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ABSTRACT: Serosurveys conducted where West Nile Virus (WNV) caused health impacts 

were used to construct a model of potential worst case health impacts in a suburban setting. This 

model addressed two common public perceptions regarding mosquito control activities and 

WNV disease: it is not a disease of major consequence, and exposed populations quickly become 

immune. Comparisons to blood bank infection and serious disease incidence data were similar to 

some of the serosurvey model results. Accounting for theoretical increasing immunity, even over 

a 20-year horizon, did not substantially reduce the potential impacts. The model results were 

approximately an order of magnitude greater than those actually experienced in Suffolk County, 

New York; differences in mosquito populations and/or the degree of mosquito control between 

Suffolk County and serosurvey sites seem to be the cause of the differences. 
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Text 

INTRODUCTION 

Suffolk County, New York, occupies the eastern two thirds of Long Island, has a 

population of 1.4 million, and has conducted organized mosquito control for more than 75 years 

(Glasgow 1938). West Nile Virus (WNV), an exotic mosquito-borne disease that was first 

detected in North America in New York City in 1999 (Petersen and Roehrig 2000), also affected 

Suffolk County then, causing horse mortalities (Ostlund et al. 2001) but no human cases (Nasci 

et al. 2001). Under New York State law, government actions (including the adoption of plans 

that may lead to action) that have a potential for environmental impacts require formal 

environmental review (Lopez and Miller 2002). Two nearby municipalities, New York City and 

Westchester County, conducted comprehensive environmental reviews in 2001 (Lopez and 

Miller 2002, Shapiro and Micucci 2003) on plans that were developed to address the new 

situation. Suffolk County followed suit and began a complete re-evaluation of all aspects of its 

mosquito control operations. 

Public comments received at the start of the re-evaluation project included claims that 

there was so little risk associated with WNV disease in Suffolk County that perhaps no mosquito 

control was needed (e.g., see the Draft Task 1 Report from the Long-Term project, 

http://www.suffolkcountyny.gov/health/suffolkvectorplan/tasks/task1_download.htm, where 

Scoping comments are summarized). A second public concern was based on the course of the 

disease as it spread nationwide, where first-year high disease impacts have often been followed 

by greatly reduced second-year effects (see Lopez and Miller 2002, for instance), and generally 

low Old World disease incidence despite decades of exposure to the virus (see Weinberger et al. 

2001, for example). These observations suggested to some that human populations rapidly 

http://www.suffolkcountyny.gov/health/suffolkvectorplan/tasks/task1_download.htm
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become immune to the disease, thereby obviating the need for control measures. In fact, some 

researchers suggest in areas where the virus is endemic that adult populations are immune to the 

disease (Ben-Nathan et al. 2003), at rates as high as 90 percent (Campbell et al. 2002). 

Risks associated with WNV disease are generally understood to be critical or 

neuroinvasive illness or death, but not simple infection as most WNV infections are 

asymptomatic (Hayes 2001). Accurately determining the “natural” risk from the disease 

therefore depends on computing the incidence of critical or neuroinvasive illness and death, in 

the absence of an effective control program. Determining whether sufficient immunity develops 

in a population to reduce risks requires understanding the infection rate in the population. If these 

data were to be developed, it could be possible to estimate the current risk from the virus and to 

forecast risks to exposed populations in subsequent seasons. These calculations could also allow 

for comparisons of risks from disease to risks associated with disease control (as computed in 

Peterson et al. 2006, for instance). 

Infection rates in six geographically distinct populations have been determined through 

serosurveys (Mostashari et al. 2001a, Mostashari et al. 2001b, Hadler et al. 2001, McCarthy et al. 

2001, Mandalakas et al. 2005, Loeb et al. 2005). More recently, a nationwide analysis of blood 

donations was conducted to also determine infection rates and critical illness risks (Busch et al. 

2006).  

The two New York City serosurveys are widely cited in reports of human infection rates. 

In 1999, a survey was conducted in a small area of Douglaston, Queens, the apparent epicenter 

of the initial outbreak of WNV disease (Mostashari et al. 2001a). The second widely cited study 

was conducted in 2000 on Staten Island, part of a wider survey of the New York metropolitan 

area (Mostashari et al. 2001b). Other areas surveyed in the 2000 effort were Suffolk County 
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(Mostashari et al. 2001b) and Connecticut (Mostashari et al. 2001b, Hadler et al. 2001, 

McCarthy et al. 2001); the failure of the latter two surveys to detect infection is probably why 

they are not often discussed (Campbell et al. 2002). In 2002, a serosurvey was made in 

Cuyahoga County, Ohio, after disease impacts were detected there (Mandalakas et al. 2005). In 

early 2003, another serosurvey was made to capture impacts from the 2002 season in suburbs of 

Toronto, Ontario (Loeb et al. 2005). The infection rate and ratio of undiagnosed infections to 

hospitalized cases determined in those studies is presented in Table 1. 

In 2003, screening of blood donations for WNV was instituted across the US (Busch et 

al. 2006). The data from these tests were analyzed to determine state-by-state and national 

seasonal infection rates, and then to project potential state-wide and nation-wide numbers of 

infections. These data could then be compared to the number of neuro-invasive cases reported to 

develop ratios of undiagnosed infections to hospitalized cases (Table 2). 

The infection rate data in Table 1 represent rates determined for local areas where WNV 

disease incidence was apparent, based either on dead birds that tested positive for WNV, WNV-

positive mosquito pools, or reports of human disease. The infection rate data in Table 2 are for 

state-wide areas, and therefore are generally not comparable to the serosurvey data sets. Three of 

the infection rates in Table 1 are much higher than the other three rates. These are results for the 

onset of WNV disease in particular areas. The lower three infection rates also were calculated for 

areas that implemented mosquito control programs designed to reduce WNV disease incidence. 

The serosurvey data therefore suggest WNV infection rates are two to three percent for naïve 

populations where mosquito control efforts may not be optimal. The only state-wide blood bank 

data that are this great (or greater) are from Kansas, Nebraska, Colorado, North Dakota, South 

Dakota, and Wyoming. Culex tarsalis is reported to be the primary WNV vector in this general 
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area (Bell et al. 2005), and may be more efficient than the vectors that transmitted WNV where 

the serosurveys were made. 

Please note a serosurvey from Saskatchewan that reported even rates of infection as high 

as 10 percent for some sub-populations (Schellenberg et al. 2006), reported after this work was 

conducted, was not included in the analyses.  

The undiagnosed case ratio from Table 1 has a general middle value of approximately 

150 to one. Ratios found using the blood donation data tended to be higher, although there was a 

great deal of scatter in the data set. The overall national ratio was 260 to one (the mean of state 

ratios was 310 to 1, and the median was 240 to one). Table 3 lists compilations of annual CDC 

data sets for the number of WNV neuroinvasive cases and deaths through 2005. An approximate 

ratio of cases with critical illness to deaths is 10 to one. 

MATERIALS AND METHODS 

Study Setting 

The study was conducted in Suffolk County. This suburban county occupies the eastern 

two-thirds of Long Island, and has a population of approximately 1.4 million. A large mosquito 

control program, designed to alleviate nuisance impacts and to address disease risks 

(predominantly but not exclusively from eastern equine encephalitis) (e.g., as reported in Bradley 

et al. 2000, Peyton et al. 1999) was in place at the time of the initial outbreak of WNV in 1999. 

Model Premises 

Models based on mosquito behavior, prevalence, and infection rates that aim to mirror 

actual transmission of disease have been constructed for WNV (see Wonham et al. 2004, for 

instance). These models require accurate data collected at scales that are representative for the 

activities of interest. Although the Suffolk County Vector Control program has an extensive 
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surveillance program, researchers from the Harvard School of Public Health (led by Andrew 

Spielman and Richard Pollack) concluded that not enough relevant information was at hand. 

They thought that selecting default values to fill missing data sets would determine the overall 

results of the model, and so suggested another approach be undertaken to estimate potential 

health impacts from WNV (A. Spielman, HSPH, personal communication, 2004). There have 

been some recent advances in means to generate appropriate kinds of detail from program 

surveillance efforts (Diuk-Wasser et al. 2006) but mosquito ecology-grounded models still 

appear to require the collection of model specific information in order to be most credible. 

Eisen and Eisen (2008) addressed a similar situation with an approach similar to that used 

here. They compared the density of detections of virus in mosquitoes to the density of human 

cases, across census tracts, to create a spatial risk model. As will be seen, the Suffolk County 

human disease incidence was not common enough to support that level of analysis, and there did 

not appear to be as clear a spatial bias in the detections of virus in mosquitoes, either. Therefore, 

the approach adopted here was slightly more simple. 

The serosurvey data were used as a basis for a model of risks for a population exposed to 

WNV infection. The serological studies defined the area of exposure to the disease as where  

a) dead birds tested positive for WNV, and/or 

b) mosquito pools tested positive for WNV, and/or 

c) people were diagnosed with WNV. 

“Areas,” in the serosurvey studies, were generally defined arbitrarily by some form of political 

division. For Suffolk County, exposure was defined by zip codes where dead birds or positive 

mosquito pools occurred in any given year. The zip codes where at least one of the three 

conditions were recorded were mapped for 2000 through 2004 (a simplifying assumption was 
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made, absent relevant data for dead birds, positive pools, and with no human cases, that no one 

in the County was exposed to the disease in 1999) (Figures 1 to 5). All people living in the zip 

code were assumed to have been exposed, and to have the same degree of exposure, 

notwithstanding greater or lesser numbers of dead birds or positive pools. Working in or 

traveling through a zip code did not constitute exposure. This assumption is based on the near 

universal classification of WNV cases by home address, even if other exposures are plausible. 

Elements of the Model 

The number of people infected by WNV each year (I(t)) was determined according to 

Equation 1:  

I(t) = (EP-IP) x IR (Eq. 1) 

where I(t) = the number of new infections at time step t, EP(t) = the exposed population at time 

step t, IP(t) = the immune portion of the exposed population at time step t, and IR = the infection 

rate. 

The exposed population was determined for each year using a Geographical Information 

System (GIS) analysis of Census block data for 2000 combined with zip code coverages (ESRI, 

Redlands, CA, accessed 2005) for 2000 to 2004, with the overall population of the County was 

held constant at the 2000 Census totals. Equation 2 defines the exposed populations for any one 

year (EP(t)): 

EP(t) = Σ P(ZC) (Eq. 2) 

where EP(t) = the exposed population at time step t and P(ZC) = the population in zip codes 

with dead infected birds, positive mosquito pools, or human cases for any year. 

The infected population each year was assumed to have seroconverted and to be 

subsequently immune from the disease, as is generally thought to be the case for WNV 



9 

(Campbell et al. 2002). Thus, the immune portion of the population in any year (IP(t)) was 

incapable of becoming infected, and so was subtracted from the exposed population in the first 

five years (2000 to 2004) per Equation 3: 

IP(t) = ((CP – (I(1) + .. + (I(t-1))/CP) x EP(t) (Eq. 3) 

where IP(t) =  the immune portion of the exposed population at time step t, CP = County 

population, I(t) = the number of new infections at time step t, and EP(t) = the exposed 

population at time step t. 

Although the number of potential infections each year was determined for particular sets 

of zip codes based on the surveillance data, the resulting immune population was set so that it 

was distributed evenly throughout the County. This simplification was made to make the 

computations less complicated, and has little effect on the overall results because of the 

widespread degree of exposure across the County most years.  

The percentage of the population with immunity (PI) in any of the first five years was 

determined by Equation 4: 

PI = ((Σ I(t))/CP) x 100 (Eq. 4) 

where PI = the percent infected, I(t) = the number of new infections at time step t, and CP = 

County population. This percentage increased each year, and thus seroconversion decreased the 

number of people in each area that would be available to be infected each year, as it should. 

Please note that the proportion of seroconverted individuals was consistent with County-wide 

infection rates, but potentially not for rates that might have been computed for individual zip 

codes.   

Because the model for the first five years showed increasing rates of seroconversion, 

projections of potential future impacts were determined to be suitable to account for any long-
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term effects of increasing immunity rates.  The model was modified to address several new 

factors.  The population of the County was allowed to vary.  The overall rate of increase was 

determined from population surveys over the period 2000 to 2004, using data generated by the 

local electricity utility based on projections from the 2000 Census based on hook-ups and 

disconnections (LIPA 2003, LIPA 2005). Therefore, the population of the County for each year 

past 2004 (CP(t)) was assumed to be determined per the recursive Equation 5: 

CP(t) = CP(t-1) x 1.00836 (Eq. 5) 

where CP(t) = County population at time t, CP(1) = LIPA estimate for 2004 x 1.00836, and 

0.0836 = the population increase for the County from the 2000 census to the estimate of 2004 

population, divided by the five year period, and then divided by the estimated 2004 population 

(based on data in LIPA 2005). 

The number of seropositive individuals (immune people) in the population in any year 

(IP(t)) was determined per Equation 6: 

IP(t) = IP(t-1) – (IP(t-1) x D) + (IP(t-1) x NER) + I(t) (Eq. 6) 

where IP(t) = the immune portion of the exposed population at time step t, D = County-wide 

mortality rate, NER = the net emigration rate, and I(t) = the number infected at time step t. 

The number of new infections at any time step was determined by the number of 

susceptible, exposed individuals times the infection rate, per equation 1. Since the entire County 

was assumed to be exposed to WNV agents for this part of the exercise, the population that could 

be infected in any one year was based on the infection rate and the number of naïve people in the 

County. The naïve population was the total population minus the number that was immune, per 

Equation 7: 

I(t) = (CP(t) – IP(t-1) + (CP x D) – (CP x NER)) x IR (Eq. 7) 
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where I(t) = the number infected at time step t, CP(t) = County population at time t, IP(t) = the 

immune portion of the exposed population at time step t, D = County-wide mortality rate, NER 

= the net emigration rate, and IR = the infection rate. Note that the seroconverted population lags 

by a time step. 

At this stage, the percentage of the population that was immune could be calculated per 

Equation 4 for any time stage. 

Model Input Values 

The first iteration of the model (Model A) assumed a constant increase in population for 

the County through 2025.  Model A’ assumed that the County’s population was capped at 2010 

levels to reduce the “dilution” of immune populations by continual in-migration. This is based on 

an assumption that growth in Suffolk County is somewhat limited by extensive open-space and 

farmland development rights acquisitions (Daniels 2001), although the date selected for a 

population cap is arbitarary.  

For the first model iteration, an infection rate of two percent was used, based on the Table 

1 information. This implies that 2,000 out of every 100,000 exposed people would become 

infected, at least in the first year of exposure. Table 1 data sets also suggest that one out of 150 

infected people have severe neurological effects requiring hospitalization, so that 15 people out 

of the hypothetically-exposed population of 100,000 might require hospitalization. Furthermore, 

data on fatalities suggest that one or two of those hospitalized people will die from the disease. 

Thus, the serological data on WNV infections and associated illnesses suggest that, through a 

very generalized estimation, out of 100,000 exposed individuals in any year, one or two people 

might be expected to die from the effects of the disease. 
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The blood donation testing suggested that a much higher ratio of undetected illness than 

the 150 to one ratio extrapolated from serosurveys might be appropriate to consider. Although 

other rates are possible to consider, based Busch et al. (2006), the national average of 260 

undiagnosed infections per critical illness was selected. The Staten Island, Cleveland, and 

Ontario studies defined an area within which infections were limited (based on detections of 

illnesses, positive mosquito pools, and positive dead bird tests), and within that area determined 

the number of cases of critical illness that had occurred. If the blood donation testing results are 

accurate, they would indicate that the serosurvey data sets underestimated the number of 

undiagnosed infections (assuming there were no undiagnosed critical illness cases of WNV). The 

higher undiagnosed case ratio would suggest that the infection rate should be approximately 60 

percent higher than the rate associated with a ratio of 150 undiagnosed cases per critical illness. 

If the Ontario infection rate (3.1 percent) had been 60 percent greater, then the infection rate 

there would have actually been 5 percent. The state blood bank data suggest 5 percent may be a 

reasonable maximum infection rate, as this is the greatest amount detected across any one state 

(although data from Saskatchewan indicate even higher infection rates are possible (Schellenberg 

et al. 2006)). 

Mortality was assumed to be 831 deaths per 100,000 (the overall US mortality rate for 

2003) (Hoyert et al. 2005), removing some proportion of the immune population from the 

County. The mean County birth rate for 2000 to 2004 (1,393 per 100,000) (LIPA 2003, LIPA 

2005) was used for projected population increases post 2004, to account for additional naïve 

residents. Migration into the County (the increase in population above net births over deaths, a 

rate of 0.274 percent) was assumed to have seropositive rates similar to the County as a whole at 
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the time of migration into the County. It was also assumed that everyone in the County was 

exposed to WNV (lacking surveillance data to exclude some portion of the County). 

Therefore, several variations on the basic models were made. Model B used a 3 percent 

infection rate, Model C used a 4 percent infection rate, and Model D used a 5 percent infection 

rate.   

All models were run using 2000 to 2004 exposure definitions, and also for the 2005 to 

2025 period. Models B’, C’, and D’ used the capped 2010 populations, similar to Model A’. 

RESULTS 

Table 4 presents the model results for the defined exposed populations for 2000 to 2004. 

Model A results suggest that as many as 64 people might be expected to have been fatally 

infected in Suffolk County across the five year period, assuming that the infection rate in Suffolk 

County were similar to the 2 percent value developed from the serosurvey data. The model 

shows increasing immune rates, as would be expected. Model B, with a lower critical illness to 

infection ratio but a slightly higher infection rate, shows impacts that are slightly less than Model 

A (546 critical illnesses in total, and 54 deaths). Model C and Model D show higher projected 

impacts, but also much higher immune rates. 

Table 5 shows selected years’ results over the 2005 to 2025 period. Despite much higher 

immunity rates for Models B, C, and D, impacts are approximately the same as Model A due to 

the higher underlying infection rates (and so subsequently higher numbers of critical illnesses 

and deaths). In 2025, impacts associated with Model B are only 28 percent lower than those for 

Model A. 

Capping the population of the County for the years 2005 to 2025 decreased the overall 

impact of the disease on the County by approximately 15 percent, but did not change the relative 
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effect of the different scenarios very much (Table 6). Model B’ has fewer projected impacts than 

Model A’, by on the order of 30 percent. Even with immunity rates approaching two-thirds of the 

County as a whole, the naïve population that remains, coupled with the high infection rates, still 

results in projections of 10 or more deaths a year from WNV in 2025 for all models. The death 

rates for these scenarios range from 0.58 per 100,000 (for Model B’) to 0.90 per 100,000 for 

Model A. Predicted total deaths over the 21 year modeling runs range from 265 to 377, with 

thousands of neuro-invasive cases. 

DISCUSSION 

The modeling exercise was intended to address two concerns raised by the public 

regarding WNV in Suffolk County. They were:  

1) is WNV a serious health threat requiring active mosquito control? 

2) might residents quickly become immune to the disease, and so reduce the need for 

mosquito control to prevent disease transmission? 

The modeling suggests that if WNV transmission were to occur in Suffolk County in much the 

same fashion as it did in Queens in 1999, and in Ohio and Ontario in 2002, then more than a 

hundred people would become critically ill and more than ten people might die each year. To put 

such mortality into perspective, the homicide rate for Suffolk County was 1.5 to 2.5 per 100,000 

for 2000 to 2002 (22 to 37 deaths per year) (per data from New York State Department of 

Health, updated July 2004, 

http://www.nyhealth.gov/nysdoh/chac/cha/plots/violence/homici47.htm). WNV infections occur 

across a six month period of the year, but peak in only several weeks in August and September 

(Petersen and Marfin 2002). Assuming 75 percent of the infections occur during those two 

months, WNV appears to constitute a greater mortality threat than homicide for residents of 

http://www.nyhealth.gov/nysdoh/chac/cha/plots/violence/homici47.htm
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Suffolk County, at least during part of the year. Traffic fatalities for 2001 (183 deaths) and 2002 

(169 deaths) (per county-by-county compilations of data by the US Department of 

Transportation, www-nrd.nhsta.dot.gov/pdf/nrd-30/NCSA/AlcRpt/2002/New%20York.pdf) were 

approximately an order of magnitude higher than the projected WNV deaths. So, even factoring 

in the seasonal restrictions on WNV impacts, car accidents are approximately twice the risk to 

local residents. Therefore, the maximal seasonally adjusted risk of fatality for Suffolk County 

residents from WNV is greater than that posed by homicide, but less than that posed by driving. 

The higher risk associated with automobile use is generally accepted as a part of modern life, but 

risks associated with violence generally are not, although they are lower. 

Perhaps a more interesting comparison is to influenza.  In 2002, there were 272 deaths across the 

County from influenza and pneumonia (according to the Annual Report of the Health 

Department, http://www.co.suffolk.ny.us/Health%20Services/AnnRpt2003.pdf), which is more 

than an order of magnitude above the projected West Nile virus disease death rate for the same 

year. Substantial County resources are expended to try to minimize flu impacts, primarily 

through flu vaccination drives. There are few protests in the County regarding the relatively high 

number of deaths from the flu (as compared to the projected effects from West Nile virus 

disease). Perhaps because there is no vaccine to help ward off impacts, there is a readily 

identifiable, noxious vector of the disease, and the vector is perceived as being controllable, it 

seems probable that there would be great public out cry if hundreds of people died from West 

Nile virus disease. Differences in the perception of risk have been discussed for over 20 years; 

identified important elements in increasing risk perceptions include the novelty of the risk factor 

and lesser degrees of control over the cause of risk (Slovic 1987). Continuing exposure to the 

disease may reduce the novelty effect; and, if public education succeeds in persuading the public 

http://www.co.suffolk.ny.us/Health%20Services/AnnRpt2003.pdf
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they have control over disease risks through risk reduction steps (Loeb et al. 2005), the 

perception of WNV disease risks may decrease with time. 

However, absolute reductions in risk over time appear to be small. The notion that 

exposure to WNV will rapidly lead to an immune population does not seem well-founded. 

Higher infection rates clearly lead to higher immunity rates over time. However, since people are 

dead-end hosts for WNV, increases in immunity only lead to proportional decreases in health 

impacts. A much greater infection rate would be required to result in rapid general immunity. 

Although blood bank testing found variable rates for the relationship between seroconversion 

rates and incidences of critical illness, unless these ratios were of a magnitude akin to those 

measured for West Virginia and California in 2003 (1,300 and 1,600 to one, respectively), higher 

infection rates appear to lead to predictions of greater human impacts, even when larger infection 

to critical illness ratios are used. 

Actual impacts to human health in Suffolk County have been much less. Through 2004, 

only 19 infections and 4 deaths had occurred (Table 7) (data from S. Campbell, Arthropod-Borne 

Disease Laboratory, Suffolk County Department of Health Services). There is no reason to 

assume that general trends regarding undiagnosed infections and serious illnesses are different 

for Suffolk County than have been found elsewhere, and so it seems likely that the number of 

infections in Suffolk County is much less than expected, if transmission of the virus occurred in 

the County as it did elsewhere. It is widely assumed that Culex pipiens is the primary human 

vector for WNV in New York, due to its high infection rate (Lukacik et al 2006), and that it was 

the primary vector in Queens in 1999 (Apperson et al. 2002), Ohio in 2002 (Mans et al. 2004), 

and Ontario in 2002 (Shapiro and Micucci 2003), although no contemporary surveillance was 

made in the exact locations where the serosurveys were made to support these suppositions. 
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Other information suggests that transmission to people may be more complicated than these 

simple explanations (see Andreadis et al. 2004 and Kilpatrick et al. 2006, for instance). Culex 

pipiens is a very common mosquito in Suffolk County (see Table 8), so that natural differences 

in mosquito populations are not obviously the cause of the protection received by Suffolk County 

residents. Nonetheless, it is not clear that the natural mosquito ecology in the northeast US is 

capable of transmitting WNV so as to cause large infection rates. Culex pipiens and the 

mosquitoes considered by managers to be the most likely bridge vectors in Suffolk County 

(Aedes vexans and Ochlerotatus sollicitans) are not rated as very competent WNV vectors by 

Turrell et al. (2005). Data from Connecticut (Andreadis et al. 2004) suggest that Culex salinarius 

is probably the greatest transmission risk there. Surveillance in Suffolk County has generally not 

speciated Culex restuans/pipiens/salinarius, and so the general prevalence of Culex salinarius in 

the greater Culex population has not been quantified. So the presence of good transmitters of 

WNV disease to people in Suffolk County has not been clearly demonstrated. 

Still, in 1999, a restricted area in Queens suffered fairly concentrated effects, with 

infection rates on the order of those seen in areas in the Midwest and far West. The mosquitoes 

that caused this impact are likely to be found in Suffolk County, although Suffolk County is at 

least 60 km to the east, because of general habitat and environmental features that are shared 

between the two areas (similar stormwater infrastructures and overall vegetation types, resulting 

in similar mosquito habitat opportunities). Otherwise, compilations of disease impacts by the 

Centers for Disease Control and Prevention (CDC) (see 

www.cdc.gov/NCIBOD/DVBID/WESTNILE) have consistently shown low impacts in the 

northeast relative to much of the rest of the country. 

http://www.cdc.gov/NCIBOD/DVBID/WESTNILE
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It is tempting to suggest that active mosquito control programs cause this difference. The 

implementation of focused mosquito control in years following the initial outbreaks of WNV in 

particular places seems to be a reasonable explanation for the generally rapid declines in 

infections that are measured in the years following initial outbreaks. For Suffolk County, the lack 

of general impacts in 1999 and subsequent years could be attributable to the comprehensive 

control program that was in place. However, much of the control effort is focused on 

Ochlerotatus sollicitans and other salt marsh mosquitoes. Even so, the program has always been 

responsive to complaints regarding all biting mosquitoes, and ongoing (although unrealized) 

threats from eastern equine encephalitis mean that all potential bridge vectors are targeted for 

control in populated areas. Program managers believe that the reason no human cases were found 

in the serosurvey effort in 2000, despite many detections of infected Culex pipiens pools, was 

that contemporaneous aerial adulticide treatments had targeted Aedes vexans, and so reduced the 

transmission risks to people (D. Ninivaggi, Superintendent, SCVC, personal communications, 

2004). Suffolk County treats catch basins now to reduce WNV risks and has an active household 

source reduction program, as do surrounding jurisdictions in New York State and Connecticut. 

All of these areas have similarly low WNV infection rates. Unlike Connecticut and most other 

New York jurisdictions, Suffolk County also conducts adulticiding in areas with high numbers of 

biting adult mosquitoes or in areas with high levels of WNV activity as measured in mosquitoes 

and/or birds. However, the most likely vectors of WNV are still commonly found in trapping in 

Suffolk County (Table 8) and other jurisdictions in the northeast (see Andreadis et al. 2004, for 

instance). It may be that the control programs reduce vector activity to below some threshold 

level that reduces generally effective disease transmission to humans while not totally 

interdicting circulation in birds and mosquitoes (so that the positive dead birds and mosquito 
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pools are still detectable). It is clear, however, that some form of undetected near universal 

human immunity is not a realistic explanation for the seeming lack of illness, given the results of 

the model. 

The simple model developed here fails to estimate actual WNV disease effects in Suffolk 

County. The model clearly shows that herd immunity is not the reason for the underestimation of 

effects. Thus, it strongly implies that mosquitoes in the County are not capable of causing 

infections as mosquitoes elsewhere in country can – but the model does not provide information 

to determine if this is because of control efforts or a lack of vector competence of the local 

mosquitoes. The model appears to show that WNV presents a potentially serious health threat to 

residents of the County (and other areas with circulating WNV). The threat is defined as the risks 

associated with virus transmission as has been documented elsewhere, which would lead to tens 

of deaths and hundreds of serious illnesses in the County. Because the reason for the lack of local 

disease impacts cannot be isolated, it seems reasonable to consider the model risks as a baseline 

measure of the overall WNV disease threat. It is a reasonable maximum estimate of potential 

effects – a comparison often used in health risk assessments (NRC 2007). Thus, it is also a 

reasonable level of potential disease impacts to which control impacts can be compared. The 

comparison is likely to be useful over time, as well, as the model further suggests it is unlikely 

that continued exposure to WNV will substantially reduce risks through developing population 

immunity. 

The modeling suggests that the determination of baseline risks for this disease can be 

generated, even with an active control program, even if- the control program appears to 

contribute to preventing disease transmission. The simplifying assumptions and the failure of the 

model to mimic real conditions underline that the model cannot be used as a precise tool for 
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predicting risk. It is useful to bounding risks, and obtains validity because its basis is 

quantifications of impacts that have actually occurred due to WNV. This basis in real results 

attributed to the disease makes it difficult to cavalierly dismiss the estimates, as might be the 

case if a more sophisticated but also more theoretically-based approach were to have been 

assayed, where appropriate information was not available and so default values that probably 

constrained the results needed to be selected. 



21 

Acknowledgements 

This research was funded by the Suffolk County Legislature as part of the Suffolk County Vector 

Control and Wetlands Management Long-Term Plan and Draft Generic Environmental Impact 

Statement project, Walter Dawydiak, Suffolk County Department of Health Services, project 

manager, Dominick Ninivaggi, Suffolk County Department of Public Works, Division of Vector 

Control, technical manager, Cashin Associates, PC, Hauppauge, NY, consultant to the county. 

Russell J. Wetjen, Sr., GIS and CADD Designer, Cashin Associates, conducted the GIS analyses 

and produced the graphics. Scott Campbell (Arthropod-Borne Disease Laboratory, Suffolk 

County Department of Health Services, provided important data. Guidance received from Marc 

Klowden on an early draft of the paper was very helpful, as were the comments of two 

anonymous reviewers. 



22 

REFERENCES CITED 

Andreadis, T.G., J.F. Anderson, C.R. Vossbrinck, and A.J. Main. 2004. Epidemiology of West 

Nile Virus in Connecticut: a five-year analysis of mosquito data 1999-2003. Vector-borne 

Zoonotic Dis. 4(4): 360-378.  

Apperson, C.S., B.A. Harrison, T.R. Unnasch, H.K. Hassan, W.S. Irby, H.M. Savage, S.E. 

Aspen, D.W. Watson, L.M. Rueda, B.E.R. Engber, and R.M. Nasci. 2002. Host-feeding habits of 

Culex and other mosquitoes (Diptera:Culicidae) in the Borough of Queens in New York City, 

with characters and techniques for identification of Culex mosquitoes.  J. Med. Entomol. 39(5): 

777-785. 

Bell, J.A., N.C. Mickelson, and J.A. Vaughn. 2005. West Nile Virus in host-seeking mosquitoes 

within a residential neighborhood in Grand Forks, North Dakota. Vector Borne Zoonotic Dis. 

5(4): 373-82.  

Ben-Nathan, D., S. Lustig, G. Tam, S. Robinzon, S. Segal, and B. Rager-Zisman. 2003. 

Prophylactic and therapeutic efficacy of human intravenous immunoglobulin in treating West 

Nile virus infection in mice. JID 188: 5-12. 

Bradley, C.B., M.H. Zaki, D.G. Graham, M. Mayer, V. DiPalma, S.R. Campbell, M.A. Persi, A. 

Szlakowicz, P. Kupiel, J. Keithley, J. Ennis, P. Smith, O. Slakowicz, and an EIS officer, CDC. 

2000. Probable locally acquired mosquito-transmitted Plasmodium vivax infection – Suffolk 

County, New York, 1999. MMWR 49: 495-496. 

Busch, M.P., D.J. Wright, B. Custer, L.H. Tobler, S.L. Stramer, S.H. Kleinman, H.E. Prince, C. 

Bianco, G. Foster, L.R. Petersen, G. Nemo, and S.A. Glynn. 2006. West Nile Virus infections 

projected from blood donor screening data, United States, 2003. Emerg. Infect. Dis. 12(3): 305-

402. 



23 

Campbell, G.L., A.A. Marfin, R.S. Lanciotti, and D.L. Gubler. 2002. West Nile Virus. Lancet 

Infect. Dis. 2: 519-529. 

Daniels, T.L. 2001. Coordinating opposite approaches to managing urban growth and curbing 

sprawl. Amer. J. Econ. Sociology 60(1): 229-243. 

Diuk-Wasser, M.A., H.E. Brown, T.G. Andreadis, and D. Fish. 2006. Modeling the spatial 

distribution of mosquito vectors for West Nile Virus in Connecticut, USA. Vector-borne 

Zoonotic Dis. 6(3):283-295. 

Eisen, R.J., and L. Eisen. 2008. Spatial modeling of human risk exposure to vector –borne 

pathogens based on epidemiological versus arthropod vector data. J. Med. Entomol. 45(2): 181-

192. 

Glasgow, RD. 1938. Mosquitoes and wild life as interrelated problems in human ecology. NY 

Mus. Bull. 316:7-20. 

Hadler, J., R. Nelson, T. McCarthy, T. Andreadis, M.J. Lis, R. French, W. Beckwith, D. Mayo, 

G. Archambalt, and M. Cartter. 2001. West Nile Virus surveillance in Connecticut in 2000: an 

intense epizootic without high risk for severe human disease. Emerg. Infect. Dis. 7(4): 636-642. 

Hayes, C.G. 2001. West Nile Virus: Uganda, 1937, to New York City, 1999. Ann. N.Y. Acad. 

Sci. 951: 25-37. 

Hoyert, D.L., H.-C. Kung, and B.L. Smith. 2005. Deaths: preliminary data for 2003. National 

Vital Statistics Reports, Centers for Disease Control and Prevention: Hyattsville, MD. 

Kilpatrick, A.M., L.D. Kramer, M.J. Jones, P.P. Marra, and P. Daszak. 2006. West Nile Virus 

epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol. 4(4): 

606-610. 



24 

Long Island Power Authority. 2005. 2004 Long Island population survey. Long Island Power 

Authority: Uniondale, NY. 

Long Island Power Authority. 2003. 2002 Long Island population survey. Long Island Power 

Authority: Uniondale, NY. 

Loeb, M., S.J. Elliott, B. Gibson, M. Fearon, R. Nosal, M. Drebot, C. D’Cuhna, D. Harrington, 

S. Smith, P. George, and J. Eyles. 2005. Protective behavior and West Nile Virus risk. Emerg. 

Infect. Dis. 11(9): 1433-1436. 

Lopez, W., and J.R. Miller. 2002. The legal context of mosquito control for West Nile Virus in 

New York City. J. Law. Med. Ethics 30(3):Supplement 135-138. 

Lukacik, G., M. Anand, E.J. Shusas, J.J. Howard, J. Oliver, H. Chen, P.B. Backenson, E.B. 

Kaufman, K.A. Bernard, L.D. Kramer, and D.J. White. 2006. West Nile Virus surveillance in 

mosquitoes in New York State, 2000-2004. J. Am Mosq. Control Assoc. 22(2): 264-271. 

Mandalakas A.M., C. Kippes, J. Sedransk, J.R. Kile, A. Gargm, J. McLeod, R.L. Berry, and A.A. 

Marfin. 2005. West Nile Virus epidemic, northeast Ohio, 2002. Emerg. Infect. Dis. 11(11): 

1774-1777. 

Mans, N.Z., S.E. Yurgionas, M.C. Garvin, R.E. Gary, J.D. Bresky, A.C. Galaitas, and O.A. 

Ohajurka. 2004. West Nile Virus in mosquitoes of northern Ohio, 2001-2002. Am. J. Trop. Med. 

Hyg. 70(5):562-565. 

McCarthy, T.A., J.L. Hadler, K. Julian, S.J. Walsh, B.J. Biggerstaff, S.R. Hinten, C. Baisley, A. 

Iton, T. Brennan, R.S. Nelson, G. Archambualt, A.A. Marfin, and L.R. Petersen. 2001. West Nile 

serosurvey and assessment of personal prevention efforts in an area with intense epizootic 

activity: Connecticut, 2000. Ann. N.Y. Acad. Sci. 951: 307-316.   



25 

Motashari, F., M.L. Bunning, P.T. Kitsutani, D.A. Singer, D. Nash, M.J. Cooper, N. Katz, K.A. 

Liljebjelke, B.J. Biggerstaff, A.D. Fine, M.C. Layton, S.M. Mullin, A.J. Johnson, D.A. Martin, 

E.B. Hayes, and G.L. Campbell. 2001a. Epidemic West Nile encephalitis, New York, 1999: 

results of a household-based seroepidiemological survey. Lancet 358: 261-264. 

Motashari, F., I. Poshni, E.M. Layton, D. Graham, C. Bradley, M. Kacacia, S. Wong, C. 

Franchell, D. Morse, B. Wallace, P. Smith, E. Bresnitz, C. Baisley, A. Iton, G. Archambault, D. 

Mayo, J. Hadler, and EID officers, CDC. 2001b. Serosurveys for West Nile infection – New 

York and Connecticut counties, 2000. MMWR 50(3): 37-39. 

Nasci, R.S., D.J. White, H. Stirling, J. Oliver, T.J. Daniels, R.C. Falco, S. Campbell, W.J. Crans, 

H.M. Savage, R.S. Laciotti, C.G. Moore, M.S. Godsey, K.L. Gottfried, and C.J. Mitchell. 2001. 

West Nile Virus isolates from mosquitoes in New York and New Jersey, 1999. Emerg. Infect. 

Dis. 7(4): 626-630. 

NRC. 2007. Toxicity Testing in the 21st Century: A Vision and a Strategy. The National 

Academies Press: Washington, DC.  

Ostlund, E.N., R.L. Crom, D.D. Pedersen, D.J. Johnson, W.O. Williams, and B.J. Schmitt. 2001. 

Equine West Nile Encephalitis, United States. Emerg. Infect. Dis. 7(4): 665-669. 

Petersen, L.R., and A.A. Marfin. 2002. West Nile Virus: a primer for the clinician. Ann. Intern. 

Med. 137(3): 173-179. 

Petersen, L.R., and J.T. Roehrig. 2001. West Nile virus: a reemerging global pathogen. Emerg. 

Infect. Dis. 7(4): 611-614. 

Peterson, R.K.D., P.A. Macedo, and R.S. Davis. 2006. A human-health risk assessment for West 

Nile virus and insecticides used in mosquito management. Environ. Health Perspect. 114: 366-

372. 



26 

Peyton, E.L., S.R. Campbell, T.M. Candeletti, M. Romanski, and W.R. Crans. 1999. Aedes 

(Finlaya) japonicus japoinicus (Theobald), a new introduction into the United States. J. Am 

Mosq. Control Assoc. 15: 238-241. 

Schellenberg, T.L., M.E. Anderson, M.A. Drebot, M.T. Vooght, A.R. Findlater, P.S. Curry, C.A. 

Campbell, and W.D. Osei. 2006. Seroprevalence of West Nile virus in Saskatchewan’s Five Hills 

Health Region, 2003. Can. J. Pub. Health 97: 369-373. 

Shapiro, H. and S. Micucci. 2003. Pesticide use for West Nile Virus. CMAJ 168(11): 1427-1430. 

Slovic, P. 1987. Perception of risk. Science 236: 280-285. 

Turrell, M.J., D.J. Dohm, M.R. Sardelis, M.L. O’Guinn, T.G. Andreadis, and J.A. Blow. 2005. 

An update on the potential of North American mosquitoes (Diptera:Culicidae) to transmit West 

Nile Virus. J. Med. Entomol. 42(1):57-62. 

Weinberger, M. S.D. Pitlack, D. Ganduco, R. Lang, F. Nassar, D. Ben David, E. Rubinstein, A. 

Itzhaki, J. Mishal, R. Kitzes, Y. Siegman-Igra, M. Giladi, N. Pick, E. Mendelson, H. Bin, T. 

Shohat, M.Y. Chowers. 2001. West Nile Fever outbreak, Israel, 2000: epidemiologic aspects. 

Emerg. Infect. Dis. 7(4): 686-691. 

Wonham, M.J., T. de-Camino-Beck, and M.A. Lewis. 2004. An epidemiological model of West 

Nile Virus: invasion analysis and control applications. Proc. Royal Soc. London B 271: 501-507. 



27 

Tables 

Table 1.  Serosurvey Results 

Year Location Infection Rate (percent) Undiagnosed Infections per Case 

1999 Douglaston 2.6 140 

2000 Staten Island 0.5 160 

2000 Suffolk County 0.2 n.a.1 

2000 Connecticut 0 n.a.2 

2002 Cuyahoga County 1.9 170 

2002 Ontario 3.1 160 
1 No human cases were diagnosed. 

2 There were no sero-positive sampling results, but one case of WNV was diagnosed. 
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Table 2.  2003 WNV Blood Donation Testing Results: Infection Rates > 3% or Undiagnosed 

infections > 1,000 per Case, or States Where Serosurveys Were Conducted (modified from 

Busch et al. 2003) 

 

State Infection Rate (percent) Undiagnosed Infections per Case 

California 0.0 1600 

Colorado 4.3 320 

Kansas 2.1 650 

Nebraska 4.9 440 

New York 0.1 240 

North Dakota 4.1 280 

Ohio 0.1 140 

South Dakota 4.0 200 

West Virginia 0.1 1300 

Wyoming 3.5 190 

US total 0.3 260 

All States median  240 

All States mean  310 
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Table 3.  Critical WNV Human Cases and Deaths, US, 1999-2005  

 

Year Meningitis-

Encephalitis 

Cases 

Deaths Ratio of 

Critical 

Illnesses to 

Deaths 

1999 59 7 8 

2000 19 2 10 

2001 64 9 7 

2002 2,946 284 10 

2003 2,860 264 11 

2004 1,142 100 11 

2005 1,294 119 11 

(collected from http://www.cdc.gov/NCIDOD/DVBID/WESTNILE) 
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Table 4.  Modeled Suffolk County West Nile Virus Incidence 2000-2004 

Model Years Population 

Exposed 

Hospitalizations Deaths Resulting Immune County-wide 

Percentage (Population of 

1,419,369) 

Model 

A 

2000 

2001 

2002 

2003 

2004 

Total 

1,135,878 

1,195,260 

1,168,088 

1,227,931 

191,328 

152 

157 

151 

156 

24 

640 

15 

16 

15 

16 

2 

64 

1.5 

3.1 

4.6 

6.2 

6.5 

Model 

B 

2000 

2001 

2002 

2003 

2004 

Total 

1,135,878 

1,195,260 

1,168,088 

1,227,931 

191,328 

131 

135 

128 

132 

20 

546 

13 

13 

13 

13 

2 

54 

2.3 

4.7 

6.9 

9.2 

9.5 

Model 

C 

2000 

2001 

2002 

2003 

2004 

Total 

1,135,878 

1,195,260 

1,168,088 

1,227,931 

191,328 

175 

178 

169 

172 

26 

720 

17 

18 

17 

17 

3 

72 

3.1 

6.2 

9.2 

12.2 

12.5 

Model 

D 

2000 

2001 

2002 

2003 

2004 

Total 

1,135,878 

1,195,260 

1,168,088 

1,227,931 

191,328 

218 

221 

207 

209 

31 

886 

22 

22 

21 

21 

3 

89 

3.8 

7.7 

11.3 

15.0 

15.4 
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Table 5.  Projected Suffolk County West Nile Virus Incidence 2005-2025 

Model Years Population Hospitalizations Deaths Resulting Immune County-wide 

Percentage 

Model 

A 

2005 

2010 

2015 

2020 

2025 

Total 

1,495,221 

1,558,775 

1,625,031 

1,694,103 

1,766,111 

187 

178 

171 

166 

162 

3,619 

19 

18 

17 

17 

16 

360 

8.2 

16.0 

22.6 

28.0 

32.6 

Model 

B 

2005 

2010 

2015 

2020 

2025 

Total 

1,495,221 

1,558,775 

1,625,031 

1,694,103 

1,766,111 

156 

142 

132 

123 

116 

2,802 

16 

14 

13 

12 

12 

280 

12.0 

21.1 

31.8 

38.8 

43.2 

Model 

C 

2005 

2010 

2015 

2020 

2025 

Total 

1,495,221 

1,558,775 

1,625,031 

1,694,103 

1,766,111 

202 

176 

156 

141 

131 

3,355 

20 

18 

16 

14 

13 

336 

15.8 

29.6 

40.0 

47.8 

53.7 

Model 

D 

2005 

2010 

2015 

2020 

2025 

Total 

1,495,221 

1,558,775 

1,625,031 

1,694,103 

1,766,111 

244 

203 

169 

152 

138 

3,775 

24 

20 

17 

15 

14 

377 

19.4 

35.6 

47.1 

53.9 

61.3 
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Table 6.  Projected Suffolk County West Nile Virus Incidence 2005-2025, Population Capped at 

2010 Levels 

Model Years Population Hospitalizations Deaths Resulting Immune County-wide 

Percentage 

Model 

A’ 

2005 

2010 

2015 

2020 

2025 

Total 

1,495,221 

1,558,775 

1,625,031 

1,694,103 

1,766,111 

187 

178 

163 

149 

138 

3,420 

19 

18 

16 

15 

14 

341 

8.2 

16.0 

23.5 

29.8 

35.3 

Model 

B’ 

2005 

2010 

2015 

2020 

2025 

Total 

1,495,221 

1,558,775 

1,625,031 

1,694,103 

1,766,111 

156 

142 

124 

109 

97 

2,635 

16 

14 

12 

11 

10 

265 

12.0 

21.1 

33.1 

41.2 

47.9 

Model 

C’ 

2005 

2010 

2015 

2020 

2025 

Total 

1,495,221 

1,558,775 

1,625,031 

1,694,103 

1,766,111 

202 

176 

147 

124 

106 

3,144 

20 

18 

15 

12 

11 

316 

15.8 

29.6 

41.6 

50.8 

57.9 

Model 

D’ 

2005 

2010 

2015 

2020 

2025 

Total 

1,495,221 

1,558,775 

1,625,031 

1,694,103 

1,766,111 

244 

203 

162 

131 

109 

3,525 

24 

20 

16 

13 

11 

353 

19.4 

35.6 

49.0 

58.7 

65.9 
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Table 7. Actual Suffolk County West Nile Virus Impacts 

 1999 2000 2001 2002 2003 2004 

Hospitalizations 0 0 1 8 10 0 

Deaths 0 0 0 2 2 0 
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Table 8. Common (>5%) Suffolk County Mosquitoes (2005 Trap Results) 

Species 

NJ Light Trap 

Percent 

(n = 58,469) 

CDC Light Trap 

Percent 

(n = 45,706) 

CDC Gravid Trap 

Percent 

(n = 13,811) 

Aedes vexans  7.3 4.8 <0.1 

Coquillettidia perturbans 7.8 17.6 <0.1 

Culex spp. 12.2   

Culex pipiens-restuans  9.2 95.0 

Culiseta melanura 0.7 5.8 <0.1 

Ochlerotatus canadensis  0.5 17.7 0.5 

Ochlerotatus sollicitans 33.4 12.4 0.6 

Ochlerotatus 

taeniorhynchus  7.7 12.0 <0.1 

 

Data provided by the Arthropod-borne Disease Laboratory, Suffolk County Department of 

Health Services 
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Figure Legends 

Figure 1.  West Nile virus exposure in Suffolk County, NY, 2000, determined by positive dead 

birds and mosquito pools, defined by zip codes 

Figure 2.  West Nile virus exposure in Suffolk County, NY, 2001, determined by positive dead 

birds and mosquito pools, defined by zip codes 

Figure 3.  West Nile virus exposure in Suffolk County, NY, 2002, determined by positive dead 

birds and mosquito pools, defined by zip codes 

Figure 4.  West Nile virus exposure in Suffolk County, NY, 2003, determined by positive dead 

birds and mosquito pools, defined by zip codes 

Figure 5.  West Nile virus exposure in Suffolk County, NY, 2004, determined by positive dead 

birds and mosquito pools, defined by zip codes 
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