0 4.25 

0 .53 0 2.55 0 4.25 

(A - l ) - 1 -.6 . 91 - 1 1.53 0 2.55 

0 .32 0 .53 0 2.55 
(21) 

- 1.44 2.21 - 2.4 3.68 - 4 6.13 

0 .77 0 1.28 0 2.13 

Notice how the sparsity of the original coefficient matrix is lost in the 
iRverse. This inverse gives an explicit formula for x in terms of h that 
can be invaluable. For example, if only adult males and females arc 
harvested, then h = [O, 0, 0, 0, hm, hf] and multiplying (A - I) - 1 

times· this h yields a formula for tl1e stable population vector x. 

x = (A - l) - 1h 

[4.25hf, 4.25hf, 2.55hf, 2.55hf, -4hm + 6 . 13hf, 2.13hf] 

(22) 

The form of the solution vector in (22) answers all questions about the 
behavior of this particular model . In particular, for the fifth component 
to be > 0, hf should be at least j of hm. • 

We now consider a simplified model for rabbit growth that results in 
a single equation. However, this equation will involve the population in the 
current period and the previous period. • 

• 

• ... • • .,.•; ,~• "o ,._ I., -•"" .-1.Y 

Example 4. Recurrence Model for Rabbit Growth 

First we consider an extremely simplified model, in which the popu
lation doubles in each successive period. If r n is the rabbit population 
in the nth period, we have 

r,, = 2r,, _ 1 (23) 

If we started with r O = A rabbits in period O, then in period l 
we would have r 1 = 2A rabbits .. and in the next period r2 = 4A 
rabbits. It is not hard to see that the formula for rn is 

r = 2"A n 

For the general problem, 

has solution (24) 

Now let us consider a model with adults and young rabbits. We 
suppose that once a pair of rabbits are 1 year old, they ha,1e one pair 
of offspring every year for the rest of their lives. Assume that all pairs 

• 
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consist of one female and one male. We make a two-group mathe
matical model of the rabbit population. 

Let mn denote the number of mature pairs (at least 1 year old) 
during period n, y

11 
denote the number of young pairs (under 1 year 

old) during period 11, and r n denote the total number of rabbit pairs 
during period ,i. If we assume that no rabbits die (the model will not 
be valid for long periods), then from one period of time to the next, 

I 

these quantities obey the equations 

Yn == mn-1 

mn == mn - 1 + Yn - l 

(25) 

and 

r,, == m" + Y,1 (26) 

• 

Observe that r,, can also be expressed as r n _ 1 plus the number of new 
pairs born in the nth year (i.e., y,,). 

(27) 

Comparing the right-hand sides of (26) and (27), we conclude that 

• 

m,, = rn - l (28) 

In words, we explain (28) by the fact that any rabbit, young or mature, 
alive one period ago will be an adult this period. And restating (28) 
for the previous year, we have m11 _ 1 = r n _ 2 . When this identity is 
combined with y n = mn _ 1 [ equation (25)], we have 

y,, = tn,, _ J = r,1- 2 (29) 

Substituting (29) in the equation for y11 in (27), we obtain the following 
simple relation for rn: 

yll = r,, _ J + rn - 2 (30) 

Equations such as (30) that tell how to compute the next number in a 
sequence r0 , r1, r2 , .•. are called recurrence relations. Equation 
(30) is called a second-order relation because the right-hand side goes 
back 2 years. Recurrence relations are the discrete counterpart to dif
ferential equations, that is, when time is measured in discrete units 
rather than continuously. 

Equation (30) is called the Fibonacci relation (named after the 
thirteenth-century Italian mathematician Fibonacci, who first studied 
this growth model). For example, if we started with one young pair 
of rabbits (i.e., r0 = 1), after one period we would have one adult 
pair (r 1 = 1) and thereafter we could use (30) to get the following 
sequence of population sizes: 

• 
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• 

'2 = 2, 
r6 = 13, 

r3 = 3, • 

r7 = 21, 

r4 = 5, 

Yg = 34 

r s 8, 
• 

and so on. The numbers in this sequence are called the Fibonacci 
numbers. Fibonacci numbers arise in many setti11gs in nature and 
mathematics. Perhaps the most famous example is the spiral pattern 
of leaves around a blossom: On apple or oak stems, there are 
5 ( = r4) leaves for every two ( = r2) spiral turns; on pear stems, 
8 ( = r 5) leaves for every three ( = r3) spiral turns; on willow stems, 
13 ( = r6 ) leaves for every five ( = r4) spiral turns. There are biological 
reasons involving the Fibonacci relation for these numbers. 

The Leslie model in Example 1 was a system of recurrence re
lations [ as was our original model (25)]. That is, ( 1) could have been 
written 

Yn = 4,nn - 1 + o,, _ 1 

mn = ,4Yn - l (31) 

on = .6,nn - 1 

Harvesting equations (13) in Example 3 are recurrence relations (but 
there we are not interested in growth of the 1nodel over many periods; 
instead, we seek a starting distribution which will remain constant with 
annual harvesting). The transition equations of a Markov chain are also 
recurrence relations. 

[Note that the matrix generalization of the solution for a first
order recurrence relation, given in (24), tells us that the solution of 
the system an = Lan _ 1 in (31) is 

Unfortunately, this is not new information.] 

Let us return to the second-order recurrence relation for r n in 
(30). The theory of recurrence relations says that any linear recurrence 
relation for r n of the form (where k and the c; are constants) 

has solutions of the form 

r = ho." n (33) 

where b and a are values to be determined. Note the similarity with 
the fonn of solution for linear differential equations given in Section 
4.3. We can determine a. by substituting (33) into equation (32). For 
the relation rn = rn - l + 'n - 2, (33) yields 

• 
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We can simplify this equation by dividing both sides by ban- i to 
obtain 

a.2 = Ct + 1 or a 2 
- a - 1 == 0 (34) 

Paralleling the terminology for differential equations, equation (34) is 
called the characteristic equation of the recurrence relation. The left
side polynomial in (34) is called its characteristic polynomial. 

The two roots of the characteristic equation in (34) are found by 
the quadratic formula 

ax2 +bx+ c = 0 has roots 
-b ± Yb2 - 4ac 

2a 
(35) 

In our case, the solutions are ( 1 + VS) /2, or approximately 1. 681 
and - . 618. It is quite surprising that the simple sequence formed by 
the Fibonacci numbers should turn out to be a function of an irrational 
number such as VS. 

As with differential equations, the general solution to (24) is a 
linear combination of the two solutions we have found: 

l + VS n 

2 
+ b2 

1 - VS n 

2 
(36) 

For s~licity, let a 1 = (1 + VS)/2 (= J.618) and a 2 = 
(1 - 5)/2 (= - .618). So (36) becomes 

(37) 

As with differential equations, we solve for b1 and b2 by inserting the 
starting conditions in (37). Suppose that r0 = r1 = 1. 

I == r0 = b1a? + b2a~ = b1 + h; (38) 

l = '1 = b1cx.1 + b2et2 = et1b1 + a.2b2 

Solving these two equations in two unknowns, we obtain 
• 

0:2 - 1 1 + VS 0.1 
bi = 2VS vs CX.2 - a, (39) 

l - a.1 1 - VS -a 
b2 = 2 

2VS 
- vs Clz - Cl1 

Remember that a 2 ~ - .618, so la.ii will always be < ~- Thus the 
formula for the Fibonacci numbers is 

1 
. I 

rn = c osest integer to VS 
1 + VS 

2 

11 + 1 

(40) 
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Unfortunately, this fonnula is much harder to use than the orig
inal recurrence relation (30). That is, iteratively computing successive 
Fibonacci numbers by summing the previous two numbers is much 
easier than using ( 40). The one important fact we do get from ( 40) is 
that rn gro1-vs at a,1 e .. wo11ential rate (faster than any polynomial in 11). 

• 

There is one important similarity to note between Example 1 and Ex
ample 4. The largest root of the characteristic polynomial equation (35) is 
the growth rate of this model, just as the largest eigenvalue of the Le,slie 
model is that model's growth rate. To illustrate this link further, let us treat 

· our original pair of recurrence relations for young and adults as a Leslie 
model: 

Yn = 

The matrix of coefficients in ( 41) is 

L::= 0 l 

I 1 

The eigenvalues of this Leslie matrix L are the roots of det(L - X.I). 

det(L - A.I) = 
- A. 

1 1 

1 = A.2 
- A - l 

"-

(41) 

(42) 

(43) 

But ( 43) is just the characteristic polynomial (35) for our second-order re
currence relation. So the roots of (43) are again (1 ± V'S)/2. 

Iterating the growth model x' = Lx is equivalent to iterating the 
recurrence relation. Using the eigenvector coordinate approach from Section 
2. 5, let us write x as a linear combination of the eigenvectors 111, u2 of L: 

Then 

or 
X~

11 > u 1 1 U 2 1 
= a 10.7 + a20.; 

X~t} U12 Ll22 
(44) 

= a 10.7u1 + a2n2u2 

The sum x\11> + x~1> of the components of x<n) is r,,, the total number 
of rabbits. From ( 44), this sum is 

t 
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If we define constants b 1, b2 as follows: 

and 

then ( 45) becomes · 

(46) 

Formula (46) is the same answer we got in (37). Then the b1 and b2 

in ( 46) and in (37) must be the same constants. Thus the equations (38) for 
determining initial-condition constants b 1, b2 are closely related to the equa
tions for determining the weights a 1, a2 in writing the initial vector x as a 
linear combination of the eigenvectors, x = a 1u1 + a2u2 . 

We close by noting that any recurrence relation can be recast as . a 
system of first-order equations, the way the Fibonacci relation was in (41). 
For example, 

(47) 

becomes 

or rn = Arn - i 
• 

UTZ = tll _ l (48) 

One can check that for the A in (48), the characteristic polynomial p(A, }t) 
is A4 - a 1A3 - a2A2 - a3A - a4 • 

In summary, the study of linear recurrence relations, when viewed as 
(48), is a special case of the study of linear growth models. 

Section 4.5 Exercises 
Summary of Exercises 
Exercises land 2 concern Leslie population growth models. Exercise 3 looks 
at eigenvalues of cyclic Markov chains. Exercises 4-10 deal with the har
vesting model and variations. Exercises 11-21 involve recurrence relations, 
with Exercises 11-13 about building recurrence relations. 

1. Find the long-term annual growth rate for the follqwing Leslie growth 
models (use iteration; this growth rate is the size of the largest eigen
value). Also find the long-term population distribution (percentages in 
each age group). 
(a) y' m + 2o (b) y' m + 2o 

m' = y 

o' m 

m' 

o' 

.Sy 

.Sm 
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• 

, 

• 

(c) y' m + 4o (d) y' 

n1' .5_y ,n' 

o' - .Sm a' -
o' 

(e) y' 4o 

m' .Sy 

a' .5m 

o' .Sa 

2. Consider the three-age-group Leslie matrix 

0 0 b 

L = d1 0 0 

0 d2 0 

The characteristic equation, det(L - X.I) 
~ 3 - bd1d2 = 0, or 

4a + 4o 
.5)' 

.5n1 

.5a 

• 

0, for this matrix is 

Briefly describe the behavior of the S)'Stem p' = Lp over time for the 
cases 
(a) bd1d2 < I 

3. What are the eigenvalues for the Markov chain in Exercise l of Section 
4.4? Explain that Markov chain's behavior in terms of the eigenvalues. 

4. For the harvesting model in Example 3: 
(a) If hf = 50, how large can hm be (without negative herd values, 

as happened with hf = 50, hm = 100)? 
• 

(b) Suppose that we harvest l 00 yearling males and J 00 yearling fe-
males. What is the stable herd vector now? 

(c) Suppose that we harvest 100 yearling males and 50 yearling fe
males. What is the stable herd vector? Does it make sense? 

5. Solve the rabbit harvesting system of equations ( 16) yourself by 
Gaussian elimination with 11,n = 111 = 100. 

6. In the harvesting model in Example 3, explain in words why the number 
of females and males is the same when we harvest the same number of 
adult males and adult females? Will this also be true if in addition we 
harvest equal numbers of yearling males and yearling females? 

7. In the harvesting model in Example 3, explain in words why when 
hm = 100 and hf = 50 we get an irnpossible solution (involving a 
negative number of adult males). 
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8. Re-solve (16), using Gaussian elimination, with the survival probabil
ities of . 6 changed to . 5; again let hm = hf = 100. Explain in words 
the difference between your answer and the answer in (17) obtained 
with survival probabilities of . 6. · 

9. (a) Suppose that we want the rabbit population to grow by 10% during 
the year. Rewrite the matrix equation (15) to reflect that fact that 
x' = l. lx. Solve the new version of (16) with hm == hf = 100. 

(b) Find the inverse of the new coefficient matrix (A - 1.11) in (16). 

Note: Requires a computer program for inverses. 

10. Try to solve our harvesting model by iteration with hm = hf = 100. 
That is, guess an initial value for the population vector x and insert that 
vector of values on the right side of (13). Use the resulting left-side 
values as your next estimated x and continue iterating. Try several 
different starting vectors. Do you ever get convergence to a solution? 

11. Suppose that an, the level of radioactivity after n years from the element 
linearium, decreases by 20% a year. Write a recurrence relation that 
expresses this decay rate. 

12. Let an be the number of dollars in a savings account after n years. 
Suppose that money earns 10% interest a year. 
(a) Write a recurrence relation to represent this interest rate. 
(b) If a0 == 100, calculate a5 . 

13. Let an = the number of different ways for an elf to climb a sequence 
of n stairs with steps of size 1 or 2. Explain why an = an - • + a11 _ 2 . 

What are a I and a2? Determine a8 . 

14. Solve the following recurrence relations, given the initial values. 
(a) an = 3an- 1 - 2an -2, ao = al = 2 
(b) an == 6an - l - 8a,, _ 2, ao == 0, al == 1 
(c) an = 3an - l + 4an -2, ao = a, l 
(d) an == 2a,, _ 1 - a,, _ 2 , a0 == a 1 = 1 

Hint: See Exercise 21. • 

15. Give an approximate fonnula for a20 for each recurrence relation in 
Exercise 14 (use just the largest root of the characteristic equation). 

16. Convert each recurrence relation in Exercise 14 into a pair of first-order 
recurrence relations Xn == Axn - I for Xn = [an , bn]. 
Hint: Let bn = a

11
_ 1; see (48). 

Recast the initial values from Exercise 14 into a initial-value vector x1• 

Check that the eigenvalues of each A equal the roots of the characteristic 
equation for the corresponding original recurrence relation in Exer
cise 14. 

• 
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17. Solve the recurrence relations you got in Exercise 16 using the method 
at the end of Section 3.1 to get a formula for an. 

18. Convert the following recurrence relations into a system of first-order 
recurrence relations. 

19. Show that an = a. 11
, where a. 2 = c1a + c2 , will always be a solution 

to the recurrence relation a
11 

= c I an _ 1 + c2a11 _ 2 • 

20. Show that any linear combination of solutions to the recurrence relation 
an = c1a11 _ 1 + c2a11 _ 2 is again a solution. 

21. Verify that an = n>-..11 is a solution to the recurrence relation an 
c1an - I + c2an _2 whose characteristic equation k2 

- c1k - c2 = 0 
has A as a double root. 

Note: If k2 
- c,k - c2 = 0 has A as a double root, the characteristic 

equation can be factored as (k - >-..)2 = 0. This means that c 1 = 2>-.. 
and c2 = - A 2 . Use these values for c I and c2 . 

Linear Programming 

Studies have shown that about 25% of all scientific computing is devoted to 
solving linear progams. Linear programming is the principal tool of man
agement science. The object of a linear program is to optimize-maximize 
or minimize-some linear function subject to a system of linear constraints. 
There are hundreds of different real-world problems that can be posed as 
linear programs. We start with a simple linear problem presenteq: to maxi
mize sales from furniture production. 

Example 1. Production of Chairs and Tables 

A factory can manufacture chairs and tables. Let x, be the number of 
chairs produced and x2 the number of tables. Chairs sell for $40 a piece 
and tables for $200 a piece. The production of x1 chairs and x2 tables 
requires various amounts of raw materials whose supplies are limited. 
The following inequalities describe the requirements and supplies. 

Wood: x, + 4x2 < 1400 

Labor: 2x1 + 3x2 < 2000 (1) 
Braces: x, + 12x2 < 3600 

Upholstery: 2x1 < 1800 

Subject to these constraints we want to pick x, and x2 so as to maximize 
the objective function of the total sales. ·our model is 
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2x 1 = 1800 

4 

--3 (300. 275) 

1 

• 

0 9 

Figure 4.12 Feasible region of linear program. 

Maximize 40.,t 1 + 200.t2 (2) 
subject to x 1 > 0, x2 > 0 and (1) 

Linear programming models of energy usage in the American 
economy have used thousands of variables and constraint equations 
and inequalities. Linear models with close to 1,000,000 variables and 
over 100,000 constraints have been developed and solved in private 
industry. Such a system of equations has I 0,000,000,000 (10 billion) 
coefficient terms. Of course, in these large problems almost all coef
ficients are zero. A large mathematical theory about linear programs 
has been developed with simplifying shortcuts that make it possible to 
solve huge linear programs. 

In Figure 4.12, we have marked (the shaded area) the feasible 
region of x 1 - x2 points that satisfy ( 1). 

The key to solving a linear program is the following theorem. 

Theorem. A linear objective function assumes its maximu1n and min
imum values on the boundary of the feasible region (assuming that the 
feasible region is bounded). In fact, the optimal value is achieved at 
a corner point of this boundary. 

P,,.oof. Although true for all linear programs, we verify this proposition 
in the case of two variables ( as in Example 1). Consider any line 
crossing through the feasible region. If we compute the values of a 
linear function along this line, we observe that as we move in one 
direction on the line, the linear function constantly increases and in 
the other direction constantly decreases. (There is one exception-the 
linear function could be constant along the line.) To find the maximum 
value of this linear function along the line, we should go as far as 
possible along the line in the direction of increasing values, that is, go 
to an end of the line segment where it meets the boundary. Thus the 
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maximum of a linear objective function occurs at the boundary of the 
feasible region. 

Next repeat this argument using a boundary line of the feasible 
region. Again it pays to go to an end of the boundary line, that is, to 
a comer of the feasible region. • 

The theorem tells us to look at the comers of the feasible region 
for the optimal (x 1, x2)-value. In theory , any pair of constraint lines 
could intersect to form a corner of the feasible region, but by plotting 
the constraint lines, as in Figure 4.12, we can see which pairs of lines 
intersect a1ong the boundary of the feasible region. To find the inter
section point of two constraint lines, we solve for an (x 1, x?) point that 
lies on both lines-the same old problem of two equations in two 
unknowns. Table 4. 5 lists the coordinates of the corners and the as
sociated objective function values. 

Table 4.5 

Corner 
Coordinates 

(0. 0) 

(0 , 300) 

(300, 275) 

(760. 160) 

(900. 66.6) 

(900, 0) 

Intersecting 
Constraints 

~t 1 > 0 and ,t 2 > 0 

.r 1 > 0 and braces 

Braces and wood 

Wood and labor 

Labor and upholstery 

Upholstery and .r2 > 0 

Objective 
Function 

0 

60.000 

67,000*** 

62,400 

39.333 

36.000 

So the opti1nal production schedule is to make 300 chairs and 275 
tables, whose sales value will be $67,000. • 

Before giving a general procedure for solving linear programs, we 
present some examples that show how to build linear programming models. 
The reader may also want to refer back to the crop planting linear program 
presented in Section 1.4. 

fl!··•. ·· ::~1ill·~z;s:2::EIB&fl&fil: ~ 

Example 2. Dietician's Problem 

Suppose that a meal must contain at least 500 units of vitamin A, 1000 
units of vitamin C, 100 units of iron, and 50 grams of protein. A 
dietician has two foods for the meal, meat and fruit. Meat costs 50 
cents a unit and fruit costs 40 cents a unit. 

Each unit of meat has 20 units of vitamin A, 30 units of vitamin 
C, 10 units of iron, and 15 grams of protein. Each unit of fruit has 50 
units of vitamin A, 100 units of vitamin C, l unit of iron, and 2 units 
of protein. 



340 

• 

Ch. 4 A Sampling of Linear Models 

The dietician wants to have the cheapest meal that satisfies the 
four nutritional constraints. Let us fonnt1late the dietician's problem 
as a linear program. Make x 1 be the number of units of meat used and 
x2 the number of units of fruit used. Then the objective is to minimize 
the cost of the meal 

• 

Minimize 

subject to the nutritional lower-bound constraints 

Vitamin A: 20x1 + 50x2 > 500 

Vitamin C: 30x1 + 100x2 > 1000 

Iron: 10x1 + lx1 > 100 

Protein: 15x1 + 2x2 > 50 

X 1 > 0, X2 > 0 • 

We should note that the constraints in linear programs do not have to 
be inequalities. Later in this section we shall see how to convert inequalities 
to equations and equations to inequalities. The next example is an important 
type of linear programming problem in which the constraints are equations . 

. -~ 

Example 3. A Transportation Problem 

Warehouses I, 2, and 3 have 20, 30, and 15 tons, respectively, of 
chicken wings. Colleges l and 2 need 25 and 40 tons, respectively, 
of chicken wings (to serve to students). The following table indicates 
the cost of shipping a ton from a given warehouse to a given college. 

Warehouses 

College 

A B 

1 80 45 
2 60 55 
3 40 65 

Since the overall demand at both colleges is 25 + 40 = 65 and 
the overall supply of all three warehouses is also 20 + 30 + 15 = 
65, all the supplies of each warehouse must be used. The constraints 
are that the total amount of chicken wings shipped from warehouse l 
must equal 20 tons; from warehouse 2, 30 tons; from warehouse 3, 15 
tons; and the total amount shipped to college A must equal 25 tons 
and to college B 40 tons. If x iJ is the number of tons shipped from 
warehouse i to college j, then these constraints are 

Warehouse 
equations 

20 

30 

15 
(3) 
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College 
equations: 

= 25 

+ x32 = 40 

341 

The objective is to minimize the transportation costs. In terrns of the 
x;1, the transportation costs are 

80X1 1 + 45X12 + 60X21 + 55X22 + 40X31 + 65X32 (4) 

Thus our linear program is to minimize (4) subject to (3) and xu > 0. 
• 

Example 4. Running a Chicken Farm 

We have a farm with 5000 chickens. Each year for 3 years we must 
decide how many of the chickens should lay eggs to be sold and how 
many chickens should be hatching eggs to produce more chickens next 
year (we assume that all chickens are hens; roosters are ignored). At 
the end of 3 years, all the chickens are sold for slaughter at $2 per 
bird (this includes chickens hatched during the third year). A chicken 
can hatch 30 eggs in a year. The eggs from one chicken in 1 year earn 
$7. It costs $2 a year in feed for chickens (no charge for chickens born 
during the year). The objective is to maximize income from eggs and 
from the final sale of the chickens. State this maximization problem 
as a linear program. 

Let X; and Y; be the number of chickens hatching and laying eggs 
for sale, respectively, in the ith year, i = I, 2, 3. Then the following 
equations represent the fact that x i + Yi equals the total number of 
chickens each year (the original number 5000 plus the numbers of new 
chickens born thus far). 

X1 + Y1 5000 

X2 + Y2 = 5000 + 30.,t 1 (5) 

x3 + y3 = 5000 + 30x1 + 30x2 

Let us rewrite (5) with all the variables on the left side and each 
variable in a different column. 

Xi + ) ' t = 5000 
- 30x1 + x2 + y2 == 5000 (6) 

- 30x1 30x2 + x3 + y3 = 5000 

As usual , all variables must be nonnegative. 

) ' 1 > 0, 
(7) 

The objective function to be maximized is 
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2(5000 + 30x1 + 30x2 + 30x3 ) 

+ 7(Y1 + Y2 + }'3) 

- 2(15,000 + 60x 1 + 30x2) 

(8) 

The first factor in (8) represents the sale of all chickens after 3 years, 
the second factor the income from eggs, and the last factor the feeding 
cost [the total number of chicken-years of feeding is the sum of the 
right-hand sides in (7)]. 

The required linear program is to maximize (8) subject to (6) 
and (7). • 

• 

We shall now develop a general procedure for solving linear programs. 
The discussion will be couched in ter1r1s of the chair-table linear program 
in Example 1. Our presentation will necessai·ily be sketchy. Readers inter
ested in a more extensive treatment of linear programming should tum to 
any of the dozens of books on the subject (most colleges have several courses 
about linear programming, offered by mathematics, economics , and business 
departments). 

Note that the method used in Example 1 of graphing and then checking 
the comer points of the feasible region for an optimal value is not feasible 
for larger problems. An n-variable problem with m constraints can have up 
to mn corner points to check. 

The theory of linear programming is centered about the following 
method, now called the simplex algorithm, which was developed over 30 
years ago when the advent of digital computers first made it possible to try 
to solve moderate-sized linear programs. Intuitively, the simplex algorithm 
starts at the origin (a comer of the feasible region) and moves along a 
boundary edge of the feasible region to a better corner, where the objective 
function is larger, and continues in this way until it reaches an optimal . 
corner. 

We outline the simplex algorithm and then describe it in detail using 
Example 1 to illustrate the calculations. 

Simplex Algorithm 
Part 1. Let xh be the variable with the largest positive coefficient in 

the objective function. Starting at the origin, increase x11 as much as 
possible until an inequality constraint is reached ( while the other 
variables remain equal to 0). 

Part 2. Make a partial change of coordinates by replacing X1z with x;1 

so that the new corner, which we reached by increasing xh, becomes 
the origin in the new coordinates. If any coefficient in the new 
objective function is positive, go back to part I; otherwise, the new 
origin is an optimal comer. 
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To find a better corner, the simplex algorithm looks at the objective 
function and checks which coefficient c1 is largest (most positive). Let x1i be 
the variable with the largest coefficient in the objective function. Then in
creasing x1, yields the greatest rate of increase in the objective function; in 
economic terms .. activity Ii is the most profitable. 

The simplex algorithm increases the value of x11 as much as possible, 
that is, until increasing x1, any 1nore would violate one of the inequality 
constraints. If all c1 < 0, so that increasing any x1 cannot increase the ob
jective function, the current origin must be an optimal comer. 

In the chair-table problem~ the simplex algorithm would start at the 
origin (0, 0). The coefficient of x2 is greater than the coefficient of x 1 in the 
objective function (c2 = 200 versus c1 = 40), so x2 would be increased 
(while x1 is kept fixed == 0). In words, we produce as many tables (variable 
x2 ) as possible because they are more profitable than chairs. 

Recall the objective function and inequalities in this problem, 

Maximize 40x1 + 200x2 

.,t I > 0, X2 > 0 
Wood: .,t1 + 4.r2 $ 1400 

Labor: 2x 1 + 3x') < 2000 

Braces: x1 + 12x2 $ 3600 

Upholstery: 2x1 < 1800 

(9) 

Looking at Figure 4.12, we see that x2 can be increased to x2 = 300, 
where the objective function is 60,000. Any greater value of x2 would violate 
the braces constraint. 

Let us show how the new comer can be found algebraically (since in 
larger problems, we will not be able to draw a picture of the feasible region). 
We want to increase x2 while keeping x 1 = 0. Substituting .. t 1 = 0 into the 
inequalities of (9), we obtain 

Wood: 4);2 < 1400 

Labor: 3x2 $ 2000 ( 10) 
Braces: 12x2 < 3600 

Upholstery: 0 < 1800 

We can ignore the upholstery inequality 0 < 1800-it does not contain x2 

and will always be true. The other three inequalities in (10) are easily solved 
in terms of x2 to become 

Wood: x? $ 350 -
Labor: X2 < 6665 ( 11) 

Braces: x? < 300 -

The smallest of the bounds on .. t 2, namely 300, is the amount x2 can be 
increased without violating any inequality. So again we find that (0, 300) is 
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the new comer point we reach by increasing x2 as much as possible. This 
corner (0, 300) is f or111ed by the intersection of constraints x 1 = 0 and 
x 1 + 12x2 = 3600. 

Next comes part 2 of the simplex algo1·ithm. We perforr11 a linear 
transformation that changes our coordinate system by replacing x2 with a 
different coordinate variable, call it .,-r~. The current corner .. t 1 = 0, x2 = 
300 will be transformed into the origin ,t1 = 0, x~ = 0 in this new coordinate 
system. 

To motivate this change of variables, we first need to show how our 
system of constraint inequalities can be recast into a system of equations. 
For this recasting, we must introduce additional variables. A slack variable 
equals the difference between the left- and right-hand sides of an inequality. 
With slack variables, the linear program in (9) becomes 

Maximize 40x 1 + 200x2 

subject to .. t 1 > 0, .. t-, > 0, - .l'3 ;?! 0, .-'t4 > 0, X5 ~ 0, .. -r6 ~ 0 and 

Wood: X1 + 4x2 + X3 1400 

Labor: 2x + 3x2 + X4 2000 l (12) 
Braces: + 12x., + + X5 3600 Xi -

Upholstery: 2.x I + x6 = 1800 

where x 3 , .t4 , x5 , x6 are the slack variables. We call x 1, x2 independent 
variables they are the original coordinate variables from (9). Like x 1, x2 , 

a slack variable must be > 0. 
A slack variable is what the simplex algorithm uses as x~, the variable 

to replace .t2 in the change of coordinates mentioned above. In particular, 
we want to use .Y5 , the s]ack variable in the braces constraint x1 + 12 .. T2 + 
x5 = 3600. Remember that the corner (0. 300) is the intersection point of 
x 1 + I 2x2 = 3600 with axis line x 1 = 0. Forcing the slack variable x5 to 
be O is the same as forcing x 1, x2 to satisfy the equation x 1 + I 2x2 = 3600. 
The corner .,"t1 = 0, x2 = 300 where lines x 1 = 0 and x1 + 12x2 = 3600 
meet is in x 1, x5-coordinates the origin, x 1 = 0, x5 = 0. This is exactly 
what we were looking for (see Figure 4.13). 

We must rewrite the system of equations in ( 12) so that .,Y5 replaces x2 

as an independent variable, that is, as a coordinate variable. We do this by 
using the elimination-by-pivoting process to eliminate x2 from other equa
tions in ( 12). We subtract the appropriate multiple of the braces equation in 
(12), x1 + 12x2 + x5 = 3600, from the other equations to eliminate x2 . 

The wood equation .,t1 + 4x2 + x3 = 1400 has an x2-coefficient of 4 
while the braces equation has an x2-coefficient of 12. So we subtract i\, or 
1, times the braces equation from the wood equation 

Wood: 

- ~(Braces: 

New wood: 

X 1 + 4X2 + X3 

X 1 + 12X2 

The labor constraint becomes 

1400 

+ X5 3600) (13a) 

~X5 = 200 
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Figure 4.13 Feasible region with x 1, 

x5 as independent variables. 3500 
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The upholstery equation is unchanged, since x2 does not occur in it. 

New upholstery: + x6 = 1800 

(13b) 

(13c) 

We also need to eliminate x2 from the objective function. To do this, 
we write the braces equation as x 1 + 12x2 + x5 - 3600 = 0. 

Objective functions: 

-
5a0 (Braces: 

New objective function: 

40x1 + 200x2 

X1 + 12X2 + X5 - 3600) 
1ox 
3 I 

5a0Xs + 60,000 

(14) 

We must also rewrite the original braces constraint x 1 + 12x2 + x5 = 3600 
to make x2 look like a slack variable; that is, x2 should have a coefficient of 
1. Dividing by 12, we have 

New braces: 1 + T2X5 300 (13d) 
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Collecting (13a)-(13d) and (14), we have the desired transformed lin
ear program. 

M · · 70 ax1m1ze :r .,t 1 -
5
3o X 5 + 60,000 

subject to x 1 > 0, X 2 > 0, X3 ~ 0, 
1 2 

aX1 - 3X5 200 

1100 

300 

1 
4X1 (15) 
1 

12X1 + X2 

2x1 1800 

Observe that (15) has the same general forrr1 as (12), except that x2 

and x5 have interchanged roles as independent and slack variables . Since we 
have only restated the problem, a maximum for this problem is a maximum 
for our original problem ( 12). The feasible region for our linear program in 
the restated form is the ''hashed'' region in Figure 4 . 13; note that the co
ordinate axes are labeled x 1 and x5 . 

This sequence of computations to interchange the independent and 
slack variable roles of x2 and x5 is called a pivot exchange. Recall from 
Section 3.2 about elimination by pivoting that we used the term pivot on 
entry aiJ to denote the process of using equation i to eliminate x1 from all 
other equations (and making the coefficient of x j be 1 in equation i). If 
independent variable x 11 is exchanged with the slack variable in equation g, 
then we are pivoting on the coefficient ot .. -t1z in equation g. 

Using the concept of a pivot, we restate the simplex algorithm as 
follows. 

• 

Simplex Algorithm 
Part 1. Let X1z be the (independent) variable with the largest positive 

coefficient in the current objective function. Increase x11 as much as 
possible until an inequality constraint is reached; call this the gth 
inequality. 

Part 2. Perfon11 a pivot exchange between xh and the slack variable in 
the gth constraint. If any coefficient in the new objective function 
is positive, go back to part 1; otherwise, the new origin is an optimal 
comer. 

We can convert the constraint equations in ( 15) back to inequality 
constraints by dropping the slack variables x2 , x3 , x4 , and x6: 

M . . 70 50 60 000 axim1ze T x 1 - T Xs + , 
2 
aX1 

1 
3X5 < 200 

1 ! .. t 5 < 1100 4X1 - (16) 
1 

i2X1 
1 + 12X5 < 300 

2x1 
< 1800 -
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(see Figure 4.13). 
Now we apply the two steps of the simplex algorithm to our problem 

in its new forrn (16). In step 1 we increase x 1 , which has the only positive 
coefficient in the objective function, while keeping x5 == 0. (As an aside, 
we note that back in Figure 4.12, keeping x5 == 0 means that we move along 
the brace constraint line x1 + 12x2 == 3600). When we set x5 == 0 in ( 16), 
we obtain the inequalities 

2 
sX1 < 200 or Xi< 300 

lx1 < 1100 or X1 < 
4400 

7 
(17) 

1 300 3600 12X1 < or X1 < 

2x1 < 1800 or Xi< 900 

The smallest of these constraints is the first. So we can increase x 1 to 300, 
and our new corner is at x1 == 300, x5 == 0, where the first constraint 
2x1/3 - x5 /3 == 200 and constraint x5 == 0 meet (see Figure 4 .13). To see 
where we are in the original problem, we can use the third constraint equation 
in (15) to compute x2 's value when x 1 == 300 and x5 == 0,-we get x2 == 
275; so our new corner corresponds to the point x 1 == 300, x2 == 275 in 
Figure 4.12. 

We return to the equation form ( 15) of the constraints. The first con
straint is 2x1/3 + x3 - x5/3 = 200. Then x3 is the slack variable for this 
constraint, so in part 2 of the simplex algorithm, we perform a pivot ex
change between independent variable x1 and slack variable x3 • [Note that 
the computations in (17) could be done with the constraints in equations 
for1n, as in (15): we simply divide the right-side value in each equation by 
the coefficient of x1 and pick the smallest positive value.] 

Using the first constraint to eliminate x 1 from the other equations in 
(15) and from the objective function, we obtain the new linear program. 

Maximize - 35x3 - 5x5 + 67,000 

subject to xi > 0, i = I , 2, 3 , 4, 5 , 6, and 

Xi + 3 
2X3 

1 
2X5 300 

21x + X4 
5 575 8 3 + sX5 (18) 

1 1 275 X2 - sX3 + sX5 -
3x3 + X5 + x6 == 1200 

Since all coefficients in the current objective function are negative, the 
current origin is the maximum corner. The value of the objective function 
at the origin x3 == x5 == 0 is simply the constant ter1n in the objective 
function, 67,000. By setting x3 == x5 == 0 in (18), we can also directly read 
off the values of x 1 ( == 300) and x2 ( == 275) as well as the values of the 
other slack variables. 

This finishes our example of how the simplex algorithm works. Any 
linear program of the general form 
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Maximize c · x + cl subject to Ax < b, x > 0 (19) 

can be solved by the method we have just presented. 
The key decision in the simplex algorithm is the choice of the pivot 

entry (part 1). We pick the var·iable X1, with tl1e lar·gest coefficie,zt in tlze 
objective functicJ11. Tl1e11 lVe divide the right-side value in eac·h c·onstrai,zt 
equation by the coeffic·ient of .x11 a11d pick the equation with tfze smallest 
qitotient. The coeffic·ie,zt of X1z in that equatio,i is tl1e pi 11ot entry. 

Just as in Gaussian elimination, we can display the computations in 
the simplex algorithm in matrix notation (omitting the variables). For the 
linear program in (19) we use the augmented matrix 

C - d 

A b 
(20) 

Note that the constant d is written with a minus sign, -d. This is a tech
nicality based on the fact that b is the vector of right sides of equations, 
while d is on the left side (if fictitious} y d were put in the '' right side'' of 
the objective function, the constant would become - d). 

Let us repeat the stages of the simplex algorithm for our chair-table 
program using matrix notation. At the outset we have (where x1 .. x2 are the 
initial independent variables). 

.. t I .,r 2 X 3 X4 X5 .,'(6 

Objective Function 40 200 0 0 0 0 I 0 ----------------~----
Wood 1 4 I 0 0 0 ; 1400 

(21) 
Labor 2 3 0 I 0 o I 2000 

@ Braces I 0 0 I 0 I 3600 

I I 1800 Upholstery ? 0 0 0 0 ,,_ 

We pick .. 't2 (200 is largest coefficient in first row) and then divide each 
positive entry in .t2 ' s column into the corresponding entry in the last column. 
The smallest quotient is in the braces equation, so we pivot on entry (4, 2), 
which is circled in (21). After pivoting on entry ( 4, 2), we obtain 

Xi ,t 2 X 3 X4 x~ 
• 

x6 
Objective Function 1:f- 0 0 0 - 5

3° 0 I -60.000 
(~) o--1-u-~1-ol---200 Wood 

(22) - 1 I Labor ' 0 0 1 0 I, 100 4 -4 
I 

1 Braces 1 1 0 0 0 I 300 12 12 
I 

Upholstery 2 0 0 0 0 I I 1,800 

Next we pick x 1 and then the wood equation. So entry (2, 1) is the second 
pivot. After pivoting on entry (2, I), we obtain 
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X1 X2 X3 X4 X5 x6 

Objective Function 0 0 -35 0 -5 0 I -67.000 -------------+-----
Wood l O + i O - i O I 300 

Labor 0 0 21 1 5 0 
I 

575 
(23) 

-s 8 I 
Braces 0 1 1 0 1 0 I 275 -s 8 I 
Upholstery 0 0 -3 0 1 1 I 1,200 I 

Since the objective function has no positive coefficients, we now have an 
optimum with objective function value 67,000. The values of the current 
independent variables, x3 , x5 , are zero and from (23) we read off the values 
of the other variables to be 

X1 = 300, X2 = 275, X4 == 575, x6 = 1200 

The name given to these augmented matrices, (21), (22), and (23), is 
simplex tableaus. 

Let us now go quickly through the solution of another linear program. 

Example 5. Simplex Algorithm Applied to a 
Linear Program 

Consider the following linear program for the production of sugar (x1), 

syrup (x2), and molasses (x3): 

Maximize 3x 1 + 4x2 + 2x3 . 

subject to x1 > 0, x2 > 0, x3 > 0 and 

Transportation: 2x1 + x2 + x3 < 6 

Labor: x 1 + 2x2 + 3x3 < 7 (24) 

Machinery: 3x1 + 2x2 + 4x3 < 15 

In simplex tableau with slack variables added, we have (where x 1, x2 , 

x3 are the initial independent variables) 

X1 X2 X3 X4 X5 x6 

Objective Function 3 4 2 0 0 010 ____________ ......J __ 

Transportation 2 l 1 l 0 0 I 6 (25) I 
Labor 1 G) 3 0 1 0 I 7 I 

~ 15 Machinery 3 2 4 0 0 1 

The pivot will be in x2 's column. Picking the minimum of~' ~' 1
2
5 

, 

we take the second, from labor's row. So the pivot entry is (3, 2). 
After pivoting there, we obtain 
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Objective Function 

Transportation 

Labor 

Machinery 
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(26) 

The next pivot will be in x 1 's column. Picking the minimum of(~)/(~), 
(~) / (J), : , we take the first, from transportation's row. So the pivot 
entry is (2, 1). After pivoting there, we obtain 

• X1 X2 X3 X4 X5 x6 

Objective Function 0 0 - 1:l - -~ - ~ 0 I - ¥ --------~--------~---
Transportation l I) 1 I ,.. 

l 0 0 ,) -a 3 -a I 3 

Labor 0 I 5 1 •} 

0 I 8 -3 -3 3 I 3 .. 
4 1 I 14 Machinery 0 0 ~> 1 :! -3 -3 I 3 

(27) 

Now there are no positive coefficients in the objective function, so we 
have a maximum, where the objective function equals 4

3
7 

, the inde
pendent variables x3 x4 , x5 are zero, and the other variables are 

V - 5 
""\. l - 3, V - 8 

"""2 - :3, X 
_ 14 

6 - 3 • 

The simplex algorithm was invented in the earliest days of linear pro
gramming by G. Dantzig as an intuitive scheme for '~walking'' along the 
boundary of the feasible regions in search of better and better comers. Many 
more sophisticated methods have been proposed-in the l 970s Khachian 's 
algorithm made the front pages of major newspapers for its theoretical ad
vantages over the simplex algorithm, and in 1984 Karmarkar's algorithm 
gained publicity for being faster than the simplex algorithm for some linear 
programs.-but the simplex algorithm is still the best general-purpose way 
to solve a linear program. The explanation of why it works so well requires 
advanced tnathematical analysis. 

There are many important variations in the basic theory of the simplex 
algorithm. We mention a few here and give some more in the Exercises and 
in an appendix to this section. 

First, if the problem involves minimization, we can convert it to a 
maximization problem by multiplying the objective function by - I (max
imizing - c · x is the same as minimizing c · x). 

Second, if an inequality constraint is of the for111 a · x > b., convert it 
to a constraint with a < sign by multiplying both sides by - 1 (to get 
-a·x:5 - b). 

Third, we consider linear programs whose constraints are equations. 
We converted the inequalities in the chair-table program to equations by 
introducing slack variables [ see system ( 12)]. For a system of equations to 
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be in slack variable form, we require that each equation should have a slack 
variable which has a coefficient of + I and occurs only in that equation. If 
a system of constraint equations is not in slack variable form, we can use 
pivoting to get the system in this forrn. We illustrate this process with the 
transportation problem in Example 3. 

Example 6. Putting Transportation Constraint 
Equations in Slack Variable Form 

In Example 3 we obtained the following mathematical formulation of 
the problem of minimizing the cost of shipping chicken wings from 
three warehouses to two colleges . 

Minimize 80x11 + 45x12 + 60x21 + 55x22 + 40X31 + 65X32 

subject to xiJ > 0 and 

Warehouse X11 + X12 = 20 
• equations X21 + X22 30 

X31 + X32 = 15 (28) 

College X11 + X21 + X31 == 25 
• equations X12 + X22 + x32 == 40 

We want to use pivoting to convert the five constraint equations in 
(28) into an equivalent system of equations with slack variables (vari
ables that each occur in just one equation). 

Let us make x12 the slack variable for the first equation. To 
eliminate x12 from the fifth equation, we simply subtract the first equa
tion from the fifth equation [i.e., we pivot on entry (1, 2), the coef
ficient of x12 in the first equation]. In a similar fashion we make x22 
the slack variable for the second equation by pivoting on entry (2, 4), 
and we make x32 the slack variable for the third equation by pivoting 
on entry (3, 6). After these three pivots (which involve subtracting the 
first, second and third equations from the fifth equation), we have 

X11 + X12 20 

X21 + X22 30 

X31 + X32 == 15 (29) 

X11 + X21 + X31 25 

-X11 - X21 - X31 -25 

In (29), x12 , x22 , and x32 have the form of slack variables as required. 
These pivots had the effect of converting the last equation into the 
negative of the fourth equation-the last equation is redundant and can 
be eliminated (the reason for this redundancy is explained in Exercise 
20). Let us make x31 the slack variable for the fourth equation. Pivoting 
on entry ( 4, 5), that is, subtracting the fourth equation from the third 
equation, we obtain 
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X l J + X12 20 

+ X21 + X22 30 (30) 
-x11 - X21 + X32 -10 

XI 1 + X21 + X31 25 

Now each equation has a slack variable, and we can rewrite (30) as 
the following family of inequalities: 

.,t l I < 20 

X21 < 30 (31) 
• 

-x11 - X21 < -10 (~X1 + X21 > 10) 

X11 + X21 < 25 

In the pivoting process, we also have to restate the objective function 
in terms of just x 11 and x21 ( see Exercise 21 for details). Note that the 
origin in x 11 , x21 coordinates is not in the feasible region. 

We have reduced this problem in five equations and six unknowns 
to an easy problem of four inequalities in two variables. • 

Sensitivity Analysis 

We conclude this section with a brief discussion of the sensitivity of the 
solution of our linear program to changes in the input values in the con
straints. In many economics applications, this sensitivity analysis to changes 
in the input is almost as important as solving the linear program. 

Example 7. Sensitivity Analysis in 
Chair-Table Production 

The final (slack-variable) form of our linear program when an optimum 
was obtained by the simplex algorithm was 

Maximize - 35x3 - 5x5 + 67,000 

subject to .,ti > 0 ~ i == l , 2, 3 ~ 4, 5, 6, and 

+ 3 1 300 X 2X3 2X5 I 

21 + X4 + ~X5 575 lf"X3 
(32) 

1 1 275 X2 sX3 + sX5 

3x3 + X5 + x6 = 1200 

Here x3 and x5 are the current independent variables whose origin 
x3 = x5 = 0 is the optimal comer. These are the slack variables for 
the original wood and braces constraints. So .,t3 == x5 == 0 in the optimal 
solution means that the optimal production schedule will use all the 
wood and all the braces. To dete1111ine the values of the original inde-
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pendent variables and other slack variables, we simply set x3 = x5 == 
0 in (32) and read off the values of the remaining variables in each 
equation: 

x1 == 300, X2 == 275, X4 == 575, x6 == 1200 (33) 

As we had found earlier, we make 300 chairs (x1) and 275 tables 
(x2). The labor slack variable (x4 ) is 57 5 and the upholstery slack 
variable (x6) is 1200. These slack-variable values are the amounts of 
these two inputs that are unused in the optimal solution. We have an 
excess supply of labor and upholstery. Thus moderate decreases in the 
amount of labor or upholstery available will not affect our solution. 

What about changes in the input materials we do use, wood and 
braces? This is a place where the simplex algorithm really shines. First 
it is convenient to solve for x1 and x2 in the first and third equations, 
which involve x 1 and x2 , respectively. 

x1 == 300 - ~x3 + ½x5 

X2 == 275 + ~X3 - ~X5 

(34) 

Having I less unit of wood (1399 units instead of 1400) is equiv
alent to increasing the wood slack variable x3 from Oto 1. To dete1111ine 
the effects of 1 less unit of wood, we simply set x3 == I, while x5 = 
0, in (34). From (34) we have x 1 = 300 - I and x2 == 275 + ~- The 
new value of the objective function with 1 less unit of wood is also 
obtained by setting x3 == 1 in the objective function ( while x5 = 0). 
We have - 35 + 67,000. 

In summary, the coefficients of x3 in (34) and in the objective 
function give the effect of 1 less unit of wood: chair production will 
decrease by i, table production x2 will increase by ~, and profit will 
decrease by $35. If we had 1 more unit of wood (x3 = -1), the 
opposite occurs. Chair production increases by ~, table production de
creases by ~, and profit increases by $35. It is left as an exercise to 
the reader to evaluate the effects of changing the number of braces. 

In economics, the increase in the profit caused by using 1 more 
unit of an input is called the marginal value of the input. In this case 
it means that we should be willing to pay $35 for 1 additional unit of 
wood because that is the value of wood to us in increasing our sales. 

• 

Section 4.6 Exercises 

Summary of Exercises 
Exercises 1-12 involve converting a '' word problem'' into a linear program 
(some of these problems previously appeared in Section 1.4); solutions, if 
requested, are to be obtained by graphing. Exercises 13-17 require one to 
solve linear programs. Exercises 18-21 ask for transportation problems to 
be converted into slack-variable form. Exercises 22-25 involve sensitivity 
analysis. Exercise 26 illustrates duality theory. 
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X11 + X12 20 

+ X21 + X22 30 (30) 
-xll - X21 + X32 -10 

X11 + X21 + X31 25 

Now each equation has a slack variable, and we can rewrite (30) as 
the following family of inequalities: 

X11 < 20 

X21 < 30 (31) 
-xll - X21 < -10 (~ Xi + X21 > 10) 

X1 I + X21 < 25 

In the pjvoting process, we also have to restate the objective function 
in te1111s of just x 11 and x21 (see Exercise 21 for details). Note that the 
origin in x 11 , x21 coordinates is not in the feasible region. 

We have reduced this problem in five equations and six unknowns 
to an easy problem of four inequalities in two variables. • 

Sensitivity Analysis 

We conclude this section with a brief discussion of the sensitivity of the 
solution of our linear program to changes in the input values in the con
straints. In many economics applications, this sensitivity analysis to changes 
in the input is almost as important as solving the linear program. 

Example 7. Sensitivity Analysis in 
Chair-Table Production 

The final (slack-variable) forn1 of our linear program when an optimum 
was obtained by the simplex algorithm was 

Maximize - 35x3 - 5x5 + 67,000 

subject to X; > 0, i = 1, 2, 3, 4, 5, 6, and 

X1 + 3 
2X3 

1 
- 2X5 300 

21 5 575 gX3 + X4 + sX5 
(32) 

1 1 275 X2 SX3 + sX5 

3x3 + X5 + x6 == 1200 

Here x 3 and x5 are the current independent variables whose origin 
x3 == x5 == 0 is the optimal corner. These are the slack variables for 
the original wood and braces constraints. So x3 = x5 == 0 in the optimal 
solution means that the optimal production schedule will use all the 
wood and all the braces. To deter111ine the values of the original inde-

• 
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pendent variables and other slack variables, we simply set x3 = x5 = 
0 in (32) and read off the values of the remaining variables in each 
equation: 

X 1 = 300, X2 = 275, X4 = 575, x6 = 1200 (33) 

As we had found earlier, we make 300 chairs (x1) and 275 tables 
(x2). The labor slack variable (x4) is 57 5 and the upholstery slack 
variable (x6) is 1200. These slack-variable values are the amounts of 
these two inputs that are unused in the optimal solution. We have an 
excess supply of labor and upholstery. Thus moderate decreases in the 
amount of labor or upholstery available will not affect our solution. 

What about changes in the input materials we do use, wood and 
braces? This is a place where the simplex algorithm really shines. First 
it is convenient to solve for x 1 and x2 in the first and third equations, 
which involve x 1 and x2 , respectively. 

x 1 == 300 - ~x3 + ½x5 

X2 == 275 + ~X3 - ~X5 

(34) 

Having 1 less unit of wood ( 1399 units instead of 1400) is equiv
alent to increasing the wood slack variable x3 from 0 to 1. To deterrnine 
the effects of 1 less unit of wood, we simply set x3 = 1, while x5 = 

0, in (34). From (34) we have xL == 300 - i and x2 = 275 + ~- The 
new value of the objective function with 1 less unit of wood is also 
obtained by setting x3 = 1 in the objective function ( while x5 = 0). 
We have - 35 + 67,000. 

In summary, the coefficients of x3 in (34) and in the objective 
function give the effect of 1 less unit of wood: chair production will 
decrease by ~, table production x2 will increase by ~, and profit will 
decrease by $35. If we bad 1 more unit of wood (x3 = -1), the 
opposite occurs. Chair production increases by i, table production de
creases by A, and profit increases by $35. It is left as an exercise to 
the reader to evaluate the effects of changing the number of braces. 

In economics, the increase in the profit caused by using 1 more 
unit of an input is called the marginal value of the input. In this case 
it means that we should be willing to pay $35 for 1 additional unit of 
wood because that is the value of wood to us in increasing our sales. 

• 

Section 4.6 Exercises 

Summary of Exercises 
Exercises 1-12 involve converting a ''word problem'' into a linear program 
(some of these problems previously appeared in Section 1.4); solutions, if 
requested, are to be obtained by graphing. Exercises 13-17 require one to 
solve linear programs. Exercises 18-21 ask for transportation problems to 
be converted into slack-variable form. Exercises 22-25 involve sensitivity 
analysis. Exercise 26 illustrates duality theory. 
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1. Suppose that a building supervisor must hire 18-year-olds and 35-year
olds to do the following jobs: clean 500 windows, empty 800 waste
paper baskets, and mop 8000 square feet of floors. In 1 day, an 18-
year-old can clean 50 windows, empty 100 baskets, and mop 500 square 
feet of floors. A 35-year-old can clean 100 windows, empty 100 bas
kets, and mop 700 square feet of floors. An 18-year-old gets $40 a day 
and a 35-year-old gets $55 a day. Forrnulate the problem of minimizing 
the cost of hiring workers to do the required work as a linear program. 
(Set up; do not solve.) 

2. The Arizona tile company manufactures three types of tiles, plain, reg
ular, and fancy, in two different factories. Factory A produces 3000 
plain, 2000 regular, and 1000 fancy tiles a day and costs $2000 a day 
to operate. Factory B produces 2000 plain, 4000 regular, and 2000 fancy 
tiles a day and costs $3000 a day to operate. Write down, but do not 
solve, a linear program for deterrnining the least-cost way to produce 

• 

at least 20,000 plain, at least 30,000 regular, and at least 10,000 fancy 
tiles . 

3. A farmer has 400 acres on which he can plant any combination of two 
crops, barley and rye. Barley requires 5 worker-days and $15 of capital 
for each acre planted, while rye requires 3 worker-days and $20 of 
capital for each acre planted. Suppose that barley yields $40 per acre 
and rye $30 per acre. The farmer has $4000 of capital and 500 worker
days of labor available for the year. He wants to dete1r11ine the most 
profitable planting strategy. 
(a) For1nulate this problem as a linear program. 
(b) Plot the feasible region and find the comer point that maximizes 

profit. 

4. Suppose that a Bored Motor Company factory requires 7 units of metal, 
20 units of labor, 3 units of paint, and 8 units of plastic to build a car, 
while it requires 10 units of metal, 24 units of labor, 3 units of paint, 
and 4 units of plastic to build a truck. A car sells for $6000 and a truck 
for $8000. The following resources are available: 2000 units of metal, 
5000 units of labor, 1000 units of paint, and 1500 units of plastic. 
(a) State the problem of maximizing the value of the vehicles produced 

with these resources as a linear program. 
(b) Plot the feasible region of this linear program and solve by checking 

the objective function at the corners (by looking at the objective 
function, you should be able to tell which corners are good can
didates for the maximum). 

5. Consider the two-refinery problem. 

Heating oil: 

Diesel oil: 

Gasoline: 

20x1 + 6x2 = 500 

8x1 + 15x2 == 750 

4x1 + 6x2 = 1000 
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Suppose that it costs $30 to refine a barrel in refinery 1 and $25 a barrel 
in refinery 2. What is the production schedule (i.e., values of x1, x2) 

that minimizes the cost while producing at least the amounts demanded 
of each product (i.e., at least 500 gallons of heating oil, etc.)? Solve 
by the method in Exercise 3. 

6. Plot the boundary of the feasible region for the linear program in Ex
ample 2 and solve this linear program as discussed in Exercise 3. 

7. Forrnulate the following transportation problem as a linear program (see 
Example 3); do not solve. There are three factories A, B, and C that 
ship motors to three stores 1, 2, and 3. Factory A makes 1000 motors, 
B makes 2000 motors, and C makes 3000 motors. Store I needs 1500 
motors, store 2 needs 2000 motors, and store 3 needs 2500 motors. The 
following matrix gives the costs of shipping a motor from a given 
factory to a given store. 

Factory 

A B C 

1 I 2 3 

Store 2 I 3 2 
• 

3 2 4 3 

8. There are four boys and four girls and we wish to pair them off in a 
fashion that minimizes the sum of the personality conflicts in the 
matches. Entry (i, }) in the following matrix gives a measure of conflict 
when girl i is matched with boy j. Set up this problem as a linear 
problem (see the hint at the end of Exercise 9). 

Boys 

1 2 3 4 

A 2 3 1 3 

B 0 3 7 9 
Girls 

C 2 2 3 3 

D 3 1 5 1 

9. We wish to assign each person to a different job so as to minimize the 
total amount of time that must be spent to get all the jobs done. Entry 
(i, }) in the following matrix tells how many hours it takes person i to 
do job j (a dash ''-'' means that the person cannot do the job). Set 
up this problem as a linear program. 

Hint: This is a special for111 of transportation problem in which the 
''demands'' of jobs and ''supplies'' of people are all equal to 1. 
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Jobs 

1 2 3 4 5 

A 9 4 7 

B 4 6 2 4 

People C 6 5 4 

D 8 3 5 6 

E 6 4 5 

10. We have a farm with 200 cows and capital of $5000 with the following 
· idealized conditions. Cows produce milk for sale or milk to nurse two 

yearlings (which in a year become cows). A cow can generate $500 
worth of milk in a year if not nursing. It costs $300 to feed a cow for 
a year (no matter what its milk is used for). Write a linear program to 
maximize the total income over 3 years for the farm (be sure 11ot to 
spend more money in a year than you currently have). 

11. An investor has money-making activities A and B available at the start 
of each of the next 5 years. Each dollar invested at the start of a year 
in A returns $1.40 nvo years later (in time for immediate reinvestment). 
Each dollar invested in B returns $1. 70 three years later. There are in 
addition activities C and D that are only available once. Each dollar 
invested in C at the start of the second year returns $2.00 four years 
later, and each dollar invested in D at the start of the fifth year returns 
$1. 30 in 1 year. The investor begins with $10,000 and she wants an 
investment plan that maximizes the gain at the end of 5 years. Give a 
linear program model for this problem. 

U. The Expando Manufacturing Co. wishes to enlarge its capacity over the 
next six periods to produce umbrellas so as to maximize avajlable ca
pacity at the beginning of the seventh period. Each umbrella produced 
in a period requires d dollars input and one unit of plant capacity; an 
un1brella yields r dollars revenue at the start of the next period. In each 
period, Expando can expand capacity using two construction methods, 
A and B. A requires b dollars per unit and takes one period; B requires 
c dollars per unit and takes two periods. Expando has D dollars initially 
to finance production and expansion (in no period can more money be 
spent than is available). The capacity initially is K. Forrnulate a linear 
program to maximize pr·oduction capacity in period 7. 

13. Work through the simplex algorithm for the linear program in Example 
5 to verify systems (26) and (27). 

14. Solve the following linear programs using the simplex algorithm. 
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(a) Maximize 3x1 + 2x2 

subject to 
X1 > 0, x2 > 0 

3 .. ,·1 + 4x2 < 12 

4x1 + 3x2 < 12 

X1 + 2x2 < 8 

( c) Maximize x 1 + x2 

subject to 

.,t I > 0, X2 > 0 

3x1 + X2 < 10 
2x1 + 3x2 < 15 

2x1 + 2x2 < 12 

(b) Maximize 4x 1 + 6x2 

subject to 

X1 > 0, X2 > 0 

3x1 + 4x2 :::; 12 

X 1 + 2x2 < 8 

3x1 + X2 < 6 

(d) Maximize 3x1 + 2x2 

subject to 
X1 > 0, X2 > 0 

2x1 - x? < 6 

X1 + X2 < 4 

-3x1 + X2 < 3 

15. Solve the following linear programs using the simplex algorithm. 
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(a) Maximize 2x1 + 3x2 + 4x3 (b) Maximize 3x1 + x2 + 2x3 

subject to subject to 
X 1 > 0, X2 > 0, X3 > 0 .ti > 0, X2 > 0, x3 > 0 

XL + 2x2 + X 3 < 10 2x1 + 3x2 + X3 < }5 

3x1 X2 + 2.,t3 < 12 X1 + x2 + 2X3 < 9 

X1 + X2 + X3 < 6 X1 + 2x2 + x3 :::; 10 

(c) Maximize 3x1 + 4x2 + 2x3 (d) Maximize 2x1 + x2 + x3 

subject to subject to 

X 1 > 0, X2 > 0, X3 > 0 x, 2:: 0, X2 > 0, x3 > 0 

3x1 + 2x2 + 4x3 < 15 4x1 + 3x,, .. + 3x3 < 12 

Xi + 2x2 + 3x3 < 7 X1 + 2x -2 X3 < 4 

2x1 + X2 + X3 < 6 X1 + X2 + 2x3 < 6 

16. Solve the following linear program using the simplex algorithm. 

M.aximize 2x 1 + 4x2 + x3 + x4 

subject to 

X 1 > 0, X2 > 0, X3 > 0, X4 > 0 

2x 1 + x2 + 2x3 + 3x4 < 12 

2x2 + x3 + 2x4 < 20 

2x 1 + x2 + 4x3 < 16 

17. Solve the following linear program using the simplex algorithm. 

Maximize 15x1 + 28x2 + 19x3 + 24x4 + 34x5 

subject to 
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X 1 > 0, X 2 > 0, X3 > 0, X 4 > 0, x5 > 0 

X1 + 2x2 + X3 + 3x4 + 2x5 < 90 

2x1 + X2 + X3 + 4x4 + X5 < 70 

2x1 + X2 + X3 + X4 + 2x5 < 80 

3x2 + 2x3 + X4 + 3x5 < 150 

18. Put the transportation problem in Exercise 7 in slack variable form as 
shown in Example 6. Also express the problem in inequality constraints. 

19. Put the dating problem in Exercise 8 in slack-variable for111 as shown 
in Example 6. Also express the problem in inequality constraints. 

20. (a) Show that the last equation in the transportation problem in Ex
ample 6 is redundant by verifying that the sum of the warehouse 
equations equals the sum of the college equations; hence the sum 
of the warehouse equations minus the first college equation will 
equal the second college equation. 

(b) Explain in words why any nonnegative solution to the first four 
equations in (28) would also have to satisfy the fifth equation. 

21. (a) Use the equations in (30) to rewrite the objective function for the 
transportation problem in Example 6 in terms of just x 11 and x22 . 

(b) Now solve the transportation problem graphically using the linear 
program in (31) with the objective function from part (a). 

22. Repeat the sensitivity analysis in Example 7 of the chair-table produc
tion problem for braces: How would profit change with 1 less unit of 
braces, how would the number of chairs and number of tables change? 

23. Perfor1n sensitivity analysis on the farn1ing linear program in Example 
4 of Section 1.4. What are the effects on profit and on amounts of com 
and wheat planted if 1 less acre is planted? If 1 less dollar of capital is 
available? 

24. Solve the far1ning problem in Exercise 3 using the simplex algorithm 
and perform a sensitivity analysis on all constraints that are fully used. 
For example, determine the affect of having 1 less dollar of capital. 

25. Solve the car-truck production problem in Exercise 4 using the simplex 
algorithm and perfor1n a sensitivity analysis on all constraints that are 
fully used. 

26. Consider the following two linear programs. 
(i) Maximize 3x1 + 3x2 (ii) Minimize 10x1 + 8x2 

subject to subject to 

X1 > 0, X2 > 0 

3x1 + 2x2 < 10 

4x1 + X 2 < 8 

X1 > 0, X2 > 0 

3x1 + 4x2 > 3 

2x 1 + X 1 > 3 
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Solve them by graphing and show that the optimum values of these two 
objective functions are the same. What relations link the input data in 
the two problems? 

• Linear Programming Details 

Simplex Algorithm for a General 
Linear Program 

We use the following notation involving ,i variables and ,n inequality con
straints. 

Ge,zeral Li,zear Program-1,iequality Form 

Maximize c 1x 1 + C2X2 + • • • + cnx11 + d 

subject to x 1 > 0, X2 > 0, • • • 

Q l 1X I + al 2--'°2 + 
a21X1 + a22X2 + 

• • 
• • 
• • 

ClgtXI + a g2.,t2 + 
• • 
• • 
• • 

a,n , .. t I + am2--t2 + 

or in matrix notation, 

• • • + a lhxh + • • 

• • • + a211Xh + • • 

• • • 
• • • 
• • • 

• • • + a g1,X1z + • • 

• • • 
• • • 
• • • 

• • • + a,nh .. th + • • 

Maximize c · x + d 

subject to 

Ax< b, x>O 

, xn ~ 0 
• + aln:tn :5 bl 

• + a2,,Xn :5 b2 
• • 
• • 
• • 

• + a gnxn < bg 
• • 
• • 
• • 

• + a,nn "Yn < b,11 

(1 a) 

( I b) 

Upo11 restating the inequality constraints in ( 1 a) as equations with slack 
variables, the system is 

General Linear Progra,n-Equation Fomz 

Maximize l'1X1 + C2X2 + ... + C1zX1z + ... + l'nXn + d 

subject to X1 > 0, .. t'2 > 0, ... '}(n > 0, Xn + l > 0, ... 'Xn + n1 2:: 0, and 

G11X1 + G12--t'? + ... + G1JzXh + ... + alllxll + Xn + I == bl 

Q21X 1 + Cl22X2 + . . . + a21zX11 + . . . + G211Xn + .:r,, + 2 == b2 
• • • • • • • • 
• • • • • • • • 
• • • • • • • • 

+ Xn + X b,~ 
• • • • • • • • 
• • • • • • • • 
• • • • • • • • 

+ x,, . 111 == b,,, 
(2a) 
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The first n variables are our independent variables from (Ia) and the last n1 
variables are the slack variables. Keep i,z 1ni11d tl1c1t after iteratio11s of the 
simplex algorit/1,n, the positio,is of va,~iables tlzat play tlze role of slack 
variables bec·orne tott1lly scrambled. (In ]inear programming texts, the set 
of slack variables is called the basis of a linear program in equation for111.) 

If we let x:t= = fx, x'], where x' = [x11 + 1, ••• , x11 +,n] is the vector 
of slack variables, and A* = [A I], then (2a) can be written 

• 

Maximize c · x + d 

subject to 

A*x* = b, * > 0 X -

(2b) 

It is important to note that the simplex algorithm assumes that the 
origin of the current independent variables is a feasible corner. This is the 
solution obtained by setting all independent variables equal to 0 and setting 
the slack variable for row i equal to bi. If the origin is not feasible, see the 
section ''Finding an Initial Feasible Solution.'' 

Now we state the general simplex algorithm. In part I we find the 
independent variable x1, with the largest positive coefficie11t c17 in the objective 
function. This is the variable whose increase provides the greatest rate of 
increase in the objective function. If no coefficient c1 is positive" the current 
comer is optimal. 

Next we deter111ine how much we can increase x 11 (while all other 
independent variables remain = 0). The inequalities in (la) reduce to 

a211X1, < 

• • • • 
• • • • 
• • • • (3) 

b . 
Qilr'th < b- > X1, < I 

- -I 

ai,, 

• • • • 
• • • • 
• • • • 

b,,, 
ax < b->x < -1111t h - ,n I, -

a,nh 

Then we can increase x,, by the minimum of these bounds. Let !1z be this 
amount. If some aih < 0, then X1i can increase indefinitely without violating 
the ith constraint. So we only want to examine constraints with aih > 0. If 
there is no positive a;1,, then x can increase indefinitely without violating 
any constraint-this ''pathological~' situation is mentioned later. Summa
rizing, we have 
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Part 1 of Si,nplex Algorithn, 

1. Let .. t1, be the independent variable with the largest positive coefficient c·17 

in the objective function. If all ci =::; 0 .. the current comer is optimal. 
2. Deter111ine the row index i that achieves the minimum value for the ratio 

b;/ a ih when a;1i > 0. Let g be the minimizing i. 
3. (a) If all c1;1, < 0 :r 11 can be increased infinitely and the problem is 

unbounded. See Abnor111al Possibilities II below. 
(b) If the minimizing ratio b 8 / a!:" equals 0, that is, b >: = 0 ( and every 

other row i has b; < 0 or Cl;1, < 0) , special steps must be taken. See 
Abnormal Possibilities III below. 

The intersection of the gth constrai11t with the constraints xi = 0 , 
j =I= Ii , forr11s the new corner (0, 0 . . . 1,, , . . . 0). 

Part 2 of the simplex algorithm requires us to rewrite the equations in 
(2) to 1nake this new comer become the origin of the new independent 
variables. We do this by performing a pivot exchange between independent 
variable ~t1z and the Jack variable x~ in equation g: that is, we pivot on 
entry a8h. 

Part 2 of Simplex Algorith1n: Pivoti,ig 011 ag1, 

1. The old gth constraint equation is rewritten to make .:,11 become a slack 
variable that is, make .,r.,, have coefficient 1 . This is accomplished by 
dividing the equation by a :ft- . 

2. Set the column of coefficients t"or _,;;Ir equal to eg (all O's except in the gth 
equation). This is accomplished by the standard elin1ination by pivoting 
process. 

3. The objective function undergoes the same change as in step 2 (x11 drops 
out and .,t;, comes in). 

The following diagram illustrates steps 1 .. 2, and 3. Suppose that 
a:t: = tlgh is again the pivot entry, p = a .. v is another coefficient in the pivot 
row, q = a

1
1, is another coefficient in the pivot column .. and ,. = aij is a 

oefficient in p "s row and q's column (possibly q and ,. are in the objective 
fu11ction, or possibly p and ,. are b;' s). Then part 2 of the simplex algoritl1m 
has the form 

• 

Columns 

Before lz 
• g' J 

pivoting • 
• 

g • • • • • • (l* • • • • • • . JJ • • • • • • l (4) 
• • • 

Rows • • • 
• • • 

• 0 l q • • • • • • • , .. • • • • • 

• 
• 
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Columns 

Afte,· /1 • g' . I 
pillOfi11g • 

• 

p I 
g • • • • • • 1 • • • • • . - • • • • • • • - (5) 

(J * 
.,. a •:-

• • 

Rows • • 
• • 

• 
I 0 . . . . . /Jq . r - - . 

a* 
• • • 

-q 
a* 

• 

If r is the constant -din the objective functio11 .. pivoting changes - d 
to - d - pq/ ti* (the objective function constant increases from cl to cl + 
JJ(J / c1* ). In the display above we have listed colu1n11 g', the column of the 
new independent variable .:r~, which previously was the slack variable in 
row g. 

At'ter pivoting, we return to part I of the sirnplex algorithm for the 
linear program in this new fot 111 and continue doing part 1 and part 2 until 
no improvement in the objective function is possible in part 1. Then we 
shall have found tl1e 1naximum. 

Abnormal Possibilities 

No Feasible Poi11ts. The feasible region for a linear program may be empty. 
That is .. no point lies on the, correct side of all the inequalities for example, 
to satisfy .\" 1 + .t2 s - 1 , either .x 1 or .\·, must be negative-but .ri > 0 is 
required in all linear programs. A linear progran1 is called i1~feasible in this 
case. 

. 
Unbounded Feasible Region. When we increase :(11 in part l, perhaps )(11 

can be increased without limit (to infinity). See step 3(a) ot' part 1 in the 
simplex algorithn1. This means that the feasible region is unbounded along 
the .t 11-axis and the maximum value of the objective function is infinite. If a 
practical problem has been rnisfor1nulated (or data not entered correctly) .. 
this difficulty can arise. When this happens the linear program i called 
i11zbot11zclecl. 

Degeneracy. In very rare cases, it can happen that in pa11 I repl,1cing an 
independent variable by a slack variable does not increase the objective 
t~unction because s0111e constraint has a zero right-l1and side (see step 3(b) 
of part 1 in the simplex algorithm). This can happen without being at an 
optimal point. This phenomenon is called dege11e1·c1c}. Since it is rare and 
requires special methods to handle, we shall ignore degeneracy in this book. 
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Finding an Initial Feasible Solution 

How do we start the simplex algorithm if the origin [setting all the inde
pendent variables in ( 1 a)] is not a comer of the feasible region? For example, 
consider a two-variable problem with constraints 

2x1 + (6) 

or, multiplying the first inequality by - 1, 

(7) 

Neither of these inequalities is satisfied by x1 == x2 == 0. Let us put 
the inequalities of (7) in equation fo1111 with slack variables x3 , x4 . 

-2x1 - X2 + X 3 (8) 
X 1 - 3x2 

As in (7), setting x 1 == x2 == 0 cannot yield a solution of (8), since we 
require x3 > 0, x4 ~ 0. 

There is a standard ''trick'' for finding a starting feasible comer (and 
associated set of independent variables) when the origin, -~ 1 == x2 == 0, is 
infeasible. We add a new equality-violation variable on the left-hand side 
of each constraint with a negative right-hand side. For the system (8), we 
introduce x5 , x6 . 

X 2 + X 3 - x5 - 4 
3x2 + x4 - x6 == - 6 

where x5 > 0, x6 > 0. Let tis multiply (9) by - I to get 

2x1 + _t 2 - .. t 3 

- x 1 + 3x2 

+ x ) . == 4 

+ x6 == 6 

(9) 

(10) 

Now x 1 == x2 == x3 == x4 == 0 yields a feasible solution to ( I 0), with 
x5 == 4 and x6 == 6. We can apply the simplex algorithm to (10). 

Next we define a contrived objective function that makes us look for 
a corner where the equality-violation variables become zero, that is, a corner 
satisfying our original equations (8). The linear program we want to solve, 
with the simplex algorithm, is 



364 Ch. 4 A Sampling of Linear Models 

Maximize - .,t 5 - x6 

subject to ( I 0) and >-:; > 0 
(II) 

Since .t5, x6 are nonnegative, the best possible maximum for ( I 1) would 
be 0, occurring when x5 = .. t 6 = 0. The values of x 1, x2, x3 , and .. t 4 when 
x5 = x6 = 0 will be the starting feasible solution we need to use the simplex 
algorithm on the original problem. If we solve the linear problem ( 11) and 
do not get a maximum of 0, then the original system of constraints was 
infeasible. 

Note that since x5 and x6 are slack variables, we must rewrite the 
objective function in ( 11) in terms of the independent variables x 1, x2 • x3 , 

x4 . Reading off expressions for x5 and x6 from ( 10), we have the linear 
program 

Maximize (2x1 + .. t 2 - x3 - 4) + (-x1 + 3x2 - x4 - 6) 

= X1 + 4x2 

subject to ( 10) and #ti > 0 

- X - X - 10 3 4 

Matrix Representation of Pivoting and 
Revised Simplex Method 

(12) 

The pivoting operation of the simplex algorithm can be expressed as a matrix 
product. Let the linear progra1n be written in equation fo11n with slack vari
ables as in (2): 

Maximize c · x + d 

subject to A *x* = b x* > 0 

We can obtain the new coefficient matrix after pivoting on entry a811 

as the matrix product PA~: ~ where P is the m-by-,n ''pivot' ' matrix. Since 
A* = [A I] where I is the ,n-by-111 identity matrix , we can write 

PA>i: = PfA I] = [PA P] ( 13) 

From ( 13) we see that the matrix P, assuming that P exists, is just the 
1n-by-1n submatrix fo1111ed by the last 111 columns (the columns of the slack 
variables) after pivoting is performed. As noted earlie1·, the columns in the 
slack-variable subrnatrix are unchanged by pivoting except for column 
11 + g [ which is as shown in (5)] . Thus if a* = a ~h is the pivot entry, then 

• 
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P= 

Column 
g 

1 0 0 · · · 0 

0 1 0 · · · 0 

0 0 1 · · · 0 

• • 

• • 

• • 

• 

• 

• 

• 1 
• 

• • 

• • 

• • 

0 · · · 0 

0 · · · 0 

0 · · · 0 

• 

• 

• 

• 

• • 

• • 

• • 

0 0 0 · · · - an,h Q . . . Q 
a* 

365 

( 14) 

P is the identity matrix with column g replaced by the hth column a;1 of A* 
divided by a*, except that entry (g, g) of P is 1 /a*, the inverse of the pivot 
value a* = agh· 

As a check, let us compute entry (i, j), j ¥- g, in the product PA. This 
entry will be the scalar product P; · a1 (where Pi denotes the ith row of P 
and a1 the }th column of A*). Row vector P; has just two nonnegative entries, 
Pii = 1 and Pig = -a;11/ a*. Thus 

entry (i, j) of PA = P; · ~i = P;;a(i + Pigagj 

= Ia .. -
CJ 

aih 
ao1· a* c-

• 

(15) 

This expression corresponds to the value of entry (i, j) in table (5), since 
au = r, a8.i = p and a;11 = q. So P is, as advertised, the desired pivot 
matrix. 

As mentioned above for table (5), the column vector b and objective 
row vector c are changed in pi voting the same way A* is. So we can expand 
A* into an (m + n + l )-by-(m + 1) matrix A + of all the data. 

C 

A 

0 -d 

I b 
(16) 
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(The minus sign for d is a technicality based on the fact that the constant in 
the objective function is not on the right-hand side of an equation, the way 
the b; are.) The (m + 1)-by-,n pivot matrix P for A + has a corresponding 
additional top row with - c·lz/ a* in its gth entry and O's elsewhere. 

Let us us.e the notation P
8

1, to denote the pivot matrix when we pivot 
on entry (g, h) (to exchange independent variable x11 and the slack variable 
for row g). Then a sequence of k pivots on entries (g 1, /z 1), (g2 , h2 ), ... , 

(gk, hk) would produce the new linear program with matrix A;: 

( 17) 

The revised simplex algorithm uses ( 17) to compute just the cost coef
ficients c1 in At, needed to select the pivot column. We determine which 
column has the largest cj; call its index h'. Next ( 17) is used to compute b 
and the h'th column of the constraint matrix in A-,:-, needed to select the 
pivot row. The othe,· entt·ies in A are never computed. The pivot row is the 
row that achieves the minimum positive value of b,/ a;11 ,; call it row g'. The 
next pivot matrix P8 ,11 , can be constructed using the entries of the /1 1th column 
[see (14)]. This completes one iteration of the revised si1nplex algorithm. 

The pivot matrices are easy to store and multiply. Only column g' 
needs to be stored, and even this vector is likely to be very sparse, since 
the coefficient matrices in large linear programs are very sparse. Because 
we only calculate one row and two columns of the current linear program, 
a tremendous savings in time is achieved over the standard simplex algo
rithm. 

Linear Models for 
Differentiation and Integration 

Although calculus deals with highly nonlinear functions, both the theory and 
computations associated with calculus are built on linear models. It is the 
computation that will be our primary interest in this section. We will show 
how linear approximations to arbitrary functions allow one to solve numer
ically almost any calculus or differential equation problem. 

We first point out the central role of linearity in calculus. The derivative 
of a function is the essence of a linear model. The derivative f' (x) of a 
function y = f( .. t) at a point ( .. t 0 , ) 1

0 ) is the slope off ( .. t) at ( .. t 0 , ) :0 ). That is, 
f' (x0 ) gives the slope of a line through (J:·0 , ) 'o) that coincides with f (.x:) when 
x is very close to x0 (see Figure 4.14). In other words, the derivative gives 
the slope of a linear approximation to f(x) at a point. 

An equally important aspect of linearity in calculus is the fact that 
differentiation is a line a,· operatio,z, in the sense that if f ( .. t) == ag(x) + 
bh(x)~ where a, b are constants, then f'(x) == ag'(.,t) + bh'(x) [the same 
way that A(au + bv) = aAu + bAv]. For example, we compute the 
derivative of f(x) = 5x3 + 6x2 by knowing that 3x2 is the derivative of x 3 

and 2x is the derivative of .,t 2 and then f' (x) = 5(3x2
) + 6(2x). Integration 
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• 

Figure 4.14 Slope of line tangent to)' == f(.t) is 
the derivative. 

is also a linear operation. Without this linearity, computing the derivative 
or integral of a polynomial would be a very complicated process. 

We now show how to use the linear approximation of a f'unction given 
by the derivative to build an iterative schen1e to find zeros of a function. 
The scheme is called Newton's method. For x-values close to x == x0 , we 
have 

f(x) ~ f'(x0 )x + c for an appropriate constant c ()) 

Pretend that (1) is a good approximation for f( .. t) over a wide interval around 
x == x0 . We shall use (1) to approximate where f(x) has a zero lwhere 
f(x) == O]. If f(x) has value .f(x0 ) at x0 and has slope f' (x0 ), then the linear 
approximation ( l) decreases by f' (x0 ) for each unit we decrease x and will 
be zero if we decrease x by f(:x0 )/f'(.,t 0 ). Thus we estimate the x-value x1 

that makes f(x) == 0 to be 

f(xo) 
~t1 == Xo - f' (xo) 

(see Figure 4.15a). Note that if f(x0 )/f'(_-x:0 ) < 0, then .,t 1 > x0 . 

(2) 

Normally, f(.x 1) =I= 0, because the derivative f' (.;t0 ) only approximates 
the slope of f(x) when x is very near .. t 0 . However, there is a fair chance 
that .. t L is close to a zero of f(x). Let us use the approximation (I) again, 
now at the point x,, to estimate where f(x) is zero. Similar to (2), we get 

We continue in this method to approximate the true zero of f(x). The general 
for1nula is 

Xn + I = X,, - (3) 

We stop when f(xn) is very close to 0. Once we get an x-value close 
to a zero of f (x), the approximation ( t) is quite accurate and our method 
converges quickly to a zero of f(x). 
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(a) 
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Figure 4.15 (a) Newton 's method. (b) Function)' = x5 - 5_t 4 - 4_t3 - 3_r2 -

2x - 1. 

We should mention that if one cannot compute f'(x) by a differen
tiation fo1mula then f' ( .. t) must be estimated by the approximatio11 
[f(x + lz) - f(x)] / h (for some small /1). 

✓- --- -
~ , .. 

,.- - ' '.- .. 

Example 1. Newton's Method 

Consider the function f(x) == x2 - 5x + 4. We use Newton's method 
to find a zero of this function. First we note that this type of problem 
arises in determining eigenvalues. Suppose that we want to find the 

3 2 
. Then we must find the zeros eigenvalues of a matrix A 

1 2 
of det(A - Al), 
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3 - 'A 2 
det(A - X.I) = 

I 2 - A 

= (3 - 'A.)(2 - X.) - 2 · I = A 2 - 5X. + 4 

For this f (.,t) f' (~t) = 2x - 5. Suppose that we start with 
x0 == 10. We calculate thatj'(lO) = 54 and f'(10) = 15. So Newton's 
method estimates the zero to be at 

• 

Next we calculate f(6.4) == 12.96 and f'(6.4) = 7.8. Then 

f(x 1) 12.96 
x 2 = x 1 - f'(xi) = 6.4 - 7 _8 = 4.74 

Calculating f(4.74) = 2.77 and f'(4.74) = 4.48 gives us 

J(.:r,,) 2.77 
X3 = X2 - f'(,;~) = 4.74 - 4_48 = 4. 12 

-
and 

f(4.12) .37 
X4 = X3 - f'(

4 12 
= 4.12 - = 4.006 

. ) 3.24 

f(4.006) .018 
X5 = X4 - f'(4_006) = 4.006 -

3
_
012 

= 4.000024 

Clearly, we are converging to 4. That is, f(4) = 0. • 

Example 2. Bad Performance by 
Newton's Method 

Use Newton's method to find a zero of the function y == x 5 - 5x4 -

4x3 - 3.x·2 - 2x - l . We have plotted this function in Figure 4. 15b 
with the y-axis magnified near the origin. This curve gets close to a 
zero at x = - .4 but only has a relative maximum with)' = - .56. It 
decreases awhile and then increases sharply with f(5.5) = - 310, f(6) 
= 300, and f(7) = 3000. If we start Newton's method with x0 = 0, 
we get the sequence of points shown in Table 4.6. 

We see that our sequence of points gets caught around the relative 
minimum at .. t = - .4 and tends to swing back and forth from one side 
of - .4 to the other. It finally gets very near the minimum on the 107th 
iteration. Here the slope f'(x107) is almost zero, so dividing by f'(.,t 107) 

( = .04) in (3) brings a large change in x that gets us away from this 
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Table 4.6 
0 • - J - • • - C: < •• 0 • ~ ).r.1' - .. • • 0 ,:. : ., /:: 

• 
l X· I f(x;) f'(x;) 

0 0 - 1 - ? -
l - .5 - .594 .8 l 2 

2 .231 - 1.683 - 4.25 

3 - .165 - .738 - 1.24 

4 - .758 - 1.36 6.02 

5 - .531 - .644 1. 19 

6 - .008 - .980 - 1.95 

7 - .512 - .604 .960 

8 . 117 - 1.28 - 2.90 

9 - .324 - .589 - .577 

IO - 1. 134 - 14.7 49 

I I - 1.046 -4.85 20 

12 - .804 - l .67 7.54 

13 - .581 - .703 1. 93 

)4 - .218 - .675 - l .04 

15 - .868 - 2.2 10 .1 
• • • 
• • 
• • • 

107 - .420 - .56 .04 

108 13. 14 233.700 101 .763 

109 10.84 75,585 42.266 

110 9.06 24 .. 144 17. 789 

t l 1 7.70 7.505 7. 710 

112 6.73 2. 183 3.578 

113 6.12 530 1,943 

l 14 5.848 76.5 1.400 

115 5.793 2.65 1.304 

116 5. 791324 .0036 1,300 

117 5.791321 --o 1.300 

relative minimum1
- .. t 108 == 13.14. Now Newton's method homes in 

on the minimum. 
If we had started with .. t 0 > 5, the procedure would have con

verged quickly. Although it did finally escape from the region of the 
relative minimum, a better sche1ne would have been to pick a new 
starting value when the method had not converged after 20 iterations. 

• 
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Next let us consider the definition of the integral of a function f(x). 
The integral of f(x) is the area under a curve from O to x (sometimes O is 
replaced by another x-value x0 ). The fo1111al definition of an integral is the 
limit of the sum of areas of approximating rectangles 

II 

f x(x) =dx lim L (t; - ti - 1)f(t;) (4) 
0 n ---+x i = I 

where t; == i(x/ n). The t; subdivide the interval [O, x] into equal subintervals 
of length x/n, with t0 = 0 and t11 = x (see Figure 4.16a). We are approx
imating the area under the curve f (x) with the area under the piecewise 
approximation to f (x): 

when t; _ 1 < x < t;, i = 1 , 2, . . . , l'l (5) 

That is, the sum on the right-hand side of (4) is the area under f
11
(x). The 

function f 11(x) is a piecewise constant function, since it is made up of constant 
functions with a different constant on each subinterval of [0, x]. 

Figure 4.16 (a) Set of rectangles 
whose areas approximate the area un
der the curve. (b) Piecewise linear ap
proximation to curve f (x) in part (a). 
Set of trapezoids approximate the area 
under f(x). 

,,7 

_,/ 

V 
V 

// 

~ 

7v 
V 

7 

// 
/ / 

/ 

~~ 

(a ) 

---~ 
• 

(b) 

' .......... 

,, 
r----...~ 

t =x n 

-



372 Cli. 4 A Sampling of Linear Models 

The points ti in ( 4) are called mesh points. The collection of mesh 
points and the subintervals they form is called the mesh. As the mesh be
comes finer (as 11 increases) it is intuitively clear that the area under f 11(.t) 

will approach the area under the curve f(J:). 
Let us consider how we might try to calculate the area under a function 

f(.,t) from O to x0 when we do not know how to integrate exactly [i.e., no 
integration formulas apply to f(x), and integration by parts, etc., all fail]. 
One obvious approach is to use the definition of the integral given in (4). 
That is, we pick some number of mesh points, say 11 = 50 for the interval 
(0, .,t

0
). Then we calculate the value of f(.,t) at the mesh points and compute 

the sum on the right-hand side of (4). A better esti1nate for the area under 
f (.t) should be obtained by using linear approxi1nations to f(x) in each sub
interval that agree with the values of f(.,t) at the subinterval endpoints (see 
Figure 4. 16b). It is left to the reader to check that the following piecewise 
linear approximation does this. 

8n(x) 
(6) 

for t1_ 1 < .. t ::; t;, i = l .. 2, ... , 11 

By looking at Figure 4.16b, one sees that the region in each subinterval 
using ( 6) is a trapezoid. The area of this trapezoid is the san1e as the area 
of" a rectangle with height halfway between f (t; _ 1) and f (t;). That is, using 
(6) gives the same area as using the piecewise constant function 

*( ) _ f(t;) + f(t; _ 1) 
811 .,t - 2 for t; _ 1 < x < t; (7) 

Let }1 = t,- - f; _ 1 = _t 0 
/ 11. Then the integral of f(.t) from O to .,t

0 is 
approximated by the area under g!(x), 

•I• ( ) d h Lil f (ti ) + f (ti - 1 ) g ... t x= 
p - 2 

i = ) (8) 
lzf (t0 ) 

1 
L11 f hf (t,,) = -- + 1 (t -) + --

? . I ? 
- 1 = I -

Using (8) to approximate an integral is an integration scheme called the 
trapezoidal rule (named after the trapezoids in Figure 4.16b). Note that this 
rule weights the two endpoint values f(t0 ) and f(t11 ) half as much as the 
other f (t;). Various schemes have been developed tl1at give different sets of 
weights to the f(t; ). 

Example 3. Piecewise Approximation of 
Area Under Curve 

Consider the function .f(x) = 1 /(.r2 + I). We want to compute the 
area under f(x) on the interval [O, 21 using the piecewise approxima
tions given in (5) and (6). To make calculations easy, let the mesh 
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points be t0 = 0, t1 = .5, t2 = l 1 t3 = 1.5, t4 = 2. Then we get the 
table of function values 

t -i 0 .5 I 1.5 2 

f(t;) 1 .8 .5 ~ .3 .2 

The approximation of f(x) by the function in (5), 

• gives 

for t1 _ 1 $ x < t1, i = 1, 2, 3, 4 

.8 on (0, .5] 

. 5 on [ .5, 1] 

.3 on [1, 1.5] 

. 2 on [ l . 5, 1] 

and the approximation of f(x) by the function in (6), 

fort; _ 1 < x< t;, i = 1, 2, 3, 4 

• gives 

- .4x + 1 on [O, .5] 

- .6x + . 8 on [. 5, 1] 
g4(X) 

- .4x + . 5 on [ l, 1. 5] 

- .2x + .3 [1.5, 2] 

(9) 

(10) 

The area under f 4(x) equals .5(.8 + .5 + .3 + .2) = .9 and the area 
under g4(x) equals [using (8)] .5{1 / 2 + (.8 + .5 + .3) + .2/ 2} = 
1.2. The actual area under I /(x2 + 1) from O to 2 is about 1.11. So, 
as expected, g4(x) led to a better estimate of the area. • 

• 

In (5) we approximated f(x) with a piecewise constant function f 11(x), 
and in (6) we approximated f(x) with a piecewise linear function g~(n). A 
better approximation to the area under f(x) can be sought by using piecewise 
approximations to f(x) that are quadratic or cubic functions. It turns out that 
cubic functions have several good properties that quadratics lack, so piece
wise cubic functions are frequently used to approximate functions in inte
gration and other calculations. The cubic function in the ith mesh interval 
would be 

s1-(x) = a-x3 + b-x2 + c-x + d-, l l I ( 11) 
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We want each cubic piece to equal f(x) at the mesh points ti - 1 and ti, 
that is, 

and 

Another desirable property for an approximating function is to be 
smooth at the mesh points ti, where the pieces meet. By this we mean that 
the first and second derivatives of two successive cubics coincide at their 
common mesh point. Then we require 

• 

s;(t;) == s; + 1(ti) 

s'; (t;) == s'f + 1 (ti) 
( 13) 

for i == 1, 2, . . . , n - 1 

The term spline is the name given to a smooth piecewise function. Cubic 
splines are used to approxin1ate curves in thousands of applications. For 
example, automotive designers use splines to approximate car contours in 
computer models that simulate a car's wind resistance. Splines are widely 
used in computer graphics to generate the forms of complex figures; they 
are used to join points made with a light pen in tracing out a figure on a 
te11r1inal screen. Once a figure is represented by mathematical equations, it 
is an easy matter to rotate, shrink, and perfo1111 othet transfor1nations of the 
figure, as discussed in Section 4.1. 

The problem with splines is determining the coefficients in each of the 
cubic pieces. However, the system of equations ( 12) and ( 13) determining 
the coefficients in the splines can be collapsed to a tridiagonal system of 
11 - I equations in rt - 1 unknowns. See the Appendix to this section for 
details. Such tridiagonal systems can be solved very quickly (see Section 
3. 5), so spline approximations can be computed very quickly. 

Another important approach, called functional approximation, for ap
proximating a function for integration and other purposes is to use one linear 
combination of nice functions (e.g., whose integrals are easily computed) 
to approximate f (x) over the entire interval from O to x0

• This approach is 
discussed in Section 5 .4. 

We next consider linear approximations to solutions of differential 
equations. The derivative f'(x), the slope of function f(x) at .,1", is approxi
mated by 

f'(x) = f(x + h) - f(x) 
J1 

(14) 

Indeed, the limit of (14) as Jz goes to zero is by definition f'(x). First and 
second derivatives of complicated functions are often needed in differential 
equations computations. 

Example 4. Discrete Approximation to a 
Differential Equation 

Consider )>(.,t), the temperature of a rod, as a function of x, the distance 
from the left end of the rod. If a heat source is applied to the rod with 
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a temperature f(x) at position -'<. the following differential equation 
describes how f(.;t) affects y(x). 

d2)1 
d ,, = - f(x) x-

(d = length of rod) (15) 

For example, f(x) might be zero everywhere except at two short seg
ments of the rod. It is too difficult to solve this differential equation 
analytically for most interesting f(x). Instead, one seeks an approxi
mate solution by computing values of y(x) at a set of mesh points x0 , 

x1, ••• , x,, on the interval (0, d). If h == .,t; - X; _ 1, then at .. t == X;, 

( 14) becomes 

(16) 

We could just as well use 

( 16') 

Next, using the fact that y"(x) is the derivative of the derivative, we 
can estimate y"(xi) using (16) or (16') twice. To make the result sym
metric about -'<; . we use ( 16) for _v' (x;) and ( 16 ') to get )7"(.,ti). 

"( ) __, {y'(x;) - y'(xi - 1)} 
y xi - h 

{[y(x; + 1) - y(xi)]/h - [y(x;) - )1(X; _ 1)]//1} 
------------------

Jz 
(17) 

{)1(.,t; + 1) - 2_}'(.t;) + )'(.t; - 1)} 
-- -----------

Substituting ( 17) into ( 15), we obtain a system of equations for the 
values .)1(-"t;)- Letting ) 'i == y(x;) and f; = f(.,t;), we have 

or 

Yi+I - 2y; + Yi - I ------- = -fi 
Jz2 

• 

i = l, 2, . . . , n - 1 (18) 

We have n - 1 equations t'or the n + 1 unknowns y0, y 1.. • • • , 

y11 • Like the differential equations in Section 3. 3, we need to specify 
two starting .. or boundary, conditions. Typically, these have the forrn 
Yo = a and )'" == b. Suppose, for later reference, that we choose the 
boundary conditions 
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Yo = Yn = 0 ( 19) 

The physical interpretation of (19) is that both ends of the rod are 
attached to objects that dissipate away all the heat at the ends. Now 
we drop y0 and y11 from (18), since by (19) they are 0. This reduces 
( 18) to a system of n - I equations in ,z - 1 unknowns. 

In matrix te1111s, (18) becomes 

Dy = f* (20) 

wherey = (y1, y2 , ••. ,Yn - 1)-rememberthaty0 andy
11

aredropped, 
since they are 0-f* = (h2f 1 , h2f 2 , • •. , h2f,, _1), and Dis 

D = 

-2 I 0 0 0 

I -2 I 0 0 

0 I -2 I 0 

0 0 1 -2 1 

I -2 1 

I -2 1 
• • • 

• • • 

• • • 

1 -2 1 0 0 

0 1 -2 1 0 

0 0 I -2 I 

0 0 0 1 -2 

(21) 

Observe that D is a tridiagonal matrix, so Dy = f can be solved 
very quickly by Gaussian elimination (see Section 3.5). Let us use 
(20) to get an approximate solution to our differential equation ( 15) on 
the interval (0, I] with 100 mesh points. So n = 100 and h = 
1 / 11 = .01. Suppose that f(x) represents a heat source applied to a 
point at the middle of the rod: 

f 50 = 10,000 and all other J; = 0 (22) 

Then, if f*, -h2f 50 = - (.01)2 x 10,000 = - 1. Sor is all O's except 
- 1 in its fiftieth entry. 

Applying Gaussian elimination to (21) plus the right-side vector 
fl', we obtain the following matrix. 



Sec. 4.7 Linear Models for Differentiation and Integration 377 

-2 I 0 0 0 

0 3 1 0 0 -z 

0 0 4 0 0 -3 

0 0 0 I 0 
• • • • 

• • • • 

• • • • 

51 I -1 (23) -50 
-2 50 ~ I - 51 - 51 

• • • • 

• • • • 

• • • • 

98 1 0 50 
-97 -97 

0 99 1 50 
-98 -98 

0 0 100 50 - 99 -99 

Back substitution yields 

k 
Yk = -

2 
k = 1, 2, ... , 49 

(24) 
100 - k 

)'k = 
2 

k = 50, 5 I , . . . , 99 

The continuous function y(x) that (24) approximates is clearly 

50.t, 0 < X < .5 -
50 - 50x, .5 < X < 1 

(25) 

The solution (25) says that if the middle of the rod is heated and 
the ends are kept at temperature 0, the temperature will decrease at a 
unifor1n rate along the rod toward the ends (as opposed to an expo
nential decay or some other nonlinear decrease). This uniform decrease 
is indeed what occurs in nature. • 

• 

By letting the number of mesh points grow very large, our solution 
vector yin (24) becomes a better and better approximation to the true solution 
y(x) . In the limit,~ y becomes an infinite _vector that 4 'is'' y(x). Thus any 
continuous function can be thought of as an infinite-length vector. In Section 
5.4 we show another way to view continuous functions as vectors. 

Most methods of solving differential equations by discrete approxi
mation are called fi1zite difference schemes. The other basic approach to 
approximating solutions to differential equations is fi1zite element methods. 
Here the function f(x) is approximated as a sum of special f11nctions for 
which the differential equation is easily solved. 
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Section 4.7 Exercises 

Summary of Exercises 
Exercises 1-3 involve finding zeros with Newton's method. Exercises 4-9 
involve approximating areas under curves. Exercises 10 and 11 involve finite 
difference methods for solving differential equations. Problems about splines 
appear in the Exercises in the appendix to this section. 

1. Use Newton's method to find a zero of the following functions; let 
Xo = 2. 

(a) f (x) = 3 .. t - 5 
(b) f(x) = x2 + 6x + 5 
(c) f(x) = x3 

- 3x2 + 3x - 1 
(d) f(x) = J:3 + x 2 

- 2x 
(e) f(x) = cos(x) (x in radians) 
(f) f (.x) = ✓t2 - 2x + 8 
(g) f(x) = x4 

- 4x3 + 5x2 
- x - 15 

(h) f(x) = A
5 + 4x3 

- 8x - 3 

2. Use Newton's method to find all zeros of the functions in Exercise l 
in the interval from - 2 to 6. 

Hi11t: If a is a zero of f(.x:), the other zeros of f(x) are also zeros of 
f(x)/(x - a). 

3. Use Newton's method to find all eigenvalues of the following matrices. 
(See the hint in Exercise 2 and see Section 3 .1 for dete1r11inant for
mulas.) 

(a) 

(d) 

4 0 
2 2 

0 0 4 8 

.5 0 0 0 

0 .5 0 0 

0 0 .5 0 

(b) 

4 -1 

1 0 

0 2 

0 

2 

1 

(c) 

0 4 

.4 0 

0 .6 

1 

0 

0 

4. (a) Use the trapezoidal rule, equation (8), to estimate the area under 
the curve f (x) = x 2 

- 2x + 1 from O to 4 with the mesh 
{O, 1, 2, 3, 4}. Deter111ine the area exactly by integration. Also plot 
this function and the approximation given by the piecewise linear 
function in ( 6). 

(b) See how accurate your answer gets with a denser mesh. Compute 
with the trapezoidal rule again with meshes. 
(i) {O, .5, 1, 1.5, 2, 2.5, 3, 3.5, 4.0} 
(ii) { 0, . 25 , . 5 , . 7 5 , 1 , I . 25 , l . 5 , I . 7 5 , 2 , 2. 25 , 2. 5 , 2. 7 5 , 3, 

3 . 25 , 3 . 5 , 3 . 7 5 ~ 4}. 
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5. (a) Use the trapezoidal rule, equation (8), to estimate the area under 
the curve f (x) = x3 

- 2x + 4 from O to 4 with the mesh 
{O, 1, 2, 3 .. 4}. Determine the area exactly by integration. Also plot 
this function and the approximation given by the piecewise linear 
function in (6). 

(b) See how accurate your answer gets with a denser mesh. Compute 
with the trapezoidal rule again with the mesh { 0, . 5, 1, 1. 5, 2, 2. 5, 
3, 3.5, 4}. 

6. (a) Use the trapezoidal rule, equation (8) " to estimate the area under 
the curve f(.,t) = ex from O to 4 with the mesh {O, 1, 2, 3, 4}. 
Determine the area exactly by integration. Also plot this function 
and the approximation given by the piecewise linear function 
in (6). 

(b) See how accurate your answer gets with a denser mesh. Compute 
with the trapezoidal rule again with meshes. 
(i) {O, .5, 1, 1.5, 2, 2.5, 3. 3.5, 4} 
(ii) {O, .25, .5, .75, 1. 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 

3 . 25 , 3 . 5 , 3 . 7 5 , 4} 

7. (a) Use the trapezoidal rule, equation (8), to estimate the area under 
the curve f (.,t) = IO/ (x + I )2 from O to 4 with the mesh 
{O, 1, 2, 3, 4}. Determine the area exactly by integration. Also plot 
this function and the approximation given by the piecewise_ linear 
function in ( 6). 

(b) See how accurate your answer gets with a denser mesh. Compute 
with the trapezoidal rule again with meshes: 
(i) {O, .5, 1, 1.5, 2, 2.5, 3, 3.5, 4} 
(ii) { 0, . 25, . 5, . 7 5, 1, 1. 25, I . 5, 1. 7 5, 2, 2. 25, 2. 5, 2. 7 5, 3, 

3. 25, 3 . 5 , 3. 7 5 , 4} 

8. (a) Use the trapezoidal rule, equation (8)~ to estimate the area un
der the curve f(x) = sin (27r/x) from ¼ to 1 with the mesh 
{. 25, . 5, . 7 5, 1}. Also plot this function and the approximation 
given by the piecewise linear function in (6). This function cannot 
be integrated by any standard integration technique. 

(b) See how much your answer changes with a denser mesh. Compute 
with the trapezoidal rule with the variable mesh {. 25, . 26, . 27, . 28 , 
.29, .3, .32, .34, .36, .39, .42, .45, .5 , .6, .7, .8, .9, l}. 

9. Simpson's rule approximates an integral by 

b h 
a f (x) d.,t = 

3 
{f (a) + 4f(t1) + 2f(t)2) + 4f(t3) + 2f(t4 ) + · · · 

+ 4f(tn - 1) + f(b)} 

where ti = a + hi, i = l, 2, ... , n - 1, n even, and h 
(b - a)/n. 
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(a) Simpson' s rule finds the exact integral of quadratic functions . Ver
ify this by using Simpson's rule to approximate the given integrals 
and check by for1nal integration. 

(i) f (x) = x 2 + l from O to I with ,i = 4. 
(ii) f (.,t) = x2 

- 2x + 4 from 1 to 3 with n = 2. 
(b) Repeat Exercise 5, part (a) with Simpson's rule. Is the Simpson's 

rule approximation more accurate? 
(c) Repeat Exercise 6, part (a) with Simpson's rule. Is the Simpson's 

rule approximation more accurate? 
(d) Repeat Exercise 7, part (a) with Simpson's rule. Is the Simpson's 

rule approximation more accurate? 
• 

10. Repeat the method for solving d 2y / dx2 = - f(~t), 0 < x < I approx
imately in Example 4 with y(0) = y( I) = 0 using the following f(x). 
(a) f(x) = {f 25 = - 10,000 and all other J; = O} 
(b) f(x) = {f 1 = -10,000 and all other fi = O} 

11. Use the n1ethod for solving a differential equation in Example 4 to solve 
approximately 

- 10,000, 

with h = .01 and y(0) = y(l) = 0. 

Computing Cubic 
Spline Approximations 

In this appendix we show how the equations for deter111ining the coefficients 
in a cubic spline can be greatly simplified and reduced to a tridiagonal system 
of n - I equations in ,i - 1 unknowns, where n is the number of sub
intervals in the cubic spline. 

Suppose that we divide the interval [a, b], into n subintervals. Let 
a == t0 < t 1 < · · · < tn == b be the mesh points. Recall that a cubic spline 
s(x) for a function f(x) is a piecewise cubic function such that 

(a) s(ti) equals the function f(ti) at each t i . 

(b) The first and second derivatives s' (x) and s"(x) are continuous. 

We only know the values of f(x) at the mesh points t0 , t 1 , ... , tn and want 
to interpolate values for f (x) over the whole interval. 

Let si(x) be the cubic polynomial in subinterval [ti, ti + 1], i == 
0, 1, ... , n - 1. Then condition (a) becomes 

si(ti) = f(ti ), 

S;(ti+ 1) = f(ti + 1), 

i == 0, 1, ... , n - I 

i = 0, 1, ... , n - 1 

(1) 

(2) 
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and condition (b) becomes 

s;(t;+ 1) 

s';(t; + I) 

s; + i(l; + 1), 

s'; + l ( f; + I)' 

i == 0, 1, ... , n 

i = 0, 1, ... , n 

2 

2 
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(3) 

(4) 

This gives us 4n - 2 equations in 4n unknowns. As in the discrete approx
imation of a differential equation in Example 4 of Section 4. 7, we need two 
extra constraints. The ones that work out the best are 

and 

Let us assume that the mesh points are equally spaced with t1 + 1 

f; = h. The first step is to express si(x) in the translated form 

a . + b-(x - f .) l l I + C;(X - t;)2 

+ d;(X - l; ) 3
, i = 1, ... , n 

(5) 

(6) 

As a result of (6), when x = f . then s .(t -) == a . s~(t.) 
I' l I I' I I b; and 

s';(t;) = 2c;. Observe also that 

s;(t; + 1) == a; + b;h + c;h2 + d;h3 

s~(t;+ 1) b1 + 2cih + 3d,h2 (7) 
s';(t1 + 1) == 2c1 + 6d;h 

Using (7), we rewrite conditions ( 1 )-( 5) as 

a . == f(t.) • 0, 1 ' . ( 1 ') l - ,n -
l , l ' • • 

== Q . + b-h ·+ c· ./12 + d -h3 • 0, 1 ' . 1 (2') a,+ I l == • • , 11 I l f I ' 

h; + l == b; + 2c;h + 3d;h2
, 

• 0, 1, 2 (3') l - , n - • • • 

2C; + 1 = 2c- + 6d.h or I l 

= C; + 3djh, • 0, 1, . . . - 2 (4') C; + I l ,n 

Co = 0 and en == 0 (5') 

Here we have ''invented'' a
11
[= f(t

11
)] in (l') and c11 (== 0) in (5'). 

There is no s11(x) but the tenns a,, and c11 are a useful way to represent 
conditions on the spline at t11 • 

From (l ') we see that the a,'s can be deter1nined immediately from the 
values f(t,). We shall now proceed to show how to express the d;'s and bi~s 
in terrns of the c i's and the a;' s, and then we obtain a tridiagonal system to 
solve for the ci's. 

Solving (4') ford;, we have 

d- == l 3h ' 
i == 0, 1, ... , n - 2 (8) 
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Substituting this value ford, in (2') and (3')~ we obtain 

/i2 
a; + l1b; + 3 (2c; + C; + 1), 

• 0, I ' . l (2") a;+ t l - , ll - • • 

h;+ t b; + h ( c·; -+- 1 + C;) , 
• 0, 1 .. . 2 (3") I -

' l'l - • • 

Solving (2") for b,, we obtain 

a .+ 1 - a . h(2c . + c, + 1) b- = l l _ ___ 1 __ _ 
1 h 3 ' 

i = 0, I, ... , n - 1 
✓ 

(9) 

• 

Reducing the subscript by I .. (9) becomes 

b . = ai - a ; - t _ l1(2ci - i + c;) 
, - 1 /z 3 ' i = 1 ~ 2 , , . . , /1 ( 9 I ) 

Let us also rewrite (3") with reduced subscript 

b. = b - 1 + /i(c • + c • 1) 
I 1 - I 1 - ' 

i = I , 2 , . . . , 11 - 1 (3'") 

Now we substitute (9) for b; and (9') for bi - 1 in (3"') to obtain 

a; + 1 - a; h ( 2c; + 1 c; -1- 1 ) a; - c1; _ 1 

J1 3 /z (10) 

h(2c; _ 1 + c;) h(. . ) 
3 + l ; +C; - 1 

Multiplying by 3, dividing by h, and collecting the a;'s on the right side, 
we have 

or 

3(a; 1. 1 - a;) 

/12 

3(a1 - a; _ 1) 

h2 

3 
Ci - I + 4c; + Ci -+- l = /72 ( (l i - I - 2cl i + a i + I)' i = 1 ' . . . , 12 - 1 

( 11) 

Recall from (1') that a; = f(t;), Once we solve (11) for the c·;'s, then 
by (8) we can deter111ine the d,"s and by (9) we can determine the b;'s. Thus, 
to determine the 411 coefficients in the n cubic polynomials of our cubic 
spline, we only need to solve the (tz - l )-by-(,z - 1) tridiagonal system 
( 11) (recall that c0 and l'

11 
equal 0). 
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Note that it would have been possible to develop the foregoing equa
tions without equally spaced subintervals; unequal spacing is natural for 
ct1rves that are straight most of the time but change rapidly over few short 
intervals. If hi = ti + 1 - ti, the tridiagonal system (11) can be shown to be 

Example 1. Cubic Spline Approximation 
of x · sin( 1rx) 

Let us use a cubic spline to approximate the function f(x) = x • sin( 'TTX) 

over the interval [ 1, 3]. We use the values of _f (.x:) at nine mesh points: 
1, 1.25, J .5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0 (h = .025), yielding 
eight subintervals. We have the following table of values at these 
points. 

Mesh Point 
( . 

l 

lo == 1.0 

ti == 1.25 

f2 == 1.5 

f3 = I. 75 

t4 == 2.0 

t5 = 2.25 

t6 == 2.5 

f7 == 2.75 

f g == 3.0 

Function Value 
f(x) = x · sin( 'TTX) 

f(to) == 0 

f(t1) == - .884 

f(t2) = - 1.5 

f(t3) == - 1.237 

f(t4) == 0 

f(ts) == 1.59 I 

f(t6) = 2.5 

f(t7) = 1.945 

f (t8) == 0 

( 13) 

By ( l ') , a1 = f (ti), so the second column of ( 13) gives the values of 
the ai's. Next we write the system of seven equations in seven un
knowns given by equation (11) (note that 3/ h2 = 3/ .252 == 48). 

4c1 + C2 = 48(0 + 2 · .884 - 1.5) 

c 1 + 4C2 + c3 == 48(- .884 + 2 · 1.5 - 1.237) = 
C2 + 4C3 + C4 = 48(- 1.5 + 2 · 1.237 + 0) 

c3 + 4c4 + C5 = 48( - 1.237 - 2 · 0 + 1.591) 

c4 + 4c5 + c6 = 48(0 - 2 · 1.591 + 2.5) 

C5 + 4c6 + C7 = 48(1.591 - 2 · 2.5 + 1.945) 

c6 + 4c·7 == 48(2.5 - 2 · 1.945 + 0) 

12.864 

42.192 

46. 752 

16.992 

-32.736 

-70.272 

- 66,720 

(14) 
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Solving ( 14) by Gaussian elimination, we obtain 

C 1 = I . 204' C2 = 8. 048' C3 = 8. 797' 

C5 = -5 .883 , C6 = -12.722, c7 = 

l'4 == 3.520, 

- 13.499 

Using (8) to deter1nine the di's and (9) to deter1r1ine the bi's, we 
obtain the cubic polynomials si(x): 

s0(x) == 0 - 3.636(x - l) + 0(x- 1)2 + l.605(x - 1)3 

s1(x) = - .884 - 3.335(x - 1.25) + l.204(x - 1.25)2 + 9.125(x - 1.25)3 

s2(x) = -1.5 . - 1.022(.t - 1.5) + 8.048(x - 1.5)2 + .999(x - 1.5)3 

~~3(x) = - 1.237 + 3. l 89(x - 1. 75) + 8. 797(x - 1. 75)2 - 7 .036(x - I. 75)3 

s4(x) = 0 + 6.268(x - 2.0) + 3.520(x - 2.0)2 - 12.537(x - 2.0)3 

s5(x) = 1.591 + 5.677(~t - 2.25) - 5.883(~t - 2.25)2 - 9. l 19(x - 2.25)3 

s6(x) == 2.5 + 1 .025(x - 2.5) - 12. 722(x - 2.5)2 - l .036(x - 2.5)3 

s7( .. r) == 1.945 - 5.530(x - 2.75) - 13.499(x - 2.75)2 + 17.999(.,t - 2.75)3 

Finally, we give a table comparing the values of the spline approxi
mation s(~t) with the original function f (x) == .,t • sin( 7rx). 

X f(x) s(x) 

1.0 0 0 

1.1 - .340 - .362 

1.2 - .705 -.714 

1.3 - 1.052 - 1.046 

1.4 - 1.331 - 1.326 

1.5 -1.5 -1.5 

1.6 - 1.522 -1.521 

I. 7 -1.375 -1.375 

1. 8 -1 .058 - l .056 

2.0 0 0 
(15) 

2.1 .649 .649 

2.2 1.293 1.294 

2.3 1.861 1.859 

2.4 2.282 2.279 

2.5 2.5 2.5 

2.6 2.473 2.474 

2.7 2.184 2. 188 

2.8 1.646 1.637 

2.9 .896 .873 

3.0 0 0 

A very good fit. • 
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There are other ways to obtain a tridiagonal system for detennining 
the coefficients in a cubic spline; see Cheney and Kincaid (mentioned in the 
References) for a method starting with the second derivative of s(x) and 
integrating twice. 

Section 4.7 Appendix Exercises 

Summary of Exercises 
These exercises 1·equire the construction of cubic splines to approximate 
various functions. The reader should mimic the steps in Example 1. 

1. Repeat the calculations in Example 1 but now use the interval [3, 4] with 
mesh points 3, 3.25, 3.5, 3.75, 4. Compare the values of your approx
imation with the true values of f (x) at x == 3 .1 and 3. 9. 

2. (a) Use a cubic spline to approximate the function f(x) == sin ( 7rx) over 
the interval [O, 1] with mesh points O, . 25, . 5, . 7 5, 1. Compare the 
values of your approximation with the true values off (x) at x == . l 
and .65. 

(b) Use your cubic spline to approximate the integral of sin (7rx) from 
0 to 1. Note the exact answer is 2/7r. 

3. Repeat Exercise 2 using mesh points 0, .2, .4, .6, .8, 1. 

4. (a) Use a cubic spline to approximate the function f(x) == e-x over the 
interval [0, 4] with mesh points 0, 1, 2, 3, 4. Compare the values 
of your approximation with the true values of f(x) at x == .5 and 
2.5. 

(b) Use your cubic spline to approximate the integral of e - x from O to 
4. Integrate to compute the exact answer. 

5. (a) Use a cubic spline to approximate the function f(x) = logex over 
the interval [.5, 1.5] with mesh points .5, .75, 1, 1.25, 1.5. 

(b) Use your cubic spline to approximate the integral of logex from .5 
to 1. 5. Integrate by parts to determine the exact answer. 
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stract 
inear ran_s orntations 

an ector aces 

In this interlude, we take a step back from matrix algebra and give a more 
general setting to the linear problems addressed in this book. By ''linear 
problems'' we mean problems involving equations consisting of linear com
binations of variables. These problems have come in two general forms: 
(i) solving a system of linear equations Ax = b, and (ii) describing the 
behavior of iterative models of the form p' = Ap. 

In Section 4.1 we used the te11n linear transformation to refer to map
pings T: w > w' = T(w), where w' = Aw. In that section we treated the 
system w' = Aw as defining a computer graphics transforn1ation T(w) that 
might be applied to a stick-figure drawing or possibly the whole x-)' plane 
(or x-y-z space). The key property of linear transformations is (Theorem I 
of Section 4. 1 ) 

T(aw + bv) = aT(w) + bT(v) (1) 

Property ( 1) led to the observation that linear transformations take lines into 
lines. 

Property ( 1) turns out to be at the heart of all linear models. If a 
transfo11nation T(w) satisfies (1) , where w is an n-vector, then T(w) must 
actually be a matrix transfo11nation: T(w) = Aw. That is, for vectors, prop
erty (1) defines a matrix-vector product. 

We define an abstract linear transformation on ,1-vectors to be any 
mapping w' T(w) of an n-vector w to an m-vector w' such that T satis-
fies ( 1). · 

Theorem 1. Any abstract linear transformation w' 
sented by matrix multiplication: w' = Aw. 

T( w) can be repre-

Proof· If w is an n-vector and w' is an m-vector, then A will have to 
be an m-by-n matrix. When transforming a set of points in Section 
4.1, we used property ( 1) to simplify the calculations by expressing 
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all points as linear combinations of a few key points. In this proof we 
reason the same way. Here the key points will be unit vectors, such 
as (I , 0, 0, ... , 0). Let e1 be the }th unit vector in n dimensions 
(with a 1 in the jth position and o·s in the other ,z - 1 positions). 

We define thejth column a.f of A to be T(e1 ), the vector to which 
ei is mapped by T: 

It' w ( w 1, li1'2 , . . . , w11 ), we can write w as 

Then by ( 1) and (2) 

T(w) iv 1T(e1) + 1v2T(e2) + 
w 1af + i11

2af + 
Aw 

• • • 

• • • 

+ ,v,,T(e,,) 

+ 1v,,a;, 

(2) 

(3) 

(4a) 

(4b) 

The linear con1bination in ( 4b) of the columns of A is exactly the 
definition of Aw. • 

The preceding proof shows that any linear transformation is specified 
by knowing \Vhat it does \.\1ith a set ot' coordinate vectors. In the proof we 
used the unit vectors e1, bt1t any set of vectors whose li11ear combinations 
yield all other vectors would work. 

In Section 2.5 we saw that for sqt1are matrices, eigenvector coordinates 
made 111atrix multiplication very easy. If U; is an eigenvector of T, then 
T(ui) = X.,-u,-. In the proof above, if w l1as the representation in eigenvector 
coordinates of 

then (4a) and (4b) become 

T(w) ,·,T(u 1) + r 2T(u2 ) + 
X.,,·,01 + X.21·2° 2 + 

• • • 

• • • 

+ r 11T(u 11 ) 

+ A.,,1·11u,, 

(5) 

(6) 

For example, the rabbit-fox growth model (Exan1ple 5 of Section 3. 1) 

p' = Ap, where A = 
1 . I 

. I 

- .15 

.85 
(7) 

has eigenvectors u 1 = [3, 2] and u2 = [ 1: 1] with associated eigenvalues 
X. 1 = I and X.2 = . 95. So if the initial population p = [ R ~ F] were written 
in eigenvector coordinates as p = [s 1, ,S'2] ( = .fi I u 1 + s2u2), then the linear 
transfor1nation T given by A becomes 



Interlude: Abstract Linear Transformations 389 

01· 

(8) 

The concept of a linear transformation helps to remind us that (7) and 
(8) are the same thing-that is, are the same linear transforrnation-but 
expressed in different coordinate systems. 

The lesson from Section 2.5 is that, when possible, linear transfor
mations should be expressed in eigenvector coordinates. To convert to ei
genvector coordinates and afterwards to convert back to standard coordi
nates, we can use the matrix equation (Theorem 5 of Section 3. 3) 

A == uoAu- 1 (9) 

The concept of a linear transfor1nation also gives new understanding 
to the problem of solving a system of equations. Consider our refinery prob
lem: 

Ax b: Heating oil: 20x 1 + 4x2 + 4x3 == 500 

Diesel oil: 10x1 + 14x2 + 5x3 == 850 (10) 

Gasoline: 5x1 + 5x2 + 12x3 1000 

Viewing (10) as a linear transfor1nation problem, 

T(x) == b (11) 

we see that solving ( 11) for a vector x of production levels is asking for a 
vector x in the domain of T that is mapped by T to b. This is a vector
valued version of the problem: Given a function f(x) and a constant b, find 
an x for which f(x) == b. 

Just like the function version of this problem, if b is in the range of 
T, there will be at least one solution; if T is a one-to-one mapping, there 
will be at most one solution; otherwise, there may be many solutions. 

Linear transformations provide a convenient way to abstract matrix 
problems. However, matrix problems are only the beginning. Linear trans
formations can be defined to act on more complicated sets than vectors, such 
as functions. 

Functions can be thought of as an infinite dimensional extension of 
vectors. An abstract vector space is any collection C of elements that obey 
the law of linearity . That is, if A and B are elements of C, then rA + sB 
are in C, for any constants r, s. The set of all continuous functions forms 
an abstract vector space. The same is true for the set of all functions, con
tinuous or not. 
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Example 1. Linear Transformations on Functions 

(i) Shift transjo1·111atio1z Sa. Let Sa(f(x)) = f( .. t + a). That is, S5 
shifts the values of a function f ( .. t) 5 units to the left: 

if f(x) == x 2 - 2x, then S5(f(Jt)) == (x + 5)2 
- 2(x + 5) 

(ii) Reflection tra11sforrt1ation R. Let R(f x)) = f( - x). So R reflects 
the graph of any function about the )1-axis. 

(iii) Differe11tiatio11 tra11sformatio11 D. Let D(f(x)) == df(x)/dx, the 
derivative of f(x) (assuming that the derivative exists) . 
I,ztegration trc1nsforn1atio11 I. Let l(f(x)) == f f(J~) dx, the integral 
of f(.:r) (integration actually requires a constant te11n; here we will 

• 

(iv) 

assume that the constant is 0). • 

It is left to the reader to check that the transfo1111ations in Example 1, 
parts (i) and (ii) are indeed linear transf'ormations. The required property, 
generalizing ( l), is 

T(af(x) + bg(J~)) = aT(f(.:r)) + bT(g(x)) for any constants a, b (12) 

Because differentiation is so important, let us check that it is a linear trans
formation. Property (12) is 

d d d dx [af(x) + bg(x)] = a dx f(x) + b dx g(.,t) ( 13) 

But ( 13) is the linearity rule of derivatives. Similarly, for integration we 
have 

f [af(x) + bg(x)] dx == a f f(x) dx + bf g(x) dx (14) 

Vi1tually all of the theory for analyzing mat1~ix equations extends to 
linear transformations of functions. For example .. we can talk about inverse 
transformation and about eigenfunctions tt(x): T(u()::)) = A.tt(x). 

Example 2. Inverse Transformations of 
Linear Transformations 

(i) For the shift transfo1111ation Sa(f(.,t)) == f(.,'t + a), the in
verse transforination s- 1 is S _a since S _a[Sa(f(x))] 
f(x + a - a) = f(x). 

(ii) For the reflection transformation R(f(x)) = f( - x), the inverse 
R - 1 is simply the reflection transfor111ation itself. So R - 1 = R. 

(iii) For differentiation, there is no (unique) inverse n- 1
• If two func

tions differ by a constant say, x2 + .. t" + 2 and x 2 + x + 5, 
they have the sa1ne derivative, 2_:r + 1. So D - 1(2x + I) cannot 
be uniquely defined. 

(iv) For integration .. the inverse 1- 1 is differentiation. That is .. 
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d 
dx [ff(-~) dx] = f(x) 

This is the fundamental theorem of calculus! • 

Example 3. Eigenfunctions of 
Linear Transformations 

(i) For the shift transforrnation Sa(f(x)) == f(x + a), an eigenfunc
tion u(x) must have the property that u(x + a) == u(x). For 
example, when a = 2'7T, the trigonometric functions, such as 
sin x or cos x, are eigenfunctions of S2 'TI", with eigenvalue 1. 

(ii) For the reflection transfo1111ation R(f(x)) == f ( -x), an eigen
function u(x) associated with X. = 1 is any symmetric u(x), that 
is, u(x) = u( - x). 

(iii) For differentiation, e'A;r is the eigenfunction of D associated with 
eigenvalue X. = k, since dek·"/ dx == kek_r_ 

(iv) For integration e·-.:/ 'A is the eigenfunction of I associated with 
eigenvalue X. = k, since integration is the reverse operation of 
differentiation. • 

There is one very important generalization of differentiation that bears 
special mention, namely differential equations. The differential equation 

y"(x) - 2y' (x) = f (x) ( 15) 

can be considered a linear transformation DE of y(x) to f(x), that is, 
DE(y(x)) = f(x) . It is left to the reader to check that DE satisfies property 
( 1 ) . Any differential equation whose left side is a linear combination of 
derivatives will be a linear transforr11ation. The advanced theory of differ
ential equations is based heavily on eigenft1nctions and inverse transforma
tions. 

For linear transfor1nations defined in terms of matrices, we noted that 
the ''right'' coordinates for describing the transformation are eigenvector 
coordinates. The same applies to linear transforrnations of functions. Func
tions should be expressed as linear combinations (infinite series) of eigen
functions of the linear transformation. 

This book is not about linear transformations of functions. It is about 
matrices and vectors. But it is important to be aware of the powerful gen
eralizations of matrices and matrix algebra whjch are the basis for much of 
higher mathematics. If the reader masters the matrix-based linear algebra in 
this book, he or she will have an excellent foundation for any future work 
with functional linear algebra. 

The purpose of this interlude has been to in1plant the seed in the read
er's mind that many operations on functions are linear transformations and 
that most of the theory of matrices extends to these linear transformations. 
In Chapter 5, occasional examples using linear transformations of functions 

• are given. 
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Null Space and Range of 
a Matrix 

The null space Null(A) of a matrix A is the set of vectors x that are solutions 
to the system of equations Ax = 0. The range Range(A) of A is the set of 
vectors b such that Ax = b has a solution. Another name that is sometimes 
used for Nul1(A) is the kernel of A. In this section we examine these two 
important sets of vectors associated with any matrix. We look at their role 
in linear models and learn how to deter rrline these sets. 

Both the Null(A) and Range(A) are vector spaces. 

Definition. A vector space is any set V of vectors such that if x 1, x2 are 
in V, then any linear combination rx 1 + sx2 is also in V. 

If Ax 1 = 0 and Ax2 = 0, then we have 

Thus Null(A) is a vector space. A similarly simple proof, left as an 
exercise, shows that Range(A) is a vector space. 

Suppose that A is an n-by-n matrix for which the system Ax = b has 
a unique solution for every b. Then Range(A) is all possible 11-vectors, and 
Null(A) is just the zero vector 0, since O is always a solution to Ax = 0 
and by assumption there can only be one solution to Ax = 0. 
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Figure 5.1 (a) Two lines intersect at a point. (b) Two parallel lines have no inter
section points. 

In this section we are concerned with matrices A for which Ax = b 
has nonunique solutions or no solutions. Then deter1nining the range and 
null space of A becomes important. 

Let us briefly describe the geometry of systems of equations that do 
not have unique solutions. Consider the pair of equations 

2x - y = 5 

3x + 2y = 11 
(1) 

In Figure 5. la we have plotted the graph of the two equations in (1) in 
x - y space. The graph of a linear equation is a straight line. An (x, y) pair 
that solves (1) must lie on the lines of both equations. That is, the (x, y) 
pair must be the coordinates of the point where the two lines intersect. From 
Figure 5 .1 a we see that this intersection point has coordinates (3, I). 

Sup pose the two equations produce lines that are parallel: 

2x - y 

4x - 2y 

5 

4 
(2) 

(see Figure 5.lb). Then there is no common point-no solution to (2). Note 
that ''parallel'' means that the second equation's coefficients are multiples 
of the first' s. We saw in the canoe-with-sail example in Section 1. 1 that 
when two equations produce almost parallel lines, the equations can give 
strange results. 

A system of three equations in three unknowns, such as 

2x +Sy+ 4z = 4 

X + 4y + 3z = ] 
-x + 3y + 2z = -5 

(3) 

\ 
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Figure 5.2 (a) Three planes intersect 
at a point. (b) The lines formed by in
tersections of two planes are parallel. 
(c) Three planes intersect along a line. 
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Intersection lines of t\.\'O planes 

(b) 

y 

(c) 

has a similar interpretation in three-dimensional space (see Figure 5 .2a). 
Each equation now dete1111ines a plane of points. A solution of (3) will be 
the coordinates of a point where all three planes intersect. If two of the - ~ 
planes are parallel, no solution can exist. 

Another possibility is that while each pair of equations intersects to 
for1n a line, there may be no point common to all three. This happens if the 
line formed by the intersection of two planes is parallel to the third plane. 
Figure 5.2b illustrates this situation; such a system of equations is 

x- y+z=3 

x+ y+z-3 

X + 3y + Z = 7 

(4) 

The points (x, y, z) satisfying both of the first two equations in ( 4) form the 
line x + z = 3, y = 0; the points satisfying the first and third equations 
form the line x + z = 4, y = I; and the points satisfying the second and 
third equations for in the line x + z = I, y = 2 . 

. 
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Of course, when we have four or more equations in three unknowns, 
it is very likely that there will be no (x. y, z) that lies on all four planes 
(satisfies all four equations). Conversely, if we had only the first two equa
tions in (4), all the points on the line x + z = 3, y = 0 mentioned above 
will be solutions. 

Let us tum from systems with no solutions to 3-by-3 systems with 
multiple solutions. The points that lie on all three planes may happen to 
fo1 rn a line, as in the case for the system 

4x - y + 2z = 8 

2x + 5y + z = 4 

-2x + 3y - z == -4 

(5) 

which has the graph shown in Figure 5.2c. The line of points (x, y, z) 
common to all three equations in (5) is 2x + z = 4, y = 0. So (5) has an 
infinite number of solutions. As we go to higher dimensions, the possibilities 
for multiple solutions or no solution increase. 

We present two theorems that show the fundamental link between 
multiple solutions to the system Ax = b and the null space of A . 

• 

Theorem 1. Let A be any m-by-n matrix. 
(i) If Null(A) contains one nonzero vector x0 , then Null(A) contains 

an infinite number of vectors; in particular, any multiple rx0 is in 
Null(A). 

(ii) If x0 is in N ull(A) and x* is a solution to Ax = b, then x* + 
x0 is also a solution to Ax = b. 

(iii) If x 1, x? are two different solutions to Ax = b, for some given 
b, then their difference x 1 - x2 is a vector in Null(A). 

(iv) Given a solution x* to Ax = b, then any other solution x' to this 
matrix equation can be written as 

x' = x* + x0 for some x0 in Null(A). 

(v) If Null(A) consists of only the zero vector O (i.e., Ax = 0 has 
only the solution x = 0), then Ax = b has at most one solution, 
for a11y given b. 

Proof 
(i) A(rx0) = r(Ax0) = rO = 0, so rx0 is in Null(A) for any scalar 

r. Thus Null(A) is infinite. 
(ii) Let x0 be in Null(A), so Ax0 = 0. Since Ax* = b, then 

Ax* + A(x0
) 

b + 0 = b 

Thus x* + x0 is a solution to Ax = b, as claimed. 

(6) 

(iii) Since A(x1 - x2) = Ax 1 - Ax2 = b - b = 0, then x1 - x2 

is in Null(A). 
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(iv) Given solutions x* and x', choose x0 = x' - x*. Then x' = 
x* + x0 , and by part (iii), x0 is in Null(A). 

(v) Suppose that one solution x* to Ax = b is known. By part (iv), 
all solutions x' of Ax = b can be expressed in the form x' = 
x* + x0 , where x0 is in Null(A). If Null(A) consists of just 0, 
then x' = x* + 0-there is only solution, x*, to Ax = b. • 

Theorem 2. Let A be an m-by-n matrix. If Ax == b' has two solutions for 
some particular b': 

(i) The null space of A has an infinite number of vectors. 
(ii) For any b, either Ax = b has no solution or an infinite number 

of solutions. 

Proof 
(i) By Theorem 1, part (iii), the difference of two solutions is a 

(nonzero) vector x0 in Null(A), and then by Theorem 1, part (i), 
the multiples rx0 yield an infinite number of vectors in Null(A). 

(ii) Suppose that Ax = b has one solution x*. From Theorem 1, part 
(ii), x* + x0 is also a solution, for any x0 in Null(A). By part (i) 
of this theorem, Null(A) is infinite. • 

Theorem 2's result that two solutions lead to an infinite number of 
solutions corresponds to our geometric pictures in which multiple solutions 
always consisted of an (infinite) set of points along a line. 

A system of equations with O on the right side-Ax = 0-is called a 
homogeneous system. Solutions to the homogeneous system Ax = 0 fo1n1 
the null space of A. One often speaks of the null space of the system 
Ax = 0, implicitly meaning the null space of A. 

Homogeneous systems Ax = 0 have arisen in several different settings 
in this book. 

Example 1. Multiple Solutions in an 
Oil Refinery Problem 

Let us suppose that in our familiar oil refinery problem, the three 
refineries produce only the first two products: 

Heating oil: 20x1 + 
Diesel oil: 

500 

850 
(7) 

Suppose that we are given one solution, x 1 = 15, x2 = 50, 
x3 = 0, using just the first two refineries. We want to find another 
solution with x3 = 20. Let us find the null space of this coefficient 
matrix and then, using Theorem 1, part (iv), add an appropriate null 
space vector to the given solution [15, 50, 0] to get a solution with 
x3 = 20. 

The null space for this system of equations is all solutions to the 
associated homogeneous system 
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• 

20x1 + 4x2 + 4x3 = 0 

10x1 + 14x2 + 5x3 = 0 

Solving with elimination by pivoting, we obtain 

X1 + 230X3 = 0 

X2 + lx3 = 0 

(8) 

Thus x1 = - 2
3ox3 and x2 = - lx3 • So vectors in the null space have 

the form 

or (9) 

Theorem 1, part (iv), says that any solution x' to the system (7) 
can be expressed in the for1n x' = x + x0 , where x0 is a null-space 
vector, in this case x0 = r[ - 2

3
0 , - l, 1] for some constant r. We said 

above that we want x' to have xi = 20. Then 

X' = X + XO 

[xi, x~, 20] = [15, 50, 0] + r[- 2
3
0 , -¼, l] 

Matching the third entry on each side of ( 10), we have 20 
So r = 20 and the desired solution is 

x' = x + x0 = [15, 50, 0] + 20[ - lo, -l, 1] 

[12, 45, 20] 

••1t•~~-
Example 2. Balancing Chemical 

Equations Revisited 

(10) 

0 + r . 

(11) • 

In Example 1 of Section 4.3 we obtained a system of equations for 
balancing the atomic equations for the chemical reaction in which 
permanganate (Mn04) and hydrogen (H) ions combine to for1n man
ganese (Mn) and water (H2O): 

(12) 

where H represents hydrogen and O oxygen. We let x1 be the number 
of pe11nanganate ions, x2 the number of hydrogen ions, x3 the number 
of manganese atoms, and x4 the number of water molecules. To have 
the same number of atoms in the molecules on each side of the reaction, 
we obtained the system of equations 

H: X2 = 2x4 

Mn: Xi = X3 (13a) 

0: 4X1 = X4 
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• 

or 

.t-, .... -2x4 = 0 

== 0 

-x4 = 0 

(13b) 

Notice that we have four unknowns but only three equations. When 
we solved system ( 13b) using elimination by pivoting [pivoting on 
entries (2, I)~ (1, 2), (3, 3)], we obtained 

x") - 2x4 
- 0 X2 - 2x4 - --

I - 0 or - 1 ( 14) X1 - 4X4 - Xi - 4X4 

~l'3 
1 - 0 X3 - 1 

- 4 .. t4 - - 4X4 

As vectors, the solutions in (14) have the fo1111 

or ( 15) 

These vectors fo1111 the null space for the system ( l 3b). 
For example, if x4 == 4, then ~t2 = 8, x 1 = x3 = 1, and the 

reaction equation becomes 

The solution we obtain makes the amounts of the first three types 
of molecules fixed ratios of the amount of the fourth type, which we 
are free to give any value (i.e., x4 is a free variable). In another series 
of pivots, the final free variable might end up being x 1• 

-8x1 + .,t2 - 0 x., - 8x1 - --
-XI + X3 - 0 or X3 - x, (16) - -

-4x l + X4 == 0 X4 = 4x1 

yielding solution vectors 

or (17) 

Holvever we formulc1te the solt,tion of ( 13b ), ive allvay.~ have the sa,ne 
set of vectors, name/),, the 11ull space of the coefficient 1nat1·ix in ( 13b ). 
For example, the vector [l, 8, 1, 4] in (17) is a multiple of the vector 
[!, 2, l, I] in (15). • 

Examples 1 and 2 show us how to dete1111ine the null space of any 
matrix. We simply apply elimination by pivoting to the homogeneous system 
Ax = 0 and reduce it to the for111 (14), from which we obtain the null-space 
vectors as expressed in ( 15). 
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Example 3. The Null Space of the 
Frog Markov Chain 

We have already perfo11ned elimination by pivoting on this transition 
matrix A in Example 6 of Section 3.3 when we were trying to invert 
the matrix. We do the pivoting again, but now the right-side vector 
is 0. 

.50 .25 0 0 0 0 P1 0 

.50 .50 .25 0 0 0 P2 0 

0 .25 .50 .25 0 0 p3 0 

0 0 .25 .50 .25 0 p4 0 

0 0 0 .25 .50 .25 Ps 0 

0 0 0 0 .25 .50 P6 0 

Pivoting on entries (1, 1), (2, 2), (3, 3), (4, 4), and (5, 5), we obtain 

1 0 0 0 0 1 Pi 0 

0 1 0 0 0 -2 Pi 0 

0 0 1 0 0 2 p3 0 

0 0 0 1 0 -2 p4 0 

0 0 0 0 1 2 Ps 0 

0 0 0 0 0 0 P6 0 (18) 

P1 + P6 = 0 

P2 - 2p6 = 0 

or p3 + 2p6 = 0 

p4 - 2p6 = 0 

Ps + 2p6 = 0 

Equations (18) express the first five pi's in terms of p6 . Rewriting (18), 
we get 

and thus the solutions to Ap = 0 have the form 

[ - p6 , 2p6 , - 2p6 , 2p6 , - 2p6 , p6 ] or p6[- 1, 2, -2, 2, - 2, I] 

(19) 

The vectors in ( 19) are the null space of A. 
We can add a null-space vector p0 like ( 19) to a probability 

vector p, and if Ap = p', then also A(p + p0) = p' [this fact is 
Theorem 1, part (ii)]. For example, we found earlier that p* = 
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[. l, .2, .2, .2, .2, . l] is the stable distribution for the frog Markov 
chain, so that Ap* = p*. So for any null-space vector p0

, we have 
A(p* + p0

) = Ap* = p*. Suppose that we select for the null-space 
vector p0 = [-.1, .2, -.2, .2, -.2, .l] [withp6 = .1 in (19)]. 
Then 

p * + Po = [ . 1 , . 2 , . 2, . 2, . 2 , . 1] + [ - . 1 , . 2, - . 2, . 2, - . 2 , . 1] 

[0, .4, 0, .4, .2] 

Thus if we start with distribution [0, .4, 0, .4, 0, .2], we will reach 
the stable distribution p* after just one period. (The reader should 
verify this result numerically.) • 

Example 4. A Two-Variable Null Space 

The following system of equations fo1med constraints in the transpor
tation problem presented in Section 4.6; the names of the variables 
have been changed for simplicity. (Background: The first equation 
represents the fact that the amount x1 of food shipped from the first 
warehouse to college A plus the amount x2 shipped from the first ware
house to college B equals 20, the amount off ood in the first warehouse. 
The other equations represent the amounts available at the second and 
third warehouses and the amounts needed at colleges A and B. There 
are many solutions-ways to ship the food between the three ware
houses and the two colleges. In Section 4.6 each xi had an associated 
cost and we sought to minimize the total cost.) 

X1 + X2 = 20 

X3 + X4 30 

X5 + x6 = 15 (20) 

X1 + X3 + X5 = 25 

X2 + X4 + x6 = 40 

To change from one solution x* of (20) to another (cheaper) solution 
x**, we would add some null-space vector to x* according to Theo
rem 1. To find the null space, we solve the associated homogeneous 
system 

X1 + X2 = 0 

X3 + X4 = 0 

X5 + x6 = 0 (21) 

X1 + X3 + X5 =0 

X2 + X4 + x6 = 0 

Pivoting on entries (1, 2), (2, 4), (3, 6), (4, 3), we obtain 

• 
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X1 + X2 =0 

+ X4 - X5 = 0 
X2 = -xl 

-x l + X5 + x6 = 0 
X4 = X1 

X5 or 

X1 + X3 + X5 =0 
x6 = - X5 

X3 - -x -x -
0 = 0 l 5 

(22) 

The solutions in (22) to the homogeneous system (21) produce the set 
of null-space vectors 

Breaking the x1 and x5 components apart, we can rewrite (23) as 

x 1 [ 1 , - 1 , - 1 , 1, 0, 0] + x 5 [ 0, 0, - l , 1 , 1 , - 1 ] (24) 

So the null space is all linear combinations of the two vectors 

Xi == [ 1, - 1, - 1, 1, 0, O] and x! = [ 0, 0, - 1, 1, 1, - 1]. 

Suppose that we are given the solution to (20) x: x1 = 20, 
x3 = 5, x4 = 25, x6 = 15, andx2 = x5 = 0. Thus 

X = [20, 0, 5, 25, 0, 15] 

Also suppose that we want a solution in which x2 = 10 and 
x5 = 5. We can achieve this by adding the right linear combination 
of null-space vectors Xi == (1, - 1, - 1, 1, 0, OJ and x1 = 
(0, 0, - 1, 1 , 1 , - 1]. Remember that adding any null-space vector 
to a solution vector yields another solution vector. 

To make x2 == 10 (it is now 0), we can add to x the vector 
- lOxi = [ -10, 10, 10, -10, 0, O]. To make x5 = 5 (also now 0), 
we can add to x the vector 5x1 == [O, 0, -5, 5, 5, -5] to x. So our 
desired solution is 

x - IOxi + 5xt [20, 0, 5, 25, 0, 15] 

+ [ -10, 10, 10, - 10, 0, O] 

+ [O, 0, - 5, 5, 5, - 5] 

[ 10, 10, 10, 20, 5 , 10] • 

The null space in Example 4 is a little more complicated. If we had 
performed a different pivot sequence in (22), the two vectors that generated 
the null space would be ditterent from the two vectors in (24). It is not even 
obvious that we would end up with two vectors. Maybe this same null space 
could be expressed as combinations of three vectors. Could it be expressed 
as multiples of a single vector? Probably not. 
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In Section 5.2 we use the theory of vector spaces to prove that any 
pivot sequence yields the same number of vectors for building the null space. 

--- ~ .:-- - -~, - - = I 

Optional Example on the Null Space of the 
Differentiation Trans/ ormation 

In the Interlude before this chapter, we noted that the operation D(f (.r:)) 
of taking the derivative of a function f(x) was a linear transformation 
of functions. D acts on the abstract vector space of all differentiable 
•functions. 

Let us deten11ine the null space of the differentiation transf or
mation and see how the results in Theoren1 1 apply to D. Null(D) is 
the set of functions f(x) for which D(f(.t)) = 0, that is, f'(x) = 0. 
These are just the constant functions f(.,t) = c· for son1e constant c. 

Null(D) = {al] constant functions} 

Suppose that we want to solve the problem 

D(f(x)) = 9x2 + x [find f(J:) such that f' (x) 9x2 + .,T] 

(25) 

By Theorem 1, part (ii), if f*(x) is a solution to (25), then f*(x) 
plus any constant function [i.e., plus any men1ber of Null(D)] is also 
a solution, say, f:~(x) = 3x3 + .,t"2 /2. Tl1en 3x3 + x 2 /2 + c, for any 
constant c, is also a solution. 

Conversely, by Theorem 1, part (iv), every solution to (25) can 
be written as the sum of a specific solution f*(,t) to (25) plus some 
constant function [a 1nember of Null(D)]. In this case, every solution 
has the fo1111 3x3 + x 2 /2 + c. This result is the basic formula about 
the form of the i11tegral (the antiderivative) of a function. • 

We close this discussion of null spaces by noting a close relationship 
between null spaces and eigenvectors. An eigenvector u, with associated 
eigenvalue X., satisfies the n-by-11 homogeneous system 

(A - X.l)u = 0 (or more familiarly, Au = X.u) 

Thus an eigenvector associated with A is a member of the null space of 
(A - Al). For example, if A is the transition matrix of the frog Markov 
chain, then the stable distribution p* satisfies Ap* = p* or (A - l)p* = 
0, o p* i in the null space of A - I. 

Conversely, Au = 0 is equivalent to (A - 0l)u = 0. So any nonzero 
vector u in the null space of A is an eigenvector of A associated with 
eigenvalue A = 0. 

So far we have considered systems with multiple solutions. Next we 
discuss systems with no solution-where Ax = b cannot be solved for some 
vectors b. Recall that the set of b' s for which Ax = b can be solved is 
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called the range of A. The following simple growth model presents a system 
with no solution. 

< 

~;--:t~··:i ·• :;,;-.· ;,,' .,. ,, 

Example 5. An Inconsistent System of Equations 

Let c1 be the value of currency on isle 1 and c2 the currency on isle 
2. Suppose that the growth equations for currency in the next period 
are 

• 

C l -
1 - (26) 

Consider the problem of picking ct and c2 so that in the next period, 
isle 1 has $100 more and isle 2 has $200 less: c~ = c1 + 100 and 
c ~ = c2 200. Then c 1, c2 must satisfy the equations 

or 

C1 + 100 = C~ = 
C2 200 == C~ = 

.4c1 + .5c2 

.6C 1 + .5C2 

.5C2 == -100 

- .6C1 + .5C2 == 200 

When we pivot on entry (1, 1) in (27), we obtain 

C 
5c _ 100 

1-62- 6 

0 == -100 

The second equation in (28) is an impossibility. 

(27) 

(28) 

• 

A system of equations is called inconsistent if, when reduced, it yields 
an impossible equation. If a system of equations is inconsistent, no solution 
is possible. Conversely, if no solution is possible, elimination must reveal 
an inconsistency-otherwise, elimination will produce a solution. 

An extreme case of inconsistency arises in regression. 

Example 6. The Regression Model y = qx + r as 
System of Equations to Be Solved 

Suppose that we have the set of (x, y) points (1, 3), (2, 5), (3, 4), 
(3, 6), (4, 7), and (4, 6). The x-value might represent the number of 
years of college and they-value the score on some graduate admissions 
test. We want to fit a line of the form y = qx + r to these data. That 
is, we want the best possible estimates Yi for each Yi when y is the 
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linear function qx + r. Trying to draw a line that actually passes 
through these six points is equivalent to trying to so.Ive the system of 
equations 

3 = 1q + r I 1 3 

5 = 2q + r 2 I 5 

4 = 3q + ,. or y = Xq, with X = 3 1 4 

6 = 3q+ ,. 3 1 ' 
y 

6 
q = [q, r] 

7 = 4tJ + r 4 1 7 

6=4q+,· 4 1 6 

(29) 

Clearly, no solution is possible here in the regular sense-system (29) 
is inconsistent. However, an approximate solution to y = Xq is pro
vided by the least-squares fit of regression theory. • 

Let us tum our attention to the task of dete111iining the range of a 
n1atrix, that is, to finding those b' s for which the system Ax = b has a 
solution. 

Example 7. Range of a Projection Transformation 

In Section 4. I we observed that the linear transfor111ation 

.,t' .5x + 
.5x + 

(30) 

projects a11 · ( .. t, y) points onto the line x' = y': It maps any lx, y] to 
the point [(): + y)/2, (x + )')/2) (see Figure 4.3). 

Let A be the coefficient matrix in (30). The range of A is the set 
of vectors [x', y'] such that x' = y'. Let us derive this defining equation 
for the range directly from A. Letting w = [x, y] and w' = (.,r', y'], 
we rewrite the transfo11nation Aw = w' in (30) as Aw = lw': 

.5.,,· + .5y = 1x' + 0)11 

.5 .. t + .5y = Ox' + ly' 
(31) 

Now we try to perfor1n elimination by pivoting to convert 
Aw = lw' into the form Iw = A- 1w' as we do when computing the 
inverse of A. We subtract the first equation from the second (to elim
inate x from the second equation) and divide the first equation by .5 
to obtain 

.,r + y = 2x' (32) 
0 = - x' + y' 
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The second equation in (32), which can be rewritten x' = y' gives a 
condition that must be true for any w' = [x', y'] satisfying Aw = 
Iw'. We have verified that vectors [.t', )''] with x' = )11 fo1111 the range 
of A. • 

Example 8. The Range of a Refinery 
Production Problem 

Consider the following variation on our refinery production problem. 
Now there are just two refineries and their collective output vector 
[b 1, b2 , b3] is given by 

Heating oil: 

Diesel oil: 

Gasoline: 

20x1 + 4x2 = b1 

10x1 + 14x2 b2 

5x1 + 5x2 = b3 

(33) 

We seek an equation describing possible output vectors. That is, if A 
is the coefficient matrix of (33), we seek a defining constraint on the 
range vectors of A. 

We use the technique introduced in Example 7. We write the 
system Ax = b in (33) as Ax = lb and perform elimination by 
pivoting at entry (I, I) and then entry (2, 2) in the augmented matrix 
[A I]: 

20 4 1 0 0 1 .2 1 0 0 20 

10 14 0 I 0 ) 0 12 1 1 0 -2 

5 5 0 0 1 0 4 1 0 I - 4 (34) 
I 01 7 1 0 120 -60 

) 0 1 1 1 0 - 24 12 

0 0 1 1 1 - n - 3 

The reduced augmented matrix in (34) corresponds to the system of 
equations 

Xi 1~ob1 + 6
1ob,, -

.,t 2 = - 2~b 1 + 1
1
2b2 (35) 

0 -bb1 - ~b2 + b3 

The last equation in (35) can be rewritten as 

(36) 

This is the range constraint we were looking for. In ter 111s of refinery 
production, it means that we can achieve any production vector b in 

• 
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which the gasoline production (b3) equals 1
1
2 the sum of the heating 

oil production (b1) plus three times the diesel oil production (b2). 

Suppose that heating oil (b 1) and diesel oil (b2) are the outputs 
of primary interest and we want b1 = 300 and b2 = 300. Then we 
pick a b3 using (36) to get a vector in the range. We set 

b3 = 1
12(b1 + 3b2) = 1

12(300 + 3 · 300) = 100 

Now we can dete1111ine the appropriate production levels x 1, x2 

from the first two equation in (35). With b = [300, 300, 100], then 

X1 = 1~ob1 - s~b2 = 1~0 • 300 - 6
1
0 • 300 

- 17.5 - 5 = 12.5 

x? = - - 2
14b1 + 1

12b2 = - 2
1
4 • 300 + 1

1
2 • 300 

- - 12.5 + 25 = 12.5 

(Note that some vectors in the range may be infeasible because 
they would make x 1 or x2 negative.) • 

Let us try out this method for finding the range of the transition matrix 
A in our frog Markov chain. 

Example 9. Range of Frog Markov Chain 

As in Example 8 we try to convert Ap = Ip' into Ip = A - 1p' using 
elimination by pivoting. We already attempted this inversion in Ex
ample 6 of Section 3.3. We started w·ith the augmented matrix of 
Ap = Ip'. 

.50 .25 0 0 0 0 I 0 0 0 0 0 

.50 .50 .25 0 0 0 0 1 0 0 0 0 

0 .25 .50 .25 0 0 0 0 1 0 0 0 
p' 

0 0 · .25 .50 .25 0 
p= 

0 0 0 1 0 0 

0 0 0 .25 .50 .50 0 0 0 0 I 0 

0 0 0 0 .25 .50 0 0 0 0 0 1 

and ended after pivoting on entries (1, 1), (2, 2), (3, 3), (4, 4), and 
(5, 5) with 

1 0 0 0 0 1 

0 I 0 0 0 -2 

0 0 1 0 0 2 

0 0 0 I 0 -2 
p 

0 0 0 0 1 2 
0 0 0 0 0 0 (37) 
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• 

10 -8 6 -4 2 0 

-16 16 -12 8 -4 0 

12 -12 12 -8 4 0 
p' 

-8 8 -8 8 -4 0 

4 -4 4 -4 4 0 
-1 1 -1 1 -1 1 

Again the last equation in (37) gives the constraint required for 
a vector p' to be in the range of A, namely, 

0 = -p~ + P~ - Pi + P~ - p; + P~ 

or 

'+ '+' '+ '+' P2 P4 P6 = P1 P3 Ps (38) 

This is a nice simple fo1·mula that allows us to test whether a probability 
vector p' can be a next-state distribution. 

It is left as an exercise for the reader to explain in terrns of the 
frog Markov chain model why even-state probabilities must equal odd
state probabilities. 

Before leaving this example, note that we can apply this tech
nique for determining the range not only to A but to powers of A. The 
range of Ak tells us possible distributions for the Markov chain after k 
periods. What happens as k goes to infinity? The range should contract 
to multiples of the stable distribution [.l, .2, .2, .2, .2, .l]. This 
behavior is explored in Exercise 25. • 

To summarize what we now know about the range of an m-by-n matrix 
A, elimination by pivoting when applied to Ax = lb results in one of three 
possibilities [ cases 2 and 3 may both apply]: 

1. The reduced form of A is I. Then for each b, Ax = b has a unique 
solution, and Null(A) = 0. 

2. The reduced form of A contains one or more rows of zeros. Then the 
right sides of these zero rows yield defining constraints that a vector b 
in the range of A must satisfy. 

3. The reduced form of A contains an m-by-m I plus additional columns. 
Then, for each b, Ax == b has an infinite number of solutions (the 
additional columns give rise to the null-space vectors). 

Section 5.1 Exercises 

Summary of Exercises 
Exercises 1-4 involve plotting and graphically solving systems of equations. 
Exercises 5-17 reqµire finding null spaces and related particular solutions 
to various matrix systems. Exercises 18-25 require finding a constraint equa-
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tion for the range and finding particular range vectors. Exercises 26-28 are 
some simple theory questions. 

1. Plot the lines of solutions to the following systems of equations. 
(a) 2x + 3y = 10 (b) x - 2y = -4 

6x + 9y = 30 - 3x + 6y = 12 

2. Describe and sketch the solution sets, if any, of the following systems 
of ,equations. 
(a) x + 2y + 3z = 0 (b) 2x + y + z = 3 

4x + 3y + 5z = 0 

-4x + 2y + 2z = 0 

(c) X + 3y - Z = 5 

2x + y + 2z = 8 

3x - y + 5z = 11 

(e) 2x + 2y + 2z = 6 

x+y-z= 3 

-x - y + 3z = -7 

(d) 

X - 2y - 3z = 2 

3x + 4y + 5z = 3 

x+ 2y + 3z = 3 

X - y + z = 4 

2x + l0y + l0z = 8 

3. For each of the following systems of equations, plot each line and from 
your drawing determine whether there is no solution, one solution, or 
an infinite set of solutions. 
(a) 3x - 2y = 5 (b) 3x - 2y = 5 (c) 3x - 2y = 5 

- 6x + 4y = 10 2x - 3y = 5 9x - 6y = 15 

4. For each of the systems of equations in Exercise 2, sketch as best you 
can the plane dete11nined by each equation. From your sketch, guess 
whether there is no solution, one solution, or an infinite set of solutions. 
Verify your guess by solving the system. 

5. Give a vector, if one exists, that generates the null space of the follow
ing systems of equations or matrices. Which of these seven sys
tems/ matrices are invertible? [Consider the coefficient matrix and ig
nore the particular right-side values in parts ( e) and (f).] 

1 -2 
(a) 

-2 4 

-1 3 
(c) 5 - 1 

2 I 

1 

3 

2 

(e) X - 2y + Z = 6 

-x + y - 2z = 4 

(b) 

4 --1 

2 5 
-2 3 

2 

1 

-1 

2 1 1 

(d) 1 -2 -3 

3 4 5 

(f) X - y + Z = 3 

x+ y+z=3 

2x - 3y + z = 7 
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(g) The coefficient matrix X in the six regression equations in Exam
ple 6. 

6. For the following matrices, describe the set of vectors in the null space. 

(a) 

• 

(c) 

-3 4 

2 -1 

I 

I 

1 I 

1 0 

0 0 1 

0 

0 

I 

1 0 1 

0 1 1 

l O I 

I 1 1 

0 

0 

1 

2 

(b) I 

1 

1 

2 

l 

5 0 

4 -3 

3 -1 

7. (a) For A in Exercise 6, part (a) and b = [ I 0, 10], if Ax = b has the 
given solution x' = [O, 0, IO], find the family of all solutions to 
Ax= b. 

(b) Find a solution to Ax = b in part ( a) with x 1 = 3. 

8. (a) For A in Exercise 6, part (b) and b = [30, 30, 20], if Ax = b 
has the given solution x' [10, 10, 0, O], find the family of all 
solutions to Ax = b. 

(b) Find a solution to Ax = b in part (a) with x, = 5. 

9. (a) For A in Exercise 6, part (c) and b = [10, 15, 5, 0, 15], if 
Ax = b has the given solution x' = [5, 0, 5, 0, 5], find the family 
of all solutions to Ax = b. 

(b) Find a solution to Ax == bin part (a) with x4 == 10 and x5 = 10. 
(c) Find a solution to Ax = bin part (a) with x1 = 10 and x2 = 5. 

10. Consider the modified refinery system from Example I: 

20x1 + 4x2 + 4x3 = 700 

10x1 + 14x2 + 5x3 = 500 

Given the solution x 1 = 31, x2 = IO, x3 = IO, use the appropriate 
null-space vector to obtain a second solution in which the following is 
true. 
(a) x3 = 22 (b) x2 = 25 (c) x1 = 28 

11. Consider the following refinery-type problem: 

10x1 + 5x2 + 5x3 = 300 

5x1 + 10x2 + 8.,t3 = 300 
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(a) Find the null space of the system. 
(b) Given the solution x 1 = x2 = 20, x3 = 0, find a second solution 

with x3 = 10. 
(c) Repeat part (b) to find a second solution with x 1 = 15. 

12. The rabbit-fox growth model from Section 1.3, 

R' = R + . lR - . l5F 

F' = F + . IR - .15F 

had stable values for which R' = R and F' = F when the monthly 
change was zero: 

R = R' > . lR - .15F = 0 

F = F' > . IR - .15F = 0 

Solutions for these homogeneous equations were of the fo1111 [R, F] 
r[3, 2]. Suppose we want a vector [R, F] that remains stable when 30 
rabbits and 30 foxes are killed each month by hunters . 

R = R + . lR - .15F - 30 . lR 
) 

F = F + . lR - .15F - 30 . lR 

. 15F = 30 

.15F = 30 

Find the family of stable population vectors in this case by adding 
one particular solution to the set of homogeneous solutions. Find a 
stable vector with F = 400. 

13. Write out a system of equations required to balance the following chem
ical reaction and solve. 

where S represents sulfur, N nitrogen, H hydrogen, and O oxygen. 

14. Write out a system of equations required to balance the following chem
ical reaction and solve. 

15. 

. 
PbN6 + CrMn20 8 ~ Cr20 3 + Mn02 + Pb30 4 + NO 

where Pb represents lead, N nitrogen, Cr chromium, Mn manganese, 
and O oxygen. 

Find the null space for these Markov transition matrices. 

I .5 0 .4 0 .2 .5 0 .5 
(a) 0 0 0 (b) .3 .5 .4 (c) 0 I 0 

0 .5 1 .3 .5 .4 .5 0 .5 
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.50 .25 0 0 0 2 1 0 0 0 0 3 3 

.50 .50 .25 0 0 1 1 1 0 0 0 3 3 3 

(d) 0 .25 .50 .25 0 0 1 1 1 0 0 3 3 3 
(e) 

0 0 .25 .50 .50 0 0 1 1 1 0 3 3 3 

0 0 0 .25 .50 0 0 0 1 1 1 
3 3 3 

0 0 0 0 1 2 
3 3 

2 2 0 0 0 0 1 1 0 0 0 0 3 3 2 2 

1 1 2 0 0 0 1 0 1 0 0 0 3 6 3 2 2 

0 1 1 2 0 0 0 1 0 1 0 0 
(f) 

6 6 3 2 2 
(g) 

0 0 1 1 2 0 0 0 1 0 1 0 6 6 3 2 2 

0 0 0 1 1 2 0 0 0 l 0 1 
6 6 3 2 2 

0 0 0 0 1 .l 0 0 0 0 .1 1 
6 3 2 2 

16. For each transition matrix A in Exercise 15, find the set of probability 
vectors p such that the next-period vector p' ( = Ap) is a stable prob
ability vector (as was done in Example 3). 

17. Prove that if A is the 3-by-3 transition matrix of some Markov chain 
and the null space of A is infinite, then either two columns of A are 
equal or else one column is the weighted average of the other two 
(one-half the sum of the other two). 

18. Give a constraint equation, if one exists, on the vectors in the range of 
the matrices in Exercise 5. 

19. (a) For the matrix A in Exercise 5, part (a), find a range vector b in 
which b 1 = 5. 

(b) For the b in part (a), solve Ax = b (give the family of solutions 
using Theorem 2). 

20. Give a constraint equation, if one exists, on the vectors in the range of 
the matrices in Exercise 6. 

21. (a) For matrix A in Exercise 6, part (b), find a range vector bin which 
b 1 = 5 and b2 = 2. 

(b) For the b in part (a), solve Ax = b [give the family of solutions 
using Theorem 1, part (iv)]. 

22. (a) For matrix A in Exercise 6, part (c), find a range vector bin which 
b 1 = b2 = b3 = 15 . 

(b) For the b in part (a), solve Ax = b [give the family of solutions 
using Theorem 1, part (iv)]. 

(c) Repeat part (a) to find a range vector with b1 = 20, b3 = 10, 
b4 = 20. 
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23. Give a constraint equation, if one exists, on the probability vectors in 
the range of the transition matrices in Exercise 15. 

24. By looking at the transition matrix for the frog Markov chain, explain 
why the even-state probabilities in the next period must equal the odd
state probabilities in the next period. 

Hint: Show that this equality is true if we start (this period) fron1 a 
specific state. 

25. Compute the constraint on the range of the following powers of the frog 
transition matrix. You will need a matrix software package. 
(a) A2 (b) A3 (c) A 10 

26. Show that the range R(A) of a matrix is a vector space. That is, if b 
and b' are in R(A) (for some x and x', Ax = b and Ax' = b'), show 
that rb + sh' is in R(A), for any scalars r, s. 

27. Using n1atrix algebra, show that if x1 and x2 are solutions to the matrix 
equation Ax = b, then any linear combination x' = cx1 + dx2 , with 
c + d = 1, is also a solution. 

28. Show that the intersection V1 n V2 of two vector spaces V1, V2 is again 
a vector space. 

Theory of Vector Spaces 
Associated with Systems 
of Equations 

In this section we introduce basic concepts about vector spaces and use them 
to obtain important info1111ation about the range and null space of a matrix. 
Recall that a vector space V is a collection of vectors such that if u, v E V, 
then any 1 in ear combination ru + sv is in V. In Section 5. 1 we introdt1ced 
the range and null space of a matrix A: 

Range(A) = {b : Ax = b for some x} 
Null(A) = {x : Ax = O} 

We noted that Range(A) and Null(A) are both vector spaces. 
In Examples 2, 3, and 4 of Section 5 .1 we used the elimination process 

to find a vector or pair of vectors that generated the null spaces of certain 
matrices. For example, multiples of [ - I, 2, -2, 2, - 2, 1] forn1ed the 
null space of the frog Markov transition matrix. In Examples 7, 8, and 9 of 
Section 5. 1 , we used elimination to find constraint equations that vectors in 
the range must satisfy. For the frog Markov matrix, the constraint for range 
vectors p was p 1 + p3 + Ps = P2 + p4 + P6· 
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The number of vectors generating the null space and number of con
straint equations for the range were dependent on how many pivots we made 
during elimination. Our goa] in this section is to show that the sizes of 
Null(A) and Range(A) are independent of how elimination is perfor111ed. 

The vector space V generated by a set Q = { q 1 , q2 , . . . , q,} of 
vectors is the collection of all vectors that can be expressed as a linear 
combination of the q1' s. That is, 

For example, if Q consists of the unit ,i-vectors e1 (with all O's except for a 
1 in position j), then Vis the vector space of all n-vectors, that is, euclidean 
n-space. Another name for a generating set is a spanning set. 

The column space of A, denoted Col (A), is the vector space generated 
by the column vectors a.f of A. When we write Ax = b as 

af .. t 1 + af x2 + · · · + a~x,, = b 

we see that the system Ax = b has a solution if and only if b can be 
expressed as a linear combination of the column vectors of A, or 

Lemma 1. The system Ax = b has a solution if and only if b is in 
Col(A). Equivalently, Col(A) = Range(A). 

The components xi of the solution x give the weights in the linear 
combination of columns that yield b. Note that Lemma 1 is true for any 
m-by-n matrix A and any m-vector b. 

Example 1. Refinery Problem as a Column 
Space Problem 

The refinery problem introduced in Section 1.2 involved three refiner
ies each producing different amounts of heating oiJ, diesel oil, and 
gasoline from a barrel of crude oil. Production levels of each refinery 
were sought to satisfy a vector of demands. The resulting system of 
equations was 

Heating oil: 

Diesel oil: 

Gasoline: 

20x1 + 4x2 + 4x3 

10x1 + 14x2 + 5x3 

Sx, + 5x2 + 12x3 

500 

850 
1000 

I 

But this system is just seeking to express the demand vector [500, 850, 
1000] as a linear combination of the production vectors of the three 
refineries. That is, we seek x 1 , x2 , x3 such that 

20 4 

X1 10 + X2 14 

5 5 

4 

+ x3 5 
12 

500 
850 

1000 • 
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Up to this point, solving a system Ax = b was viewed as a problem 
about the rows of A, that is, about the equations specified by the rows. 
Gaussian elimination involves forming linear combinations of the equations 
(rows of A) to obtain a new reduced system that can be solved by back 
substitution. Lemma 1 says that solving Ax = b can equally be viewed as 
a problem about a linear combination of the columns of A. This vector 
approach to solving Ax = b has an associated geometric picture . 

. s, 

Example 2. Geometric Picture of Solution to a 
System of Equations 

Consider the system of equations 

X1 + X2 = 4 
X1 2x2 = 1 

or 
1 

1 

1 

- 2 
4 

1 

Solving by elimination, we find that x 1 3 and x2 = 1. Figure 5.3 
graphs this solution in vector-space ter111s, showing the right-side vec
tor [4 , 1] as a linear combination of the column vectors [1, I] and 
[1 , - 2]. Note that the picture gives no insight into why x 1 3, 
x2 = 1 is the solution. • 

To determine the size of Range(A), we analyze the structure of 
Col(A), the column space of A, which by Lemma 1 equals Range(A). The 
key question is: How many of the columns of A are actually needed to 
generate Col(A). Some columns in A may be redundant. 

A set of vectors a 1, a2, . . . , a1 is called linearly dependent if one 
of them can be expressed as a linear combination of the others. Another 
way to say this is that there is a nonzero solution x to 

Figure 5.3 

3 

2 

1 

- I 

or, equivalently, 

/ 
/ 

( 1,-2) 

3( I , 1) 

') / 3 - / 
/ 

/ 
/ 

\ 
\ 
\ 
\ 
\ 

/ 
/ 

4 

Ax = 0 (1) 

( 4, 1) 

3 DJ + I L~] = [ ~] 
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where A is the matrix whose columns are the vectors 3;. Linear dependence 
is equivalent to (1) because if X; =I= 0, we can rewrite (1) as 

or 

x., -- - 3 ... 
2 

X· l 

Xn 
- -3 n 

X · l 

So any 3;, for which -1::; =I= 0, can be written as a linear combination of the 
other a s. 

A set of vectors arc linearly independent if they are not linearly 
dependent. For example, the columns of an identity n1atrix 

1 0 0 

I= 0 1 0 

0 0 I 

are linearly independent. If vectors a; are linearly independent, then the only 
solution to .. t181 + ... + .tnan = 0 (i.e.' Ax = 0) can be X = 0. 

Exa,nple 3. Example of a Linearly Dependent 
Set of Columns 

1 I 4 
Consider the matrix A = 

1 - 2 1 
. By inspection we see that 

1 4 

l 
3 + 

1 

So the columns of A are linearly dependent. 

1 

-2 
(2) 

The following method illustrates a systematic way to find this 
linear dependence. We perfo11n elimination by pivoting on A. We pivot 
on entry (1, 1) and then on (2, 2): 

I I 

1 - 2 
4 

1 

I I 4 
-• > A* 

0 - 3 - 3 

where A* represents the reduced fo1 rt'! of A. 

I O 3 

0 1 1 

Remember that x is a solution to Ax = 0 if and only if x is a 
solution to A *x = 0. Equivalently, there is a linear dependence among 
the colun1ns of A if and only if there are is linear dependence among 
the columns of A*. But the first two columns of A* are unit vectors 
(they form the 2-by-2 identity matrix). So trivially, the third column 
of A* is dependent on the first two: 
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3 

I 

l 
3 0 + 

This is exactly the relationship that we found in (2). 

0 

1 
(3) 

• 

If we were to apply the method in Example 3 to the coefficient matrix 
in the refinery problem of Example 1, elimination by pivoting would reduce 
the matrix to a 3-by-3 identity matrix. Since the columns of the identity 
matrix are trivially linearly independent, this means that the original columns 
in the refinery problem were linearly independent. 

We state the method used to find linear dependence in Example 3 and 
its consequences as a theorem. 

Theorem 1 
(i) Let A be any m-by-11 matrix and let A* be the reduced matrix 

obtained from A using elimination by pivoting. Then a set of 
columns of A is linearly dependent (linearly independent) if and 
only if the corresponding columns in A* are linearly dependent 
(linearly independent). 

(ii) Any unpivoted column of A:;: (a colun1n that was not reduced to 
a unit vector) is linearly dependent on the set of columns con
taining pivots. 

(iii) The columns of A* with pivots are linearly independent. The 
corresponding columns of A generate the column space of A. 

The following example illustrates this method further. 

Example 4. Redundant Columns in 
Transportation Problem Constraints 

In Example 4 of Section 5 .1 we examined the following system of 
equations (that were transportation problem constraints seen in Section 
4.6). 

X1 + X2 = 20 

X3 + X4 = 30 

X5 + "'~6 = 15 
-

X1 + X3 + X5 = 25 

X2 + .-\:"4 +x6 =40 

with coefficient matrix A 

1 1 0 0 0 0 

0 0 I I 0 0 

A= 0 0 0 0 1 1 (4) 

1 0 1 0 1 0 

0 I 0 1 0 1 
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In Section 5 .1 we perfor111ed elimination by pivoting on A using entries 
( 1, 2), (2, 4), (3, 6) and ( 4, 3). The reduced matrix A* was 

1 1 0 0 0 0 
-1 0 0 1 -1 0 

A* 0 0 0 0 l I (5) 

1 0 1 0 1 0 

0 0 0 0 0 0 

First note that the last row of zeros can be ignored. Columns 2, 4, 6, 
~ and 3 of A* (in that order) are the unit vectors of the 4-by-4 identity 

matrix. Columns I and 5 of A* are each linearly dependent on the 
four unit-vector columns. For example, 

l 1 0 0 
-1 0 1 0 

a'f * a! • 
+ a :r-. 0 0 0 + 0 (6) 32 3· 

1 0 0 1 

0 0 0 0 

The relation ( 6) among columns in A* is mirrored in A, where 

1 I 0 0 

0 0 1 1 

31 32 - 34 + 33: 0 0 0 + 0 

1 0 0 1 

0 I I 0 

Thtts tlze colu,nns wliere pivots we,·e performed, columns 3 2 , 3 3, a4 , 

a11d 3 6, ge,zerate the range of A. • 

From Theorem 1, part (iii), it follows that the ,zumber of pivots per
formed equals the 11umber of linearly i11dependent col,-1mns that generate the 
column space of' A. 

A basis of a vector space V is a minimal-sized set of vectors that 
generate V. Implicit in this definition is the fact that a basis is a set of 
li11early i11depe1zdent vector·s. As an example, the ,z coordinate vectors ej 
for1n a basis for the space of all n-dimensional vectors. Since a basis is a 
minimal-sized generating set, every generating set contains a basis. For 
example, while the column pace of a matrix A is defined to be generated 
by the columns of A, only the pivot columns are needed to generate the 
co]umn space, as shown in Examp]e 4. 

The fallowing result, which we prove in two ways, shows the theo-
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retical relationship among the concepts of basis, linear independence, and 
unique solution. 

Proposition. If { v 1, v2 , ... , v n} is a basis for a vector space V, every 
vector in V has a unique representation as a linear combination of the 

Proof 1 (Using the Definitio11 of Linear Independence): Suppose that 
w is a vector in V that has two representations as a linear combination 
of the v,. So 

Then 

w 

w 

0 

• • • 

• • • 

+ anvn 

+ bnvn 

w - w = (a1 - b1)v 1 

and 

+ (a2 - b2)V2 + ... + (an - bn)v n 

(7) 

Since the v,' s fortn a basis and hence are linearly independent, the 
linear combination of vi's in (7) can only equal O if the terms (ai - bi) 
are all zero. So the two representations must be the same. • 

Proof 2 (Using Eli,nination). To find the representation of w in terms 
of the vi's, we solve the system of equations for the xi's: 

or Ax= w (8) 

where A has the v;'s as its columns. Since the v;'s are a basis and 
hence linearly independent, we can pivot in every column [otherwise, 
by Theorem 1, part (ii), each unpivoted column is linearly dependent 
on the pivot columns]. Then Ax = w has a unique solution (see the 
summary at the end of Section 5 .1). • 

Proof 2 shows us how to compute the unique representation of a vector 
win tenns of the v;'s, simply solve (8). For example, if v1 = [1, 2, 3] and 
v2 = [O, - 1, 2] are a basis for vector space V and w = [3, 8, 5] is in V, 
then to deter111ine the right linear combination of the vi's to get w, we solve 
the system 

1 0 

2 -1 

3 2 

3 

8 

5 

) 

1 0 

0 1 

0 0 

3 

-2 
0 

(9) 
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Now we prove a critical vector-space lemma that resolves the question 
of whether all pivots sequences have the same length. 

Lemma 2. All linearly independent sets of vectors that generate a given 
vector space V have the same size. Any such set is a basis for V. 

Proof. Let S = {s;} and T = {t;} be two sets of linearly independent 
vectors that generate V. Suppose that S and T have different sizes; for 
concreteness, let Shave four vectors and T have five vectors. Then we 
can use linear combinations of the vectors of S to represent the vectors 
in T. If t 1 = c1s 1 + c2s2 + c3s3 + c4s4 , define the S-coordinate vector 
of t 1 to be [c 1, c2 , c3 , c4]. Consider the equation, defined in ( 1), for 
dependence of the t

1 
(with the t; represented in S-coordinates): 

(10) 

Since the t; are four-dimensional vectors (in S-coo1·dinates), ( 10) is a 
system with four equations in five variables. Solving (10) by elimi
nation by pivoting leaves at least one unpivoted colun1n and hence by 
Theorem 1, part (ii), there is linear dependence among the 5 t;, Con
tradiction. • 

The dimension of a vector space V, written dim(V), is the number of 
vectors in a basis for V. For example, the set of 11 unit vectors ej is a basis 
for '' n-dimensional space''; thus this space does indeed have dimension 11. 

Combining Lemma 2 with Theorem 1, part (iii), we have 

Theorem 2 
(i) The columns of A used in a pivot sequence are a basis for the 

range of A. 
(ii) All pivot sequences have the same size; the size is the dimension 

of the range of A. 

By Theorem 2, it now makes sense to talk about the number of pivots 
in a pivot sequence. The rank of a matrix A, written rank(A), is the number 
of pivots in any pivot sequence. 

Corolla1)7 

Rank(A) = Dim(Range(A)) 

We have been concerned about which sets of columns of A are linearly 
dependent, that is, when there is a nonzero x so that 

or .Ax = 0 (11) 

Such an x in (11) is a vector in Null(A), the null space of A. 
If A* is the reduced matrix, then we know that x is a solution _of 
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Ax = 0 if and only if it is a solution to A *x 0. Thus Null( A* J equals 
Null( A). 

Example 5. Relation Between Null Space and 
Column Space 

Consider the matrix 

1 2 3 1 

A= 1 -2 -1 -3 

-2 3 1 5 

and perfor111 elimination by pivoting. 
Pi voting on entry ( 1 , 1) yields 

1 2 3 1 
0 -4 -4 -4 

0 7 7 7 

Pivoting on entry (2, 2) yields 

A* 
1 

0 

0 

0 

1 

0 

1 -1 

1 1 

0 0 

Clearly, the first two columns of A*, the pivot columns, are a 
basis for the column space of A *-they are linearly independent and 
generate Col(A *). Then by Theorem 1, part (iii), the first two columns 
in A generate Col(A). 

Since Null(A*) = Null(A), a basis for Null(A*) will be a basis 
for Null(A). Looking at A*, we see that 

and (12) 

(where ai denotes the ith column of A*). The vector equations in (12) 
can be rewritten as 

-1 

-ar * + aj = 0 A* 
-1 

- a., or = 0 - 1 

0 
(13) 

1 

ai' - 3i +a!= 0 or A* 
-1 

0 
= 0 

1 
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Let x; = [ - I , - I , 1, 0] and x! = [ 1 , - 1, 0, I]. Since Xj and 

x! are linearly independent (look at their last two entries) and generate 
Null(A *), they for1n a basis for Null(A *) and hence for Null(A). • 

In general, given a reduced matrix A*, each unpivoted column can be 
expressed as a linear combination of the pivoted columns, which are unit 
vectors in A* [ see ( 12)]. This linear combination yields a solution to 
A*x = 0, as shown in (13) . If unpivoted column h of A* has an entry 

a711 in the ith row, the solution x! we obtain is 

* [ * * * 00 X h = - Q 1 h, - a 2 h, · · · , - a ,nlz, , , · . . , 1 , . . . , O] (14) 

where the entries for unpivoted columns are all O except for entry h, which 
is 1 (assuming pivots were perfonned in the first m rows and m columns). 
For example, in Example 5, the fourth column of A* begins 

-1 

1 
• 
• 
• 

(in the two pivot rows), so x! = [l -1, 0, l]. The entries in (14) from 
the unpivoted columns for1n a unit vector, so the set of Xiz 's are linearly 
independent and for111 a basis of the null space of A. 

Observe that every column in A* is now either (i) a unit vector that is 
in the basis of the column space: or else (ii) gives rise to a vector in the 
basis of the null space. That is, every column contributes to the size of the 
range of A or to the diversity of different solutions possible to Ax = b, for 
a given b. 

Theorem 3. Let A be a matrix with n columns. The vectors x';; in (14) 
corresponding to unpivoted columns form a basis for Null(A). Fur
thercnore, 

dim(Range(A)) + dim(Null(A)) - n 

Corollar)' A 
Dim(Null(A)) = n - dim(Range(A)) 

= n - rank(A) 

Corollary B. Any solution x' to Ax = b can be written in the fo11n 

(15) 

where x* is a given particular solution to Ax = band the x1:'s are as 
given in (14) . 
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Pr·oof o.f Corollary B. By Theorem 1, part (iv) of Section 5. l, any 
solution x' can be written x' = x* + x 0

, the sum of a particular 
solution x* and some null space vector x0

• Since the x! generate 

Null(A), any such x0 is some linear combination of the x;, 's. • 

We complete our brief survey of vector spaces of A with Row(A), the 
vector space generated by the rows of A. As noted when elimination was 
introduced in Section 3.2, the elimination process repeatedly replaces a row 
with a linear combination of rows. When rows are zeroed out in the elimi
nation process, they are linearly dependent on the preceding rows in wl1icl1 
pivots were perfor,ned. Conversely, every nonzero row in A* is a pivot row 
(where a pivot was perfor1ned). 

Because the submatrix of A* for111ed by the pivot rows and pivot 
columns is an identity matrix, these pivot rows are linearly independent (see 
Exercises for details) and will be shown shortly to for 111 a basis for 
Row(A). Hence the dimension of the row space equals rank(A) ( == number 
of pivots). 

Theorem 4. Let A be any ,n-by-,z matrix. The maximum number of linearly 
independent rows in A and the maximum number of linearly inde
pendent columns in A are equal. Both are rank(A). That is, 

dim(Row(A)) = rank(A) = dim(Col(A)) 

The results in Theorems 2, 3, and 4 yield several more equivalent 
conditions for when a syste1n of equations has a unique solution. 

Theorem 5. Let A be an 11-by-n matrix. The system Ax = b has a unique 
solution, for any b, if and only if any of the following equivalent 
conditions are satisfied. 

(i) The dimension of Range(A) is 11. 

(ii) The column vectors of A are linearly independent. 
(iii) The dimension of Row(A) is n. 
(iv) The row vectors of A are linearly independent. 
(v) The null space of A has dimension 0 (consists of only the 0 

vector). 

The following example illustrates the uses of Theore1n 5. 

, - : . • . - . I 

- - - - --

Example 6. Row Space Test for Unique Solution 

Let us consider the following variation of our refinery model introduced 
in Section 1.2. Suppose that we change the numbers in gasoline pro
duction so that the third row is the sum of the first two rows. 

Heating oil: 

Diesel oil: 

Gasoline: 

20x1 + 4x2 + 4x3 

IOxL + 14x2 + 5x3 

30.,"t1 + 18x2 + 9x3 

500 

850 

1000 
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Once we observe that the last row in the coefficient matrix is the sum 
( a linear combination) of the first two rows, so that the rows are not 
linearly independent, then we know by Theorem 5, part (iv), that there 
will not be a unique solution to this production problem: either no 
solution or multiple solutions. If we tried to perfor1n elimination, we 
would only be able to pivot twice (if we could pivot in all three rows, 
they would have to be linearly independent). 

Theorem 4 tells us that if the rows are dependent, the columns 
also are. However, that column dependence is far from obvious. • 

We now give a theoretical application of Theorems 3 and 4. Suppose 
that A is m-by-n, where ,n < n. All the columns cannot be linearly inde
pendent, since dim(Col(A)) = dim(Row(A)) and there are only n1 rows, 
m < n. Therefore, rank(A) < m < n. We conclude from Theorem 3, 
dim(Null(A)) = n - rank(A) = 11 - dim(Row(A)) > 0. Then Null(A) is 
infinite and Ax = b cannot have a unique solution: 

Theorem 6. If A is an ,n-by-n matrix, where m < n, the system Ax = b 
can never have a unique solution ( either multiple solutions or no 
solution). 

We close this section with a discussion of another way to interpret the 
elimination process and the rank of a matrix. To do this, we must introduce 
the concept of a simple matrix. 

A simple matrix K is formed by the product c * d of two vectors c 
and d in which c is treated as an m-by-1 matrix and d as a l-by-11 matrix. 
Thus entry k;i of K equals a;bi. We refer to this product c * d as a matrix 
product of vectors. For example, the following matrix product of vectors 
yields a simple matrix. 

(3, -1] * [I, 2, 3] 
3 

-1 
[l, 2, 3] 

3· l 3·2 3·3 

l·l -1·2 -1·3 

3 6 9 

-1 -2 -3 

(16) 

All rows in a simple matrix are multiples of each other, and similarly 
for columns. If we pivot on an entry (i, j) in a simple matrix, the elimination 
computation will convert all other rows to O's (verification is left as an 
exercise). This means that simple matrices have rank 1. 

Simple matrices will be used extensively in Section 5. 5. For now, the 
property of simple matrices of interest is 

Theorem 7. Let C be a m-by-r matrix with columns c.f and D be an r-by
n matrix with rows df. Then the matrix multiplication CD can be 



Sec. 5 .2 Theory of Vector Spaces Associated with Systems of Equations 425 

Then 

decomposed into a sum of the simple matrices cf * df of the column 
vectors of C times the row vectors of D. 

CD = cf* d~ + c~ * d~ + · · · + c; * d: (17) 

One way to verify (17) is using the rules for partitioned matrices, that 
is, we partition C into r m-by-1 matrices (the cf) and partition D into r 
1-by-n matrices (the df); see Exercise 15 of Section 2.6 for details. 

We illustrate this theorem with the following product of two matrices. 

Er~- . , .. 'ii 

Example 7. Decomposition of Matrix 
Multiplication into a Sum of 
Simple Matrices 

Let 

1 1 

C 
1 2 3 

D= 
6 

and 14 
4 5 

17 

12 13 

15 16 

18 19 

lXll + 2Xl4 + 3Xl7 1Xl2 + 2Xl5 + 3Xl8 1Xl3 + 2Xl6 + 3Xl9 
CD= 4Xl1+5X14+6X17 4Xl2+5xl5+6xl8 4Xl3+5xl6+6x19 (lSa) 

--
lXll 1Xl2 1Xl3 

4Xll 4Xl2 4Xl3 
+ 

2 X 14 2 X 15 2 X 16 

5Xl4 5Xl5 5Xl6 
+ 

3Xl7 3Xl8 3Xl9 

6Xl7 6Xl8 6Xl9 
(18b) 

- : * (11 12 13] + ~ * 114 15 161 + ! * (17 18 19] (18c) 

- cc * dR + cc * dR + cc * dR - l I 2 2 3 3 

The first simple matrix cf * df in ( 18c) is a matrix containing the first 
tern1 of each scalar product in the entries of CD in ( 18a). Similarly 
for the second and third simple matrices. • 

We now show how an m-by-n matrix A can be decomposed into a sum 
of k simple matrices, where k = rank(A). Another way to say this is that 
we subtract a set of simple matrices from A to eliminate all entries in A (to 
reduce A to the O matrix). 

Our strategy will be to form a simple matrix K 1 = 11 * u1 whose first 
row equals a1 (the first row of A) and whose first column equals af (the 
first column of A). Then A - K 1 will have O's in its first row and column. 
We form K2 to remove the second row and column of A; possibly we zero 
out additional rows and columns in the process. We continue similarly with 
K3 , and so on. 

Let u 1 = af and let 
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I 

a I l 
ac -
1-

(actually the first entry of 11 is 1, = a 11 / a 1 1). Then the entries of first row 
of 11 * u 1 are 1 (first entry of 11) times u1, which equals u1 ( = af), as 
required. And the entries in the first column of 11 * u1 are 11 times the first 
entry of u1, a 11 • We have 

1 
G21 a i • a 1" G13 

* [ a 11 , a 12, a 13] a21 • • • • • • 
a 11 

a31 a 3 1 • • • • • • 

a 11 

So A - K 1 ( = A - 11 * u1) has zeros in the first row and column. 
Observe that outside the first row and column, the new entry (i, j) in 

A - K 1 equals 

a .. -
lj 

Surprise! This is our old friend the elimination operation [when we pivot on 
entry ( 1, 1)]. Vector I 1 is just the first column in the matrix L of elimination 
multipliers from the A = LU decomposition, and u, is the first row of U 
(which equals the first row of A). So we have shown that when we subtract 
from A, the simple matrix If * of formed by If (the first column of L) and 
uf (the first row of U), we obtain a matrix with O's in the first row and first 
column. This new matrix is just the coefficient matrix (ignoring the first row 
of O's) for the remaining 11 - 1 equations in Ax = b when we pivot on 
entry ( 1, 1 ) . 

Repeating this argument, we let K.., = If * u1 and subtracting K 2 from 
A - K 1 will have the effect of next pivoting on entry (2, 2), and zeroing 
out the second row and column. The other K; are defined and perform 
similarly, so ultimately w~ see that 

A = If * uf + If * u1 + · · · + I~ * u! 

Example 8. Refinery Matrix Expressed as a Sum 
of Simple Matrices 

( 19) 

In Section 3.2 we gave the LU decomposition of our refinery matrix 

A 

20 

10 

5 

4 

14 

5 

4 

5 

12 

I 
l 
2 

l 
4 

0 0 
I 0 

~ 1 

20 

0 

0 

4 

12 

0 

4 

3 

10 
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By (19), we can write A as 

A = If * uf + If * u1 + If * u~ 

1 0 0 
1 * [20 4 4] + 1 * [O 12 3] + 0 * [O 0 10] 2 
1 1 1 4 3 

20 4 4 0 0 0 0 0 0 

10 2 2 + 0 12 3 + 0 0 0 (20) 

5 1 1 0 4 1 0 0 10 

The reader should check that this set of three simple matrices 
adds up to A. • 

Theorem 8. Gaussian elimination can be viewed as a decomposition of A 
into a sum of rank(A) simple matrices: 

A = If* u1 + If* u~ + · · · + If* uf (21) 

where k = rank(A), If is the ith column of L (the matrix of eli1nination 
multipliers), and uf is the ith row of U (the reduced matrix in Gaussian 
elimination). 

The m.inimum number of simple matrices whose sum equals ma
trix A is rank(A). 

The last sentence of Theorem 8 is proved in Exercise 32. The sym
metric role of columns and rows in Theorem 8 explains why the dimensions 
of the row and column spaces of a matrix are equal. 

It is not hard to show ( see Exercise 31) that if A has the simple-matrix 
decomposition A = c 1 * d 1 + · · · + ck * dk, then the C; are a basis for 
the column space of A and the di are a basis for the row space of A. It 
follows that 

Corollary 
(i) The nonzero rows of U generate the row space of A and the 

nonzero (below main diagonal) columns of L generate the column 
space of A. 

(ii) Theorem 8 reproves the fact that the dimension of the column 
space of A equals the dimension of the row space of A, equals 
rank(A). 

From Theorem 7 it follows if A equals the sum of simple matrices 
If * uf, then A = LU-we have proved the LU decomposition. 

The decomposition ( 19) of a matrix A into a sum of rank(A) simple 
matrices is of more theoretical than practical interest. 
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Optional (Based on Section 4.6) 

Let us reinterpret the simplex algorithm of linear programming using the 
concept of a basis for the column space. When slack variables were added, 
as say to the table-chair production problem in Section 4.6, the form of the 
constraint equations was 

Xi x., ... ... t3 X4 X5 x6 

Objective Function 40 200 0 0 0 0 0 

Wood 1 4 l 0 0 0 1400 
(22) 

Labor 2 3 0 1 0 0 2000 

Braces 1 12 0 0 I 0 3600 

Upholstery 2 0 0 0 0 1 1800 

Observe that the columns associated with the slack variables x3 , x4 , x5 , x6 

for1n an identity matrix and hence are the basis for the column space. For 
this reason, x3 , x4, x5 , x6 are called basic variables and variables x1, x2 

11onbasic, for the linear program (22): Clearly, the columns of nonbasic 
variables .it 1, .. t 2 in (22) are linearly dependent on the basic variables' col
umns. Recall that the simplex algorithm sets the nonbasic variables equal to 
0 so that the basic variables then have nonnegative values equal to the 
corresponding right-side entry. 

The pivot step in the simplex algorithm can be viewed as picking some 
nonbasic variable to enter the basis while a basic variable leaves in the basis. 
For (22), we chose ~t2 (whose coefficient 200 in the objective function is 
largest) to enter and x5 to leave the basis. After pivoting, we have 

X I X2 X3 X4 X5 x6 

Objective Function 70 
3 0 0 0 50 -3 0 -60,000 

Wood 2 0 1 0 1 0 200 3 -3 
(23) 

Labor 7 0 0 I 1 0 1,100 4 -4 

Braces 1 1 0 0 1 0 300 12 12 

Upholstery 2 0 0 0 0 1 1,800 

Note that now the columns of x2 , x3, x4 , x6 fo11n the basis for the colu1nn 
space. 

Whereas our discussion in Section 4.6 focused on which were the 
independent (nonbasic) variables, the traditional approach is to concentrate 
on which are the basic variables. 

Section 5.2 Exercises 

Summary of Exercises 
Exercises 1-10 involve the column space, linear depende.nce, and generators 
of the column space. Exercises 11-25 involve associated theory. Exercises 
26-32 involve simple matrices and the representation of a matrix as a sum 
of simple matrices. 
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1. Three soup factories F 1, F2, and F3 generate production vectors, f1 = 
[20, 100, 20], f2 = [200, 0, 50], and f3 = [0, 100, 200], of the amounts 
(in gallons) of tomato, chicken, and split-pea soup produced each hour. 
If the demand is d = [5000, 3000, 3000], write a system of equations 
for dete1111ining the right linear combination (how long each facto1-y 
should work) of production vectors to meet the demand. Determine the 
weights. 

2. There are three refineries producing heating oil, diesel oil, and gaso .. 
line. The production vector of refinery A (per barrel of crude oil) is 
[10, 5, 1 OJ and of refinery B is [4, 11, 8]. The production vector for 
refinery C is the average of the vector for refineries A and B. If the 
demand vector is [380, 370, 460), write a system of equations for 
finding the right linear combination of refinery production vectors to 
equal the demand vector. Find the set of such linear combinations. 

3. For each of the following sets of vectors, express the first vector as a 
linear combination of the remaining vectors if possible. 
(a) [l, 1]: [2, 1], [2, - 1] (b) [3, 2]: [2, - 3], [ -3, 6] 
(c) [3, -1]: [1, 3], [-2, 3] 
(d) [1, 1, 1]: [2, 1, 0], [O, 1, 2], [3, 2, 1] 

4. For each of the following pairs of a matrix and a vector, express the 
vector as a linear combination of the columns of the matrix. Plot this 
linear combination as was done in Figure 5.3. 

(a) 
4 0 2 

0 3 ' 1 
(b) 

1 

2 

-1 3 
1 ' 0 

(c) 
2 3 2 

5 8 ' 3 

S. The first column in the inverse A- 1 of a 2-by-2 matrix A gives the 
weights in a linear combination of A's columns that equals e1 = 
[l, O]. The second column in A - 1 gives the weights in a linear com
bination of A's columns that equals e2 = [O, 1]. Find these weights 
for expressing e1 and e2 as linear combinations of the columns and plot 
the linear combinations as in Figure 5. 3 for the following matrices. 

(a) 
4 0 

0 3 
(b) 

1 -1 

2 1 
(c) 

2 3 

5 8 

6. Tell which of the following sets of vectors are linearly independent. If 
linearly dependent, express one vector as a linear combination of the 
others. 
(a) [ 1, 2] , [ - 2, 4] (b) ( 1 , 3] , [ 3 , - 1] 
(c) [2, 1], [2, 3], [2, 8] (d) [l, 1, l], [-2, 0, -2], [2, 1, 2] 
(e) [2, 1, O], [1, 1, 3], [O, 2, l] 

7. Find a set of columns that form a basis for the column space of each 
of the following matrices (use the reduced matrix A* as in Examples 3 
and 4). Give the rank of each matrix. 
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1 -2 
(a) 

-2 4 

-1 3 

(c) 5 -1 

2 1 

1 

3 

2 

(b) 

4 -1 2 

2 5 1 

-2 3 -1 

2 1 -1 

(d) 1 -2 2 

3 4 -4 

8. For each matrix in Exercise 7, find all sets of columns that f 01111 a basis 
for the column space. 

9. Find a set of columns that fo11n a basis for the column space of each 
of the following matrices. Give the rank of each matrix. Also find a 
basis for the null space of each matrix. 

-3 5 
(a) 

6 -10 

I 1 0 0 

1 0 1 0 

(c) 0 0 1 I 

0 I 0 1 
] 1 1 1 

1 1 I 1 

0 1 0 I 

1 0 0 1 
(e) 

0 1 1 0 

0 1 0 I 

1 0 1 0 

1 

1 

0 

0 

1 

0 0 

0 1 

I 0 

1 0 

0 1 

0 1 

2 1 7 

(b) 1 2 5 

1 1 4 

1 0 

1 1 

(d) 1 0 

0 I 

1 0 

2 -1 1 
1 I 2 

2 -1 1 

-1 2 1 
2 -1 l 

10. Let A be a coefficient matrix in a refinery problem, as in Example 1, 
with each column representing the production vector of a refinery. Ex
plain the practical significance of having one column be a linear com
bination of the others. What constraints and what freedom does this 
perntlt the manager of the refineries? 

11. For a m-by-n matrix A, the reduced matrix A* can be written in the 

partitioned fo11n A* = 
I R 
0 0 

, where I is an r-by-r identity matrix 

(r == rank(A)) and R is r-by-(n - r). Using the submatrix R and an 
appropriate size identity matrix I, give a matrix N in partitioned form 
whose columns are the basis of Null(A). 

Hint: See expression ( 14). 
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12. Deter1nine the rank of matrix A, if possible, from the given infortnation. 
(a) A is an n-by-n matrix with linearly independent columns. 
(b) A is a 6-by-4 matrix and Null(A) = {O}. 
(c) A is a 5-by-6 matrix and dim(Null(A)) = 3. 
(d) A is a 3-by-3 matrix and det (A) = 17. 
(e) A is a 5-by-5 and dim(Row(A)) = 3. 
(f) A is an invertible 4-by-4 matrix. 
(g) A is a 4-by-3 matrix and Ax = b has either a unique solution or 

else no solution. 
(h) A is a 8-by-8 matrix and dim(Row(AT)) = 6. 
(i) A is a 7-by-5 matrix in which dim(Null(Ar)) = 3. 

13. In this exercise, the reader should try to find by inspection a linear 
dependence among the rows of each matrix. If dependence is found, 
use elimination by pivoting to find a linear dependence among the col
umns (as in Examples 3 and 4). 

5 2 3 

(a) 0 1 2 

5 3 5 

1 2 0 

(b) 1 1 1 

3 4 2 

5 7 9 

(c) 4 5 6 

I 2 3 

14. Show that the number of pivots performed in Gaussian elimination will 
be the same as the number of pivots in elimination by (full) pivoting. 
(Thus the rank of a matrix can be defined in terms of either type of 
elimination.) 

15. Let A* be the reduced-for1n matrix of A. 
(a) Show that nonzero rows of A* generate Row(A) (i.e., linear com

binations of the rows of A* generate the same vectors as linear 
combinations of rows of A). 

(b) Show that the nonzero rows of A* must be linearly independent. 
Hint: Look at the form of A*. 

(c) Conclude that the nonzero rows of A~: are a basis of Row(A) and 
hence that the dim(Row(A)) = rank(A). 

16. Let U be the upper triangular matrix produced at the end of Gaussian 
elimination on the matrix A. 
(a) Show that nonzero rows of U generate Row(A) (i.e., linear com

binations of the rows of U generate the same vectors as linear 
combinations of rows of A). 

(b) Show that the nonzero rows of U must be linearly independent. 
Hint: Look at the for1n of U. 

(c) Conclude that the nonzero rows of U are a basis of Row(A) and 
hence that the dim(Row(A)) = rank(A). 

17. (a) Suppose that the rows of A are linearly dependent. Show that at 
the end of Gaussian elimination, the resulting upper triangular ma
trix U will have at least one row of zeros. 

(b) Suppose that A is a square matrix with linearly dependent columns. 
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Show that at the end of Gaussian elimination, the resulting matrix 
U will have at least one row of zeros. 

Hint: Use part (a) and Theorem 5. 

18. Show that Row(AT) (Ar is the transpose of A) equals the Col(A) and 
that Col(Ar) equals Row(A). Show that rank(A) = rank(Ar). 

19. (a) Use the results of Exercise 17 and l 8 to show that the nonzero 
rows in the reduced form Ar* of AT are a basis for the Col(A). 

(b) Use part (a) to compute a basis for Col(A) for the matrix A in 
Example 3. 

(c) Repeat part (b) for the matrix in Example 4. 

20. (a) Show that the rank of a matrix does not change when a multiple 
of one row is subtracted from another row. 

(b) Show that the rank of a matrix does not change when a multiple 
of one column is subtracted from another column. 

Hint: Use AT. 

21. (a) Show that if A is an m-by-n matrix and b an m-vector, b is in 
Range(A) [ = Col(A)] if and only if rank([A b]) = rank(A), 
where [A b] denotes the augmented m-by-(n + 1) matrix with b 
added as an extra column to A. 

(b) If Ax = b has no solution, show that rank([A b]) must be 
rank(A) + 1. 

22. Let A be an n-by-n matrix. Show that det(A) = 0 if and only if the 
rows of A are linearly dependent or if the columns of A are linearly 
dependent. 

Hint: Use Theorem 5 and Theorem 4 of Section 3.3. 

23. This exercise examines the vectors in the column space of two matrices 
A and B, that is, vectors in Col(A) n Col(B). If d is such a vector, 
then Ax' = d and Bx" = d, for some x', x". Show that if C = [A - B] 
and x* = [x' x"], then d is in Col(A) n Col(B) if and only if x* is 
in Null(C). 

24. Show that any set Hof k linearly independent n-vectors, k < n, can be 
extended to a basis for all n-vectors. 

Hint: Form an n-by-(k + n) matrix A whose first k columns come from 
H and whose last n columns are the identity matrix-thus dim(Col(A)) 
= n; show that a basis for Col(A) using the elimination by pivoting 
approach in Example 5 will include the columns of H. 

25. Show that "A. is an eigenvalue of A if and only if det(A - "A.I) = 0. 

Hint: ''If'' part is immediate; for the ''only if'' part, use Theorem 3 
and Theorem 4 of Section 3.3. 



Sec. 5.3 Approximate Solutions and Pseudoinverses 433 

26. Let a = [1, 2, 3], b = [2, O], c = [ -1, 2, 1]. Compute the following 
simple matrices. 
(a) a * b (b) a * c (c) c * c 

27. Verify that the simple matrices in Exercise 26 have rank 1 . 

28. (a) Show that A = [ ~ ! ] is a simple matrix by giving the two 

vectors whose matrix product is A. 
(b) Repeat part (a) for 

[

12 

B = ! 
-6 
-4 
-2 

29. Write each of the following matrices as the sum of two simple matrices. 

(a) [~ ~] (b) [; : !] 
30. (a) Find the LU decomposition of matrix in Exercise 9, part (b) and 

use the decomposition to write the matrix as the sum of two simple 
matrices as in Example 8. 

(b) Repeat part (a) for the matrix in Example 5. 
(c) Repeat part (a) for the matrix in E_xercise 9, part (d). 

31. Describe the column space and row space of a simple matrix a * b and 
give a basis for each. 

32. (a) Show that if a matrix A of rank k is expressed as the sum of k 
simple matrices C; * d;, i = I, 2, ... , k, then the C; are a basis 
of Col(A) and the d; are a basis of Row(A). 

(b) Prove the last sentence in Theorem 8, the minimum number of 
simple matrices whose sum is matrix A is rank(A), as follows: The 
LU decomposition yields a sum of k simple matrices equaling A, 
where k = rank(A), by the first part of Theorem 8; if fewer than 
k simple matrices could sum to A, use part (a) to show that then 
dim(Col(A)) < rank(A)-impossible. 

Approximate Solutions 
and Pseudoinverses 

This section presents a method for obtaining an approximate solution that 
can be used to "solve" an m-by-n system Ax = b that has no solution, that 
is, when b is not in the range of A. We _seek a "solution" w that gives a 
vector p = Aw which is as close as possible to b. In the following discus
sion, we use the euclidean norm lal = Var + a~ + ... + a~, because 
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• 

we will be treating the vectors p, b as points in euclidean space and mini
mizing the distance of the error lb - pj. 

. 

Example 1. Refinery Problem Revisited 

Recall the refinery model first presented in Section 1. 2 with three 
refineries producing three petroleum-based products, heating oil, diesel 
oil, and gasoline. 

Heating oil: 20X1 + 4X2 + 4X3 = 500 

Diesel oil: 10x1 + 14x2 + 5x3 850 (1) 

Gasoline: 5x1 + 5x2 + 12x3 1000 

Suppose that the third refinery is out of service. We still want to 
attempt to produce the same amounts of these products. That is, we 
want to satisfy the system (as best we can) 

Heating oil: 

Diesel oil: 

Gasoline: 

20 

X1 10 

5 

20x1 + 4x2 = 500 

]0 .. .tl + 14X2 = 850 

5x1 + 5x2 1000 

4 

+ x,, 14 ... 

5 

500 

850 

1000 

or (2) 

• 

In Section 3. 2 we solved (I) by Gaussian elimination and obtained the 
solution x = [4i, 33i, 67~]. Since this solution is unique and involves 
a nQnzero value for x3, we shall not be able to solve (2) exactly. 

Let A be the matrix of coefficients in (2) and let b be the right
side vector. We seek to minimize jb - Awl (recall that we are using 
the euclidean distance as our norm). The approxi1nation we want re
quires a vector w so that 

is as close to 

as possible. 

20 4 
Aw = w 1 10 + w2 14 

5 5 

500 

850 

1000 

• 

This type of approximate solution is called a least-squares solution, . 
because the euclidean distance lb - Awl to be minimized involves a sum 
of squares. For such approximate solutions to be meaningful, we require 

• 
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that A have more rows than columns; otherwise, a more sophisticated tl1eory 
is needed. 

Recall that we encountered least-squares solutions in regression. We 
review the regression problem presented in Section 4. 2. 

Example 2. Simple Linear Regression Reviewed 

We wanted to fit the three (x, y) points (0, 1), (2, l), and (4, 4) to a 
line of the form y = qx (where the x-value might be the number of 
college mathematics courses taken and the y-value a score on some 
test). The requirement qx y for these points yields a system of 
equations 

Oq = 1 

2q = 1 

4q = 4 

or qx = y, 

0 

where x = 2 , y 
4 

1 

1 

4 

(3) 

Figure 5.4a shows the points to be estimated by this line, and Figure 
5.4b shows the vectors y and qx in 3-space. Our goal is to find q so 
that the estimates J; = qx; in (3) are as close as possible to the true 
Y;• A way to view qx in Figure 5.4b is as the projection of y onto the 
line through x from the origin. 

To obtain the value for q, we rrunimized the sum of the squares 
of the errors (SSE). 

SSE = ~ (qx; - Y;)2 = (Oq - 1)2 + (2q - 1)2 + (4q - 4)2 

= 20q2 
- 36q + 18 (4) 

In Section 4. 2 we found the optimal q by differentiating ( 4), setting 
the derivative equal to O, and obtaining q == . 9 (see line y == . 9x in 
Figure 5.4a). We also calculated how to minimize SSE for an arbitrary 
number of x - y pairs and obtained the formula 

L X;Y; X. y 
q = ~ 2 

£J -'t; X • X 

• 

(5) 

where x and y are the vectors of x- and y-values. Note that for this 
example 

= Ox 1 + 2X 1 + 4X4 = ~ = g 
q Ox0+2x2+4x4 20 · 

When the model y = qx + r is used, (3) is changed to 

Oq+r=l • 0 1 
q 

2q + r = 1 Aw= y, where A= 2 I or 
' 

w= 
r 

4q + r = 4 4 l 

(6) 
• 
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Figure 5.4 (a) Regression estimates for 
points (0, 1), (2, 1 ), and (4, 4). 

I 

y • 

(b) y = 0. 9x is regression solution when 
x = (0, 2, 4], y = [l, l, 4]. (c) p is 
closest vector to b in range of A. 4 • 

Second 
value 

4 

3 

2 

1 

I 
I 

L~eof / 
points qx/ 

I 
I 

3 

2 

I 

,... 
y = .15x + .5 

1 

y = .9x 

• 

2 

(a) 

3 4 

x = [0 , 2, 4] J'/ 
A 

I 
I 

I 

1 

y ,:.., Third 
vaJue I ', ', b I ,, I ,..._ 

/ y=[I,1,4] 

2 

(b) 

3 4 First value 

(c) 

Now the least-squares solution is a pair q, r such that the vector 
q[O, 2, 4] + r[l, 1, 1] (which is in the range of A) is as close as 
possible toy (see Figure 5.4c, where p = Aw, b = y). Again, we 
can view p as the projection of b onto the range of A. • 

We have now motivated the importance of finding w so that the vector 
p = Aw is as close as possible to a given vector b, that is, so that p is the 
projection of b onto the range of A. To determine w and p, we shall use 
the following geometric property of the projection p of b onto the range of 
A: The error vector b - pis at right angles to-perpendicular to.-vectors 
in the range of A (see Figure 5.4b and c). 
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• 

The term orthogonal is used in linear algebra instead of ''perpendic
ular'' to describe two vectors at right angles. The following theorem provides 
a simple numerical test for orthogonality. 

Theorem 1. Two n-vectors a, b are orthogonal if and only if their scalar 
product is zero, a · b = 0. 

This theorem is a consequence of a more general fact about angles 
between vectors that is proved later in this section. 

We use Theorem 1 to obtain a matrix equation satisfied by p ( where 
p = Aw) when b - pis orthogonal to vectors in the range of A (implying 
that p is the closest vector to b in the range of A) . 

First we illustrate the procedure by obtaining a formula for q in the 
simple regression model y = qx in Example 1, that is, to find q so that qx 
is as close as possible to y. The error vector in this case is y - qx, and tl1e 
range is simply all multiples of x. The error vector y - qx should be 
orthogonal to the range, that is, orthogonal to x. By Theorem l, this yields 

X • (y - qx) = 0 or x·y - qx·x = O 

Solving for q, we obtain the same regression formula as in (5): 

(7) 

As noted above , qx is the projection of vector y onto vector x. Thus 

Theorem 2. The projection of y onto x (i.e . , onto the line from the origin 
through x) is qx, where q == x · y /x · x. 

Next consider the general case where we want an approximate solution 
to Ax = b for any m-by-n matrix A. The error vector b - p = b - Aw 
should be orthogonal to every vector in the range of A. Recall that the range 
of A is f onned by linear combinations of the column vectors of A, r L af + 
r 2a~ + · · · + r 11a~. If b - Aw is orthogonal to any linear con1bination 
of the. column vectors, then it certainly must be orthogonal to these column 
vectors af themselves. By Theorem 1 we have 

af · (b - Aw) = 0 for i = 1, 2, . . . , n (8) 

If we make a matrix A* whose rows are the columns of A, then (8) gives 

A*(b - Aw) = 0 (9) 

But this matrix A* is simp1y Ar, the transpose of A (whose rows are the 
columns of A). So (9) is 

• 
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Ar(b - Aw) = 0 or (10) 
• 

Assuming that the matrix Ar A is invertible, we can solve (10) for w to 
obtain 

• 

(11) 

The right side of ( 11) is a pretty messy expression. Since the rows of 
Ar are the columns of A, entry (i, j) in the matrix product Ar A is just the 
scalar product af · af of the ith column of A times the jth column of A. 
When A consists of a single co]umn x, as in the regression model qx = y, 
(11) reduces to q = (x · x) - 1x · y or q = x · y /x · x-the formula we 
obtained above. 

We call the product of matrices on the right in ( 11) 

(12) 

the pseudoinverse of A (the tenn generalized inverse is also used). If A is 
an m-by-n matrix, A + will be an n-by-m matrix. 

Theorem 3. The least-squares solution w to the system of equations 
Ax= bisw = A+b, where A+= (A7A) - 1AT. Further,A+ is the 
left inverse of A: A+ A = ·I. 

The second 
(ATA) - 1(ATA) 
identity, A+ A = 
correctly. 

sentence of the theorem is easily verified: A+ A = 
I, since we are multiplying AT A times its inverse. The 
I, can be used to check that you have computed A+ 

If A is an invertible n-by-n matrix, the pseudoinverse A+ equals the 
regular inverse A- 1 (see Exercise 22). If b happens to lie in the range of 
A, then Aw will the exact solution, that is, Aw equals b. 

Although (12) is complex, the fact that such a matrix A+ exists at all 
is impressive. Applying Theorem 2 to the general regression model, we 
obtain 

Corollary. Consider the regression model y = q1x1 + q2x2 + · · · + 
q nxn + r with associated matrix equation 

y = Xq 

where y is the set of y-value observations, X is the matrix whose jth 
column is the set of x1-value observations and whose last column is 
the 1 's vector, and q = [q1, q2 , •.• , qn, r]. Then the regression 
model parameters q are given by 

(13) 
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Example 3. Least-Squares Solution to 
Refinery Problem 

Let us find the least-squares solution to the system of equations we 
had in Example 1 , where the first two refineries alone had to try to 
satisfy the demand vector. 

20x1 + 4x2 = 500 

10x1 + 14x2 = 850 

5x1 + 5x2 = 1000 

(14) 

If A is the coefficient matrix in (14), then we compute AT A and 
(AT A) - 1 to be f recall that entry (i, j) in AT A is the scalar product of 
columns i and j of A] . 

525 245 
245 237 

and (ATA) 

The pseudoinverse A + of A is 

1_ .00368 

- .00380 

.00368 - .00380 

- .00380 

.00815 

- .00380 .00815 

20 10 5 

4 14 5 
(15) 

.0584 - .0164 - .0006 -
- .0435 .0761 .0217 

With ( 15), we can now find the least-squares solution w to ( 14): 

.0584 - .0164 

- .0435 .0761 

14.6 

64.7 

-.0006 

.0217 

500 

850 

1000 

(16) . 

This solution produces the following approximating output vector: 

Aw = [551, 1051, 394] 

with an error vector of 

b - Aw = [500 - 551, 850 - 1051 , 1000 - 394] 

= [ - 51, -201, 606] 

This is a terrible approximation. We vastly underproduce the 
third product (gasoline). With the third refinery shut down, we shall 

' 
al ways get much more of the second product than the third product 
[see (14)]. • 
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. . 

• 

• 

• 

Example 4. Solution to Regression Model 
A 

y = qx + r 

Let us use the pseudoinverse to solve our regression problem with 
points (0, 1), (2, 1), (4, 4) and the model y = qx + r. The system 
of equations is 

0q+r=I 

2q+r=1 or Xq = y, 

4q + r=4 

0 1 1 

where X = 2 l 
' y = 1 q = 

q 
(17) 

' r 
4 1 4 

Then 

20 6 

6 3 ' 

Using (Xrx) - 1 , we obtain the pseudoinverse 

1 1 0 2 4 x+ = (X7 X) - 1xr = 
8 -4 

-¼ 5 1 I 1 6 I 

(18) 
1 0 1 

- 4 4 

~ l. - 1 6 3 

• 

Then 

1 0 ¼ 
l J q = x +y 

- 4 4 
q - - 1 - -

i 1 1 1 r 3 -6 2 
4 

So q = . 7 5, r = . 5; this is the same answer that we obtained for this 
problem in Section 4.2 (see Figure 5.4a). Our regression estimates for 
they-values are given by Xq = [.5, 2, 3.5]. • 

Example 5. Least-Squares Polynomial Fitting 

Suppose that we want to try to fit a quadratic curve through the set of 
points (0, 7), (1, 5), (2, 4), (3, 4), (4, 8), and (5, 12) using a least
squares approximation. Our model is 

y = ax2 +bx+ c (19) 
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We shall treat x2 as a separate variable, say let z = x2 , so that 
a linear multivariate regression model can be used 

y = az + bx+ c 

For the given set of points our X matrix is 

0 0 1 7 

1 1 1 5 

4 2 1 4 
X= 

9 3 
with y= 

1 4 

16 4 l 8 

25 5 1 12 

Using a computer program, we obtain 

5 - 1 - 4 
x+ = (Xrx) - lXT = I_ -33 .2 18.4 

56 
46 18 0 

and 

a 

and q = b 

C 

- 4 . - 1 

21.6 9.8 

-8 - 6 

.893 

q = x +y == -3.493 

7.214 

with estimates y = Xq == 

(20) 

(21) 

5 

- 17 

7.2 
4.6 
3.8 

4.8 

5.3 

12.1 

6 

(22) 

Our quadratic estimate is thus y == .893x2 - 3.493x + 7 .214. 
Although the estimated y-values work out closely to the observed 

y-values, a word of warning is important. This is a very poorly con
ditioned problem-the columns of X are all fairly similar. In fact , the 
condition number of the matrix (XrX) is 2000 (in the sum norm)! A 
small change in the data could produce a large change in our answer. 

• 

To compute the pseudo inverse (Ar A) - 1 Ar, we need to know that the 
matrix Ar A is invertible. The following result gives us the information we 
need. 

Theorem 4. Let A be an m-by-n matrix. Then the n-by-n matrix AT A is 
invertible (and the pseudoinverse A+ exists) if then columns of A are 
linearly independent, or equivalently, if rank(A) = n. 

• 
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Proof (Optional). We shall prove the stronger result that 
rank(Ar A) = rank(A). Since rank(A) = n, then rank(Ar A) = n and 
any n-by-n matrix of rank ,z is invertible. 

We work with null spaces. By Corollary A to Theorem 3 of 
Section 5.2, for a matrix B with n columns, dim(Null(B)) = ti -

rank(B). Then rank(A7 A) = rank(A) is a consequence of showing that 
Null(A7 A) = Null(A). 

Let x be any vector in Null(A), that is, Ax = 0. Then 

so xis in Null(Ar A). 
Conversely, let y be any vector in Null(A7A). We want to show 

that y is in Null(A). To do this, we show that (Ay) · (Ay) = 0, which 
implies that Ay = 0 (since c · c = 0 means}: cf = 0). We need the 
fact that (Ay) · (Ay) is the same as (Ay)r(Ay) (the latter is the product 
of the 1-by-m matrix (Ay)7 times the m-by-1 matrix Ay). Then we 
have 

(Ay) . (Ay) = (Ay)7(Ay) = (y7 A7 )(Ay) 

= yT(AT Ay) = yT • 0 = 0 • 

We note that in regression problems, practical considerations dictate 
that the matrix X is virtually certain to have linearly independent columns. 

There is an important special case in which the computation of the 
pseudoinverse becomes very easy. This is when the columns of the matrix 
A are orthogonal. Now by Theorem 1, the scalar product of columns 
af · af equals 0. Since entry (i, j) in Ar A is exactly this scalar product, 
AT A will be all O's except on the main diagonal. This simple fonn of A7 A 
leads to a simple form for (AT A) - 1 and for A + . 

. 
Example 6. Regression with Orthogonal Columns 

We shall repeat the ana)ysis of Example 5 with points (0, 1), (2, I), 
and (4, 4) and regression model y = qx + r, but we shall shift the 
x-values so that the average x-value is O (in Section 4. 2 we noted that 
such a shift simplified our regression formulas). The average x-value 
is (0 + 2 + 4)/3 = 2. If we subtract 2 from each x-value, obtaining 
points ( - 2, 1), (0, 1 ), and (2, 4), then the new average x-value is 0 
(subtracting off the average value always makes the new average 
be 0). 

Let us repeat the pseudoinverse computations of Example 5 for 
these new points. 

- 2q+r = l 

Oq + r=I 

2q+r=4 

or Xq = y, 

• 
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• 

where X = 

• 

-2 1 1 

0 1 , y = l 

2 1 4 

• 

(23) 

Observe that the two columns of X are now orthogonal. The 
scalar product of the two columns x · 1 = L X; is 0, since the average 
x-value ( = ~ (x;)/llt) is 0. Then 

8 0 

0 3 
and (Xrx) - l = ~ 0 

0 5 (24) 

The inverse (Xrx) - 1 in (24) can be computed by the determinant 
formula, but we note that the inverse of a diagonal 111atrix D (lvitl1 O's 
e1,1erywhere off the main diago,zal) is obtained by replacing eaclz di
agonal entry lvith its inverse, as in (24). 

The two diagonal entries in X7 X are, in symbolic terms, x · x 
and 1 · 1 = 1n (number of points in regression problem). Thus. when 
the average x-value is 0, (X7 X) - 1 has the form 

l 
0 

x·x 
0 1/,n 

The pseudoinverse x+ is now 

t 0 

0 ¼ 
-2 0 2 

1 1 1 

-: 0 : 

½ ½ ½ 

(25) 

(26) 

Wizen we premultiply any matrix B by a diagonal matri.t D. then D 
l1as the effect of rtzultiplying the ith row of B by the itlz diagonal entry 
of D, as in (26). 

Looking at the values of the diagonal entries in cxrx) 1 [see 
(25)], we see that X + is simply the transpose of X ivitlz tlze firsl colutnri 
of X divided by its sum of squares (x • x) a,zd the second colun1n 
divided by m (the number of points). 

Finally, 

q= 
q 

r 

- i O i 
! ~ ! 

I 

J 

4 

3 
4 

2 

Observe that q is the scalar product of the first row of X + with y. But 
we just noted that the first row of x+ is simply x divided by the number 
x · x. Similarly, r equals the scalar product of the second row of X + 
times y, and this second row is just (1/m)l . Thus we have the simple 
formulas 

• 
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x·y 
q = ' x·x 

l·y 
r = 

1 
. 

1 
( = average y-value) (27) 

• 

By Theorem 2, q and rare simply the projections of y onto x and 1, 
respectively. The nice results obtained in Example 6 will be true for the 
pseudoinverse of any matrix with orgthogonal columns. 

Theorem 5. If the m-by-n matrix A (m > n) has orthogonal columns, the 
pseudoinverse A+ is obtained by dividing each column of A by the 
sum of the squares of the column's entries and then taking the transpose 
of the resultjng matrix; the ith row of A + is af / (af · af). Further, the 
least-squares solution w = A + b is just the projection of b onto the 
columns of A: ~v; = af · b / a f · a f . 

Suppose that we have a regression model with several input variables, 
such as 

(28) 

and suppose that the vectors u, v, x, and 1 (of the Lt-values, v-values, 
x-values, and l's vector) are orthogonal. Then Theorem 5 tells us, gener
alizing (27), that the regression parameters are the projections of y onto u, 
~, x, and l: 

u·y 
ql = ' u·u 

v·y 
' v·v 

x·y 
' x·x 

l 
r = - Ly-m l 

(29) 

But what chance is there that the u, v, x, and 1 vectors will be or
thogonal? The answer is often up to the person who collects the data. If the 
,~-, v- , and x-values measure settings of control knobs on a complex machine 
and the y-value measures the task perlonned by the machine, then a re
searcher who knows about Theorem 5 could pick settings to make the vectors 
orthogonal. This is a problem in a statistical subject called design of exper
iments. 

We asserted in Theorem l that if a and b are orthogonal, that is, they 
form an angle of 90°, then a · b = 0. This result was central to the derivation 
of the pseudoinvcrse. Now we prove the following theorem about the angle 
between two vectors, and Theorem 1 follows directly from this result. We 
measure the angle between two vectors a, b by treating the vectors as line -segments from the origin to the points with coordinates given by a and b 
(see Figure 5.5). 

Theorem 6. The cosine of the angle 8 between any vectors a, b is 

(30) 

If a and b are unit-length vectors, (30) becomes cos 0 = a · b. 

• 
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Figure 5 .5 6 is the angle 
between a = (3, 4] and 
b = [12, 5) . 

• 

4 

2 

y 

{3. 4 l 

0 2 4 6 l O 12 

Example 7. Examples of Angles Bet,veen Vectors 

(i) If a = [l, 0, 0] and b = [O, 1, O], then cos 0 = a· b = 0 and 
we conclude that a, b form a 90° angle, that is, they are orthog
onal. 

(ii) If a = [3, 4] and b = [12, 5], then lal = 5 ( = V9 + 16) 
and !bl = 13 (= Y144 + 25). So cos 0 = a · b/lal lbl = 
(3· 12 + 4·5)/5 · 13 = H = .86. The angle with a cosine of .86 
is 36° (see Figure 5 .5). 

(iii) If a = [.6, .8], with fal = 1 and b = [1~ 0], then cos 0 = 
a · b = .6 · l + .8 · 0 = .6-just the first coordinate. • 

The proof of Theorem 6 uses the law of cosines: 

la - bl2 = lal2 + 1h12 
- 2jaj jbJ cos 8 (31) 

The square of the euclidean norm lcl2 is simply c · c, and we can write 
la - bl2 as (a - b) · (a - b). Expanding with matrix algebra, we have 

la - bl2 = (a - b) · (a - b) = a · a + b · b - 2a · b (32) 

= lal2 + 1h12 
- 2a · b 

The right side of (32) is the same as the right side of (31) except for the last 
terms. So these last terms must be equal: 

- 2lal lbl cos 0 = - 2a · b 

Solving for cos 0 yields Theorem 6. 
Theorem 6 has a very in1portant application in statistics. The cosine 

of the angle 8(x, y) between two vectors x and y tells us if the vectors are 
close together [when cos 8(x,. y) is near I] or opposites of one another [ \Vhen 
cos 8(x, y) is near - 1), or are unrelated, that is, close to orthogonal 
[when cos 0(x, y) is near OJ. 

Suppose that x and y are vectors of data from an experiment, say x is 
the scores of l O students on a 111ath test and y is the scores of the l O students 
on a language test. Then cos 0(x, y) tells us how closely related these two 
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sets of data arc and helps us predict future relations between math and 
language scores. If cos 8(x, y) is .8, performance on these two tests is 
closely related and we can view a student's score on one test as a reasonably 
good predictor of how he or she will do on the other test. If cos 8(x, y) is 
- . 7, the score vectors point in almost opposite directions and a high score 
on one test is very likely to produce a below-average score on the other test. 
If cos 8(x, y) = 0 (the vectors x, y are orthogonal), then performance on 
one test tells us nothing about the likely performance on the other test (in 
statistics, one says that the two sets of data are i11dependent). 

Definition. Let X == [X1, X2, ... , Xn] and y = [Y1, Y2, ... , Yn] be two 
sets of observations with the property that the average x-value and 
the average y-value are each 0. Then the correlation coefficient 
Cor(x, y) of x and y is defined to be cos 6(x, y). 

X. y L XiYi 
Cor(x, y) == I 11 I == "' ~ "' ~ 

X Y v I x~ v LY v~~ l l 

(33) 

Recall tl1at the average x-value is i = (1/n) L X;. If x # 0, we can 
subtract x from each X; to get a revised vector that does have an average 
value of 0. Similarly for y-values. We need an average value of O so that 
the opposite of a high score (a positive value) will be a low score (a negative 
value). This way the terms xiyi in (33) for pairs of oppositely correlated 
entries X;, Y; will be negative (when X;Y; is the product of a positive and a 
negative number), leading to a negative correlation. 

Example 8. Correlation Coefficient 

Suppose that we ask the eight faculty members of the Podunk Uni
versity Alchemy Department to rate the quality of their graduate stu
dents and we poll the students to get a rating of the quality of each of 
the eight. The results of our experiment are presented in Table 5 .1 
(where we have processed the data to make the average value O in each 
category). 

Table 5.1 

Faculty Quality of Students (x;) Student Rating (y;) 

1 . Aristotle +s +2 

2. Galileo -5 - 7 

3. Goldbrick - 2 0 

4. Hasbeen +3 - 1 

5. Lcadbottom - 4 - 5 

6. Merlin +5 +3 

7 . Midas +5 - 0 

8. Santa Claus -7 +8 
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Applying formula (33) to these data, we obtain 

Cor(x, y) 
~ X,Y; 5 · 2 + ( - 5)( - 7) + · · · 

- vu ~y~ - v'T78 . vili 
l I 

+ (-7)8 

21 
= 13.3 · 12.3 = . l 

Looking back at the data in Table 5. 1, we are a little surprised 
to see such a low correlation, since the numbers in the two columns 
correspond fairly well for most faculty with the glaring exception of 
Santa Claus. Statisticians would call Santa Claus's data pair ( - 7, 8) 
an outlier, an observation that fits poorly with the rest of the data. We 
warned in the regression section (Section 4. 2) that one or two outliers 
can distort a statistical analysis. (A little investigating reveals that Santa 
Claus is a terrible teacher but is still well liked because he gives the 
students lots of candy every December.) 

Let us throw out Santa Claus's numbers and recompute the cor
relation coefficient. This requires us to adjust the data so that the 
averages in each column are again O. The new numbers are shown in 
Table 5.2. 

Table 5.2 

Faculty Quality of Students (xi) Students' Rating (y;) 

1 . Aristotle +4 +3 

2 . Galileo -6 - 6 

3 . Goldbrick - 3 l 

4 . Hasbeen +2 0 

5. Leadbottom - 5 - 4 

6 . Merlin +4 + 4 

7. Midas + 4 + 1 

85 85 
Cor(x, y) = VJ.22. V79 -

11 
. 

8
_
9 

= .9 

a high degree of corre]ation. • 

We finish this section with a discussion of orthogonal vector spaces 
associated with least-squares solutions. A least-squares solution w to 
Ax = b involves breaking b into two parts, 

b=p+b - p ' (34) 

where p = Aw is the least-squares solution and b - p is the error vector. 
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Recall that p and b - p must be orthogonal. The decomposition of b in 
(34) into a range and an error vector is unique (p is the unique vector Aw). 
We assume here that A has linearly independent columns. 

The vector p is in the range of A ( = column space of A). Now we 
shall identify the vector space V containing b - p. V is the error space of 
A consisting of all error vectors; these are vectors e orthogonal to the col
umns of A. This means that af · e = 0 for all columns a.f of A. 

Earlier in this section we expressed the fact that the error vector 
b - Aw was orthogonal to all the columns of A as A7(b - Aw) = 0. That 
is, Ar has rows that are the columns of A. Then the error space V can be 
defined: 

V = {v : Arv = O} (35) 

But from (35), we see that Vis simply the null space Null(Ar) of Ar. Thus 
Range(A) is orthogorial to Null(AT). Here we are calling two vector spaces 
orthogonal if all pairs of vectors, one from each , are orthogonal. 

Let us next determine the dimension of the error space [ = Null(AT)]. 
By Theorem 3 of Section 5.2, the dimension of the Null(Ar) is m -
rank(A7

) (where mis the number of columns in Ar). So 

dim(Error space(A)) = m - rank(A7 ) (36) 

But rank(Ar) = rank(A) (this simple consequence of Theorem 4 of 
Section 5.2 is proved in Exercise 18 of that section). So (36) is the same as 

• 

dim(Error space(A)) = m - rank(A) (37) 

Using the fact that the dimension of Range(A) is rank(A), we have the 
expected result [in light of (34)]: 

dim(Range(A)) + dim(Error space(A)) = m (38) 

Summarizing, we have 

Theorem 7 
(i) Let A be a m-by-n matrix and b be any ni-vector. Then b can be 

written as a unique sum 

b = b1 + b2 (39) 

where h1 is in Range(A), b2 is in Error space(A), and b1, b2 are 
orthogonal. Further, 

dim(Range(A)) + dim(Error space(A)) = m 

The vector b1 in (39) equals Aw and is the projection of b onto 
the column space of A; w is the least-squares solution w = A .,..b . 

• 
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(ii) The error space of A equals Null(AT), so Null(Ar) is orthogonal 
to Range(A) . 

Theorem 7 is valid even if A does not have linearly independent columns. 
Recall that the Range(A) equals Col(A), the column space of A, which 

equals Row(A r). So Theorem 7, part (ii) implies that Null(AT) is orthogonal 
to Row(Ar), or, interchanging the names of A and Ar, Null(A) is orthogonal 
to Row(A). Reinterpreting (39) in terms of these vector spaces, we have 

Theorem 8. Let A be an m-by-,i matrix. The row space of A and the null 
space of A are orthogonal . Further, any n-vector x can be written as 

• a unique sum 

X = X 1 + X2 (40) 

where x1 is in the Row(A) and x2 is in Null(A). 

Note that Null(A) being orthogonal to Row(A) follows directly from 
the definition of Null(A): x is in Null(A) when ax = 0, but Ax = 0 just 
says that x is orthogonal to the rows of A. However, the unique sum ( 40) 
is not so obvious. 

The reader should recall Theorem 1 of Section 5. 1, which asserted that 
any solution x' to Ax = b could be expressed as x' = x* + x0 , where x* 
is some particular solution to Ax = b and x0 is some solution to the ho
mogeneous system Ax = 0 [i.e., x0 is in Null(A)]. Theorem 8 tells us that 
the decomposition of x ' can be chosen so that x* is in the row space of A. 

Corollary A. Let x' be a solution to the ystern Ax = b. Then x' can be 
uniquely decomposed x' = x* + x0, where x* is in the row space of 
A and x0 is in the null space of A. Further, x* and x0 are orthogonal. 

Note in Corollary A that if Ax' = b, then Ax* + Ax0 = b (since 
x' = x* + x0). But Ax0 = 0 since x0 is in Null(A), so Ax* = b. We 
have thus proved the surprising result: 

Corollary B. If the system Ax = b has a solution, it has a solution x* that 
lies in the row space of A. 

Section 5 .3 Exercises 

Summary of Exercises 
Exercises 1-16 involve regression and least-sqt1ares solutions; when asked 
if a 2-by-2 matrix is poorly conditioned, say yes if the condition number is 
2: 10. Exercises 17- 21 involve angles between vectors and the correlation 
coefficient. Exercises 22- 30 involve examples and extensions of vector
space theory. 

• 

• 
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1. Determine the condition number of the matrix (Ar A) in Example 3. Is 
this matrix poorly conditioned? . 

2. Seven students earned the following scores on a test after studying the 
subject matter different numbers of weeks . 

Student ABCDEFG 

Length of Study (xi) 0 I 2 3 4 5 6 

Test Score (y;) 3 4 7 6 10 6 10 

Fit these data with a regression model of the form y = qx + r. De
termine q and r by computing the pseudoinverse of X, the matrix whose 
first column is the vector of xi's and whose second column is a 1 's 
vector. Plot the observed scores and the predicted scores. 

3. The following data indicate the numbers of accidents bus drivers had 
in one year as a function of the numbers of years on the job. 

Years on Job (xi) 2 4 6 8 10 12 

Accidents ( J;) 10 8 3 8 4 5 

(a) Fit these data with a regression model of the form y = qx + r. 
Determine q and r by computing the pseudoinverse of X, the matrix 
whose first column is the vector of X;' s and whose second column 
is a 1 's vector. 

(b) What is the condition number of the matrix (X7X)? Is the problem 
poorly conditioned? 

(c) Repeat the calculations in part (a) by first shifting the x-values to 
make the average x-value be O (see Example 6). 

4. The following data shows the GPA and the job salary (five years after 
graduation) of six mathematics majors from Podunk U. 

GPA 2.3 3.1 2.7 3.4 3.7 2.8 

Salary 25 ,000 38,000 28,000 35,000 30,000 32,000 

(a) Fit these data with a regression model of the form y = qx + r 
using pseudoinverses. 

(b) What is the condition number of the matrix (X7 X)? Is the problem 
poorly conditioned? 

(c) Repeat the calculations in part (a) by first shifting the x-values to 
make the average x-value be O (see Example 6). 
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5. Compute the pseudoinverse, and then solve the refinery problem in 
Example 1 when refinery 1 is shut down (the other two refineries op
erate). 

6. (a) Compute the pseudoinverse, and then solve, the refinery problem 
in Example 1 when refinery 2 is shut down (the other two refineries 
operate). 

7. 

(b) Compute the error vector e = b - Aw for part (a). Compute the 
angle between the error vector e in part (a) and the solution vector 
Aw. It should be about 90°. Is it? · 

(c) Which refinery closing, of the three refineries, has the smallest error 
vector (in the sum norm)-this assumes that you have done Exer
cise 5. 

Compute the pseudo inverse of the following matrices. 

I 
(a) 

2 (b) 

2 0 

(d) 
1 1 

0 -2 
-1 1 

1 

2 

3 

1 

0 

1 

2 

l 0 

(c) 2 -1 

l 1 

0 2 -1 

(e) 
1 - l 3 

2 l 0 

-1 4 l 

8. In each case, find the linear combination of the first two vectors that is 
as close as possible to the third vector. 
(a) [I, 2, 1], [2, 0, - 1]; [3, -1, OJ 
(b) [ l , 0, 1 ] , [ 0, l , 1] ; [ 0, 0, 5] 
(c) (0, -2, 3], [1, 1, l]; [1, -5, 10] 
(d) l2, 0, 1], [-1, 0, I]; [4, 3, 2] 
(e) (0, 1, 1, O], [1, -1, -1, l); [2, 0, 2, O] 

9. (a) Factory A produces 30 cars, 40 light trucks, and 20 heavy trucks 
per day, while factory B produces 60 cars, 20 light trucks, and 20 
heavy trucks a day. If the monthly demand is 1000 cars, 500 light 
trucks, and 400 heavy trucks, what is the )east-squares solution 
(days of production for each factory)? 

(b) If the monthly demand increased by 10 cars, how much longer 
would factory A have to work each month? 
Hint: See Example 4 of Section 3.3. 

(c) If the monthly demand increased by 10 light trucks and 5 heavy 
trucks, how much longer would factory B have to work each 
month? 

10. (a) Bureaucratic office A produces 40 new regulations, inspects 90 
defective appliances, and approves 300 applications a week. Bu
reaucratic office B produces 80 new regulations, inspects 40 def ec-
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tive appliances, and approves 200 applications a week. How many 
weeks would each office have to work in order to best approximate 
(in the least-squares sense) a demand of producing 1000 new reg
ulations, inspecting 700 defective appliances, and approving 2000 
applications . 

(b) What is the condition number of the matrix (A 7 A) in the pseu
do inverse computations? ls this problem poorly conditioned? 

( c) If the demand for new regulations increased by IO, how much 
longer would office A have to work? 

11. Consider the regression problem in which high ·school GPA and total 
SAT score (verbal plus math) are used to predict a person's college 
GPA: 

. total SAT 
GPA college = q1(GPA h1 sch) + q2 lOOO + r 

Suppose that our data for five people are as follows: 

GPAco, GPAhi SAT 

A 2.8 3.0 l .05 
B 3.0 2.8 J .15 
C 3.6 3.8 1 .30 
D 3.2 3.6 1.00 

E 3.8 3.4 1.35 

(a) Compute the pseudoinverse (X7X) - 1xr. In the process, determine 
the condition number of (XrX). Is this problem poorly conditioned? 

(b) Determine q 1 , q2 , and r. 
(c) Determine the error vector e (differences between true GPA-college 

and estimated GPA-college). Is it orthogonal to the estimated GPA
college vector? 

12. In Example 5, re-so)ve the quadratic least-squares approximation prob
lem for the following data points. Note that for parts (a) and (b) the 
x-values are the same, so the pseudoinverse will be the same (just use 
the x+ in the text). 
( a) Same as in Example 5 but the fourth point is (3, 5). 
(b) Same as in Example 5 but the first point is (0, 9). 
(c) (0, 7), (1, 5), (2, 7), (3, 9), (4, 13) 
(d) ( - 2, 7), ( - 1, 5), (0, 4), (1, 4), (2, 8), (3, 12); how is this problem 

related to the original problem in Example 5? 
(e) (0, 2), (1, 4), (2, 10) 

13. Fit a cubic polynomial to the following data points using the same idea 
as in the quadratic fit in Example 5: ( - 1, -2), (0, 3), (1, 2), (2, 8), 
(3, 12), (4, 100). What is the condition number of (X7X)? 

• 

• 
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14. Consider the regression model z = qx + ry + s for the following data, 
where the x-value is a scaled score (to have average value of 0) of l1igh 
school grades, the y-value is a scaled score of SAT scores, and the 
z-value is a scaled score of college grades. 

X - 4 - 2 0 2 4 

y 2 - I - 2 - 1 2 

- z 3 6 7 7 6 

Determine q, r, ands . Note that the x, y ~ and 1 vectors (in the regression 
matrix equation z = qx + ry + s 1) are orthogonal . 

15. Consider the regression model Y; = q_t;, i = 1, 2, ... , n. Compute 
the pseudoinverse for this regression problem and solve for q (in terms 
of the X;, y1 values). As a matrix system Xq = y) the matrix X is the 
n-by-1 column vector of .t-values and y is the vector of y-values. Your 
answer should agree with the formula for q in equation (7). 

16. Use a geometric picture to explain why if Aw is very close to b, then 
the error vector b - Aw may not be exactly orthogonal to the projection 
vector Aw in a least-squares solutio11 to Ax = b. 

17. Compute the cosine of angle, and detern1ine the angle, made by the 
following pairs of vectors. · 
(a) [ l , 0] , [ 1, 1 ] (b) [ 3, 4] , [ - 3, 4] ( c) [ 1 , 2] , [ 3 , l] 
(d) (1,0. l], (0, 1,0] (e) [1, 1, 11, [l, - 1, 2] 

. (f) [l, 1, 1], [2, - 1, 3] 

18. Compute the correlation coefficient between the vectors of ~Y- and 
}'-values in Exercise 14, and between the vectors of x- and z-values in 
Exercise 14. 

19. The following data show scores that three students received on a battery 
of six different tests. 

Gerry Jimmie Ronnie 

General IQ 12 20 10 

Mathematics 8 .22 4 

Reading 16 14 10 

Running 24 16 12 

Speaking 12 10 30 

Watching 12 14 8 

... 

• 
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Compute the correlation coefficient between 
(a) Gerry and Jimmie (b) Gerry and Ronnie 
(c) Jimmie and Ronnie 

Hint: Remember first to subtract the average value from each number. 

20. (a) Compute the correlation coefficient of the following readings from 
eight students of their IQs and scores at Zaxxon. 

Student A B C D E F G H 

IQ 120 130 105 90 125 120 110 160 

Zaxxon 11 ,000 7,000 10,000 12,000 8,000 100,000 8,000 6,000 

(b) Delete student F and recompute the correlation coefficient. 

Hint: Reme1nber first to subtract the average value from each 
number. 

21. Suppose that there are two dials A and B on a machine that produces 
steel. We want to find out how settings a;, b; of the two dials affect the 
quality c; of the steel. We use a regression model c = pa + qb + r . 

• 
For each of the fallowing vectors a of settings for dial A, find a vector 
b of settings of dial B that is orthogonal to the dial A vector and also 
orthogonal to the 1 's vector. 
(a) a = [2, 1, 0, -1, - 2] (b) a= [-4, -1, 0, 2, 3] 
(c) a = [2, 6, 1, -4, - 3, -2] 

22. Prove that the pseudoinverse A + equals the true inverse A - 1 if the 
,z-by-n matrix A is invertible (and hence has rank n). 

23. (a) Show that in the euclidean norm la - bl ~ lal + lbl by squaring 
both sides of this inequality and using the law of cosines ( on the 
left side). 

, 

(b) Show that in the euclidean norm la + cl < lal + !cl by letting 
b = -c (and hence -b = c) and using part (a). 

24. Show that if a is orthogonal to b and c , then a cannot be linearly 
dependent on b and c . 

25. If the vectors in a basis of vector space V are mutually orthogonal to 
the vectors in a basis of vector space W, show that every vector in V 
is orthogonal to every vector in W. 

26. For each of the following matrices A, express the l's vector 1 (of the 
appropriate length) as the unique sum of two vectors, 1 = b1 + b2 , 

such that b1 is in Range(A) and b2 is in the error space of A. This 
unique sum exists by Theorem 7, part (i). 

• 
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27. 

(a) 

(d) 

I 
2 

2 0 
1 1 

0 - 2 

-1 1 

(b) 

1 

2 

3 

I 

0 

1 

2 

1 0 

(c) 2 -1 

1 1 

0 2 - 1 

(e) 
1 - l 3 

2 l 0 

- 1 4 ) 

For each matrix A in Exercise 26, find a basis {vi} for the Range(A) 
[ = Col(A)] and a basis {w;} for Null(Ar). Then verify that the V; are 
orthogonal to the w ;, as required by Theoren1 7, part (ii) . 

28. For each of the following matrices A, express the 1 's vector 1 as a 
unique sum, 1 =- x1 + x2 of a vector x 1 in Row(A) and a vector x2 in 
Null(A). 

(a) 
1 

-2 
- 2 

4 
(b) 

2 1 

1 2 
(c) 

1 2 0 

0 1 2 (d) 

1 1 0 

2 1 2 

0 1 1 

29. Find a solution to Ax = 1, for A the matrix in Exercise 28, part (c), 
in which x is in Row(A) . 

30. Use Theorem 8 to prove that if v1, v2, •.. , v k are a linearly inde
pendent set of vectors in the row space of a matrix A, tl1en w,. = Av, 
are a linearly independent set of vectors in the range of A. Thus, if {vi} 
are a basis for Row(A), then {Avi} are a basis for Col(A) . 



456 

• 

Ch. 5 Theory of Systems of Linear Equations and Eigenvalue/Eigenvector Problems 

The inverse A - 1 of a matrix A with orthogonal columns af is easy to 
describe. It is essentially the same as the pseudoinverse: A- 1 is formed by 
dividing each column af by af · af, the sum of the squares of its entries, 
and fo11ning the transpose of the resulting matrix. Thus, if s; af · af, 
then 

A- l (1) 
• 
• 
• 

We verify (I) by noting that entry ( i, j) in A - 1 A will be O if i =I= j be
cause af · a.f = 0 (the columns are orthogonal). Entry (i, i) equals 
(a~/s.) · a~ = a~ · a~/(a~ · a~) = 1 l l l l l l l ' 

Example 1. Inverse of Matrix with 
Orthogonal Columns 

3 -4 
(i) Consider the matrix A = , whose columns are otho-

4 3 

gonal. The sum of the squares of the entries in each column of A 
is 32 + 42 = 25. If we divide each column by 25 and take the 
transpose, we obtain 

_a_ 4 
25 25 
4 3 

-25 25 

The reader should check that this matrix is exactly what one would 
get by computing this 2-by-2 inverse using elimination. 

(ii) Consider the orthogonal-column matrix 

A 
2 1 

1 -1 

0 

I 
1 -1 -1 

Its inverse, by (1), is 

2 1 1 
6 6 6 

A- I 1 1 1 
3 -3 -3 

0 1 1 
2 -2 

Again the reader should check that A- 1 A = I. • 
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Let use use ( 1) to obtain a for111ula for the ith component xi in the 
solution x to Ax == b. Given the inverse A- 1, we can find x as x = A- 1 b. 
The ith component in A - 1b is the scalar product of ith row of A - 1 with b. 
By (1), the ith row of A - i is af /(af · af) and thus 

a~· b 
I 

X · = ---
1 a~· a~ 

l l 

(2) 

Our old friend, the length of the projection of b onto column af (see Theo
rem 2 of Section 5.3). 

A set of orthogonal vectors of unit length (whose norm is 1) are called 
orthonormal. The preceding formulas for X; and A - 1 become even nicer if 
the columns of A are orthonor1nal. In this case, af · af = 1. Then the 
denominator in (2) is 1, so now the projection forn1ula is xi = af · b. To 
obtain A - 1, we divide each column of A by 1 and for1n the transpose: that 
is, A- 1 = AT. Summarizing this discussion, we have 

Theorem 1 
(i) If A is an n-by-n matrix whose columns are orthogonal, then A- 1 

is obtained by dividing the ith column of A by the sum of the 
squares of its entries and transposing the resulting matrix [see (1 )] . 
The ith component X; in the solution of Ax = b is the length of 
the projection of b on af: xi = af · b/af · af. 

(ii) If the columns of A are orthonor111al, then the inverse A- 1 is Ar 
and the length of the projection is just xi = af · b. 

Suppose that we have a basis of n orthogonal vectors Q; for n-space. 
If Q has the q; as its columns, the solution x = b* of Qx = b will be a 
vector b* of lengths of the projections of b onto each qi: 

(3) 

Here the ter1n biq1 is just the projection of b onto q1. So (3) simply says 

Corollary. Any n-vector b can be expressed as the sum of the projections 
of b onto a set of 11 orthogonal vectors qi. 

Example 2. Conversion of Coordinates from 
One Basis to Another 

Consider the orthonor111al basis q1 = [.8, .6], 42 = [ - .6, .8] for 
2-space. To express the vector b = [1, 2] in te11ns of q1, q2 coordi
nates, we need to solve the system 

.8 

.6 

- .6 

.8 

1 

2 
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Figure 5.6 (-.6 .. 8 ] -axis 

2 

_") - I -

or 

Qb* = b, 

By Theorem 1, 

bi - q, · b 

b! q2 • b 

[ 1 , 21 f .8, .6 ]-axis 

1 

[-8 --6] [b!] = [; J .6 .8 b2 ... 

or 

b ~ [ ~:] + b1 [-:;] = [1] ? -
b; = 2, b; = 1 are projections 

of [~] onto[:!] and [-:~] 

where Q = [q 1 (h] 

.8 X l + .6X2 = 2, 

- .6 X l + .8 X2 = 1 

where bjq1 = 2(.8~ .6] is the projection of b on q 1, and bi q2 = 
[ - .6, .8] is the projection of b on q2 . Thus b = [l, 2] is expressed 
as an e 1 - e2 coordinate vector .. while b* = [2, 1] is the same vector 
expressed in q 1 - q2 coordinates. A geometric picture of this con
version is given in Figure 5.6, where the vector [2, I] is depicted as 
the um of its projection onto q I and onto q2 . • 

Theorem 1 is a carbon copy of Theorem 5 of Section 5. 3 about pseu
doinverses when columns are orthogonal. As with the inverse, if A's col
umns arc orthono1111al, the p eudoinverse A + of A will simply be A7 . The 
following example gives a familiar illustration of this result and shows why 
orthogonal columns make inverses and pseudoinverse so similar. 

Example 3. Pseudoinverse of Matrix with 
Orthonormal Columns 

Let 12 be the first two columns of the 3-by-3 identity matrix. 

Then 

I + - IT -2 - 2 -

1 0 

0 1 

0 0 

l O 0 

0 1 0 

For any vector b = [b1, b2 , b3], the least-squares solution x b* to 
I?x = bis -
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b* I { b 
1 0 0 

0 1 0 
--

459 

This result confir1ns our intuitive notion that [b1 , b2 , O] is the closest 
point in the x-y plane to the point [b 1, b2 , b3]. • 

Optional 
There is another interesting geometric fact about orthono1mal columns 

(see the Exercises for the two-dimensional case). 

Theorem 2. When Q has orthonor1nal columns, then solving Qx = b for 
b* = Qrb is equivalent to perfor111ing the orthonorn1al change of basis 
b > b* = Qrb. Such a basis change is simply a rotation of the 
coordinate axes, a reflection through a plane, or a combination of both. 
The entries in Q can be expressed in terms of the sines and cosines of 
the angles of this rotation. 

For example, the rotation of axis in the plane by 0° is a linear trans
for1nation R of 2-space: 

R: 

where 

x' X COS 0° + y sin 0° 
y ' - X Sin 0° + y COS 0° 

A == 
cos 0° sin 0° 

- sin 0° cos 0° 

or 

It is easy to check that A has orthonormal columns. 

u' Au 

It follows that the distance between a pair of vectors and the angle that 
they forrn do not change with an orthonor1nal change of basis. 

(Note: End of optional material.) 

Orthogonal columns have another important advantage besides easy 
for1nulas. A highly nonorthogonal set of columns-that is, columns that are 
almost parallel-can result in unstable computations. 

Example 4. Nonorthogonal Columns 

Consider the following system of equations: 

lx1 + .75x2 = 5 

lx1 + lx2 = 7 
(4) 
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Let us call the two column vectors in the coefficient matrix of ( 4): 
u = [I, l] andv = [.75, l]. Thecosineoftheirangleis, by Theorem 
6 of Section 5.3, 

cos 0(u, v) 
u·v 

lnllvl 
1. 75 

\l'2 · 1.25 
.99 (5) 

The angle with cosine of . 99 is 8°. Thus u and v are almost parallel 
(almost the same vector). Representing a11y 2-vector b as a linear 
combination of two vectors that are almost the same is tricky, that is, 
unstable. For example, to solve (4) we must we find weights x 1, x2 

such that 

J 

l 

.75 

1 

5 

7 
(6) 

The system ( 4) is the canoe-with-sail system from Section 1 . 1. We 
already know that calculations with A, the coefficient matrix in (4), 
are very unstable. In Section 3.5 we computed the condition number 
of A to be c(A) ~ 16. Recall that the condition number c(A) == 
IIAII · IJA- 11! measures how much a relative error in the entries of A ( or 
in b) could affect the relative error in x = [x1 , x2]; in this case, a 5% 
error in b could cause an error 16 [ = c(A)] times greater in x, a 
16 x 5% == 80% error. 

We solved (4) in Section 1.1 and obtained x 1 = -1, x2 = 7. 
If we had solved for b' = [7, 5], we would have obtained the answer 
x 1 = 13, x2 = - 8 (see Figure 5.7 for a picture of this result). Or for 
b" = [ 6, 6] , rt I = 6 'I •t2 = 0 • • 

Figure 5.7 13[1, 1] 

12 

10 

8 

6 

4 

., 
-

-6 / 2 4 6 8 IO 12 
/ 

-6 

-8 
-8 [. 75. l] 
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Reading the results of Example 4 in reverse, we see that when errors 
arise in solving an ill-conditioned system of equations Ax = b (in which A 
has a large condition number), the problem should be that some column 
vector ( or a linear combination of them) fo1 rr1s a small angle with another 
column vector-this means that the columns are almost linearly dependent. 
If the columns were close to mutually orthogonal, the system Ax = b would 
be well-conditioned. 

Principle. Let A be an n-by-n matrix with rank(A)= n so that the system of 
equations Ax = b has a unique solution. The solution to Ax = b will 
be more or less stable according to how close or far from orthogonal 
the column vectors of A are. 

Suppose that the columns of the tz-by-n matrix A are linearly inde
pendent but not orthogonal. We shall show how to find a new n-by-11 matrix 
A* of orthono11nal columns ( orthogonal and unit length) that are linear com
binations of the columns of A. 

Our procedure can be applied to any basis a1, a2 , ... , a,n of an m
dimensional space V and will yield a new basis of m orthono11r1al vectors Q; 

for V (unit-length vectors make calculations especially simple). The proce
dure is inductive in the sense that the first k Q; will be an orthonormal basis 
for the space Vk generated by the first k ai. The method is called 
Gram-Schmidt orthogonalization. 

For k = 1, q 1 should be a multiple of a 1• To make q 1 have nor111 1, 
we set q 1 = a1/la1I. Next we must construct from a2 a second unit vector 
q2 orthogonal to q1. We divide a2 into two ''parts'': the part of a2 parallel 
to qt and the part of a2 orthogonal (perpendicular) to q, (see Figure 5.8). 
The component of a2 in q1 's direction is simply the projection of a2 onto 
q 1 • This projection is sq 1 , where the length s of the projection is 

(7) 

since q1 • q 1 = I. The rest of a2 , the vector a2 - sq 1, is orthogonal 
sq 1 is the 

we set q2 = 
to the projection sq1 , and hence orthogonal to q 1 . So a2 

orthogonal vector we want for q2 . To have unit nor1r1, 
( a2 - sq 1 ) / I a2 - sq 1 I -

Let us show how the procedure works thus far. 

Figure 5.8 Gram- Schmidt 
orthogonalization. 

4 

3 

a1 = l3.4] 

.., - al - sq1 ~ q 2 = a2 - sq I 
/ l a2 - sq1 I 

a., = [ I . 2] -

1 2 3 4 
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Example 5. Gram-Schmidt Orthogonalization 
in Two Dimensions 

Suppose that a 1 = [3, 4] and a 2 = [2, l] (see Figure 5.8). We set 

3 4 
- -
5' 5 

We project a2 onto q 1 to get the part of 3 2 parallel to q 1. From (7), 
the length of the projection is 

s = a2 • q1 = [2, l] · [~, !] = 1
5° = 2 

and the projection is sq 1 = 2[~ ~] = [~, ~]. Next we dete1111ine the 
other part of a2 , the part orthogonal to sq 1: 

32 - SQ1 = [2, 1] - [~, ~] = [:, -f] 

Since j[l, - ~]I = 1, then 

[
4 _ 3] 
5, 5 4 3 

- - -
1 5' 5 • 

We extend the previous construction by finding the projections of a3 
onto q 1 and q2 . Then the vector 3 3 - s1q 1 - s2q2 , which is orthogonal to 
q1 and q2 should be q3 ; as before, we divide a3 - s1q1 - s2q2 by its nor1n 
to make q3 unit length. We continue this process to find q4 , q5 , and so on. 

Example 6. Gram-Schmidt Orthogonalization 
of 3-by-3 Matrix 

Let us perfo11n orthogonalization on the matrix A whose ith column 
we denote by 3t· 

0 3 2 

A= 3 5 5 

4 0 5 

First q1 = 3 1/la1l = [0, 3, 4]/5 = [ 0, ~' t]. 
The length of the projection 3 2 onto q1 is 

(8) 

s = 3 2 • q1 = 3 · 0 + 5 · ~ + 0 · ; = 3 (9a) 

So the projection of a2 onto q 1 is 

SQ1 = 3[0, J, t] = [0, ~' 1
s
2

] 
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Next we compute 

[3 ' 5 ' 0] - [ 0' ~ ' 152 ] = [ 3 ' 156 ' - 152 ] 

\/9 + 256/25 + 144/25 = 5. Then 

3 16 12 
-
5' 25' 25 

We compute the length of the projections of 3 3 onto q 1 and q2: 

5·3 5·4 
Si == 8 3 • Q1 == 2 · 0 + -- + -- = 3 + 4 == 7 

5 5 

2 · 3 5 · 16 - 12 
S2 = 8 3 • q 2 = 5 + 25 + 5 . 25 (9b) 

Then 

and 

6 16 
== - + -

5 5 
12 

5 
2 

s q - 1[0 .3. 1.J - [o 21 2 s ] I I - , 5, 5 - , 5 , 5 

- 2[3 16 12] [6 32 24] S 2Q2 - 5, 2 5 , - 2 5 == 5, 2 5 , - 2 5 

8 3 - S1Q1 - S2q2 = [2, 5, 5] - [ 0, ~5
1 

, 
2
5
8

] - [~, ~~' - :~] 

[t, -½~, ik] 

The matrix of these new orthogonal column vectors is 

0 3 4 
5 5 

Q 3 16 12 (10) 5 25 -25 

4 12 9 
5 -25 25 • 

In keeping with the principle above, the accuracy of this procedure 
depends on how close to and far from orthogonality the columns a; are. If 
a linear combination of some 3i f onns a small angle with another vector ak 
(this means the matrix A has a large condition number), then the resulting 
qi will have errors, making them not exactly orthogonal. However, more 
stable methods are available using advanced techniques, such as Householder 
transformations. 
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Suppose that the columns of A are not linearly independent. If, say, 
a3 is a linear combination of 3 1 and a2 , then in the Gram-Schmidt procedure 
the error vector a3 - s1q 1 - s2q2 with respect to q 1 and q2 will be 0. In 
this case we skip 3 3 and use 3 4 - s 1q 1 - s2q2 to define q3 . The number of 
vectors qi forr11ed will be the dimension of the column space of A, that is, 
rank(A). 

The effect of the orthogonalization process can be represented by an 
upper triangular matrix R so that one obtains the matrix factorization 

Theorem 3. Any m-by-n matrix A can be factored in the fonn 

A= QR ( 11) 

where Q is the m-by-rank(A) matrix with orthonormal columns Q; 
obtained by Gram-Schmidt orthogonalization, and R is an upper tri
angular matrix of size rank(A)-by-n (described below). 

For i < j, entry r u of R is 3j • qi, the projection of 3j onto Q;• The 
diagonal entries in R are the sizes, before no11nalization, of the new columns: 
r11 = 1311, r22 = 132 - sq1l, r33 = 133 - S141 - S2Q2I, and so on. 

. ' . 

Example 7. QR Decomposition 

Give the QR decomposition for the matrix A in Example 6. 

0 3 2 

A= 3 5 5 

4 0 5 

• 

The orthonor111al matrix Q is given in (10). We for1n R from the 
infor1nation about the sizes of new columns and the projections as 
described in the preceding paragraph. Here r 12 = s = 3 in (9a), and 
r 13 = s1 = 7, r23 = s2 = 2 in (9b). Then 

0 3 4 5 3 7 5 5 

QR - 3 16 12 0 5 2 - 5 •)5 -25 -· 
4 12 9 0 0 I 5 --;:;-: 25 _., 

Let us compute the second column of QR-multiplying Q by 
rf, the second column of R-and show that the result is 3 2 , the second 
column of A. 

0 3 4 3 ";" 
5 i) 

Qr~== 3 16 12 5 5 25 -25 

4 12 9 0 5 -25 25 (12) 
0 3 4 3 .. 

5 a 

3 3 + 5 16 + 0 12 5 - 32 5 25 -25 -
4 12 9 0 5 -25 25 • 
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Columns of Q are obtained from linear combinations of the columns 
of A. Reversing this procedure yields the columns of A as linear combina
tions of the columns of Q. This reversal is what is accomplished by the 
matrix product QR. Consider the computation in (12). In terms of the col
umns q; of Q, (12) is 

or, in te1111s of R, 

(13) 

(a2 equals its projection onto q 1 plus its projection onto q2). 

Next consider the formula for q2: 

(14) 

since r22 = la2 - sq1j and r 12 = s. Solving for a 2 in (14), we obtain (13) 

The same analysis shows that the jth column in the product QR is just a 
reversal of the orthogonalization steps for finding qj. 

The matrix R is upper triangular because column a; is only involved 
in building columns Q;, qi+ 1, •.• , qn of Q. The QR decomposition is the 
column counte1part to the LU deco,nposition, given in Section 3.2, in which 
the row combinations of Gaussian elimination are reversed to obtain the 
matrix A from its row-reduced matrix U. 

The QR decomposition is used frequently in numerical procedures. 
We use it to find eigenvalues in the appendix to Section 5. 5. 

We will sketch one of its most frequent uses, finding the inverse or 
pseudoinverse of an ill-conditioned matrix. If A is an n-by-n matrix with 
linearly independent columns, the decomposition A = QR yields 

(15) 

The fact that Q - 1 = Q7 when Q bas orthono11nal columns was part of 
Theorem I. Given the QR decomposition of A, (15) says that to get A - 1

, 

we only need to detennine R - 1. Since R is an upper triangular matrix, its 
inverse is obtained quickly by back substitution (see Exercise 12 of Section 
3.5). When A is very ill-conditioned, one should compute A - 1 via (15): 
first, dete1 ruining the QR decomposition of A, using advanced (more stable) 
variations of the Gram-Schmidt procedure; then determining R - 1

; and thus 
obtaining A - 1 = R - 1Qr. 

Equation (15) extends to pseudoinverses. That is, if A is an 1r1-by-11 
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matrix with linearly independent columns and m > n, then its pseudoinverse 
A + can be computed as 

(16) 

See the Exercises for instructions on how to verify (16) and examples of its 
use. This formula for the pseudoinverse is the standard way pseudoinverses 
are computed in practice. Even if one dete11nines Q and R using the basic 
Gram- Schmidt procedure given above, the resulting A + from (16) will be 
substantially more accurate than computing A + using the standard fotrnula 
A + = (Ar A) - 1AT, because the matrix AT A tends to be ill-conditioned. For 
example, in the least-squares polynomial-fitting problem in Example 5 of 
Section 5.4, the condition number of the 3-by-3 matrix XTX was around 
2000! 

Principle. Because of conditioning problems, the pseudoinverse A + of a 
matrix A should be computed by the forrnula A + = R - 1QT, where 
Q and R are the matrices in the QR decomposition of A. 

We now introduce a very different use of orthogonality. Our goal is 
to make a vector space for the set of all continuous functions. To make 
matters a little easier, let us focus on functions that can be expressed as a 
polynomial or infinite series in powers of x, such as x3 + 3x2 - 4x + 1 
or tr or sin x. 

Recall that the defining property of a vector space V is that if u and v 
are in V, then ru + sv is also in V, for any scalars r, s. Clearly, linear 
combinations of polynomials (or infinite series) are again polynomials (or 
infinite series), so these functions fo1n1 a vector space. 

For a vector space of functions to be useful, we need a coordinate 
system, that is, a basis of independent functions u1(x) (functions that are not 
linearly dependent on each other) so that any function f(x) can be expressed 
as a linear combination of these basis functions. 

• • • (17) 

This basis will need to be infinite and the linear combinations of basis 
functions may also be infinite. The best basis would use orthogonal, or even 
better, orthonot 1nal functions. 

To make an orthogonal basis, we first need to extend the definition of 
a scalar, or inner, product c · d of vectors to an inner product of functions. 
The inner product of two functions f(x) and g(x) on the interval [a, b] is 
defined as 

b 

f(x) · g(x) f(x)g(x) dx (18) 
a 

This definition is a natural generalization of the standard inner product c · d 
in that both c · d and f (x) · g(x) for1n sums of ter1r1-by-te11n products of the 
respective entities, but in (18) we have a continuous sum, an integral. 
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With an inner product defined, most of the theory and forrnulas defined 
for vector spaces can be applied to our space of functions. The inner product 
tells us when two vectors c, d are orthogonal (if c · d = 0), and allows us 
to compute coordinates c~ of c in an orthonor111al basis ui: c~ = c · u1 (these 
coordinates are just the projections of c onto the u1). We can now do the 
same calculations for functions with (18). 

The functional equivalent of the euclidean norm is defined by 

b 

lf(x)l 2 = f(x) · f(x) = f(x) 2 dx (19) 
a 

The counterpart of the sum norm els = I. C; for vectors is lf(x)ls = 
f lf(x)I dx. 

An orthononnal basis for our functions on the interval [a, b] will be 
a set of functions {u;(x)} which are orthogonal-by (18), J ui(x)uj(x) dx = 
0, for all i # j and whose norms are 1-by (19), J ui(x)2 dx = l. Given 
such an orthonormal basis {ui(x)}, the coordinates ft of a function f(x) in 
te11ns of the u1(x) are computed by the projection for111ula J; = f(x) · u;(x) 
used for n-dimensional orthono11nal bases: 

How do we find such an orthonormal basis? The first obvious choice 
is the set of powers of x: 1, x, x2

, x3 , . . . . These are linearly independent; 
that is, xk cannot be expressed as a linear combination of smaller powers of 
x. Unfortunately, there is no interval on which 1, x, and x2 are mutually 
orthogonal. On [-1, 1], 1 · x = f x dx = 0 and x · x2 = f x3 dx = 0, 
but 1 · x2 = f x2 dx = ~. 

There are many sets of orthogonal functions that have been developed 
over the years . We shall mention two, Legendre polynomials and Fourier 
trigonometric functions. 

The Gram-Schmidt orthogonalization procedure provides a way to 
build an orthonorinal basis out of a basis of linearly independent vectors. 
The calculations in this procedure use inner products, and hence this pro
cedure can be applied to the powers of x (which are linearly independent 
but, as we just said, far from orthogonal) to find an orthonor1nal set of 
polynomials. 

When the interval is [-1, 1], the polynomials obtained by orthogon
alization are called Legendre polynomials Lk(x). Actually, we shall not 
worry about making their norms equal to 1. As noted above, the functions 
x0 = 1 and x are orthogonal on [-1, l]. So L0(x) = 1 and L 1(x) = x. 
Also, x2 is orthogonal to x but not to 1 on [ - 1, 1]. We must subtract off 
the projection of x 2 onto 1: 

1 · x 2 

1 · 1 
1 = x2 - f x2 dx = x2 - ~ = x2 - _I 

fidx 2 3 
(21) 

A similar orthogonalization computation shows that L3(x) = x3 - ~x. 
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Example 8. Approximating ex by 
Legendre Polynomials 

Let us use the first four Legendre polynomials L0(x) = 1, L1 (x) = x, 
L2(x) = x 2 - ½, L3(x) = x3 

- 3x/5 to approximate ex on the interval 
(-1, l]. We want the first four te11ns in (20): 

(22) 
3x 

--
5 

where W; = e·'( · L;(x)/L;(x) · L;(.:t) = I e-"<L;(x) dx/ I L;(x)2 dx. For 
example, 

1 

- 1 
ex(x2 - ~) dx 

\.V2 = l 

- 1 
(x2 - ½)2 dx 

With a little calculus, we compute the w; to be (approximately) 

2.35 
1.18, 

.736 
1.10, Wo = 

2 
W1 = 

.667 

.096 
.53, 

.008 
.18 w? = 

.178 
W3 = 

.046 -

Then (22) becomes 

e·'· ~ l . 18 + 1 . 1 Ox + . 5 3 
,, I 

X- - -
3 

+ .18 .x3 
3x 

--
5 

(23) 

If we collect like powers of x together on the right side, (23) simplifies 
to 

e•'< === 1 + x + . 5 3x2 + . 18x3 (24) 

Comparing our approximation against the real values of ex at the 
points -1, -.5, 0, .5, 1, we find 

X - 1 - .5 0 .5 1 

.37 .61 1 1.64 2.72 

Legendre approximation .37 .61 1 1.65 2.71 
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A pretty good fit. In particular, it is a better fit on [ - 1, 1] than simply 
using the first te11ns of the power series for ex, namely, 1 + x + 
x2 /2 + x3 /6. The approximation gets n1ore accurate as more Legendre 
polynomials are used. • 

Over the interval [O, 21r] the trigonometric functions (1/V'rr) sin kx 
and (1/V'rr) cos kx, for k = I, 2, ... , plus the constant function 
1/VIir are an orthonormal basis. To verify that they are orthogonal requires 
showing that 

1 ] 1 2-rr 

.... c sin jx · .... 1 cos kx = - sin jx cos kx dx = 0 
V7T V1T 1T 0 

for all j, k 
1 1 1 2

-rr 

.... '- sin jx · .... '- sin kx = - sin jx sin kx dx = 0 
V7T V1T 1T 0 

for all j ~ k 
1 1 I 2

-rr 

"' c cos jx · .... c cos kx = - cos jx cos kx dx = 0 
V7T V1T 'TT 0 

for all j # k 

plus showing these trigonometric functions are orthogonal to a constant func
tion. To verify that these trigonometric functions have unit length requires 
showing 

2-rr 
1 1 . k 1 . ., k 

.... c sin kx · .... c sin x = - s1n- x dx 
V'IT V1T 1T 0 

1 for all k 

1 l 1 2
-rr 

-- cos kx · -- cos kx = - cos2 kx dx = 1 v:rr v:rr 1T 0 
for all k 

When u2k_ 1(x) = (1/V'rr) sin kx and u2k(x) = (1/V'rr) cos kx, k = 
1, 2, ... and u0(x) = l/VIir in (20), this representation of f(x) is called 
a Fourier series, and the coefficients f(x) · u;(x) in (20) are called Fourier 
coefficients. Using Fourier series, we see that any piecewise continuous 
function can be expressed as a linear combination of sine and cosine waves. 
One important physical interpretation of this fact is that any complex elec
trical signal can be expressed as a sum of simple sinusoidal signals. 

Example 9. Fourier Series Representation 
of a Jump Function 

Let us deter111ine the Fourier series representation of the discontinuous 
function: f (x) = I for O < x < 1T and = 0 for 1T < x < 211'. The 
Fourier coefficients f(x) · u;(x) in (20) are 
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l . 1 

1.0 

.9 

8 

.7 

.6 

.5 

.4 

.3 

., ..... 

. I 

0 

f(x) · u2k _ i(x) = f(x) · ~ sin kx = ~ 
0
-rr sin kx dx 

2 

ky1; 1 
ky1; [-cos kx]0 = 

k odd 

0 k even 

1 1 '7T (25) 
f(x) · uu(x) = f(x) · y1; cos kx = y1; 

0 
cos kx dx 

k~ [sin kx]O = 0 

Further, we calculate f(-Y) · 1/~ = v:ii(i, so the constant te1n1 
of the Fourier series for this f(x) is (f(x) · u0(x))u0(x) = ½. 

By (25), only the odd sine te11r1s occur. Letting an odd k be 
written as 2n - 1, we obtain the Fourier series. 

1 00 2 
f(x) = - + L ½ sin [(2n - l)x] (26) 

2 n = 1 (2n - 1) '1T 

Figure 5.9 shows the approximation to f(x) obtained when the first 
three sine te1111s in (26) are used (dashed line) and when the first eight 
sine terms are used. The tit is impressive. • 

I \ 
I \ 

I \ 
I \ 
I \ 
I 
I 

.. 

.1 .4 

\ 
\ 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

.6 .8 1.0 1.2 1.4 1.6 l.8 2.0 2.2 2.4 ".6 2.8 3.0 3.::! 3.4 ' 3 6 3 8 
' / -

Figure 5.9 Dashed lines use first three trigonometric terms in Fourier series for 
f(x). Solid lines use first eight terms. 
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• 

Representing a function in ter1ns of an orthonor1nal set of functions as 
in (20) has a virtually unlimited number of applications in the physical 
sciences and elsewhere. If one can solve a physical problem for the ortho
no1111al basis functions, then one can typically obtain a solution for any 
function as a linear combination of the solutions for the basis functions. This 
is true for most differential equations associated with electrical circuits, 
vibrating bodies, and so on. Statisticians use Fourier series to analyze time
series patterns (see Example 3 of Section 1.5). The study of Fourier series 
is one of the major fields of mathematics. 

We complete our discussion of vector spaces of functions by showing 
how badly conditioned the powers of x are as a basis for representing func
tions. Remember that the powers of x, xi, i = 0, 1, ... , are linearly 
independent. The problem is that they are far from orthogonal. 

Let us consider how we might approximate an arbitrary function f(.,t) 
as a linear combination of, say, the powers of x up to .x5: 

using the continuous version of least-squares theory. If f(x) and the powers 
of x were vectors, not functions, then (27) would have the familiar matrix 
fo1rn f = Aw and the approximate solution w would be given by w = A +f, 
where A + = (ATA) - 1Ar. 

Let us generalize f = Aw to functions by letting the columns of a 
matrix be functions. We define the functional ''matrix'' A(x): 

A(x) = [ 1, x, x 2
, x3, x4

, x5] 

Now (27) becomes 

f(.:c) = A(x)w (28) 

To find the approximate solution to (28), we need to compute the 
functional version of the pseudoinverse A(x) + : A(x) + = (A(x)T A(x)) - 1 A(x)T 
and then find the vector w of coefficients in (27): 

w = A(:r) + f(x) = (A(x)T A(x)) - 1(A(x)Tf(.,t) (29) 

The matrix A(x)T has xi as its ith ''row'', so the matrix product 
A(x)T A(x) involves computing the inner product of each 'row'" of A(x)r with 
each ''column'' of A(x): 

entry (i, j) in A(x)T A(x) is x; · x1 ( = f x;x1 dx) 

Similarly, the matrix-' 'vector'' product A(x)r f(x) is the vector of inner prod-
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ucts xi · f(x). The computations are simplest it" we use the interval [O, l]. 
Then entry (i, j) of A(.,T)r A(x) is 

1 xi +j + l l 
I 

x' · xj = xi+ j dx = 
0 i + j + 1 0 i + j + l 

(30) 

For example, entry ( 1, 2) is J xx2 dx = f x3 dx = J. Note that we consider 
the constant function 1 ( = x0

) to be the zeroth row of A(x)r. 
Computing all the inner products for A(x)r A(x) yields 

1 1 1 1 1 1 
2 - 4 5 6 3 

1 1 l J 1 1 
2 3 4 5 6 7 

1 .1 1 1 .1 1 

A(x)7A(x) 
3 4 5 6 7 4 

(31) -- 1 1 1 1 1 1 
4 5 6 7 8 9 
.l 1 l 1 1 1 
5 6 7 8 9 To 
l .l I 1 _l_ 1 
6 7 8 9 10 TI 

This matrix is very ill-conditioned since the columns are all similar to 
each other. When the fractions in (31) are expressed to six decimal places, 
such as ~ = .333333 , the inverse given by the author's microcomputer was 
(with entries rounded to integer values) 

Fractions expressed to six decimal places 

(A(x)T A(x)) - 1 

17 - 116 -47 1,180 - 1,986 958 

-116 342 7,584 - 34,881 49,482 -22,548 

-47 7,584 - 76,499 242,494 - 301,846 129,004 

1,180 - 34,881 242,494 644,439 723,636 -289,134 

-1,986 49,482 -301,846 723,636 -747 ,725 278,975 

958 -22,548 129,004 -289, 134 278,975 -97,180 

(32) 

The (absolute) sum of the fifth column in (32) is about 2,000,000. The first 
column in (31) sums to about 2.5. So the condition number of A(x)7A(x), 
in the sum norm, is about 2,000,000 x 2.5 = 5,000,000. Now that is an 
ill-conditioned matrix! 

We rounded fractions to six significant digits, but our condition number 
tells us that without a seventh significant digit, our numbers in (32) could 
be off by 500% error [a relative error of .000001 in A(x)TA(x) could yield 
answers off by a factor of 5 in pseudoinverse calculations]. Thus the numbers 
in (32) are worthless. 

Suppose that we enter the matrix in (31) again, now expressing frac
tions to seven decimal places. The new inverse computation yields 
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Fractions expressed to seven decimal places 

(A(x)TA(x)) - 1 = 

51 - 1,051 6,160 -1,475 15,419 - 5,845 

- 1,051 26,385 -165,765 410,749 -438,029 168,208 

6 ,160 - 165,765 1,079,198 -2,731,939 2,955,103 - 1,146,281 

- 1,475 410,749 -2,731,939 7,017,359 -7 ,671, 190 2,999,546 

15,419 -438,029 2,955,103 -7,671,190 8,454,598 -3,327,362 

- 5,845 168,208 -1,146,281 2,999,546 - 3,327,362 1,316,523 

(33) 

We have a totally different matrix. Most of the entries in (33) are about I 0 
times larger than corresponding entries in (32). The sum of the fifth column 
in (33) is about 23,000,000. If we use (33), the condition number of 
A(x)7 A(x) is around 56,000,000. Our entries in (33) were rounded to seven 
significant digits, but the condition number says eight significant digits were 
needed. Again our numbers are worthless. To compute the inverse accurately 
would require double-precision computation. 

It is only fair to note that the ill-conditioned matrix (31) is f~amously 
bad. It is called a 6-by-6 Hilbert matrix [a Hilbert matrix has I / (i + j + 1) 
in entry (i,j)]. 

Suppose that we used the numbers in (32) for (A(x)T A(x)) - 1 in com
puting the pseudoinverse. Let us proceed to calculate A(x) + and then com
pute the coefficients in an approximation for a function by a fifth-degree 
polynomial. Let us choose f(x) = ex. Then (A(x)Tex) is the vector of 
inner products xi · e; = f xiex dx, i == 0, 1, ... , 5. Some calculus yields 
A(x)Tex = [2.718, I, .718, .563, .465, .396] (expressed to three significant 
digits). 

Now inserting our values for (A(J:·)TA(x)) - 1 and ATex into (27), we 
obtain 

W = (A(x)T A(x)) - 1(A(x)Tex) = 
17 -116 - 47 1,180 - 1,986 958 2.718 

-116 342 7,584 - 34,881 49,482 - 22,548 1 

- 47 7,584 - 76,499 242,494 - 301,846 129,004 .718 
• 

1,180 - 34,881 242,494 644,439 723,636 - 289, 134 .563 

-1,986 49,482 - 301,846 723 636 -747,725 278 ,975 .465 

958 - 22,548 129,004 - 289,134 278,975 - 97, 180 .396 

17 

-87 

-219 - (34) -
1,611 

2,449 

1,135 
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Thus our fifth-degree polynomial approxirr1ation of ex on the interval 
[O, 1] is 

e·'K :::::::: 17 - 87x - 219x2 + 161 lx3 + 2449x4 + l 135x5 (35) 

Setting x = 1 in (35), we have e1 = 17 - 86 - 219 + 1611 + 2449 + 
1135 = 4907, pretty bad. Since our computed values in (A(x)TA(x)) - 1 are 
meaningless, such a bad approximation of ex was to be expected. 

Compare (35) with the Legendre polynomial approximation in Ex
ample 8. 

Section 5 .4 Exercises 

Summary of Exercises 
Exercises 1-11 involve inverses, pseudoinverses, and projections for matri
ces with orthogonal columns. Exercises 12-21 involve Gram-Schmidt or
thogonalization and the QR decomposition. Exercises 22-30 present prob
lems about functional inner products and functional approximation. 

1. Compute the inverses of these matrices with orthogonal columns. Solve 

2. 

1 

Ax= 2 

3 

where A is the matrix in part (b) . 

. 6 . 8 
(a) 

-.8 .6 (b) 

2 

-2 
2 

1 

1 

2 

1 -2 2 

Compute the inverses of these matrices with orthogonal columns. 

-1 4 -1 2 -3 6 

(a) 2 1 -2 (b) -6 2 3 

1 2 3 3 6 2 

.5 - .5 1 

(c) -.5 .5 1 

1 .5 0 

Solve Ax = 1, where A is the matrix in part (a). 

3. Show that if A is an n-by-n upper triangular matrix with orthonor111al 
columns, A is the identity matrix I. 

4. Compute the length k of the projection of b onto a and give the pro
jection vector ka. 
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(a) a= [O, l, O], b = [3, 2, 4] 
(b) a = [ 1, - 1 , 2] , b = [2, 3 , 1] 
(c) a= [~, i, 5], b = [4, I, 3] 
( d) a = [2, - 1, 3] , b == [ - 2, 5, 3] 

5. Express the vector [2, 1, 2] as a linear combination of the following 
orthogonal bases for three-dimensional space. 
(a) [1, - 1, 2], [2, 2, OJ, [-1, 1, 1] 
(b) [~, ½, - 5], [½, i, ~], [5, - i, ¼] 
(c) [3, 1.5, 1], [1, -3, 1.5], [-1.5, 1, 3] 

6. Compute the pseudoinverse of 

1 2 
3 -3 

A - 2 1 - - 3 3 

2 2 
3 3 

Find the least-squares solution to Ax = 1. 

7. Compute the pseudoinverse of 

3 4 

A= 1 - 2 

2 -5 

Find the least-squares solution to Ax = 1. 

8. Consider the regression model z == qx + ry + s for the following data, 
where the x-value is a scaled score (to have average value of 0) of high 
school grades, the y-value is a scaled score of SAT scores, and the 
z-value is a score of college grades. 

X - 4 - 2 0 2 4 

y 2 - 1 - 2 - 1 2 

z 3 6 7 7 6 

Determine q, r, ands. Note that the x, y, and 1 vectors are mutually 
orthogonal. 

9. Verify that Theorem 2 is true in two dimensions, namely, that a change 
from the standard {e1 , eJ basis to some other orthonor111al basis 
{q 1, qJ corresponds to a rotation (around the origin) and possibly a 
reflection. Note that since q 1 , Ch have unit length, they are completely 
dete1111.ined by knowing the (counterclockwise) angles 01, 02 they make 
with the positive e 1 axis; also since q 1, 42 are orthogonal, IO 1 - 02I 
90°. 
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10. (a) Show that an orthonormal change of basis preserves lengths (in 
euclidean no11n). 
Hint: Verify that (Qv) · (Qv) = v · v (where Q has orthonormal 
columns) by using the identity (Ab) · (Cd) = br(ATC)d. 

(b) Show that an orthono1111al change of basis preserves angles. 
Hint: Show that the cosine forrnula for the angle is unchanged by 
the method in part (a). 

11. Compute the angle between the following pairs of nonorthogonal vec
tors. Which are close to orthogonal? 
(a) (3, 2], ( - 3, 4] (b) [I, 2, 5], [2, 5, 3] 
(c) [l , - 3, 2], [ - 2, 4, -3] 

12. Find the QR decomposition of the following matrices. 

3 -1 
(a) 

4 1 (b) 

2 1 

1 1 

2 3 

1 -1 

(c) 2 -1 

2 -2 

2 

1 

2 

(d) 

2 3 1 

1 1 1 

2 1 2 

13. Use the Gram-Schmidt orthogonalization to find an orthonormal basis 
that generates the same vector space as the following bases: 
(a) [ 1, 1] , [2, - 1] (b) [2, 1, 2], [ 4, 1, 1] , 
( c) [3 , I , 1] , [ 1 , 2, l] , [ 1 , 1 , 2] 

14. (a) Compute the inverse of the matrix in Exercise 12, part (c) by first 
finding the QR decomposition of the matrix and then using (15) to 
get the inverse. (See Exercise 12 of Section 3.5 for instructions on 
computing R - 1 

• ) What is its condition number? 
(b) Check your answer by computing the inverse by the regular elimi

nation by pivoting method. 

15. (a) Find the pseudoinverse A + of the matrix A in Exercise 12, part 
(b) by using the QR decomposition of A and computing A + as 
A + = R - 1QT. 

(b) Check your answer by finding the pseudoinverse from the fo1mula 
A + = (A7A) - 1A7 . Note that this is a very poorly conditioned 
matrix; compute the condition number of (Ar A). 

16. Use ( 16) to find the pseudoinverse in solving the refinery problem in 
Example 3 of Section 5. 3. 

17. Use ( 16) to find the pseudoinverse in the following regression problems 
using the model y = qx + r. 
(a) (x, y) points: (0, 1), (2, 1), (4, 4) 
(b) (x, y) points: (3, 2), (4, 5), (5, 5), (6, 5) 
(c) (x, y) points: ( - 2, 1), (0, 1), (2, 4) 

18. Use ( 16) to find the pseudoinverse in the least-squares polynomial-fitting 
problem in Example 5 of Section 5.3. 
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19. Verify (16): A + R - 1QT, by substituting QR for A (and RrQr for 
AT) in the pseudoinverse fo11nula A + = (Ar A) - 1 Ar and simplifying 
(remember that R is invertible; we assume that the columns of A are 
linearly independent). 

20. Show that if the columns of the m-by-n matrix A are linearly inde
pendent, the ,n-by-m matrix R of the QR decomposition must be in
vertible. 

Hint: Show main diagonal entries of R are nonzero and then see Ex
ercise 12 of Section 3.5 for instructions on computing inverse of R. 

21. Show that any set Hof k orthonor111al n-vectors can be extended to an 
orthonor1nal basis for n-dimensional space. 

Hint: Fo1111 an n-by-(k + n) matrix whose first k columns come from 
H and whose remaining n columns form the identity matrix; now apply 
the Gram-Schmidt orthogonalization to this matrix. 

22. Over the interval [O, 1], compute the following inner products: _r · x, 
x · x 3

, x3 
• x 3

. 

23. Verify that the fourth Legendre polynomial is x3 - ~x. 

24. Verify the values found for the weights tv1, w2 , 1v3 , and w4 in Exam
ple 8. 

Note: You must use integration by parts.-or a table of integrals. 

25. Approximate the following functions f (x) as a linear combination of the 
first four Legendre polynomials over the interval [ - l, l]: L0(x) = 1, 
L 1(x) == x, L2(x) = x2 

- }, L3(x) = x 3 - 3x/5. 
(a) f(x) = X4 (b) f(x) = lxl 
(c) f(x) = -1: x < 0, = 1: x > 0 

26. Approximate x 3 + 2.:r - 1 as a linear combination of the first four 
Legendre polynomials over the interval [-1, I]: L0(x) == 1, L 1(x) = 
x, L2(x) = x2 - ½, L3(x) = x 3 

- 3x/5. Your ''approximation'' should 
equal x 3 + 2x - 1, since this polynomial is a linear combination of 
the functions 1, x, x 2

, and x3 , from which the Legendre polynomials 
were derived by orthogonalization. 

27. (a) Find the Legendre polynomial of degree 4. 
(b) Find the Legendre polynomial of degree 5. 

28. ( a) Using the interval [O, I], instead of [ - I , 1], find three orthogonal 
polynomials of the for1n K 0(x) = a, K 1(x) = bx + c, and 
K2(x) = dx2 + ex + f. 

(b) Find a least-squares approximation of x4 on the interval [O, 1] using 
your three polynomials in part (a). 
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(c) Find a least-squares approximation of x 1l 2 on the interval [O, l] 
using your three polynomials in part (a). 

(d) Find a least-squares approximation of x2 - 2x + 1 on the interval 
[O, l] using your three polynomials in part (a). Hopefully, your 
approximation will equal x 2 

- 2x + 1, since this polynomial is a 
linear combination of 1, x, and x2

, the functions used to build your 
set of orthogonal polynomials. 

29. (a) Find a fourth polynomial Kix) of order 3 orthogonal on [O, l] to 
the three polynomials in Exercise 28, part (a). 

30. 

(b) Find a least-squares approximation to x4 on the interval [O, l] using 
your four orthogonal polynomials. 

Compute the inverse and find the condition number (in sum norm) of 
the following Hilbert-like matrices. 

(a) [! ,t] 
[! 

1 

11 
(c) [; 

5 

(b) 1 
6 
1 
7 10 

Eigenvector Bases and the 
Eigenvalue Decomposition 

1 

·:·1 
9 
1 

Io 11 

1 1 
TI 12 

In this section we use eigenvectors to gain insight into the structure of a 
matrix. We review how an eigenvector basis simplifies the computation of 
powers of A. Then we present a way to decompose a matrix into simple 
matrices formed by the eigenvectors. This decomposition yields a way to 
compute all eigenvectors and eigenvalues of a symmetric matrix. 

Recall that a vector u is an eigenvector of the n-by-n matrix A if for 
some )\. (an eigenvalue), Au = )\.u. In words, multiplying u by a matrix A 
has the same effect as multiplying u by the scalar )\._ It follows that Aku = 
)'l..ku. A stable distribution p of a Markov chain is an eigenvector of the 
transition matrix A (associated with eigenvalue 1: Ap = p). The dominant 
eigenvector (associated with the largest eigenvalue) gives the long-term dis
tribution of a growth model (see Sections 2.5 and 4.5). 

As noted in Section 2.5, if a vector x can be expressed as a linear 
combination of the eigenvectors ui of A; 

then 

Ax a,Au, + a2AU2 + ... + anAun 

a,)\.1 U1 + a2)\.2U2 + · · · + an)\.nun 

(1) 

(2) 
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In words, matrix multiplication becon1es scalar multiplication of eigenvector 
coordinates. 

Further, 

Akx = a1Aku1 + a2Aku2 + · · · + a"Aku,, 

= a1X.1u1 + a 2A~U2 + ... + anX.!un 
(3) 

When we express x in terms of a basis of A's eigenvectors, Akx can quickly 
be computed by (3) . 

Assume that we index the eigenvalues so that X. 1 > X.2 ~ X.3 > · · · 

~ X.,,, X.1 is going to be much la.rger than the other X.'s . Thus the first term 
on the right in (3) dominates the other terms, and we have 

(4) 

We review the example from Section 2.5 that illustrated these results. 

Example 1. Computing Powers of a Matrix 
with Eigenvectors · 

The computer (C) and dog (D) growth model from Section 2.5 is 

x' = Ax , where A = 
3 1 

2 2 ' 

X - [C, DJ 

x' [C' , D') 

The two eigenvalues and associated eigenvectors of A are X. 1 = 4 with 
u1 = [1, 1) and X.2 = I with u2 = ll, - 2j. Note that since u1 and 
u2 are linearly independent, they form a basis for 2-space. 

Suppose that we want to determine the effects of this growth 
modeJ over 20 periods with the starting vector x = [I , 7) . We want 
to express x as a linear combination of u1 and u2 : x = l-V1U 1 + w2u2 . 

Determining the set of weights w = [11, 1, 1,v2] requires solving 

where U = [u 1 0 2] = 

X = U,v~ 
1 I 

I - 2 
(5) 

The solution lo (5) i w = u- 1x, \vhich yields lv 1 = 3, lV~ = - 2, 
so that x = 3u 1 - 2u2 • (Herc w 1, lv2 are simply the coordinates of x 
in the eigenvector basis for 2-space.) Then 

Ax = A(3u 1 - 2u2) 

For 20 periods, we have 

3Au1 - 2Au2 

3(4u1) - 2(1U2) 

= 12u1 - 2u2 

• 

-
. (6) 
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A20x = A20(3u 1 - 2u2) - 3A2°'1 1 - 2A20u2 

- 3(420u 1) - 2(12002) (7) 

= 3 · 420(1, l] - 2[1, - 2] 

In Example 7 of Section 3. 3 we observed that these steps were 
represented by a matrix equation 

Ax == UDAu- 1x, 

and 

A == uoAu-1 

where DA 
4 0 

0 1 

where U, as in (5), has the eigenvectors as its columns. 

(8a) 

(8b) 

In words, we explain (8a) and (8b) as follows. The vector w in 
(5) can be viewed as the vector x expressed in terms of eigenvector 
coordinates, and as noted above, w = u- 1x. Looking at UDAU 1 

times x from right to left, the product u- 1 x converts x to the eigen
vector-coordinate vector w. Next the matrix DA multiplies each eigen
vector coordinate by the appropriate eigenvalue (Dx. w == [ 4w 1, w2]) to 
get th~ eigenvector-based coordinates after the matrix multiplication. 
Finally, multiplying U converts back to the original coordinate system. 

The matrix-vector product x' = Ax is transformed, in eigenvec
tor coordinates into w' = D>--w. Further, A k = untu- 1 

, so 

x <20) = A2ox 

For our particular A, 

becomes 

420 0 

0 1 

w<20) = D~ow (9) 

(10) 
• 

Summarizing (part of this is simply Theorem 5 of Section 3. 3), we 
obtain 

Theorem 1. Let A be an n-by-n matrix and let U be an n-by-n matrix 
whose columns U; are n linearly independent eigenvectors of A. If 
c = Ab, then in ui-coordinates c*, b*, we have 

c* = Dxh* or c~ = A-b~ l I l (11) 

where b* = U - 1 b and c* = U - 1c are the Di-coordinate vectors for 
b and c and D,. is the diagonal matrix whose diagonal entries are 
the eigenvalues of A, X.1 , A2 , ..• , A". Similarly, if c = Akb, then 
C~ = X.~btr: 

l I l • • 

,.. 
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Theorem 2. For A, DA, and U as in Theorem l, A can be written 

A= unAu-1 

and 

where D{ has the eigenvalues raised to the kth power. Further, 

D~ = u- 1AU 

Example 2. Conversion of A to DA 

(12a) 

(12b) 

(13) 

Let us use the matrix A in Example I , A = 
3 1 

. We had found 
2 2 

U to be: U = 
I 

1 

1 
_ 2 . By the determinant formula for 2-by-2 

1 

inverses, u- 1 = 
2 
3" 
l 
3 

3" 
1 . Then, by (13), 

-3 

DA = u- 1Au = 
2 
3 

1 
3 

8 
3 

½ 

4 0 
0 1 

1 3 3 

-½ 2 

4 1 3 

1 1 - 3 

1 l 1 

2 1 -2 

1 

- 2 
(14) 

Let us next use ( 12b) to compute A". This formula is most useful for 
large k, but for illustrative purpose we use k = 2. First we compute . 
A2 directly: 

A2 = AA = 

Next we compute A2 as 

A2 = UDiu - 1 

3 1 

2 2 

1 

1 

16 

16 

11 

10 

3 1 

2 2 

1 

- 2 

l 

-2 

5 

6 

16 

0 

0 

1 

2 
3 
l 
"3" 

11 5 

10 6 

2 
3 

1 
3 

1 
3 

- ½ 

l 
3 

-½ 

• 
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The formula A == UD~u- 1 leads to an important way to decompose 
a matrix into simple matrices. Just as Gaussian elimination yields the LU 
decomposition and Gram-Schmidt orthogonalization yields the QR decom
position, so our eigenvector coordinates formula also yields a matrix decom
position. 

Recall that if c == L 1 , 2] and d = [3, 4, - 1], the simple matrix 
c * d equals 

C*d 
1 
2 * (3 4 -1] = 

More generally, entry (i, j) inc * d equals c;dj. 

3 

6 

4 

8 

- 1 

-2 

Theorem 7 of Section 5.2 says that the matrix product CD can be 
decomposed into a sum of simple matrices formed by columns cf of C and 
the rows df of D: 

CD = cf * d1 + c~ * d~ + · · · + c~ * df ( 15) 

Letting C = U and D = DA u- 1 (the ith row of D is the ith row of u- 1 

multiplied by A;), we obtain the following decomposition. 

Theorem 3. Eigenvalue Decomposition. Let A be an n-by-n matrix 
with n linearly independent eigenvectors U; associated with eigenvalues 
IX., I > IX-21 > · · · > IX.nl • Let u; denote the ith row of u- 1

• Then A 
is the weighted sum of simple matrices: · 

In {16) the X.i's are factored out in front of the simple matrices. 
For typical large matrices, the eigenvalues tend to decline in size 

quickly. For example, if n = 20, perhaps A1 = 5, X.2 = 2, h.3 = .6, 
A4 = .02; so the sum of the first three simple matrices in (16) would yield 

, a very good approximation of the matrix . 

• ......_.,-,.,.,..,......-,-n---,- ............. --,,...,.,,.. 
,i.,4i-S 

Example 3. Eigenvalue Decomposition 
of 2-by-2 Matrix 

We illustrate Theorem 3 with the 2-by-2 matrix of Examples 1 and 2. 
From those examples we have X. 1 == 4, X.2 = 1 and 

A= 
3 1 

2 2 ' 

Then ( 16) says 

u == 
1 

1 

1 

-2 ' 
u-1 = 

2 1 
3 3 
!. 1 
3 -3 
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A=4 
1 

1 1 
* [~ ~] + 1 * [½ - 2 

-½] 

! .l ! 1 

= 4 
3 

+ 
- 3 

i ¼ 2 2 
-3 3 

i J. .1 - ! 3 I 3 3 
+ .a 4 2 2 2 2 3 3 - 3 3 • 

We next state a very useful fact about symmetric n1atrices. 

Theorem 4 
(i) Any symmetric n-by-n matrix A has a set of n orthogonal eigen

vectors u;. 
(ii) Two eigenvectors associated with distinct eigenvalues are always 

orthogonal. 

Corollary. When A is symmetric, the matrix U in Theorem 1 has orthogonal 
columns, and u- 1 is obtained from ur by dividing each row by 
lu;l2 = u; · U;. When additionally the columns have length 1 ( ortho
normal), the eigenvalue decomposition in Theorem 3 becomes 

The corollary's claim about how to obtain U - 1 comes from Theorem 
1 of Section 5.4. 

The eigenvalue decomposition ( 17) sheds new light on what happens 
when we multiply a symmetric matrix A times some vector x. If in 
u,.-coordinates (u; are orthonormal), x is 

(18) 

and we compute Ax using (17), we have 

Ax = (A1ll1 * u, + A2ll2 * ll2 + ... + A11Un * ull)x ( 19) 

X. 1(u 1 * u1)x + A2(u2 * u2)x + · · · + A,,(u,, * u,, )x 

and (19) is equivalent to 

• stnce 
• 

or (21) 

and similarly for the other u; . 

• 

• 
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We verify (21) as follows. The first u1 in u1 * o1 is to be treated as 
an n-by-1 matrix, the second o1 as a 1-by-n matrix, and x as a column vector 
(an n-by-1 matrix). Now use the associative law of matrix multiplication 
in (21). 

So multiplying A by x, when A is represented as a sum of simple 
matrices, has the effect of first projecting x onto the eigenvectors U; 

[(u; · x)u; is this projection] and then multiplying each such projection by 
the eigenvalue Ai. 

In Section 3.4 we used equation (4)-that Akx is approximately 
a multiple of u 1 to determine u1 and A 1. But we had no way to compute 
other eigenvalues or eigenvectors. The eigenvalue decomposition ( 17) gives 
us a way. 

Suppose that A is a symmetric matrix and we have determined the 
dominant (largest) eigenvalue A1 and an associated eigenvector u1 (of length 
l) by an iterative method. Consider then the matrix 

(22) 

The matrix A2 is A minus the first simple matrix in the eigenvalue decom
position in (17). It follows that 

Since the eigenvalue decomposition of a square matrix is unique, it 
follows that the (nonzero) eivenvalues of A2 are A2 , ;\3 , ... , An with 
associated eigenvectors u2 , u3 , ... , un. In particular, A2 is now the dqm
inant eigenvalue of A2 and applying an iterative method to A2 will yield ;\2 

and u2 . 

If we subtract the second simple matrix in ( 17) from A2 , we will get 
a matrix A3 whose dominant eigenvalue is A3 , and so on. This method of 
getting the eigenvalues and eigenvectors of A is called deflation. We note 
that if we have a small error in A. 1 or u1, the resulting A2 still has the same 
dominant eigenvalue and eigenvector (the consequences of such errors are 
explored in the Exercises). 

Deflation Method to Compute Eigenvalues 
and Eigenvectors of a Symmetric Matrix A 

Step 0. Set A 1 = A; set i = 1. 

Step 1. Use the iterative method to determine A;'s dominant eigenvalue 
A, and an associated eigenvector U; (of length 1). 

Step 2. Set A;+ 1 = A; - Aioi * n;, Increase i by 1. If i :s n, go to 
step I. 

A faster method for determining all eigenvalues and eigenvectors of 
any n-by-n matrix, symmetric or not, is presented in the appendix to this 

• 
section. 
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Example 4. Finding Eigenvalues and Eigenvectors 
of a 3-by-3 Symmetric Matrix 

Let us use the deflation method to find all eigenvalues and eigenvectors 
of the symmetric matrix 

3 2 1 

A == 2 3 1 

I 1 0 

Setting x = (1 , 0, O] and computing A25x, we get a multiple of the 
unit vector 

01 = [.684, .684, .254] with A1 ~ 5.37 

Next we compute the deflated matrix A2: 

A2 == A - A I U 1 * U I 

3 2 1 2.51 2.51 .93 
- 2 3 1 2 .51 2.51 .93 -

l l 0 .93 .93 .35 

.49 - .51 .07 

- .51 .49 .07 

.07 .07 - .35 

Again with x = [l, 0, 0], we compute A15 x and get [.5, - .5, 0]. So 

0 2 = [. 707, - . 707, O] with X.2 = l 

(The reader should verify that [. 5, - . 5, 0] was an eigenvector of the 
original matrix A.) Deflating again, we have 

A3 = A2 - A2U2 * 0 2 

.49 - .51 .07 .5 - .5 0 

- .51 .49 .07 - .5 .5 0 

.07 .07 - .35 0 0 0 

- .01 -.01 .07 
- - .01 - .01 .07 (24) -

.07 .07 - .35 

Next we find that u3 = [.181, .181, .967] and A3 = - .37. Computing 
the last simple matrix, we obtain 



486 Ch. 5 Theory of Systems of Linear Equations and Eigenvalue/Eigenvector Problems 

• 

• 

-.01 - .01 .07 

~3U3 * U3 = -.01 -.01 .07 
• 

.07 .07 - .35 

This simple matrix equals A3 , as required. Thus we have confirmed 
that A is the sum of three simple matrices. • 

Substantial savings in computer storage can be realized by representing 
a large matrix as a sum of simple matrices. If a symmetric 20-by-20 matrix 
is well approximated as the sum of two simple matrices, then only 10% as 
much storage is needed: 2 columns instead of all 20 columns. 

Example 5. Approximating a Digital Picture 
with Simple Matrices 

Approximate the 8-by-8 digital ''picture'' A whose entries represent 
varying levels of darkness between 0 and 1 . 

0 0 0 . 2 .2 0 0 0 

0 . I .2 .3 .3 .2 .1 0 

0 .2 .5 .6 .6 .5 .2 0 

.2 .3 .6 .8 .8 .6 .3 .2 
A= (25) 

. 3 . . 6 .8 .8 .2 .6 .3 .2 

0 .2 .5 .6 .6 .5 .2 0 

0 .1 .2 .3 .3 .2 .1 0 

0 0 0 .2 .2 0 0 0 

We first approximate A with the simple matrix c * c, where c 
[.l, .3, .7, .9, .9, .7, .3, . l] has c1 equal to the (approximate) square 
root of the diagonal entry (i, i) of A. 

.0 l .03 .07 .09 .09 .07 .03 .01 

.03 .09 .14 .27 .27 .14 .09 .03 

.07 .14 .49 .63 .63 .49 , 14 .07 

.09 .27 .63 .81 .81 .63 .27 .09 
(26) C * C = 

.09 .27 .63 .81 . 81 .63 .27 .09 

.07 .14 .49 .63 .63 .49 .14 .07 

.03 .09 .14 .27 .27 .14 . . 09 .03 

.01 .03 .07 .09 .09 .07 .03 .01 

Now we shall use the eigenvalue decomposition of A into simple 
matrices to approximate A more accurately. We use the first three terms 
involving the three largest eigenvalues, 
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Actually, for this A, the first simple matrix X. 1u1 * u1 alone \Vil} be a 
good approximation. 

For large matrices, the iterative method of computing Akx for a 
large k to approximate u1 is unnecessarily time consuming. One of the 
faster methods mentioned in the appendix to this section should be 
used. For u1, we shall give the results using simple iteration because it 
converges quickly. Computing A 10x with x = [ 1, 1, 1, 1, l, 1, l, 1] 
yields a multiple of 

so 

U 1 = [.078, .189, .408, .540, .540, .408, .189, .078] 

with A. 1 = 2.774 

.017 .041 .088 .117 .117 .088 .041 .017 

.041 .099 .214 .283 .283 .214 .099 .041 

.088 .214 .461 .610 .610 .461 .214 .088 

.117 .283 .610 .808 .808 . 610 .283 .117 
A.1U1 * U1 = 

.117 .283 .610 .808 .808 .610 .283 .117 

.088 .214 .461 .610 .610 .461 .214 .088 

.041 .099 .214 .283 .283 .214 .099 .041 

.017 .041 .088 .117 .117 .088 · .041 .017 

(28) 

. This first simple matrix is very close to A. Except for entries ( I , 3) 
and (1, 4) (and symmetrically equivalent entries), every entry in (28) 
is within about . 04 of the corresponding entry in A. Since the numbers 
in A were probably rounded off to one decimal digit, one could argue 
that (28) is as good an approximation to A as we should seek. 

Next we compute the deflated matrix A2: 

A2 = A - A1U1 * 01 

- .017 - .041 - .088 .083 .083 - .088 - .041 -.017 

-.041 .001 - .014 .017 .017 -.014 .001 - .041 

-.088 - .014 .039 - .010 - .010 .039 - .014 -.088 

.083 .017 - .010 - .008 -.008 -.010 .017 .083 --

.083 .017 -.010 - .008 -.008 -.010 .017 .083 

-.088 - .014 .039 - .010 - .010 .039 - .014 -.088 

-.041 .001 -.014 .017 .017 - .014 .001 -.041 

-.017 - .041 - .088 .083 .083 - .088 - .041 - .017 

(29) 

' 

• 
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Using the iterative method on A2 takes a long time to converge but 
finally gives us a multiple of 

U2 = [.514, .224, .258, - .345, - .345, .258, .224, .514] 

with X.., = - .27 -

Instead of computing the second simple matrix, we give the sum of 
the first two simple matrices, ' 

X.,u1 * D1 + A2D2 * U2 

- .054 .010 .052 .165 .165 .052 .010 - .054 

.010 .084 .198 .304 .304 .198 .084 .010 

.052 .198 .443 .634 .634 .443 .198 .052 

.165 .304 .634 .776 .776 .634 .304 .165 • 

. 165 .304 .634 .776 .776 .634 .304 .165 

.052 .198 .443 .634 .634 .443 .198 .052 

.010 .084 .198 .304 .304 .198 .084 .010 
- .054 .010 .052 . 165 .165 .052 .010 -.054 

(30) 

Next we fonn A3 and find that • 

0 3 = [.451, - .054, - .454, .295, .295, - .454, - .054, .451] 

with X.3 = .263 

Note how close in absolute value X.2 and X.3 are; this is why the 
iterative method converged so slowly for A2 • 

Now we can give the desired approximation of A by the first 
three simple matrices associated with the eigenvalue decomposition of 
A. 

A ::::: A1U1 * U1 + A2U2 * U2 + A I U3 * U3 

- .001 .004 - .002 .200 .200 -.002 .004 - .001 

.004 .089 .204 .300 .300 .204 .089 .004 

- .002 .204 .497 .599 .599 .497 .204 -.002 

.200 .300 .599 .799 .799 .599 .300 .200 -

.200 .300 .599 .799 .799 .599 .300 .200 

- .002 .204 .497 .599 .599 .497 .204 - .002 

.004 .089 .204 .300 .300 .204 .089 .004 

- .001 .004 -.002 .200 .200 - .002 .004 - .001 
(31) 

The average deviation of an entry of (31) from A is . 002, and 
only one entry has an error exceeding .004. • 

• 
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We next give a statistical application of the eigenvalue decomposition 
of a symmetric matrix. 

Example 6. Principal Components in 
Statistical Analysis 

Suppose that an anthropologist has collected data on 25 physical char
acteristics, variables x1, x2 , • . . , x25 , for 100 prehuman fossil remains. 
The researcher computes a measure of the variability V; of each variable 
X; called the variance of xi. A large variance means that the xi-variable 
varies substantially from fossil to fossil. The anthropologist also com
putes a measure of the joint variability Cov ii of each pair of variables 
X;, x j called the covariance. The covariance is proportional to the 
correlation coefficient ( which was discussed in Section 5. 3). A positive 
Cov ii means variables X; and xj have similar values; a negative Cov ii 
means the variables are opposites [if the kth fossil has a large xi-value, 
the kth fossil probably has a small or negative xj -value; and Cov ij near 
0 means values of X; and xi are unrelated (uncorrelated)]. 

The anthropologist would like to find good linear combinations 
of the characteristics that ''explain'' the variability of the data. For 
example, one might define the le1igt}1 index L to be 

L = .2x1 + .4x3 - .3x11 + .4x17 + .5xt8 (32) 

where x 1 might be length of foreann, x3 length of thigh, and so on. 
The idea is that although we may find a certain amount of variability 
in individual variables from fossil to fossil, such as varying length of 
forearm, the ''right'' measure that gives the best way to distinguish 
one fossil from another is some composite index, such as the length 
index. 

Among all possible indices formed by a linear combination of 
variables , the index I 1 that shows the greatest variability (i.e., largest 
variance) is called the first principal component. Among those other 
indices that are uncorrelated to I 1 ( covariance is 0), the index / 2 with 
the largest variance is called the second principal component, and o 
on. We want index /2 uncorrelated so that it gives us new (additional) 
information about variability that was not contained in / 1• 

In summary, the first principal component gives an index that 
explains the maximum variability of the data from one fossil to another. 
The first four principal components will typically account for over 90% 
of the variability in a set of 25 variables . Clearly, there are great 
advantages in describing each fossil with three or four numbers rather 
th~n 25 numbers. The same is true for studies in psychology, finance, 
quality control, and any other field where people collect large amounts 
of data. 

So how do we find these principal components? That is, how do 
we determine the weights (coefficients) of the X;, such as the weights 
in (32)? The answer is that we form a covariance matrix C of all the 
covariances of the fossil data, where entry (i, j) is Cov;j (and Covii = 
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V;). Then one can show that the vector of weights used in the first 
principal compone11t is the unit-length dominant eigenvector u1 of C. 
The first simple matrix A1(u1 * u1) in the eigenvalue decon1position of 
C shows how much of the variability in C is explained by the first 
principal component. 

As an example, consider the following 4-by-4 covariance matrix 
(representing 4 of the 25 characteristics mentioned above) 

C 

.86 1. 19 2.02 1.45 

1.19 1.68 2.86 2.06 

2.02 2 .86 5.05 3.50 

1.45 2.06 3 .50 2.53 

(33) 

All the covariances here happen to be positive (this is often the case), 
although they can be negative. We can determine the eigenvalues and 
associated eigenvectors by deflation, as in the previous examples, or 
by using some computer package. We find that 

A2 ~ .098, .003 (34) 

• 

The dominant (unit-length) eigenvector is 

U 1 = [.289, .408, .707, .5] 

The simple matrix A10 1 * 0 1 should approximate C well, since A1 is 
much larger than the other eigenvalues . 

. 84 1.18 2.04 1.44 

1.18 1.67 2.88 2.04 

2.04 2.88 5.00 3.54 

1.44 2.04 3.54 2.50 

(35) 

Upon comparing (35) with C, it is clear that / 1 accounts for almost all 
the variability in the covariance matrix C. 

The first principal component index / 1 is the linear combination 
of variables x1, x2 , x3 , x4 with weights given by 0 1: 

(36) • 
-

The eigenvalue decomposition of a matrix A and the deflation method 
for finding successive eigenvalues and eigenvectors depended on special 
properties of A. There had to be a set of n linearly independent eigenvectors 
for the eigenvalue decomposition and A had to be symmetric for the deflation 
method to work. Symmetry is easy to recognize. What about linearly inde
pendent eigenvectors? The following theorem answers this question. It is a 
companion to Theorem 4 ( which stated that an 11-by-n symmetric matrix has 
,1 orthogonal eigenvectors). 
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Theorem 5 
(i) Eigenvectors associated with different eigenvalues are linearly 

independent. 
(ii) If the n-by-n matrix A has n distinct eigenvalues, any set of n 

eigenvectors, each associated with a different eigenvalue, will 
form a basis for n-space, and the results in Theorems l, 2, and 3 
apply. 

Proof. For explicitness, assume that n == 3 and Jet u 1 , o2 , and u3 be 
three eigenvectors of A associated with different eigenvalues A1, X.2 , 

and A3 , respectively. It is easy to show that u1 and u2 are linearly 
independent (Exercise 14). Suppose that 0 1, u2 , and u3 are not linearly 
independent, so that o3 can be expressed as a unique linear combination 
of u1 and u2: u3 = c1u 1 + c2u2 • Now we compute Au3 in two ways. 

(37) 

and 

• 

The representation of Au3 as a linear combination of u1 and u2 is 
unique. That is, the weights of u 1 and u 2 on the right sides of (37) 
and (38) must be equal: X.3c1 == X. 1c1 and X.3c2 = A2c2 • Thus X.3 = X. 1 

and X.3 = A2 • This contradiction proves that u 1, u2 , and u3 must be 
linear]y independent. • 

The following is an example of a ''defective'' matrix to which Theo
rem 5 does not apply. 

Example 7. A Matrix Without an 
Eigenvector Basis 

The matrix 

A= 
0 1 

0 0 

has the characteristic polynomial which equals det(A - X.I) = A 2 

(check this), so its two eigenvalues are both 0: X. 1 = X.2 = 0. A is not 
symmetric and does not have two different eigenvalues. Thus Theorem 
5 does not apply to A. 

Any eigenvector u of A must satisfy (A - Ol)u = 0. That is, 

Au= 0 or Ou1 + lu2 = 0 
Oz, 1 + Ou2 = 0 

(39) 

The first equation reduces to u2 = 0, and the second equation is 
vacuous. Thus a solution u to (39) can have any value for u1 while u2 
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must be 0. However, all such vectors u = [u 1, O] are multiples of one 
another, so the eigenvectors of A do not form a basis for 2-space. • 

Another issue that we have skirted is complex-valued eigenvalues and 
eigenvectors . Complex eigenvalues were encountered in our discussion of 
population models in Section 4.5. Jn many other applications complex num
bers arise naturally . (Incidentally , one can show that the eigenvalues of a 
symmetric matrix are always real.) 

What happens when a matrix is not square ( so that it has no eigenvalues 
or eigenvectors)? Can we find something like an eigenvalue decomposition 
for these matrices just as a pseudoinverse substitutes for the inverse in a 
nonsquare matrix? The answer is yes. 

In the spirit of the development of the pseudoinverse of a nonsquare 
matrix, we again tum to the 11-by-n matrix AT A which is square and sym
metric [ since entry (i, j) is just the scalar product of the ith and jth columns 
of A] . From the eigenvalue decomposition of AT A, one can obtain a decom
position for A. 

Theorem 6. Singular-Value Decomposition. For any m-by-n matrix A 
with linearly independent columns, let IA- 1 I > IA2\ > · · · > IX.nl be the 
eigenvalues of AT A and U be an n-by-11 matrix whose columns u1 are 
the associated ( orthonormal) eigenvectors of AT A. The U; form a basis 
for the row space of A. 
Define the ith singular value s; to be s; = ~ - Let U' be an 

m-by-,z matrix with columns u~ = (1 / s,. )Au,.. '"fhe u; form an orthonormal 
basis for the range of A. 

Then A can be decomposed in the f orrn 

A = U'DUT s (40) 

where Ds is the diagonal matrix whose ith diagonal entry is s;. 

The proof of Theorem 6 is given in the Exercises. Recall from Theorem 
4 of Section S. 3 that if A has linearly independent columns, then Ar A has 
linearly independent columns. There is a generalized form of Theorem 6 for 
linearly dependent columns. 

Tl1e definition of the columns of U' means that U' has the matrix 
formula 

The factorization ( 40) leads to the following simple matrix decompo
sition (by the same argument that led up to Theorem 3). 

' 

Corollary A. Let A be as in Theorem 6, let u; be the ith column of U, and 
let u~ be the ith column of U'. Then 

• 
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' 

We also get from (40) a result like Theorem I. 

Corollary B. The computation c = Ab becomes c* = Dsb* (or c1 = 
s;bt) when b* = UTb and c* = U'rc. That is, multiplying a vector 
by A reduces to scalar multiplication of the coordinates when we ex
press bin the proper row space coordinates and c in the proper column 
space (range) coordinates. 
-
The singular-value decomposition of A can be ''inverted'' to obtain 

the pseud~inverse of A . 

Corollary C. Let A be an m-by-n matrix. Then the pseudoinverse of A 
equals 

A + = un- 1u'r 
s • (42) 

Recall that D; 1 is a diagonal matrix with entry (i, i) 1/ si . 
We now give the singular-value decomposition for the two-refinery 

matrix discussed in Section 5. 3. 

Example 8. Singular-Value Decomposition of 
Two-Refinery Model 

The two-refinery variant was 

20x1 + 4x2 = b1 

10x1 + 14x2 = b2 

5x1 + 5.-ti = b3 

or 

• 

Ax = b (43) 

Let us compute the singular-value decomposition of A. First we form 
ATA: 

525 245 

245 237 
(44) 

We need to find the eigenvalues A1, A2 of A7 A, since the singular 
values s 1, s2 are their square roots. Further, the eigenvectors of A7 A 
are the columns of the matrix U. By some method, discussed previ
ous] y or in the appendix to this section, we find that 

A1 == 665 

A2 == 97 

and 

and 
01 = [.87' .49] 
0 2 = [ - .49, .87] 

(45) 

So the singular values of A are s 1 = \1'665 = 25 .6, s2 = '197 
9.8, and 

• 
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• 
SINGULAR VALUE 
DECOMPOSITION 

OF 
"ABE" 

I 

Figure 5.10 From Cliff Long, ''Visualization of Matrix Singular Value Decom
position," Mathematics Magazine, Vol. 56 (1983), pp. 161-167 . 

U= 
. 87 - .49 

.49 .87 
(46) 

As an aside, we note that U performs a rotation of 20° ( see Theorem 
3 of Section 5 .4). 

Next we compute U' == [ui, ui], where u~ = (1/ si)Aui. We 
obtain 

.76 - .65 

U' .60 .74 (47) 

.26 .19 

• 
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Then the singular-value decomposition of A = U'DsU7 is 

20 4 
10 14 

5 5 

.76 - .65 

.60 .74 

. 26 .19 

25 .6 0 .87 .49 

0 9.8 - .49 .87 

As a sum of simple matrices [see (41)], (48) beco1nes 

A = 
16.9 9.5 

13.4 7 .5 

5.8 3.3 

+ 
3. l 

- 3 .4 

- .8 

-5.5 

6.5 

1. 7 

(48) 

(49) 

The decomposition in (48) can be interpreted as follows . There 
are two basic ''input'' and ''output'' units for the refinery model. The 
first input unit consists of . 87 barrel of petroleum for refinery 1 and 
.49 barrel for refinery 2, and one such input unit yields 25.6 output 
units, each consisting of . 76 gallon of diesel oil, .60 heating oil, and 
.26 gasoline. The second input unit consists of - .49 barrel (production 
is ''reversed'') for refinery 1 and .87 barrel for refinery 2, and it yields 
9.8 output units, each consisting of - .65 diesel, . 74 heating, and .19 
gasoline. • 

A more impressive use of the singular-value decomposition is given 
in Figure 5.10. Figure 5.10 (top) shows a 49-by-36 digitized image of a 
bust of Abe Lincoln [entry (i, j) is the height of the bust in that position]. 
The remaining figures in this set show the digitized image produced by the 
matrix Ak, the sum of the first k simple matrices in the singular-value de
composition of A. 

Section 5 .5 Exercises 

• 

Summary of Exercises . 
Exercises 1-5 involve the diagonalization of matrices presented in Theorem 
2. Exercises 6-13 involve the eigenvalue decomposition of matrices into a 
sum of simple matrices (many require deflation to find the eigenvalues). 
Exercises 14 and 15 are about independence of eigenvectors . Exercise 16 
involves defective matrices. Exercises 17- 22 involve computing the singu
lar-value decomposition. Exercises 23- 25 prove the results in Theorem 6. 

1. Compute the representation UD~ u- 1 of Theorem 2 for the follo\ving 
matrices whose eigenvalues and largest eigenvector you were asked to 
determine in Exercise 23 of Section 3. 1. 

(a) 
4 0 

2 2 
(b) 

l 2 

3 4 
(c) 

2 l 

2 3 
(d) 

4 

1 

-1 

2 

2. For a starting vector of p = [10~ 10], compute p<10
) = A10p for each 

matrix A in Exercise I . 
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3. Compute A5 for each matrix in Exercise 1 using the formula A5 

un~u- 1
• • 

4. (a) Given that A = UDA u- 1, prove that A2 = UD~u - 1 . 

(b) Use induction to prove that A* = UD{u- 1 • 

5. (a) Obtain a formula for A - 1 similar to A = UD,.._ u- 1• 

H i1zt: Only the matrix D >. will be different. 

(b) Verify your formula in part (a) for A 

Example 1) . 

3 I 
( the matrix in 

2 2 

6. Give the eigenvalue decomposition into a sum of two simple matrices 
(Theorem 3) for each matrix in Exercise 1. 

7. Give the eigenvalue decomposition into a sum of two simple matrices 
for the following symmetric matrices. 

(a) 
1 4 

4 1 
(b) 

3 -4 

- 4 3 
(c) 

- 1 - 5 

- 5 -1 

8. Use the deflation method to compute all eigenvalues and eigenvectors 
of the following symmetric matrices. 

9. 

(a) 
I 6 

6 1 

1 2 3 

(b) 

(d) 2 4 - 1 (e) 

3 - 1 0 

2 -3 

- 3 2 

1 0 I 

0 1 1 

1 1 1 

(c) 

(f) 

0 I 

1 0 

2 - 1 

- 1 3 

0 1 

1 - 2 

• 

0 1 

l - 2 

0 1 

1 0 

Using a software package for finding eigenvectors and eigenvalues, 
determine the eigenvalue decomposition into simple matrices for the 
following symmetric matrices. 

I 3 0 I 1 l 2 - 1 0 1 

(a) 3 2 1 (b) I 1 l - 1 3 I -2 
(c) 

0 1 0 I 1 0 0 1 0 1 

l - 2 1 0 

10. Approximate the following symmetric digital pictures by: 
(i) The first simple matrix in the eigenvalue decomposition. 

(ii) The sum of the first two simple matrices in the eigenvalue decom
position. 

Use deflation (or a software package) to determine the two first eigen-
vectors and eigenvalues. 

• 
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.3 .2 .1 .2 .4 .4 .2 
(a) .2 0 .5 .4 .2 .2 .4 

(b) 
. 1 .5 .2 .4 .2 .2 .4 

.2 .4 .4 .2 

. 1 .2 .3 .4 .1 .2 .1 0 0 

(c) 
.2 .3 .2 .1 .2 .3 .1 .1 0 
.3 .2 . 1 .4 (d) . 1 .1 . l .2 .1 

.4 . 1 .4 .6 0 .1 .2 .4 0 

0 0 . 1 0 .3 

.4 .3 .1 .1 .3 .6 

.3 .6 0 0 . I .5 

.1 0 0 0 . l .3 
(e) 

. I 0 0 .1 .3 .2 

.3 .1 . l .3 .4 0 

.6 .5 .3 .2 0 0 

11. Explain how the symmetry in the 8-by-8 digital picture (25) in Example 
5 would allow one to find the eigenvalue decomposition for the 4-by-4 
upper right comer s11bmatrix A' and use this to get the eigenvalue 
decomposition for the whole matrix. 

Find the dominant eigenvalue and associated (normalized) eigen
vector for A'; approximate A' by the first simple matrix in the eigen
value decomposition. 

12. Verify that the eigenvalues (34) and dominant eigenvector in Example 
6 are correct. Determine the second principal component in Example 6 
( the normalized eigenvector for X.2). 

13. Determine the fust principal component for each of the following co
variance matrices. In each case, tell how well it accounts for the vari
ability (how well does X. 1u1 * u1 approximate 

3. l I . 1 0.5 2.4 0.6 3.1 1.5 
(a) 1 . 1 2.0 1.5 0.6 4.1 0.8 1.2 

(b) 
0.5 1.5 4.2 3 .1 0.8 2.7 5.2 

1.5 1.2 5.2 3.2 

14. In the proof Theorem 4, show that u 1 and u2 are linearly independent 
by supposing the opposite, that u2 = ru1, and obtaining a contradiction 
when Au2 # A(ru1). 

15. Two n-by-n matrices A and B are called similar if there exists an 
invertible n-by-n matrix U such that A = ueu- 1 (or equivalently, 
B = u- 1AU). 

I 
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(a) Show that similar matrices have the same set of eigenvalues. 
(b) Show that if A has a set of n linearly independent eigenvectors, 

then A is similar to a diagonal matrix. 

16. Find the eigenvalues and as many eigenvectors as you can for the fol
lowing defective matrices. 

17. 

(a) 
l 0 

2 1 
(b) 

1 
1 

-1 

3 

2 1 0 

(c) 0 2 l 

0 0 2 

Find the singular-value decomposition [equation (40)] for the following 
matrices and use the decomposition to write the matrices as a sum of 
simple matrices. 

2 I 0 3 0 I 2 

(a) l (b) 3 3 
(c) 

2 5 (d) 2 3 

0 2 5 l 3 3 4 

4 0 

18. For a refinery problem with p refineries and q products as in Example 
8, suppose that the coefficient matrix is the matrix in each part of 
Exercise I 7. In each case, interpret the singular-value decomposition 
in terms of units of ''input'' and ''output,'' as was done at the end of 
ExampJe 8. 

19. Use the forn1ula for the pseudoinverse in Corollary C to compute the 
pseudoinverse of each matrix in Exercise 17. 

20. With the help of deflation or a software package to find eigenvectors 
of A7 A, find the singular-value decomposition for the following matri
ces and use the decomposition to approximate these matrices as a sum 
of two simple matrices. 

2 0 -1 .1 .2 .3 .4 

(a) 
1 2 0 .4 0 .1 .2 

4 - 1 2 (b) .3 .7 .1 0 

5 0 -1 . l .6 . 1 0 

.4 0 .1 .3 

21. If A is a symmetric matrix, show that the singular-value decomposition 
reduces to the standard eigenvalue decomposition in Theorem 2. 

22. Verify the formula for the pseudoinverse in Corollary C. 

23. Show that the n orthonormal eigenvectors of AT A in U (in the singu
lar-value decomposition) are a basis for the row space of the m-by-,i 
matrix A. 

• 
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Hint: What is the dimension of the row space of A if its columns are 
linearly independent? 

24. Show that the columns of U' (in the singular-value decomposition) must 
form a basis for the range of A (the column space of A). 

Hi11t: Use Exercise 23, and Exercise 30 of Section 5.3. 

25. Verify the singular-value decomposition (40) by showing that 

(*) 

(a) First show that (40) and(*) are equivalent matrix equations. 
Hint: Use the fact that (by orthonormality) uru = U'TU' = I. 

(b) Prove(*) by verifying the following sequence of matrix equations: 

U'TAU = (AUD; 1) 7AU = (D; 1urA7)AU = D; 1U 7(ATAU) 

= ns- 1U7(UDx) = ns- 1Dx = Ds 

Finding Eigenvalues 
and Eigenvectors 

. In this appendix we present two methods for finding eigenvalues and eigen
vectors. The first is a way to speed up the search for an eigenvalue X. and 
associated eigenvector u once we have a rough approximation to "A., say, 
obtained by guesswork or by a few rounds of the iterative method Akx. The 
following basic theorems about eigenvalues are needed. 

Theorem 1 
(i) For any nonzero integer k, A's eigenvectors are eigenvectors of 

Ak. If X. is an eigenvalue of A, then "A._k is an eigenvalue of Ak. In 
particular, 1/ X. is an eigepvalue for A - 1. (If k < 0, we assume 
that A - 1 exists.) 

(ii) For any scalar r , A and A - rl have the same set of eigenvectors 
and "A. is an eigenvalue for A if and only if A - r is an eigenvalue 
of A - rl. 

Proof. We give a proof of part (i) fork = -1 [positive k and Theorem 
, 1, part (ii) are left as exercises]. Suppose that u is an eigenvector of 

A with associated eigenvalue X.. Then 

u = lu = (A- 1A)u = A - 1(Au) 
= A- 1Au 

Dividing both sides of (l) by X., we have 

(1) 
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1 
- u = A- 1u (2) 
A. 

So l / A is an eigenvalue of A - 1 with eigenvector u, as claimed. • 

Theore,n 2. The rate at which the iterative method A kx converges to a 
dominant eigenvector A1 of A is proportional to IA2I/IX.1I. 

Proof. Any vector x can be written as a linear combination of the 
eigenvectors (assuming that the n-by-11 matrix A _has n linearly inde
pendent eigenvectors) 

Then 

Akx = C1Akul + C2Aku2 + · · • + cnAkun 

= l'1Atu1 + C2AiU2 + . • . + cnX.~~ 

"A.2 
= A 1 C 1 U l + C 2 ~ kU2 + . . . + C n 

1 

(3) 

The last line of (3) shows how the size ("A.2 / A1) affects the convergence 
to X.~c· 1u 1• • 

Suppose that A has an inverse A - 1
• Since X. is an eigenvalue of A if 

and only if 1 / "A. is an eigenvalue of A - 1 and both have the same eigenvectors, 
we have 

Corollary. An eigenvector un associated with the smallest eigenvalue A11 of 
A can be found (if An is unique) by applying the iterative method to 
find the largest eigenvalue of A - 1 

: 

y <k) = A- Jy(k - 1) (4) 

The rate of convergence will be proportional to IX.n _ 1 {/l"-nl, where "-n _ 1 

is the second smallest eigenvalue of A. 

Rather than compute the inverse of A- 1 and then use (4), we can write 
(4) as 

Ay{k) = y (k - 1) (5) 

In (5), we are applying the regular iterative n1ethod in reverse. To find y<k) 
given y<k- 1>, we solve (5) by Gaussian elimination (saving the matrices L 
and U-see Section 3 .2-to use again for each successive yCk>). We call the 
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method for finding the smallest eigenvalue of A and an associated eigen
vector using (5) the inverse iterative method. 

Surprisingly, the inverse iterative method yields a faster way to com
pute the dominant eigenvector than the (forward) iterative method . 

Theorem 3. Shifted Inverse Iterative Method. If er is an approximate value 
for an eigenvalue of a square matrix A, an associated eigenvector u 
can be found quickly by applying the inverse iterative method to 

-A - al. The eigenvalue can then be obtained from u using the 
Raleigh quotient. If 'A.P is the true value of the eigenvalue and 'J\q is 
the. next-closest eigenvalue of A, the rate of convergence is 
l'J\q - rrl/l'J\P - a l• 

This method is called the shifted inverse iterative method because of 
the ' 'shift'' of eigenvalues caused by - crl. Recall that from Theorem I , 
part (ii), A - al has the same eigenvectors as A and its eigenvalues are 
shifted by er. If er is close to "A.P' then "A.P - er will be the smallest eigenvalue 
of A - al by far, and the rate of convergence IX.q - crl/lAP - rrl of the 
inverse iterative method will be very fast (i.e., two or three iterations should 
suffice. 

We should note that computations are very unstable with A - crl, 
since when AP is close to a , 1/(X.P - er) is an eigenvalue of A - 1 of immense 
size. This implies that IIA - 'II, and hence the condition number of A, are 
very large. However, the only effect that this instability has on the com
putations of the inverse iterative method is a distortion of the total size of 
the y<k> but not the direction of these vectors (the total size does'not concern 
us, since we use scaling) . 

• 

Hybrid Deflation Procedure to Find All 
Eigenvalues and Eigenvectors of a 
Symmetric Matrix 

Step 1. Starting with A 1 == A, use the (forward) iterative method a 
few times on A; to get an approximation rr to the dominant eigenvalue A; of 
A; together with an approximate eigenvector v. 

Step 2. Starting with v, use the shifted inverse iterative method on 
Ai - rrl to get more accurate values for the unit-length eigenvector u;. 
Obtain A; from U; by the Raleigh quotient u, · Au;/u, · u;. 

Step 3. Compute A; + 1 == A; - A;U;*u;, set i = i + l, and if i ~ n, 
go to step 1. 

We now present an almost magical procedure to find all the eigenvalues 
at once of a square matrix A with distinct eigenvalues . 

• 



I 

-

502 Ch. 5 Theory of Systems of Linear Equations and Eigenvalue/Eigenvector Problems 

• 

• 

QR Method for Finding All Eigenvalues of a 
Matrix with Distinct Eigenvalues 

Step 1. Let A0 = A. For successive k, 
(a) Given Ak, compute the QR decomposition Ak = QkRk (by the 

Gram- Schmidt orthogonalization procedure); and then 
(b) Set Ak+ 1 = RkQk and go to step (a) . 
Stop when the entries below the main diagonal of Ak are all almost 0 

( entries above the main diagonal do not converge to O unless A is symme
tric). 

Step 2. The entries on the main diagonal of the last Ak will be ap
proximately the eigenvalues of A (in order of decreasing absolute value). 
Use the shifted inverse iterative method to find the eigenvector [or if 
the eigenvalue A is essentially exact, solve the homogeneous system 
(A - Al)u = O]·. 

Example 1. Example of QR and Shifted Inverse 
Iterative Method 

Let us use the QR method on the matrix Lin the Leslie model from 
Example l of Section 4 .5. 

x' = Lx , 
0 4 1 

where L = .4 0 0 
0 .6 0 

' 

We noted in Section 4.5 that Lkx takes a long time to converge to a 
multiple of the dominant eigenvalue X. 1 . Since convergence is slow, 
Theorem 2 says that the second largest eigenvalue A.2 must be close to 
A1• The QR method is also slow for this L. If we run it until all below
diagonal entries are < .001 (then the eigenvalues are accurate to about 
three decimal places) , it requires 60 iterations and yields 

1.334 -3.586 -1.142 

A60 = . 000 - 1 . 118 - . 394 (6) 
.000 .000 - .152 

So X. 1 = 1 .334, A.2 = - 1.118, X.3 = - .152. Solving the homoge
neous system (L - Ail ) == 0 will give a corresponding eigenvector. 

Let us next try the shifted iterative method. Starting with x = 
[100, 50, 30J , we gave a table in Section 4.5 of iterates up to L20a 
(Table 4.3), at which point there was still a little cyclic behavior. 
Consider the ninth, tenth, and eleventh iterates: 

x<9> = [2021 , 493 , 279], x<10> = [2250, 808 , 295], 

X( ll ) = [3529 , 900, 485] 

• 
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When we compute the Raleigh quotients fork = 9 and k 
get 

x<9> • x<J0) 5,027,899 
1.138 --x<9> • x<9) 4,414,515 

x< 10> • x<I 1) 8,668,230 
1.493 --x< 10) • x <IO) 5,802,389 

10, we 

(7) 

The average of our Lwo estimates is (1.138 + 1.493)/ 2 = 1.32. Pre
sumably, we are alternating above and below the true eigenvalue, so 
this average value of 1.32 should be close to the true eigenvalue. Now 
we apply the shift step of computing L - 1.321: 

0 4 1 1.32 0 0 

L' = L - 1.321 = .4 0 0 0 1.32 0 

0 .6 0 0 0 1.32 

-1 .32 4 l 

.4 - 1.32 0 

0 . 6 . - 1.32 

Let us scale x<1 t ) by dividing its entries by the largest entry, 3529, to 
obtain x' = [1, .255, .137]. We use x' as the starting vector for 
backward iteration with L' (in search of an eigenvector associated with 
the smallest eigenvalue of L'). After two rounds we have the vector 
(rounded to integers) [4658, 1396, 628] , which divided by the sum of 
its entries (to be like a population probability distribution) yields 

ll1 = [.697, .209, .094] (8) 

Computing Lu 1, we obtain 

Lu 1 = [.930, .278 , .125] = 1.334u1 (9) 

so A1 = 1.334. Further, (9) confirms that u 1 is an eigenvector . 
If we wanted to get all eigenvalues and associated eigenvectors 

for L , we could use 10 or 15 rounds of the QR method to get estimates 
for each eigenvalue and then use the shifted inverse method to home 
in the associated eigenvector of each eigenvalue (any vector can be 
used as the starting vector for the inverse iterative method). • 

The proof of convergence for the QR method is beyond the scope of 
this book (see G. W. Stewart, Introduction to Matrix Co111pc,tations, Aca
demic Press, 1973, and the classic textbook by J. H. Wilkinson, The Al
gebraic Eigenvalue Problem, Oxford University Press , 1965 , for a fuller 
discussion of the QR method). 

The convergence is not fast, especially when two eigenvalues are close 
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together (in absolute value). The computation of each stage is slow (propro
tional to n3

), but schemes are available to ''preprocess'' A so that the suc
cessive QR decompositions can be computed quickly. Other shortcuts further 
speed this procedure, including shifts (as in the shifted inverse iterative 
method). Tl1is method works in some cases where there are multiple eigen
values (of the same absolute value) . 

A related method called the LU method reverses the matrices in the 
LU decomposition of a matrix the way the QR method reverses the matrices 
in a QR decomposition (see the books mentioned above). The LU method 
also converges for any matrix with distinct eigenvalues. 

Section 5 .5 Appendix Exercises 

Summary of Exercises 

• 

Exercises 1- 5 relate to Theorem 1. Exercises 6- 8 illustrate the hybrid de
flation procedure. 

1. (a) Show that for any positive integer k, any eigenvector for the square 
matrix A is also an eigenvector for A k . 

(b) Also show that if A - 1 exists, part (a) is true for negative integers. 

2. (a) Show that if A - 1 exists, any eigenvector for Ak is also an eigen
vector for A. 

(b) The existence of A - 1 is essentjal for the result in part (a). Verify 

this by showing that for A = ~ ~ , 1 is an eigenvector for A2 

but not for A. 

3. (a) Show that for any positive integer, if A is an eigenvalue of the 
square matrix A, then >...k is an eigenvalue of Ak. 

(b) Also show that if A - 1 exists, part ( a) is true for negative integers. 

4. Show that for any scalar r, A and A - rl have the same set of eigen
vectors. 

5. Show that for any scalar r, >... is an eigenvalue for A if and only if 
A - r is an eigenvalue for A - rl. 

6. Use the inverse power method to find the dominant eigenvalue and 
eigenvector for the fallowing matrices. 

(a) 
4 0 

2 2 
(b) 

1 2 

3 4 
(c) 

l 

1 

- 1 

3 
(d) 

0 l 

- 1 0 

7. Use the hybrid deflation procedure to find all eigenvalues and associated 
eigenvectors for the following symmetric matrices. 

(a) 
1 6 

6 l 
• 

(b) 
2 - 3 

- 3 2 
0 l 

(c) 1 0 
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0 1 
I - 2 

• 

• 

• 

1 2 3 

(d) 2 4 -1 

3 - 1 0 

1 0 1 

(e) 0 l I 

1 1 1 
(f) 

2 - 1 

- 1 3 

0 1 

1 - 2 
0 I 

I 0 

8. Apply the QR method (using the program in Exercise 10 or a software 
package) to find the eigenvalues and associated eigenvectors for the 
matrices in Exercise 7. 

Programming Projects 
9. Write a program to implement the hybrid deflation procedure. 

10. Write a program to implement the QR method. 

• 

• 

' 
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A Brie istory 
o atrices and 
Linear Algebra 

• 

Matrices and linear algebra did not grow out of the study of coefficients of 
systems of linear equations, as one might guess. Arrays of coefficients led 
mathematicians to develop determinants, not matrices . Leibniz. coinventor 
of calculus, used determinants in 1693, about one l1undred and fifty years 
before the study of matrices in their own right. Cramer presented his deter
minant-based formula for solving systems of linear equations in 1750, and 
Gauss developed Gaussian elimination around 1820. These events occurred 
before matrix notation even existed. As an aside, we note that Gaussian 
elimination was for years considered part of the development of geodesy, 
not mathematics; the Gauss-Jordan method, which we called elimination by 

• 

pivoting, first appeared in a handbook on geodesy. 
For matrix algebra to develop, one needed two things: (i) the proper 

notation, such as aii and A; and (ii) the definition of matrix multiplication. 
It is interesting that both of these critical factors occurred at about the same 
time, around 1850, and in the same country, England. Except for Newton's 
invention of calculus, the major mathematical advances in the seventeenth, 
eighteenth, and early nineteenth centuries were all made by continental math
ematicians, names such as Bernoulli, Cauchy, Euler, Gauss, and Laplace. 
But in the mid-nineteenth century, English mathematicians pioneered the 
study of the underlying structure of various algebraic systems. For example, 
Augustus DeMorgan and George Boole developed the algebra of sets (Boo
lean algebra) in which symbols were used for propositions and abstract 
elements. 

The introduction of matrix notation and the invention of the word 
''matrix'' were motivated by attempts to develop the right algebraic language 

• 507 
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for studying determinants . In 1848, J. J . Sylvester introduced the te1n1 ''ma
trix,'' the Latin word for ''womb," as a name for an array of numbers . He 
,used ' ' womb'' because he viewed a matrix as a generator of determinants. 
That is, every subset of k rows and k columns in a matrix generated a 
determinant (associated with the submatrix formed by those rows and col
umns). 

In search of good notation for working with determinants, Sylvester 
in 1851 proposed writing a square matrix in the form 

• • • 

• • • (1) 
• • • • 
• • • • 
• • • • 

• • • 

with each entry represented by a product of symbols. He also introduced the 
shorthand notation for a square matrix of 

• • • 

(2) 
• • • 

He ref erred to the a' s and a ' s as umbrae, or ideal elements. Using this 
umbral notation, Sylvester then wrote the determinant of (2), which involves 
summing the signed products of all permutations of the a' s with the a ' s, as 

• • • • 

(3) 
• • • 

Soon after the introduction of (1) , the two symbols a and et were merged 
into one with double subscripts__,,aiJ (Cauchy had actually used aiJ in 1812, 
but the notation was not accepted then). 

Matrix algebra grew out of work by Arthur Cayley in 1855 on linear 
transformations. Given transformations , 

x' = ax + by 

y' = ex + dy 

x" = ax' + ~y' 

y'' == 'YX1 + 8y' 

he considered the transformation obtained by performing T1 and then per
forming T2 • 

T2T1: x" = (aet + h'Y)x + (a~ + bo)y 

y' = (cet + d'Y)X + (c~ + do)y 

In studying ways to represent this composite transformation, he was led to 
define matrix multiplication: The matrix of coefficients for the composite 
transformation T2T1 is the product of the matrix for T2 times the matrix for 
T 1 . Cay ley went on to study the algebra of these compositions-matrix 
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algebra-including matrix inverses. The use of a single symbol A to rep
resent the matrix of a transformation was essential notation of this new 
algebra. A link between matrix algebra and determinants was quickly estab
lished with the result: det(AB) = det(A) det(B). But Cayley believed that 
matrix algebra would grow to overshadow the theory of determinants . He 
wrote, ''There would be many things to say about this theory of matrices 
which should, it seems to me, precede the theory of determinants . '' 

It is a curious sidelight to this discussion that another prom!nent English 
mathematician of this time was Charles Babbage, who built the first modern 
calculating machine. Abstracting the mechanics of computation as well as 
its algebraic structure and notation seems to have been all part of the-same 
general intellectual development in mathematics at that time. 

Mathematicians also tried to develop an algebra of vectors, but there 
was no natural definition for the product of two vectors. The first vector 
algebra, involving a noncommutative vector product, was proposed by Her
mann Grassmann in 1844. Later, Grassmann introduced what we called 
simple matrices, formed by a column vector times a row vector. 

Matrices remained closely associated with linear transformations and, 
from the theoretical viewpoint, were by 1900 just a finite-dimensional sub
case of an emerging general theory of linear transformations. Matrices were 
also viewed as a powerful notation, but after an initial spurt of interest, were 
little studied in their own right. More attention was paid to vectors, which 
are basic mathematical elements of physics as well as many areas of 1nath
ematics. The modern definition of a vector space was introduced by Peano 
in 1888. Abstract vector spaces, whose elements were functions or even 
linear transformations, soon followed. 

Interest in matrices, with emphasis on their numerical analysis, re
emerged after World War II with the development of modem digital com
puters. Von Neumann and Goldstein in 1947 introduced condition numbers 
in analyzing roundoff error. Alan Turing, the other giant (with von Neu
mann) in the development of stored-program computers, gave the LU de
composition of a matrix in 1948. The usef~lness of the QR decomposition 
was realized a decade later. 
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APL. Reference: See Heltzer, s book under '' Applied Linear Algebra.,' 
MACSYMA, Symbolics, Inc. 
MAPLE, University of Waterloo. 
MINITAB . Reference: Ryan , T., et al., Minitab Stude11t llandbook. Duxbury Press, 

Belmont, Calif., 1976. 
muMATH (for lBM PC, Apple), The Soft Warehouse (Microsoft). 
TRUE BASIC and other versions of the language BASIC that have matrix operations 

built-in; for example, MATRIX LOO, an enhanced BASIC for IBM PCs from 
Stanford Business Software. 

Matrix Computation Packages 

GAUSS (IBM PC), Applied Technical Systems. 
Linear Algebra Computer Companion (Apple), Allyn and Bacon, Boston. 
LlN*KIT (for IBM PC and Apple), Wiley , New York. 

• 
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Text and Software R,ferences 

MAC (MatrixAlgebraCalculator) (lBM PC, Rainbow), Professor E. Herman, Math-
ematics Department, Grinnell College, Grinnell, Iowa. 

Matrix Calculator (Apple), CONDUIT. 
MATRIX (IBM PC, Apple, Macintosh), Decision Science Software. 
PC-MATLAB (for IBM PC), The Math Works, Portola Valley, Calif. 
The following two packages, designed for larger computers, are the best matrix 

con1putation software in existence. PC-MATLAB and MAC use parts of these 
pa.ckages. 

EISPACK. Public domain. Reference: Smith, B., et al., Matrix Eigensystems 
Routines-EISPACK Guide, 2nd ed. Springer-Verlag, New York, 1976. 

LINPACK. Public domain. Reference: Dongarra J., J. Bunch, C. Moler, and 
G. Stewart, LINPACK User, s Guide. SIAM, Philadelphia, 1979 . 

• 

-
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Solutions to 
Odd-Numbered Exercises 

• 

Chapter 1 

• 

• 

Section 1.1 

1. 84 feet 3. \/lla/4. 5. A = 1500, B = 500. 
9. C = 7, R = 2. 11. M = 22,000, S = 14,000. 
15. Slower ferry = 13.5, faster = 18 .5. 17. lim = 

7. w = 3, h = 6. 
13. A = 12, B = 44. 

-oo (k < I) . 
k-+l 

19. k = i, W = 12. 21. Answer not reasonable: IQm = 240, IQ1 = 0. 
23. P = 5, J = -3 (cannot be negative). 

Section 1.2 

1. Heating oil and diesel oil both off by 120. 3. x1 = 4, i 2 = 30, x3 = 40. 
5. (b) X2 must be negative. 7. (b) x1 = 45, x2 = 25, x3 = 35. 
9. Energy off by 10. 11. (a) x 1 = 306, x2 = 212, x3 = 160, x4 = 37; 
(b) X1 = 332, X2 = 263, X3 = 163, X4 == 43; (C) Xi = 378. X2 == 287, 
X3 = 175, X4 = 46. 13. (b) X1 = 2.3, X2 = 28, X3 = 63. 

Section 1.3 
3. (a) [0, .25, .5, .25, 0, 0]; (b) [.125, .375, .375 , .125, 0, 0]; 

(c) [1
1s, i\, -&, 1

5
6, ft, OJ (d) [.l, .2, .2, .2, .2, .I]. 

(b) -h (c) ½A 

2 1 
3 2 S. (a) 1 ; 
} 2 

515 



516 

• 

• 

• 

Solutions to Odd-Numbered Exercises 

I .5 .25 0 0 

7. (a) 
E .5 .5 .25 0 

(b) [.375, .5 , .125 , 01, [.31, .47, .19, .03]. • 

s 0 .25 .5 0 
, 

M 0 0 .25 l 

1 .4 0 0 0 0 0 

0 .3 .4 0 0 0 0 

0 .3 .3 .4 0 0 0 
9. 0 0 .3 .3 .4 0 0 

0 0 0 . 3 .3 .4 0 

next round = (0, .4, .3, .3, 0 , 0, O] , 
second round = r.16, .24, .33, .18, .09, 0, 0] . 

0 0 0 0 .3 .3 0 
0 0 0 0 0 .3 1 

11. (a) [~, A]; (b) (5, !]; (c) and (d) [.1, .2, .2, .2, .2, . l]; 
(e) [.86, .14]; (f) [.6, .4]; (g) [.4, .2, .4]; (h) [.01, .01, .01, .96]; 
(i) [.3, .2, .2 , .3]; (j) [.83 , --0 , --o, --0, --0, --o, .17]; 
(k) [.70, ----0, --0, --0, --0 , --0, .30]; (I) [.53, ---0, --0 , --0, --0, ---0, .47]; 
(m) [ABC 0, AB 0, AC 0, BC 0, A .27, B .19, C .44, none .10]. 
13. (a) [45 , 50] , [39, 50], [32, 49]; (b) ( - 20, 33]. 
15. (a) (30, 110] , (3, 126], [ - 34 , 151]; (b) [50, 130), [47, 172] , [39, 231]. 
17. (a) [29.4, 22.8], [28 .9, 21.8], [28.5, 21.0], converges to [27, 18]; 
(b) [8 .4, 3 .7], [8 .7, 4.3] , (8 .9, 4 .8], converges to [9.75, 6.5]; 
(c) converge~ to [4.5, 3]; (d) converges [7.5, 5). 19. (a) Line F = iR; 
(b) [10, 15] converges to [- 15, - 10]; (c) [1, 2] converges to [ - 3, - 2]; 
(d) convergence in one period. 21. After 3000 days, you are closer to start-
ing point than before. 

Section 1.4 

1. x 1 = 15, x2 = 65 . 3. (18.4, 3). 5. Mathematics/ Science. 
7. C = 0, W = 160, objective function = 6400. 
9. (a) Minimize 50x1 + 40x2 subject to x1, x2 > 0, 20x1 + 50.ti > 500, 
30x1 + 100x2 > 1000, 10x1 + x2 2:: 200, 15x1 + 2x2 ~ 50; (c) minimum of 
1144 at x 1 = 19.6, x2 = 4.1 . 11. Max (i) = Min (ii) = 18. 

Section 1.5 

1. (a) 23; (b) 8; (c) 1; (d) 25; (e) 8. 3. (a) YX; (b) KU; (c) ZA. 
5. (a) x == 7 (mod 26); (b) x = 13 (mod 26); (c) no solution; 
(d) x = 15 (mod 26). 7. (a) 25, 24, 27, 27, 29, ... ; 
(b) 24, 26, 26, 27, 28 , .. . ; (c) 30, 24, 28, 26, . . . . 
9. (a) 2, 5, 4, 5, 4, 7 , 5, 9, 5, 10, 7, 11, 12, 11, 16, 14, 18, 15, 19, weak 
smoothing; (b) 3, 3, 4, 5, 5, 6, 6, 7, 8, 9, 8, 10, 11, 12, 14, 16, 17, 17, 18, 
good smoothing; (c) 5 , 4, 4 , 4 , 6, 4, 8, 6, 9 , 6, J 1, 10, 12, 14, 13, 16, 10, 18, 
15, fair smoothing. 11. (a) d'; = (d;_4 + 2d;_2 + 3d; + 2d;+2 + d;+ 4)/ 9; 
(b) d'I = (d; _4 + d;_3 + 2d; _2 + 2d;_1 + 3d; + 2d; + 1 + 2d;+2 + d; + 3 + 
d1+ 4) / 15. 15. (a) 6; (b) K; (c) U . 

• 
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Chapter 2 

• 

• 

' 

• 

Section 2.1 

2 3 

1. (a) [l 2 3 4]; (b) 4 ; (c) 6 ; (d) 4; (e) 3. 

5 7 

A ½ ¼ 0 
3. (a) Tl ¼ l O ; 

S ! ! 1 

l 
(b) 0~ ½ ; 

½ 
(c) rows 1 and 2, columns 1 and 2. 

5. (a) a23 = gallons of diesel oil from l barrel by refinery 3, 

20 4 8 20 4 

(b) 10 14 10 ; (c) 10 4 

5 5 24 

1 1 

7. 4 1 
20 10 

5 5 

9. 
• (2 , 4 , l] 

[1 . 1, 1] 

[t , O, Ol 

11. Operations not commutative at entry where row and column intersect , value 
at entry (1, 2) depends on which interchange first. 
13. (a) 2J + 41, (b) J - A; (c) 3J - 2A + 41. 

5.8 7.6 8.8 17. 5 INPUT R: INPUTS 

15. 
7.6 6.0 
7.8 7.2 

8.8 
8.0 • 

10 FOR I = 1 TOM: FOR J = 1 TON 
15 C[I, J] = R*A[I, J] + S*B[I, J] 

5.4 5.4 6.2 
20 NEXT J: NEXT I: END 

Section 2.2 

1. (a) 2; (b) 5; (c) 38; (d) 14. 3. (a) aA = [14, 25, 36, 47] ; 

(b) bB = [5, - 7 , 2]; (c) not defined; (d) not defined; (e) Bb = 

38 

(f) Cc = 18 
24 

• 

29 

5 

.30 .10 .10 .75 4 
5. (a) 

.25 .15 .08 .80 3 
, (b) store A $3.70, store B $3.69. 

2 

0 
- 8 . 

' 
4 
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Solutions to Odd-Numbered Exercises 
' 

2 1 -2 3 4 5 
7. (a) A = 

2 
_ 

5 
, b = 

3 
, Ax = b; (b) A = 1 0 3 , 

0 2 -1 

b = 3 , Ax = b; ( c) A = 3 2 
5 4 -3 

9. p' = p + Ap. 11. dAp = 2210. 

5 
17. (a) 

11 

19 -4 
37 -8 ; (b) 

26 94 -20 
(e) 65 223 - 48 

14 

7 II 

17 23 

-6 

19. (a) [1, - 1, O]; (b) 28 ; (c) -3 
-4 

35 
-3 

160 155 
23. (a) 182 169 . (b) [70 235 95]; ' • 

95 100 crA 
AB 

156.5 
(d) f2 .7, 5.3, 3.7]; (e) 172.9 

BD 98.5 

ABD 

0 

0 , x = Ax. 
0 

I 0 
2 1 
3 2 

13. 
4 3 

0 4 

0 0 

3 -1 0 

0 

0 
4 

1 
-3 -

2 

3 
I 

4 

; (c) not possible; (d) 

4 

5 

7 

9 
• 

-9 
4 

6 10 
• 

17 24 ' 

21. [(BA)C]23 = - 40. 

• 

(c} [1835 1765]; 
cr(AB) 

25. (a) [280 120 100); (b) A 7 D; (c) entry (1, I) in Br(AC). 

~ 4 14 13 41 ff 27. (a) 9 4. (b) 27 27 "-· (c) 81 
, approaching [½, ½]. 4 5 ' 9, ll 14 , 27, 40 41 

9 9 27 27 81 sf 

6 0 0 1 0 0 
29. (a) 0 2 0 . (b) (AB)u = a,;b;;- 31. (d) 0 I 0 • 

' , 
0 0 15 0 2 0 

1 -4 2. 
(e) 0 I 0 

0 0 I 

• 
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Section 2.3 
1. (a) b • ed 

a • e C 

2 0 2 0 

0 2 0 2 
3. (a) • 

2 0 2 0 
, 

0 2 0 2 

(d) A2(G) = I; (e) 

• (b) a , 

b 

C 

3 l 3 1 
1 3 1 3 

(b) 3 I 3 1 

1 3 1 3 

2 2 2 2 

5 2 2 2 0 0 

2 3 2 2 I 1 

2 2 3 2 1 1 

2 2 2 3 1 I 

0 1 l 1 I I 

0 I l I I I 

. (c) , 

d 

a 

2 1 0 l 0 0 
2 0 2 0 1 0 

(c) 0 2 . l 0 2 1 • , 
' 

2 0 1 0 2 0 
4 0 0 1 0 1 

2 0 l O 2 0 

0 3 0 2 0 2 
1 0 2 0 2 0 

; ( f) 0 2 0 2 0 1 . 

2 0 2 0 3 0 
0 2 0 I O 2 

S. Every entry in A(G) or A2{G) is positive for G1 and G2. 

519 

e 

7. D 1 points vector l5, 3, 2, O], D2 points vector [9, 5, 4, 2, OJ. 11. (a) O; 
(b) 1; (c) 0. 13. Parity will remain even if two bits are changed. 

0 

15. (a) e = 0 , fourth bit; (b) 

1 

0 

l , sixth bit; (c) 

1 

0 

1 , second bit. 
0 

17. New Q obtained from old Q by interchanging rows 3 and 4; c = 
[l, I, 0, I, 1, 0, O] 

1 0 1 0 I 0 I 0 l 0 I 0 l 0 1 

19. M = 
0 1 I 0 0 1 I 0 0 l I 0 0 l J 
0 0 0 1 l l l 0 0 0 0 1 1 l 1 

0 0 0 0 0 0 0 1 1 1 I 1 1 1 1 

Section 2.4 
1. (a) I; (b) n; (c) l; (d) e;; (e} 1; (f) l; (g) O; (h) n; (i) 0. 
3. (a) Qx = x~ (b) (Q - l)x = 0; 5. (a) Ax = By + c; 
(b) Ax - By = c; (c) x = (I - A) + By = c. 7. (a) p' = p + Ap; 
(b) p' = (I + A)p; (c) p<20> = (I + A)20p. 
9. A(x0 + x*) = Ax'J + Ax* = b + 0 = b. 

3 
I 2 5 20 

2 lO 2 -1 -2 -10 . 11. (a) 4 - 5 8 ; (b) 
3 

0 I 
4 

0 

6 30' 
0 

0 0 1 

• 
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.4 .2 .2 .2 100 

.3 .2 .2 . l so 
(c) .1 . I 0 .2 100 • 

• 

0 .1 .1 0 0 

0 0 0 0 1 

13. (lA)l = 1 · 1 = 5. 15. (a) 1A2 = 1; 
(b) IA 2 = (lA)A = (l)A = l ; (c) 1A3 = (1A2)A = (l)A = 1. 

s 1 3 I - 1 s 
l s - 1 5 -1 I 

3 -1 s - 1 1 3 
19. 

5 5 l 
• 

1 -1 -l 

- 1 - 1 I -1 5 -1 

5 1 3 I -1 5 

21. Entry (i, }) of M(G)M(G)T tells how many (0 or 1) entries rows i and j have 
in common, that is, if an edge joins i to j. 23. (A2)ii = af · aJ = af · af = 
(A 2)j;• 27. Let C have at least two columns. 33. (a) (AB)2 = ABAB; 
(b) let A and B be diagonal matrices . 

Section 2.5 

3. (a) la - hie = \/46, la - bl:> = 10, la - blinx = 6; (b) sum norm equals 
sum of (absolute) differences of the entries in a and b; (c) max norm equals 
largest (absolute) difference between an entry in a and the corresponding entry in b. 
S. (a) (a) and (b) x* = e2, (c) and (d) x* = e1; (b) (a) x* = [1, l], 
(b) x* = (-1, 1], (c) x* = f 1, I, 1], (d) x* = [ -1, 1, l]. 7. (a) 6; 
(b) 24; (c) [4, 4, 4]; (d) 63 • 6 = 1296. 
9 • (a) (i) !!Alls = 1. 2, llAllmx = 1.25, (ii) IIAlls = l. 3, IIAllmx = 1. 7; 
(b) (i) jp'ls = 38 ~ IIAllslPls = 48, jp' lmx = 19 s; IIAllmxlPlmx = 25, 
(ii) jp'ls = 32 :S IIAllslPls = 52, IP' lmx = 18 < IIAllmxlPlmx = 34; 
(c) (i) 69, (ii) 88. 11. 375. 13. (a) i, !; (b) 1

2
0, ¥. 

15. (a) Assuming that ja 1I is largest absolute entry in a, then 

lalmx = la I I = ~ < V ai + a~ + · · · = lale 
17. Assuming that lb1I is largest absolute entry in b, then 

19. A symmetric means sum of ith row equals sum of ith column. 
21. (a) IIA + Blls = largest (absolute) column sum in 

A + B = max laf + bfls :S max lafls + max lbfls = IIAlls + 11B11s 
; i i 

25 ( ) A 2a + Sb b th . . A . d b . . a v = 
3
b ; o entnes 1n v increase as a an increase, so 

la+ 

a = b = l maximizes jAvlmx; (c) If first row of A has larger absolute sum and, 
say, a 12 is negative, then let v = (1, - l]. 
29. (a) 24[1, l] + 2[1, O] = [18, 16]; (b) 211[1, l]; (c) 9u 1 - 3u2 , 

[285, 288]. 31. A2u = A(Au) = A(Au) = A(Au) = A(Au) = A2o. • 

• 
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• 

Section 2.6 

1. (a) 1000; (b) 106
; (c) 2000; (d) 500; (e) 2000; (f) 9000. 

2R R 

3. (a) If R is a 2 x 4 matrix of l's, M = R 2R 
• 

2R R ' 

1 0 I 0 

(b) if R = 0 I 0 l 
'M = 

R 
l 0 1 0 2R 
0 I 0 1 

5. Additional last row of D" is [0 0 0 

a b C d e f g h 
a ·O 1 ½ ! 0 0 0 .1 ! 4 

b 1 0 0 ½ 0 0 0 0 4 

C 
1 0 0 ½ 0 0 0 0 4 

¼ .l ½ 0 0 0 0 0 1. d -2 

0 0 l 1 1 e 0 0 0 2 2 4 

f 0 0 0 0 ! 0 0 l. 
3 4 

g 0 0 0 0 ¼ 0 0 1 
4 

h 1 
4 0 0 0 ¼ ½ ~ 0 

2 4 

9. M2 = R 2J 
, \vhere R = 4 2 

4J R 2 4 

4 2 

0 0 B2 0 2 B 
11. (a) 0 

0 
28 0 ; (b) 0 482 

0 3B O 0 

R 2R 

J - R 
J - R 

0 I]. 

M NT 

N M 
• 

2 4 

4 2 
and J is 4-by-4 matrix of 1 's. 

2 4 

4 2 

0 

(c) 45 mults. versus 729 mults.; (d) (2 0 2 4 8 4 18 0 181 . 

13. (a) 27J 0 
; (b) 0 27J . 

B, 
15. (a) If A = [A1 A2 A3], B = B2 , then AB = 

8 3 

[A,B, + AlB2 + A,B3]; 

~ l _L 0 4 36 
l 
4 ~ i 

9 
J... 
36 

17. * ff l. 
2 

i 
9 ts • 

0 -k ; 1 z 
2 9 

etc . 

• 
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Chapter 3 

Solutions to Odd-Numbered Exercises 

• 

19. (a) Bandwidth is 2, .5 on main diagonal, .25 just off main diagonal , columns 
l and 14 same as original frog Markov chain; (b) bandwidth is 3, . .. , .0625, 
.25, .375 , .25 , .0625, .... 21. Bandwidth is 2k - I . . 

R Q 
23. (a) A = Q R ;_ 

(b) A2 = A' A" 
, where A' = 

A'' A' 

0 2 0 2 0 4 

2 0 2 0 4 0 

A" = 
0 2 0 4 0 2 

• 

2 0 4 0 2 0 ' 

0 4 0 2 0 2 

4 0 2 0 2 0 

5 0 8 0 4 0 
0 5 0 8 0 4 

4 0 5 0 8 0 
0 4 0 5 0 8 ' 
8 0 4 0 5 0 

0 8 0 4 0 5 

(c) call submatrix Q: for n = even, Qn = I; n = odd, Q n = Q. 

Section 3.1 

1. (a) - 17; (b) O; (c) -2. 3. x 1 = (2D - G)/ 15, 
.t2 = (I0G - 5D)/15a. S. (a) Unique x = y = O; (b) (x, y) = r(l, 4); 
(c) (x, y) = r(3, 1 ). 7. (a) - 2; (b) 0; (c) 0; (d) 0; (e) -4; 
(f) 3.3 X 10- 8 . 9. x2 = 33~, x3 = 67!. 11. Det = - .002. 
13. x = [(2e)d - (2b)f]/[(2a)d - (2b)c], similarly for y. 
JS. (a) Det = a 21 a 12 - a22a 11 • 19. (a) 24; (b) O; (c) 24. 
21. Area(ABC) = area(ABB 'A') + area (BCC' B') - area(ACC' A'), where 
area(ABB'A') = ½(x2 - x 1)(y2 + y 1), similarly for BCC'B', ACC'A'. 
23. ( i) X. = 4, 2, u = [ l , l ] ; (ii) X. = 5 . 3, - . 3 7. u = [. 46, 1]; (iii) A = 4, 1 , 
u = [1 ,2];(iv)X. = 3,3,u = (1, l];(v)X. = 2, 1, - 1,u = [1, 1,0]. 
25. A = 1.05 ± .09i (imaginary), u1 = [ -0.58 + i, .67i]. 
27. (a) X. = 5, 2, u = [l, 2], v = (1, - 1); (b) p = 10/3u + 5/3v; 
(c) (10/3)58(1, 2]. 33. det (A - X.I) = (a - 'A.)(b - X.) . 35. (a) 3; 
(b) 7; (c) 3. 

Section 3.2 

1. (a) x = ¥, y = i; (b) x = -H, y = -ta; (c) x = 2, y = 6. 
3. (a) X = [30, 14, - 9]; (b) X = [!, - ;, 01; (c) X = [- l, 2, i); 
(d) x = (/9 )(37, 15 , 9]; (e) not unique; (f) x = (1

1
1)(-21, - 76, 164]. 

1 0 0 2 -3 2 l O O - 1 -1 1 

5 .. (a) ½ I O O ' 0 ; (b) - l 1 0 0 - 3 4 ; 

-½ 7 I O O 5 -2 0 1 0 0 -2 
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I 

(c) 

I 0 

-2 1 
2 

7 ; (d) 
.a 

1 
.l 
2 

0 

I 
2 4 -2 
0 - 4 - 3 

29 - 5 11 5 

0 

0 

l 

- 1 - 3 

0 - 5 

0 0 5 - 1 -~ 

0 

0 

1 0 0 --::r 

1 0 0 
(e) 2 I 0 

5 3 1 

l I 
0 - 1 
0 0 

4 

- 5 
0 

1 0 

; (f) f 1 

l - 39 

0 

0 

1 

2 -3 - 1 

0 -½ -½ 
0 0 - 11 

7. (a) x = (2, 0, 31; (b) x = li , - 1
:

0
, - 71 ]; (c) x = [-~, .i3o, ¥ ]; 

(d) x = (~)[ - 55 , 60, - 80}; (e) no solution; 
(f) X = (fi)[ -40, - 205 , 425] . 

9. (a) x = (!)(13, 13. - 16, l ], L = 

l 3 2 - 1 

U = 
0 - 2 - 1 2 . 
0 0 1 - 7 ' 
0 0 0 - 3 

I 

(b) x = [ 1 , - 1, 2 , - 2] , L = 1 
i 
_1 
3 

3 2 1 0 
0 1 1 - 1 

U = 3 -3 . 
0 0 - 2 0 ' 
0 0 0 2 

(c) x = (t)[l9, - 2, - 29, 18) , L = 
(rows 3 and 4 switched ~ 

to avoid zero pivot) ~ 

1 1 - 1 - 1 

U = 
0 - 2 2 3 

0 0 - 1 - 2 
0 0 0 7 

- 2 

1 0 0 0 

1 1 0 0 

2 4 

I 3 

0 0 
l 0 

- 1 l 

l l -2 

1 0 

2 1 

4 3 

3 3 
2 

l O ' 

0 I 

0 

0 
0 ' 

l 

0 0 

0 0 

1 0 ' 
0 1 

11. About n 3/ 2. 13. (a) Multiple so]utions; (b) no solution; (c) x = 
[47.8 , - 54.3, 160.9] ; (d) x = [1

~!\ , 115
, O] . 15. (a) x = [10, - 2, OJ; 

(b) no solution; (c) x = [¥, 6, I, 1/]; (d) x = [3, 0, 0 , l]. 
17. Jello = 5.04, fish = 4.89, meat = 1.53. 19. 40 micros . 200 terminals, 
20 word processors. 

. 
' 
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1 
21. (a) 0 -~ 

0 ~ 

1 
23. (a) L = 

c/a 

I 0 

15 
0 450 

1 I 50 

; (b) 

0 a , u = 
l 0 

0 

-3 0 o I -1 
- 5 I 0 -4 . 

3 0 I I -1 

b 

d - be/a 

3x 6x2 ex 
25. L = x/3 1 0 , U = 0 -x3 ~xex , det = 2Ix3ex. 

2/x 9/x2 1 

Section 3.3 

3. (a) x 1 + 2x3 = 1 

x 2 + 3x3 = 0; (b) 

X 1 + X3 = 0 

0 0 -7ex/x 

- 1 

-3 . 
1 

5. (a) 
2 

-1 - ~ ; (c) (i) (0, 11, (ii) [t }] , (iii) [ - 2, 3)-nonsense; 

(d) (i) Nonsense, (ii) [~, 1], (iii) nonsense . 
9 22 - ! -¼ 1 1 - 5 5 6 3 

7. (a) - 1 2 0 . (b) 5 2 1 • 

' -:r -3 -3 , 
4 1 1 - 1 l 0 5 -5 5 -2 

-2 li ll i 14 Z.Q 
3 - 3 58 58 -58 

(c) 1 16 7 • (d) 11 10 _§__ • -3 3 ' 58 -58 58 ' 
I 11 5 -~ 6 -A -3 3 -n 

-fr ~ 
11 

....L 
11 

(e) no solution; (f) -11 ll 
11 -h 

.§.a -ff --h 11 

9. (a) [2:;2, 2, -i], (b) [~, - ~' - ½], (c) [2as, - 136, -¥], 
(d) s

1
s[l4, -10, 58], (e) no solution, (f) (16

1, ii, -ft]; (b) (a) c:, 0, -fl, 
(b) [ -i, i, 0] , (c) [2:f, -\i, - 1

3Q], (d) s\(40, - 12, 16j, (e) no solution, 
(f) (-1

2
1, -1

2
1, 1

2
1]; (c) (a) [2

s
3

, 2, -!], (b) -[~, A, i], (c) ½[37, -23, -16], 
(d) 5

18[34, -16, 2], (e) no solution, (f) [1
5
1, -it, - tr]. 

11. (a) 

5 4 3 2 1 

4 4 3 2 1 

3 3 3 2 l ; (b) 

2 2 2 2 1 

l 1 J l 1 

13. No inverse. 

5 2 1 1 1 
6 3 ~ 3 6 
2 4 l 2 1 
3" 3 3 3 

1 1 3 1 2 2 
1 
2 • 

l 2 j 4 2 
3 3 3 3 
1 1 1 2 5 
6 3 2 3 6 

.0001 - .127 .038 

• 

15. (a) - .0004 .382 - .013 , (5 .04, 4.89, 1.53]; (b) .51 less Jello; 
.005 - .089 .001 

(c) .013k more. 

• 
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1 - 1 l 
2 ~ 

• 

17. (a) 1 0 l 
2 -2 , [100,000, 50,000, l 00,000]; 
3 2 1 

- 2 2 

(b) change = [ - 100,000, 0 , 200,000]; (c) change = f - 5000k, - 5000k, 
15,000k]. 
21. (BA)C = (A- 1A)C = IC= C or B(AC) = B(AA- 1

) = BI = B. 

525 · 

25. Entry (i, i) in inverse is 1 / a;;. 27. (a) A - 1 is same as A except the a in 
entry (i, j) becomes -a; (b) part (a) is true wherever a is . 
29. (a) Has inverse, (b) no inverse; (c) cannot say~ (d) no inverse; 
( e) cannot say ( A may not be square). 

1 0 . 33. (a) 
1 0 

I 1 

4 0 

0 2 - 1 1 . 

(b) 

(c) 

.46 1 5.4 0 
l - .69 0 - .37 

¼ ! 
• 

I 1 
2 - 1 

4 0 
0 1 i - ¼ ' 

.52 .76 . 

. 76 - .35 ' 

(d) not possible, only one eigenvector. 

35. (a) If A = UD>-u - J' then A 2 = AA = (UDA u I )(UD>-u - I) = 
UD>-cu - 1U)D>,. u - I = UDxD>,. u - 1 == UDiu- •. 
37. If 0 is an eigenvalue of A, then Ax = 0 has multiple solutions. So Tl1eorem 
4, part (i) is false, and A has no inverse. 

Section 3.4 
1. (a) A == 2, [l, l]; (b) A = 3 , [ - 1, I); (c) A = 4, [1 , 1]; (d) iteration 
does not converge. 3. (a),(b) Cycles 45° around ·unit circle, iteration does not 
converge; (c) A = (v'2/2)(1 + i) . S. (a) 'A. = 1.33, [.70, .21 .. 09); 
(b) first and second largest eigenvalues are close together. 
7. (a) [178, 150, 150]; (b) r202, 148, 135] . 9. Sum of powers fails 
because 11D11 > l. 11. (b) (i) {4.11, 1.15, .04], (ii) [-3 .10, 11.03, .52] . 

0 -i ! 
13. (a) D = -½ 0 i ; (b) x = [ - .60, 4.25, .54]. 

it -fo 0 

1S. (a) (i) Does not apply, (ii) applies for (30) and (31), (iii) does not apply, 
(b) (i) 2x 1 + x2 = 4, apply (30); (ii) lx~ - x2 = 5, apply (30). 

3x 1 - 4x2 = 2 ixi + x2 = 3 
17. (a) Convergence much faster . 

Section 3.5 
1. (a) 83; (b) 83/ 3; (c) 83

. 3. k = 10. 5. [x6 + 5~ x6 + 4, Jt6 + 3, 
_t 6 + 3, x6 + 2, x6]. 7. [n-, n, i\, rs, . .. , -ir;, -is]. 9. (a) None\\' 
nonzero entries are created during elimination; (b) All the upper right side of 
the matrix becomes nonzero. 11. w2 multiplications per pivot. 
13. (a) x = 0, y = -1; (b) x = 0, y = .5; (c) x = 0, y = - .333 . 
1S. (a) Any [x, )', z] with y = z + l is a solution; (b) x = l, y = .333, 
z = .00011. 17. (a) £ = [ - .333, 0), x* - £ = [.333, - l]; 
(b) E = [l .75, O] , x* - E = [ - 1.75~ .5]; (c) E = [ - .333 , O], 

• 
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x* - E = [.333, - .333]. 19. (a) 21; (b) 5; (c) not invertible; 
(d) 4606. 21. (a) lels/lx + els < 1.4; 
(b) x' = [12, 28.4, 66.5), !els/Ix + els = .13. 23. (a) 525%; (b) 386%; 
(c) (i) !el < IIA - 111 · le'I, (ii) IIAII · lxl 2: lbl (or lxl > lbl/llAII), then dividing (i) by 
(ii) yields lel/lxl < IIAII · IIA - 111 • le' 1/lbl . 25. c(A) = ¥ , 94% error. 
27 • I = IIIlls = IIAA - 'lls < IIA11s11A - 111s = c(A). 

Section 4.1 
1. (a) x' = -x, y 1 = -y; (b) x' = 2x + 7, y' = y + 3; (c) x' = x + y, 
y' = y; (d) x' = -x, y' = y. 3. (a) (0, 0), (-1 ; 0), (0, -1), (-1, -1); 
(b) (7, 3), (9, 3), (7, 4), (9, 4); (c) (0, 0), (1, 0), (1, 1), (2, l); (d) (0, 0), 
(-1, 0), (0, 1), (-1, 1). 5. Lower left corner of grid and x-by-y size of 
each square given (a) (- 3, - 2), l-by-1; (b) (10, 1), 2-by-1; (c) ( - 1, - 2), 
l-by-1 trapezoid; (d) (-3, -2), 1-by-l. 7. (a) x' = -y, y' = 2x; 
(b) x' = -x, y' = -y; (c) x' = -x - 7, y' = - y - 3. 9. x' = x, 
y' = 4 - y. 11. x' = -y + 4, y' = x - 2. 13. (a) x' = -2y, 
y' = -2x; (b) x' = x , y' = y. 17. (b) x' = -x + y, y' = -2x + 2y. 
19. (a) x' = .866x - .5z, y' = y, z' = .5x + .866z; 
(b) x' = cos l0°x - sin lO°y, y' = sin 1O°x + cos l0°y, z' = z; 
(c) x' = .75x - .5y - .433z, y' = .433x + .866y - .25z, z' = .5x + .866z. 
21. x' = x + .216y + .3752, y' = .991y - .284z. 
23: (a) x' = x, y' = .866y - .5z + .134, z' = .Sy + .866z - .5. 
25. (a)!· 2k[l , l]; (b)} · 2k[J, I]; (c) - 1 · 2k[l, l]. 
27. 4 · 45(1, 1] + (1, -2], 4 · 420(1, 1]. 29. (a) x = x' - y', y = y'; 
(b) x = .101x' + .101y, y = - .701x + .707),; (c) not invertible. 

cos 0° 
31. T([a, b]) = T(ae1 + be2) ~ aT(e1) + bT(ei) = a sin 

0
o + 

b -sin 6° 
cos 6° 

a 
= A b . 

Section 4.2 

1. (a) y = l.82x, SSE = 43.2; (b) y = x + 3.57, SSE = 15.7; 
(c) y = x' + 6.57. 3. (a) x = - .86y + 12.43; (b) SSE different for 
x- and y-values. S. (a) y = .17x - 6.56; (b) y = .5x - 28 .2; 
(c) y' = .5x' + 3.3 . 7. q' = .089, y = 11/x. 

Section 4.3 

1. (a) 2N2H4 + N20 4 ~ 3N2 + 4H20; 
(b) 2C6H6 + 1502 ~ 12C02 + 6H20. 

-

3. 15PbN6 + 44CrMn20 8 ~ 22Cr20 3 + 88Mn02 + 5Pb30 4 + 90NO. 
5. i1 = 2, i2 = 4, i3 = 6. 7. i1 = 8, i2 = 2, i3 = 1, i4 = 3, i5 = 11. 
9. y'(t) = 2y(t) . 11. (a) y'(t) = x(t), x'(t) = -4y(t) + 5x(t); 
(b) y'(t) = x(t), x'(t) = -6y(t) - 5x(t); 
(c) y' (t) = x(t), x' (t) = z(t), z' (t) = - 2y(t) + 3x(t) + 4z(t); 
(d) y' (t) = x(t), x' (t) = z(t), z' (t) = y(t) + 2x(t). 
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15. (a) x(t) = y(t) = 10e4l: 
(b) x(r) = 10/3{2e41 + e'}, y(t) = 10/3{4e4

' - e'}; (c) x(t) = y(t) = 10e5'. 

Section 4.4 

1. Cycles through [1, 0, 0], (0, 0, 1] , (0, 1, 0), [!, !, il is stable distribution. 
3. [i,!J. 5. [i,i]. 7. p* = [¼l,-¼,¼!J,columnsofA 1000 === p*. 
9. (b) Not regular. 11. (a) l /(2n - 2)[1, 2, 2, 2, ... , 2, I]; 
(b) l/q

11
[22n - 3 , 22" - 4, 22n 6 , 22n 8 , .•• , 4, I], where qn = 22n- 3 + IZ -5 22k; 

(c) lq c2n- 3 2n- 4 2n-6 2n -8 4 l 1 4 2n -8 2" 6 2ri - 4 2n-3]-
2 n/ 2 , ' , , · · · , , , , , · · · , , , , , 

(d) l/(2n - 2)[1, 2, 2, 2 .... , 2, l]. 
13. If A begins, 

I - a 
a 1 

0 
0 

A - I is then 

- a 

b 
- b 

C 

0 

b 
a - b -
0 C 

0 0 

• • • 

- C • • • 

• • • 

• • • 

• • • 

• 

C • • • 

• • • 

• • • 

For the first-column elimination, add first row to second row: 

- a b • • • 

0 -c • • • 

0 C • • • 

0 0 • • . 

For second-column elimination, add second row to third row (all other middle col
umns like this). 
15. 3.3, 14.2. 17. !f-, 5. 19. (a) ti; (b) fl; (c) ti. 

5 
2 

2 

21. N = 3 
2 

I 
1 
2 

25. 48, 8. 

Section 4.5 

2 

4 

3 

2 

1 

~ 1 

3 2 

l 3 

3 4 
3 
"2" 2 

i , IN = [12~, 12, ¥, 12, ¥], 
1 

i i 2 ½ j l RN = l 
2 1 1 l 2 ~ 

• 
3 2 '!f 

~ 

~ 

I. (a) 52%, [.48, .31, 21]; (b) 0%, [.57, .29, .14]; (c) 17%, [.62, .27, .11]; 
(d) 13%, [.58, .26, .11, .05); (e) - 16%, cyclic. 

3. A = I , - .5 + .866i (for al] A, IAI = 1 ). 
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-1 0 0 0 0 2 
0 - 1 0 0 0 2 

5. Reduced matrix U = 
0 0 - 1 0 0 1.2 

0 0 0 - ] 0 1.2 
• 

0 0 0 0 - .25 0 

0 0 0 0 0 .47 

7. For herd of constant size, we want a small number of females ( we only harvest 
50), but then there are not enough females to give birth to as many males as are 
needed to be able to harvest 100 males annually. 
9. (a) [742, 742, 405, 405, 408, 408]; 

(b) 

- .091 

0 

- .5 

0 

- .085 

0 

2.21 

1.30 

1.20 

.71 

2.06 

1.21 

0 

0 

- .91 

0 
-1.56 

0 

4.05 

4.05 

2.21 

1.30 

3.78 

2.23 

0 
0 

0 

0 

-2.86 

0 

7.42 

7.42 

4.05 

4.05 

6.94 

4.08 

11. an = 0.8an - 1. 13. an = an- t + a,, _ 2, a8 = 34. 
(b) a20 = .5 · 420

; (c) a20 = .4 · 420
; (d) a20 = 1. 

17.(a)2 !.; (b)½4" ~ 

(d) 1 
l 
1 

2 . (c) ~ 4n 4 
I ' 5 1 

• 

15. (a) a20 = 2; 

l 

-1 

21. If an = na", then an - t = (n - l)a" - 1 and a,, _2 = (n - 2)a" - 2; substitut
ing in an - 2aa,, _ 1 + a 2an_2 = 0, we have 

na" - 2a · (11 - l)an-l + a 2 • (n - 2)a11
-

2 = {n - 2(n) - 1) + n - 2)}an = 0 

Section 4.6 

1. Min 40x 1 + 55x2 , 50x1 + 100x2 > 500, 100x1 + 100x2 > 800, 500x1 + 
700.xi > 8000, x 1 > 0, x2 > 0. 3. (a) Max 40x1 + 30x2 , x 1 + x2 s 400, 
5x1 + 3x2 < 500, 15xI + 20x2 < 4000, x 1 > 0, x2 > O; (b) x 1 = 0, 
x2 = 166~, income = $5000. 5. x 1 = 0, x2 = 166~, cost = $4166.67. 
7. Min XI l + 2x 12 + 3x 13 + X2 I + 3x22 + 2x23 + 2X31 + 4X32 + 3X33' X 1 l + 
X12 + X13 = 1500, X21 + X22 + X23 = 2000, X31 + X32 + X33 = 2500, X11 + 
X21 + X31 = 1000, X1 2 + X22 + X32 = 2000, X13 + X23 + X33 = 3000, Xij > 0. 
9. Min 2; Ij aijxij [where aij is entry (i, j) in hours matrix and aij = '' - '' means 
that term is not in the sum], x 11 + x 12 + x 15 = 1, x22 + x23 + x24 + x25 = 1, 
X3 l + X32 + X33 = } , X41 + X42 + X44 + X45 = 1, X53 + X54 + X55 = 1, X 11 + 
X31 + X4 I = 1, X 12 + X22 + X32 + X42 = 1, X23 + X33 + X53 = 1 , X24 + X44 + 
x54 = 1, x 15 + x25 + x45 + x55 = 1, xu = 0 or l. 
11. XA; = money invested in A at start of ith year, same for x8 ;, u; = money not 
invested in ith year: Max u5 + l.4xA4 + l.7x83 + 2xc + l .3x0 , xA 1 + x81 + 
u, = 10,000, XA2 + XB2 + Xe + U2 = Ut, XA3 + x83 + U3 = Uz + l.4XA1, 

· xA4 + u 4 = u 3 + l.4xA2 + 1.1x81 , xA5 + x0 + u 5 = u 4 + l.4xA3 + l.7x82 , 

all variables > 0. · 



Solutions to Odd-Numbered Exercises 529 

• 

Chapter 5 

• 

15. (a) x I = 0, x2 = 0, x3 = 6, 24; (b) .x, = 7, .t2 = 0, x3 = 1, 23; 
(c) _t 1 = §, x2 = g, x3 = 0, 4

3
7 ~ (d) x 1 = 3, x2 = 0, x\ = 0, 6. 

17. X1 = 0, X2 = 10, X3 = 30, X4 = 0, X5 = 20, 1530. 
19. Delete last equation and [by subtracting equations (5), (6), and (7)] change 
first equation to .x14 - .. {21 - x22 - x23 - .t 3 1 - x32 - x33 - x41 - x42 -

x43 = - 2. Inequalities are x21 + .t 22 + x23 + .t 31 + x32 + .t 33 + x41 + x42 + 
X43 2: 2, X21 + X22 + X23 < 1, X31 + -t~2 + X33 < 1, X41 + X42 + X43 < }, 

X21 + X31 + X41 < l, X22 + X32 + X42 < l,X23 + X33 + X43 < l,x,i ~ 0. 
21. (a) 60x 11 + 30x21 + 2900; 
(b) X11 = 0, X21 = 10 (X12 = X22 = 20, X31 = 15, X32 = 0). 
23. If 1 acre less planted: $20 less income, 1 acre more of com, 2 acres less of 
wheat; if $1 less used: $2 less income , . l acre less of corn, .3 acre less of wheat. 
25. If 1 unit less of metal, $500 less profit, ¾ more cars, I less trucks; if 1 unit 
less of labor, $125 less profit, h less cars, -b more trucks. 

Section 4.7 

1. (a) !; (b) -1; (c) 1; (d) l; (e) 'TT/2; (f) no solution; (g) 3; 
(h) - 1. 3. (a) 4, 2; (b) 3, 3.45, - l .45; (c) -l.18, - .15. l.33; 
(d) - .72, 1.22, - .25 + l .03i (i111aginary). 5. (a) 68~ (b) 65. 
7. (a) 9.4; (b) (i) 8.4, (ii) 8.1. 9. (a) (i) ~. (ii) ¥; (b) 64 (exact); 
(c) 53.8; (d) 8.4. 11. Yk = - .5(k1 - 100), l < k < 99. 

Section 4.7 Appendix 

1. s(3.l) = -.98 versus true value -.96, s(3.9) = -1.18 versus true value 
- 1.20. 3. (a) s(.1) = .308 versus true value of .309. s(.65) = .890 versus 
true value of .891; (b) integral = .636. 5. (b) Spline approximation 
- .047 versus true integral - 0.45. 

Section 5.1 

1. (a) Line 2x + 3y = 10; (b) line ~t - 2)' = -4. 3. (a) No solution; 
(b) one solution; (c) infinite solutions. 5. (a) [2, l ]; (b) [l, 0, - 2]; 
(c) [5, 4, -7]; (d) [l, -7, 5]; (e) [3, l, -1); (f) (0, 0, 0) (invertible 
matrix); (g) [O, OJ. 7. (a) [O, 0, 10] + r[l, l, - 1]; (b) [3, 3, 7]. 
9. (a) [5, 0, 5, 0, 5] + r[J, -1, -1, I , OJ+ s[J, 0 , 0, 0, - I]; 
(b) [10, -10, -5, 10, 10]; (c) [10, 5, 10, -5, -5]. 
11. (a) r[2, 11 -15); (b) [5

:1
6

, ¥, 10]; (c) [15, -1!-, Lf]. 
13. 3SO2 + 2NO3 + 2H2O ~ 4H + 3SO4 + 2NO. 15. (a) r[ 1, - 2, 1]; 
(b) r[l, I, -2]; (c) r[l, 0, -1]; (d) r[l, -2, 2, -2, I]; 
(e) r[I, - 2, 1, 1, - 2, I]; (f) [0, 0, 0, 0, 0, 0]; 
(g) r[-1, 1, 1, -1, -1, l]. 19. (a) [5, -10); (b) [5, 0,] + r[2, l] . 
21. (a) f5,2,~]; (b) [!, -~,0,0] + r[2, 1, -1,0) + s[-1,2,0, 1). 
23. For all probability vectors~ p > 0 and p 1 + p2 + · · · + Pn = 1. 
(a) P2 = 0; (b) p3 = P2; (c) p3 = Pi; (d) Pt + p3 + Ps = P2 + p4; 
(e) 2p2 + 2ps = Pi + p3 + P4 + P6~ (f) none; (g) P1 + p4 + Ps = Pi + 
p3 + p6; 25. For all (finite) powers, p 1 + p3 + p5 = p2 + p4 + p6 . 

·27. Ax' = A(cx1 + dxi) = cAx1 + dAx2 = cb + db = (c + d)b = b. 



530 

• 

• 

Solutions to Odd-Numbered ~xercises 

Section 5.2 

I. x 1 = 8
3
51°, x2 = ~JP, x3 = W. 3. (a) ¾[2, I] - ~[2, -1]; 

(b) 8(2, -3] + .lj[-3, 6]; (c) ~[1, 3] - \0-(-2, 3]; 
(d) [½, ~' O] + r[3, 1, -2]. 

1 0 
S. (a) A - t = ~ ¼ ; (b) A - 1 = 

l 1 
3 3 . ( ) A - 1 = 
2 1 , C 

-3 3 

8 -3 
-5 2 

7. (a) Any column, rank I; (b) first two columns, rank 2; (c) any two col-
umns, rank 2; (d) first two columns, rank 2. 9 (a) Col: [- l, 2), 
Null: [5, 3], rank 1; (b) Col: [2, 1, 1], [l, 2, l], Nu11: [-3, -1, 1], rank 2; 
(c) Col: first three cols., Null: [-1, 0, 0, 0, l], [l, -1, -1, 1, 0], rank 3; 
(d) Col: first two cols., Null: [-2, 1, 1, 0, 0), [l, -2, 0, l, 0), 
[ -1, - le, 0, 0, 1), rank 2; (e) Col: all but fourth column, 
Nu l 1: [ l , 1 , - 1 , - 1 , 0, 0] . , rank 5 . 

11. N = 
-R 

1 
, where I is (n - r)-by-(,1 - r) . 

13. (a) a~ = af + a~, af = -!af + 2af ; (b) a1 = af + 2a~, 
af = 2af - af; (c) a~ = af - a1, af = - af + 2ai . 
15. (a) Obtain A from A* by reversing steps in elimination by pivot. 
17. (a) Rows in final upper triangular matrix U are linearly independent unless 
some row is all O's (by Exercise 16(b)). Since U is derived from A, if U's rows 
are linearly independent, A's rows are linearly independent; (b) columns line
arly dependent~ rows linearly dependent, now use part (a). 19. (b) The two 
rows of A; (c) first four rows of A. 21. (a) Rank([A, b]) = rank(A) means 
b is linearly dependent on columns of A, that is, b is in Range(A); (b) if b not 
in Range(A), then [A, b] has one more linearly independent vector (namely: b) 
than the columns of A. 

23. [x' x'1 in Null([A - 8]) ~ [A - B] 
x' 

= 0 ~ Ax' = Bx" ( = d). 
x" 

• 

29. (a) 
1 2 l 

* [l 2] + 0 
* [I l]; -

2 3 I l 

I 2 3 1 0 

(b) 3 4 5 - 1 * LI 2 3) + 2 * [l I 1]. 

7 8 9 1 6 

31. Col (a * b) = all multiples of a, Row (a * b) = all multiples of b. 

Section 5.3 

1. c(A) = 9.2 (sum norm). 
( C) y = - . 46x + 6~ . 

3. (a) y = - .46x + 9.53; (b) 392; 

5. 
. 0069 . 0826 - . 0367 
.0162 - .0381 .0938 'w = [36·96' 69·52J-

J 2 1 1 2 7. (a) [5 , s]; (b) n[J, 2, 3]; (c) TI 
1 

3 

-4 

1 0 - 1 

I - 2 1 ; (e) 

.081 .098 

.098 - .024 

3 . 
7 ' . 

.404 - .124 

.098 .171 . 

2 

(d) l 0 

I 0 1 2 - .097 .258 - .065 .129 
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9. (a) w = [5.64, 13.88); (b) .13 day less; (c) .17 day less . 

- .35 - .81 .6 .68 - .11 

11. (a) - .99 .46 .9 -2.4 2.03 , c(XrX) = 3390; 

2.53 2.34 -2.83 .75 - 1.8 

(b) y = .47GPAco, + l.88GPAru - .49; (c) e = f-.1, 0, -.15, .11, .14]. 
13. y . 3.92x3 

- 9.86.x2 
- 1.13x + 8.5, c(X7 X) = 6850. 

15. x+ = {1/(x · x)}x and q = x·y = [{1/~ · x)}x] · y = x · y /x · x. 
17. (a) I/V2, 45°; (b) .28, 74°; (c) 1/Vi, 45°; (d) 0, 90°; (e) .47, 62°; 
(f) .62, 52°. 19. (a) - .265; (b) .080; (c) - .765. 
21. (a) [ 1 , - 2, 0, 2, - 1 ) ; (b) [ - I , 3, - 1, - 2, l]; 
(c) [1, -1, I, -1, I, -1]. 
23. (a) ja - bj2 = ja2 + 1h12 

- 2lal lbl cos 8 ~ 1312 + 1h12 + 2lal lbl = 
(!al + lbl)2

• 

25 If v* = l: ,.v. w* = "q•W· then v* · w* = "" · I -r-q v. · W · =I-~- 0 = 0 • l J' ~ J J' ~I J I J I J I -"J . 

27. (a) v 1 = [l, 2), w 1 = [-2, l]; (b) v1 = [1, 2, 3), w 1 = [3, 0, -1], 
w2 = [2, -1,0J; (c) v 1 = [1,2, l],v2 = [O, -1, l],w1 = f3, -1, -1]; 
{d) v1 = (2, l, 0, -1], v2 = (0, 1, -2, 1), v3 = [1, 0, I, 2), 
w 1 = [-1, 2, 1, 0]; (e) v 1 = [0, l, 2, -1], v2 = [2, -1, 1,4], 
V3 = [-1, 3, 0, }], W1 = [.54, .24, - .2, - .16]. 29. X = [}, t, ~]. 

Section 5.4 

.6 - .8 
2 -2 1 

1. (a) (b) j 2 l , X = J[l, - 2, 11]. . -2 
.8 .6 ' 

I 2 2 

3. First column, a 1, must be e 1 (is zero below main diagonal)~ a2 is nonzero is 
first two positions and 3 2 • e 1 = 0-+ 3 2 = e2; etc. 5. (a) Weights are i, ¾, ½; 
(b) weights are½, i, 1; (c) weights are .7755, .1633, 3265. 

3 1 _2_ 

7 IT Ti r.r -[.a _1__ 
• --4_ 2 s , X - 1, -u]. 

45" - 45 -:rs 

11. (a) 93° (close to ortho,gonal); (b) 37°; (c) 173°. 
13. (a) 1/V2(1, I], l/V2[1, -lJ; (b) i[2, 1, 2], 1/V369[14, -2, -13]; 
(c) 1/Vll[3, 1~ I], l/V330[-7, 16, 5], l/Yl77870[-77. -154, 385]. · 

½ - I/V2 i ½ 5 15. (a) A+ = R- 'QT = -
0 l/V2 - tV2 0 l/V2 -

1 13 2 -5 
n -9 0 9 . 

0 3 -3 -1 l 3 -3 
11. (a) /2 

10 4 -2 ; (b) 1 ~ 16 7 - 2 - 11 ; 

- 3 0 3 
(c) * 4 4 4 · 

19. A + = (ATA) · 1AT = f(QR)TQR] 1(QR)T = [R7QTQR] - 1R7QT = 
[R Ta1- 1RTQT = a - 1Rr- 1 RrQr = R - 'Qr. 
25. (a) f(x) = - .085 + .856x2

; (b) f(x) = 1
3
6 + ttx1; 

(c) f(x) = 2.80x - 2.17 x3; 27. (a) L4(x) = x4 
- 6x2/7 + 3

3s; 
(b) L5(x) = x5 - 10x3/9 - Sx/21; 

• 
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29. (a) K3(x) = x3 - 3x2/2 + 3x/5 - io; • 

(b) 2x3 - 1.286.x2 + .296x - .014 
• 

648 -720 
900 -2520 1680 

31. (a) 
-720 810 

, 361; (b) -2520 7350 -5040 , 9195; 

(c) 

16,201 

-39,603 

23,762 

Section 5.5 

- 39,603 

98,018 

- 59,405 

1680 

23,762 

- 59,405 , 66,222. 

36,303 

l O 4 0 
l. (a) 1 I 0 2 

1 0 . 

- 1 1 ' 

.46 1 
(b) 1 - .69 

5.4 0 
0 - .37 

.52 . 76 
• 

. 76 -.35 ' 

l 1 

-5040 3528 

(c) 2 - 1 
4 0 
0 I 

1 
"3 . 

5 - ! ' (d) defective matrix, only one eigenvector. 

1024 0 1069 1558 
3• (a) 992 32 ; (b) 2337 3406 ; 

(d) 648 -405 
405 -162 

2.5 2.5 

342 341 
(c) 682 683 ; 

7. (a) + 
2.5 2.5 

- 1.5 1.5 
. (b) 

l.5 - 1.5 ' 
3.5 -3.5 

-3.5 + 3.5 

- .5 - .5 
- .5 - .5 ; (c) 

-3 -3 
+ -3 -3 

2 -2 
-2 ? . -

9. (a) A1 = 4.67 u1 = [.82, 1, .21], A2 = -1.79, u2 = [I, - .93, .52], 
A3 = .12 U3 = [- .41, .12, l], 

1.83 2.23 .47 

2.23 2. 72 .58 + 
.47 .58 . 12 

- .84 .78 - .44 

.78 - .74 .41 + 
- .44 .41 - .22 

.01 

- .01 

- .03 

-.01 
.02 

.01 

-.03 

.01 

.10 

(b) A1 = 2.73 u 1 = [l, 1, .73], A2 = -.73 u2 = (-.37, -.37, l] , A3 = 0, 
u:\ = [ - I , I, O], 

• 

1.08 1.08 .79 -.08 -.08 .21 

l.08 1.08 .79 + - .08 - .08 .21 

.79 .79 .57 .21 .21 - .57 

(c) A1 = 4.71 u1 = (-.56, I, . I , - .52] , A2 = - 1.97 
U2 = [- .12, .54, - .78, 1), 

• 
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.93 - 1.65 - .17 .86 - .01 .07 - . 10 .12 
- 1.65 2.95 .29 - 1.54 .07 - .30 .43 - .56 

+ .43 - .63 .80 - . 17 .29 .03 - .15 - .10 

.86 - .154 - .15 .80 . 12 - .56 .80 - 1.03 

.95 .58 .48 .17 .13 .01 - .21 - .16 

.58 .35 .29 .10 .01 .00 - .02 -.01 
+ .29 .24 .08 

+ - .21 - .02 .36 .26 .48 

.17 .10 .08 .03 - .16 - .01 .26 .20 

11. A= 1.387 u = [.11, .267, .577, .764], first half of u 1 = V2u, Au* u is 
upper right 4-by-4 submatrix of (28). 

.9 1.0 1. 7 
1 .6 l .O 2.5 2.4 
1.0 .6 1.6 1.5 

13. (a) 1.0 1.2 2.0 poor fit; (b) 
2.5 1.6 4.0 3.9 

1. 7 2.0 3.2 

2/V5 2 
17. (a) l/V5 [V5][1], 1 

0 0 

.08 .53 

(b) .61 .64 

.79 - .55 

6.74 0 

0 1.59 

. 
' 

2.4 1.5 3.9 3.8 

.3 .4 
.52 .86 

.86 - .52 
, 2.1 3.5 + 

2.7 4.6 

fair fit. 

.7 - .4 

.9 - .5 
- .7 .4 

• 

' 

.29 .52 1.3 1.5 1. 7 - 1.5 

(c) 
.76 -.40 6.72 0 .65 .76 3.3 3.9 - 1.3 I . 1 

.44 - .28 0 4.34 .76 - .65 ' l. 9 2.2 + - .9 .8 

.39 .70 1.7 2.0 2.3 -2.0 

.34 - .85 

(d) .55 - .17 

.76 .50 

19. (a) [¾. ¼, 0]; 

6.55 

0 

(b) 

0 
.37 

.30 

- . 16 

(c) 
.12 .003 -.006 

-.05 .15 .09 

Sectio,, 5 .5 Appendix 

.57 .82 

.82 - .57 ' 

.39 - .23 

- .13 .28 

.16 
(d) . 

-.06 
, 

. , 

1.3 l.8 

2.1 3.0 + 
2.8 4. l 

1 ll - 6 -3 1.. 
(> 

J 
3 

l 
J -§ 

- .3 .2 
- .1 .0 

.2 - .1 

. 

7,. (a) A1 = 7, u, = [l, 1), X.2 = -5, u2 = [1, - 1] ; (b) A1 = 5, 
u1 = [I, - 1], A2 = - 1, U 2 = [l, l]; (c) A1 = 1, U 1 = [l, l], A2 = - 1, 
u2 = [l, -1]; (d) A1 = 5.06, u1 = [.62, 1, .17), A2 = -3.14, 
u2 = [ - .92, .4, 11, A3 = 3.08, u 3 = [.81, - .66, l ]; (e) A1 = 2.41, 
U1 = [.71, .71, 1], A2 = l, U2 = [-1, 1, 0], A3 = - .41, 
u 3 = [ - . 71 , - . 71 , l]; ( f) A 1 = 4. 71 , u 1 = [ - . 56, l , . 1 , - . 5 2] , 
A2 = - 1.97, ui = [-.12, .54, -.78, 1], X.3 = 1.58, u3 = [l, .61, .50, .18], 
A4 = 0.68. U4 = [ - .60, - .05, 1, .741 . 

• 

. 
' 

• 



• 
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• 

• 

A 

Absorbing Markov chain, 309 
Absorbing state in a Markov chain, 

309 
Adams, J., 512 
Addition of matrices, 67 
Adjacency matrix for a graph, 99. 145 
Affine linear transformation, 256 
Alphabetic code; see Coding models 
Althoen, S., 511 
Angle between vectors, 444. 446 
Anthropologist's data, 489 
Anton, H., 51 I 
Approximate (least squares) solution, 

433, 438 
Associative rules in matrix algebra, 

120, 121 

B 
Babbage, Charles, 509 
Band matrix, 147 
Bandwidth of a matrix, 147 

Basic variables in a linear program, 
428 

Basis of a vector space, 418 
Berger, M . , 512 
Berman~ A., 513 
Binary code, 103 
Boole, George" 507 
Bradley, H., 513 
Braun, M ., 512 
Brown, J . , 5 1 1 
Bumcrot, R., 511 
Byte, 103 

C 
Campbell, S., 511 
Canoe problem, upstream-downstream, 

5 
Canoe problem, with sail, 6, 161, 248, 

460 
Cayley, Arthur, 508 
Cayley- Hamilton theorem~ 174 
Cauchy, A .-L. , 508 
Change of basis, 457 

535 



536 

• 

• 

Characteristic equation of a differential 
equation, 295 

Characteristic equation and polynomial 
. of recurrence relation, 332 

Characteristic polynomial of a matrix, 
165 

Chemical equation balancing, 288, 398 
Cheney, W., 512 
Chicken farm optimization model, 341 
Clark V. , 512 
Coding models 

alphabetic, 48, 66, 200 
binary, 103, 104 

Column space of a matrix, 414, 420, 
427 

Column vector, 62 
Commutative rules in matrix algebra, 

83, 119, 121 
Complete pivoting, 245 
Computer/dog growth model, 131, 

133, 134, 204, 215 
Computer graphics, 255 
Computer job processing problem, 72, 

75, 80 
Condition number of a matrix, 247, 

441,460,466,472,509 
Connected graph, 100 
Conte S., 512 
Correlation coefficient, 446, 489 
Cosine of angle between two vectors, 

444, 446 
Covariance of data, 489 
Cramer's RuJe, 160, 163 
Crop linear program, 41 
Current in an electrical network, 289 
Curve fitting, 373, 380 

D 
Daniels, J., 512 
Dantzig, George, 350 
Data structures for sparse matrices, l47 
deBoor, C., 512 
Defective matrix, 491 
Deflation method for finding eigenval-

ues/eigenvectors, 484, 501 
Degeneracy in a linear program, 362 
Demography, 322 
DeMorgan, Augustus, 507 
Dependent set of vectors, 415 
Derivative as a linear model, 366 

• 

Index 

Determinant of a matrix, 158, 164, 
172, 185, 507 

of a 2-by-2 matrix, 159 
of a 3-by-3 matrix, 163 
product rule, 165 

• 

Diagonal matrix, 119, 205, 480, 492 
Diagonalization of a matrix, 205, 480, 

492 
Dietician's problem (a linear program), 

339 
Differential equations, 293, 391 

discrete approximation, 374 
system of differential equations, 296 

Differentiation transformation, 390, 
403 

Digital image, 55, 87, 486, 494 
Dimension of a vector space, 420, 423, 

448 
Discriminant, 158 
Distributive rules in matrix algebra, 

120, 121 
Dominant eigenvalue and eigenvector, 

217 
Dot product, 72 
Dunn, 0., 512 

E 
Economic supply-demand model; see 

Leontief economic model 
Edge in a graph, 98 
Eigenfunction, 391 
Eigenvalue, 133, 205, 296, 323, 388, 

391, 403, 499 
complex, 325, 492 
determining eigenvalues, 165, 216, 

484, 501, 502 
Eigenvalue decomposition, 206, 482 
Eigenvector, 133, 166, 388, 389 

coordinates to represent other vec
tors, 134, 168, 265, 298, 388, 
479 

determining eigenvectors, 166, 216, 
484, 501, 502 

Electrical network, 289 
Elimination; see Gaussian elimination 

and Elimination by pivoting 
Elimination by pivoting, 185, 197 
Equilibrium, in economic model, 15 
Error bounds, 131, 246 
Error-correcting code, 104 

' 



Index 

• 

t 

Error-detecting code, 103 
Error space, 446 
Errors in elimination computations, 

242, 246 
Euclidean norm for matrix, 128, 174, 

175 
Euclidean norm of a function, 467 
Euclidean norm for vector, 127, 139 

-
F 
Falling object, equation of, 2 
Feasible region and feasible points in a 

linear program, 42, 338, 362, 363 
Fibonacci relation and Fibonacci num-

bers, 330 
Fill-in cturing elimination, 241 
Filtering a digital image, 55, 87, 147 
Filtering a time series, 5 l 
Finite difference approximation of dif

ferential equation, 374 
Fourier series, 469 
Frog Markov chain, see Markov chain 

for frog 
Function space, 389, 466 
Functional approximation, 467, 469 
Fundamental matrix of an absorbing 

Markov chain, 313 

G 

Gambling Markov chain, 309 
Gantmacher, F. , 513 
Gass, S., 513 
Gauss, Karl Frederick, 273, 507 
Gaussian elimination, 176, 179, 273 

computational complexity, 236 
history, 507 
for tridiagonal matrix, 237 

Gauss-Jordan elimination, 185 
history, 507 

Gauss-Seidel iteration, 235 
Geodesy and geodetic survey, 273, 507 
Geometric series for matrices, 221, 312 
Geometry of system of linear equa-

tions, 394 
Gewirtz, A., 511 
Goldberg, S., 5 I 3 
Goldstein, Herman, 509 
Grades, regression model, 38 • . 

537 

Gram-Schmidt orthogonalization, 461 
Graph, 98 
Graphic transformations, 255 
Grassmann, Hermann, 509 
Graybill, F., 512 
Grossman, S., 511 

H 
Hamming code, 104 
Harvesting model, 326 
Hax, A., 513 
Heat equation, 375 
Helzer, G., 512 
Herman, E., 514 
Hidden surfaces, in computer graphics, 

265 
Hilbert matrix, 473 
Hildebrand, F. , 512 
Hillier, F. , 513 
Hoel, P. , 513 
Homogeneous system of equations, 397 
Householder transformation, 463 

I 
• 

Identity matrix, 113 
Ill-conditioned system of equations, 8, 

461 
Incidence matrix of a graph, 107, 125 
Inconsistent system of equations, 404 
Independent set in a graph, 107 
Independent set of vectors, 416 
Independent variabJes in linear pro-

gram, 344 
Inner product, 72 

for functions, 466 
Input constraint in Leontief economic 

model, 17, 115, 220 
Input values, 2 
Integer program, 108 
Integral, approximations of, 372 
Integral transfor1nation, 390 
Inverse of a matrix, 193, 203, 329 

computing an inverse, 197 
formula for inverse of 2-by-2 matrix, 

197 
\vith orthogonal columns, 456 

Inverse iterative method for eigenval
ues/eigenvectors, 501 

• 
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• 

Inverse of a linear transformation, 390 
Invertible matrix, 194 
Iterative solution for eigenvalue/eigen

vector, 25, 217, 501 
Iterative solution of Markov chain, 25, 

310 
Iterative solution of matrix equations, 

16, 226, 230 

J 
Jacobi iteration, 229 

K 
Karmarkar' s linear programming algo-

rithm, 350 
Kemeny, J., 513 
Kernel of a matrix, 393 
Khachian' s linear programming algo

rithm, 350 
Kincaid, J., 512 
Kirchhoff s current and voltage laws, 

290, 292 
Kolman, B., 511 
Kumpel, P., 511 

L 
Least squares approximation, 274, 434, 

438,468 
Legendre polynomials, 467 
Leibnitz, G. W., 507 
Length of a path, 99 
Leontief economic supply-demand 

model, 14, 64, 76, 114, 124, 131, 
180, 220, 224 

Leslie population model, 322, 333, 502 
Lieberman, G., 513 
Lincoln, Abe, bust of, 494 
Linear combination, 6 
Linear dependence of vectors, 415 
Linear independence of vectors, 416 
Linear model, 6 
Linear program, 41, 77, 337, 428 
Linear program for planting crops, 41, 

77 
Linear regression; see Regression 
Linear transformation, 256, 387 
Long, Cliff, 494 

Index 

Lower triangular matrix, 164, 184 
LU decomposition, 184, 188, 207, 

237, 427, 504, 509 

M 
Magid, A., 512 
Magnanti, T., 513 , 
Magnenat-Thalman, N., 512 
Markov chain, 21, 78, 85,116,130, 

303 
Markov chain for frog, 23, 64, 78, 86, 

116, 134, 201, 238, 304, 400, 
407 

absorbing Markov chain, 309 
regular Markov chain, 307 

Markov chain for weather, 22, 84, 133 
Mathematical model, 2 
Matrix, 61 
Matrix addition, 67 
Matrix algebra, ru]es of, 119 
Matrix exponential, 296 
Matrix multiplication, 81, 425 

in adjacency matrices, 100 
computational complexity of matrix 

multiplication, 142 
noncommutati vity of matrix multipli

cation, 83 
in partitioned matrices, 145 
in terms of simple matrices, 425 

Matrix norms, 128 
Matrix notation, 61, 508 
Matrix product of vectors, 424 
Matrix-vector product, 74 
Max norm of matrix, 128 
Max norm of vector, 127, 139 
Mean of a data set, 50 
Membership vector, 107 
Mendelhall, W., 512 
Mesh, mesh points, 372, 376 
Model, dynamic versus static, 21 
Model, linear, 6 
Model, mathematical, 2 
Multiple solutions, 394, 449 
Multiplication 

N 

matrix, 81 
matrix-vector, 74 
vector, 72 

Newton's method for finding zeros of a 
function, 367 

• 



Index 

Nicholson, W. K., 511 
Noble, B., 512 
Node in a graph, 98 
Nonlinear regression, 281 
Nonsingular matrix, 194 
Norms of a matrix; also see Euclidean 

norm, Sum norm, Max norm, 128 
Norms of a vector; also see Euclidean 

norm, Sum norm, Max norm, 127 
Null space of a matrix, 393, 396, 423, 

449 

0 
Oil refinery problems; see Refinery 

problems 
Ones vector, 112 
Optimal refinery production problem, 

41 
Orthogonal columns, 442, 455 
Orthogonal polynomials, 467. 469 
Orthogonal vectors, 437, 445, 455 
Orthonormal basis, 457, 461, 467 
Orthonormal vectors, 457, 461 
Outlier, 279, 447 

p 

Parity-bit code, 103 
Partitioning a matrix, 143, 312 
Path in a graph, 99 
Pattern recognition, 54 
Piecewise approximation, 372, 380 
Pivot on entry, 186 
Pivot exchange in linear program, 346 
Pivot matrix, 364 
Pivoting, 186,245,346,361 
Plemmons, R., 513 
Polynomials, approximating, 440, 467, 

469 
Population growth models, 321; also 

see Rabbit/fox growth models 
Port, S., 513 
Predicting grades, regression 1nodel, 38 
Preparata, F. , 512 
Principal component analysis, 489 
Principle for multivariable problems, 

12 
Probability distribution, in Markov 

chain, 22 
Projection, 261, 276, 435, 437, 457, 

461 
• 

539 

Pseudoinverse of a matrix, 439~ 441, 
458, 466, 471, 493 

Q 

with orthogonal columns, 443 
with orthonormal columns, 458 

QR decomposition, 464, 502, 509 

R 
Rabbit/fox growth mode], 25, 90, 123, 

130, 162, 166, 207, 388 
Rabbit/fox nonlinear growth model, 30 
Raleigh quotient, 219, 501 , 503 
Range of a matrix, 393, 405, 414, 

420, 422, 448 
Rank of a matrix, 420, 423, 427, 448 
Ranking teams, 101 
Recurrence relation, 329 
Refinery production, basic problem, 

12, 63, 73, 163, 177, 182, 199, 
227,249,389,414,426 

Refinery production, with two prod-
ucts, 40, 397 

Refinery production, with two refiner-
ies, 37; 406, 434, 439, 493 

Reflection, 268 
Reflection transformatio11, 390 
Regression, 39, 273, 404, 435, 438, 

444 
Regular Markov chain, 306 
Revised simplex algorithm, 366 
Rogers, D., 512 
Rorres, C., 512 
Row space, 423 
Row vector, 62 

s 
Scalar, 67 
Scalar factoring in matrix algebra, 120 
Scalar multiplication, 67 
Scalar product, 72,437,444,455,466 
Scaling before pivoting , 244 
Sensitivity analysis in a linear program, 

352 
Shamos, M., 512 
Sherbert, D., 511 
Shift transformation, 390 

.. 
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• 

Shifted inverse iterative method for 
eigenvalue/eigenvectors, 50 I 

Similar matrices, 497 
Similarity measure, 118 
Simple matrix, 424, 427, 482 
Simplex algorithm of linear program-

ming, 346, 361 
Singular matrix, 194 
Singular value decomposition, 492 
Sitomer, H., 511 
Slack variable, 344 
Smith, G . , 512 
Smoothing time series, 50 
Snell, L., 513 
Software for matrix computation, 513 
Sparse matrix, 142, 147 
Spiegel, M., 513 
Spline: 374, 380 
Stable distribution in a Markov chain, 

25, 134, 238, 304, 305 
Stable elimination, 245 
Stable pivoting; see Stable elimination 
Statistics; see Correlation coefficient, 

Principal component analysis, 
Regression 

Stewart, G. W., 503, 512 
Stone, C., 513 
Strang, G., viii, 511, 513 
Sum norm of matrix, 128 
Sum norm of vector, 127, 139 
Sylvester, J. J., 508 
Symmetric matrix, 99, 117, 136, 174, 

483, 501 

T 
Test scores, 67 
Thalman, D. , 512 
Thorpe, J., 51 l 
Time series, 50 
Transition diagram, in Markov chain, 

22 

I 

Index 

Transition matrix of a Markov chain, 
22, 130 

Transition probabilities, in Markov 
chain, 22 

Transportation problem, 340, 351, 401, 
417 

. Transpose of a matrix, 117, 437, 448, 
457 

Trapezoidal rule, 372 
Tridiagonal matrix, 147, 238, 376, 383 
Tucker, A. W. , 511 
Turing, Alan, 509 

u 
Umbrae, 508 
Undetermined system of equations, 40 
Unique solutions, 204, 394, 396, 408, 

423 
Unit vector, 121 
Upper triangular matrix, 164, 184 

V 
Van Loan, C., 512 
Variance of data, 489 
Vector, 62 

as a point in space, 65 
Vector calculus, 277, 283 
Vector multiplication, 72 
Vector norms, 27 
Vector space, 389, 393, 414, 466, 509 
Von Neun1ann, John, 509 

w 
Weather Markov chain; see Markov 

chain for weather 
Wilkinson, J. H., 503, 512 
Williams, G., 511 
Wolford, J., 512 
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