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Abstract 

Financial analytical models of waste management systems have often found that 

recycling costs exceed direct benefits, and in order to economically justify recycling activities, 

externalities such as household expenses or environmental impacts must be invoked. Certain 

more empirically based studies have also found that recycling is more expensive than disposal. 

Other work, both through models and surveys, have found differently. Here we present an 

empirical systems model, largely drawn from a suburban Long Island municipality. The model 

accounts for changes in distribution of effort as recycling tonnages displace disposal tonnages, 

and the seven different cases examined all show that curbside collection programs that manage 

up to between 31% and 37% of the waste stream should result in overall system savings. These 

savings accrue partially because of assumed cost differences in tip fees for recyclables and 

disposed wastes, and also because recycling can result in a more efficient, cost-effective 

collection program. These results imply that increases in recycling are justifiable due to cost-

savings alone, not on more difficult to measure factors that may not impact program budgets. 

Highlights 

• Curbside collection of recyclables reduces overall system costs over a range of 

conditions. 

• When avoided costs for recyclables are large, even high collection costs are supported. 

• When avoided costs for recyclables are not great, there are reduced opportunities for 

savings.  

• For common waste compositions, maximizing curbside recyclables collection always 

saves money. 

Key words: recycling, disposal, system, costs, yard wastes, collection 
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1. Introduction 

Recycling is often justified because it generates public goods, often expressed in terms of 

environmental benefits, such as natural resource conservation, pollution avoidance, or global 

climate change prevention (Craighill and Powell, 1996; Ackerman, 1997; Bohm et al., 2010; 

Kinnaman, 2010; Manfredi et al., 2011). Having recyclable material collected from each 

household (curbside recycling) increases participation levels and the amounts collected by 

recovery programs (Folz 1999b; Domina and Koch, 2002; Jenkins et al., 2003; Dahlen et al., 

2007; Best, 2009; Larsen et al., 2010). However, because program managers and participants 

may not directly gain from these environment benefits, they may not be sufficient to maintain 

such programs. This is especially so in the face of pressures to reduce present-day expenditures 

or the scope of government (Folz, 1999b; Blaine et al., 2005; Emery et al., 2007; Chowdhury, 

2009; Guimaraes et al., 2010) even in the face of regulatory requirements (Read, 1999), or with 

the realization that governments have interests other than mere costs when providing local 

services (Bel and Warner, 2008), such as when Lave et al. (1999) identify avoidance of 

“environmental nuisances” as an important factor for maintaining recycling services in large 

cities. The Mayor of New York City, for instance, dropped part of its curbside recyclables 

collection program in 2002 because the program was thought to be not cost-effective (Aadland 

and Caplan, 2006). Only when a contractor was willing to pay the City for metal and plastics was 

source-separated collection re-instated (DSM Environmental, 2008). Paying for management of 

recyclables may therefore be perceived as an expense that can be foregone in tougher economic 

times. 

This is a misunderstanding of basic waste management economics. The default 

management of wastes – disposal – costs money. Options other than disposal, if their cost is less, 
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allow for savings through the concept of “avoided disposal costs” (as noted in Lavee and Khatib, 

2010). If the total costs associated with the alternative management are less than the incremental 

costs of standard disposal, then the alternative provides avoided costs savings and so is a money-

saving option. The alternative does not need to provide positive revenues but its net costs need to 

be less than the default option. This concept is well understood; still, as was the case with Mayor 

Bloomberg in New York City, sometimes it may not be practiced.  

1.1 Background 

Historically, recycling was initiated because recyclables had value (Miller 2000). 

Environmental considerations and regulatory requirements have led to the service expansion 

found in industrialized nations (Tanskanen and Kaila, 2001; Bohm et al., 2010;Miranda and 

Blanco, 2010). Many recent program evaluations include economic externalities in their 

calculations, pricing in environmental benefits (Lave et al., 1999; Beigl and Salhofer, 2004; 

Emery et al., 2007; Manfredi et al., 2011; Yoshida et al., 2012) and/or resident preferences 

(Powell, 1996; Huhtala, 1997; Read, 1999; Aadland and Caplan, 2006), because “the cheapest 

system may not be the most environmentally benign” (Chang et al., 2011). This is especially true 

when separate recyclables collection is found (or is assumed) to be more expensive than disposal 

(Beede and Bloom, 1995; Goddard, 1995; Hall, 1995 [considering recycling paper generally, not 

just source separation]; Highfill and McAsey, 1997; Masui et al., 2000; Tanskanen and Kaila, 

2001; Caplan et al., 2002; Beigl and Salhofer, 2004; Blaine et al., 2005; Calcott and Walls, 2005; 

Kinnaman, 2005, 2006; Aadland and Caplan, 2006; Bohm et al., 2010; Kuo and Perrings, 2010; 

Bouvier and Wagner, 2011; Yoshida et al., 2012). Adding externalities often results in 

determinations that these programs have overall cost-effectiveness (e.g., Diamadopoulos et al., 

1995; Craighill and Powell, 1996; Masui et al., 2000; Lavee, 2010), or based on residents’ 
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willingness-to-pay for services, that programs can be cost-effective to society as a whole 

(Kinnaman, 2005; Aadland and Caplan, 2006). Goddard (1995) demonstrated that if the waste 

hierarchy (waste reduction, recycling, waste-to-energy incineration, and lastly landfilling) is 

justified, it implies, if all externalities are accounted for, marginal costs for recycling should need 

to be less than disposal (at least initially).   

Certain studies have addressed economic (pricing) issues by solving systems of equations 

analytically. This allows for more universality to the solutions, and these systems, if the math 

was correct, are certainly internally consistent. Many find costs of recycling exceed benefits. A 

series of studies have evaluated the relationship between landfill capacity and recycling 

programs, for instance, and all assume recycling costs more than landfilling; however, avoided 

future costs for a new facility may justify channeling tonnages to “more expensive” recycling 

programs, as net present values grow quickly under compounded interest (Lund, 1990; Jacobs 

and Everett, 1992; Ready and Ready, 1995; Highfill and McAsey, 1997; Huhtala, 1997). A 

model of a waste authority found recycling collection costs were twice disposal costs and 

operating a MRF was more expensive than landfilling (Modak and Everett, 1996). Increased 

recycling efforts caused a 36% increase in system costs if recycling was increased from 21% to 

the “maximal amount” (64%) in Finland (Tanskanen et al., 1998), and although disposal costs 

decrease with increased recycling, it does not compensate for increased recycling costs 

(Tanskanen and Kaila, 2001). Bohm et al. (2010) developed a generalized cost term for solid 

waste management, and then fit data from US national survey responses to determine appropriate 

parameters for the equation variables, using 1996 data. They found that the marginal costs for 

waste management decrease for both disposal and recycling. This trend continues for disposal, 

but eventually marginal costs for recycling begin increasing when there is more than 13,200 tons 
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of annual collection. Marginal costs for recycling were always greater than those of disposal. 

Recycling evaluations excluded revenues from the sale of recovered materials. One example 

called out in the paper, for instance, found the marginal costs per ton for disposal were $59.70, 

and for recycling were $76.53.  

Not all models find recycling costs exceed benefits. Lombrano (2009) found in Italy that 

recycling reduced system costs, if the system served more than 50,000 people and recovery rates 

exceeded 30% or so. A model of a waste system for Port Said (Egypt), including recycling and 

composting along with landfilling, projected net profits (assuming revenues not only for 

recyclables but also for the produced compost) (Badran and El-Haggar, 2006). Emery et al. 

(2007) found collection with a split body truck and 100% recovery of potential recyclables 

would likely lead to a 7% decrease in costs over landfilling, although all other options involving 

any recycling (different collection vehicles and recovery rates, and also WTE incineration as a 

disposal technology) led to higher costs. Callan and Thomas (2001) used 1997 Massachusetts 

data in a simplified model, finding the average cost for disposal was $90.25 ton-1, and the 

average cost of recycling was $49.82 ton-1. The marginal cost for disposal was $77.82 ton-1, and 

the marginal cost for recycling $13.55 ton-1. Larsen et al. (2010) found that curbside collection of 

recyclables decreased overall system costs in Denmark because the cost of disposal was 

sufficiently greater than assumed revenues from recycling. They assumed particular programs 

would result in set recoveries for particular materials (with ensuing overall recovery rates of 

20%-31%). Similarly, De Jaeger et al. (2011) analyzed 299 municipalities in Flanders, based on 

2003 data, and found that increased recovery and waste reduction rates did not result in reduced 

economic efficiency, but rather seemed to be associated with more efficiency (as determined by 

a Data Envelopment Analysis model). This was a generalized result that was not specific to any 
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of the 299 systems. Lavee (2007) created an empirical model of waste management in Israel, 

based on 2000-2004 data from 79 municipalities, considering starting recycling services and then 

achieving specific levels of recycling. Recycling was found to be cost-effective for nearly all 

large municipalities, but not so for over half of small and regional authorities. Using 2005-2009 

Japanese data, Kinnaman et al. (2012) compared municipal costs to collect and manage waste, 

municipal costs to collect and manage recyclables, and certain positive and negative externalities 

associated with disposal and recycling. If positive externalities associated with recycling are 

excluded, 10% recycling is optimal. Incorporating the positive externalities means the optimal 

rate is 18% recycling. Household recycling costs were key; doubling them decreased optimal 

recycling to 13%, halving these costs increased optimal recycling to 28%, and leaving them out 

meant recycling is favored under all conditions (optimal rate of 100% recovery). Work by 

Palatnik et al. (2005) suggests that household costs may be a necessary element in pricing 

recycling properly, since participation rates in Israel declined as the effort required to recycle 

increased. 

Other studies have therefore addressed cost issues with much more reliance on empirical 

data and program descriptions, often collected by survey. Here, too, the determinations of 

whether recycling costs or saves money are split. Kinnaman (2006) summarized six studies, 

determining that recycling cost $3 household-1 month-1 compared to landfilling, and was 

therefore, on a per ton basis, twice as expensive as landfilling. He found that external utilities 

sometimes exceeded costs, but sometimes did not, and so did not think recycling could be 

considered universally beneficial. Similarly, Aadland and Caplan (2006), using a selection of 12 

US municipalities, found that recycling program costs ranged from $1.62-$5.10 household-1 

month-1. McDavid (2000) reported that for Canadian residential solid waste programs mean net 
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costs for recycling were $124.39 tonne-1 and disposal mean net costs were $48.01 tonne-1, based 

on surveys carried out from 1995-1999. Lave et al. (1999) combined US national costs of 

recycling (including credits for avoided disposal) from one study with revenues derived from 

another, and determined that recycling would cost a net $97 ton-1.  

Folz (1999a, b) surveyed recycling coordinators in US cities in 1990 (gathering 1989 

data) and resurveyed the 1990 respondents in 1997 (using 1996 data). By 1996, mean cost for 

recycling programs ($66.96 ton-1), defined as program costs ($103.63 ton-1) minus revenues 

($35.67 ton-1) were less than net disposal costs ($131.63 ton-1), defined as collection costs 

($81.99 ton-1) plus disposal costs ($51.83 ton-1). It seems apparent, but is not explicit, that 

recyclables collection costs were accounted for. The data appear to have been averaged per 

program, and not weighted for program size. A different approach was taken in an analysis of 

New York City’s program (DSM Environmental, 2008). Here the New York City Department of 

Sanitation (NYCDOS) cost allocation model was used (and modified). NYCDOS data for 2005 

suggested that refuse collection and management cost $263 ton-1 and recycling cost $343 ton-1. 

When costs were reallocated and reconsidered, costs appeared to be $284 ton-1 for recycling, 6% 

more than disposal costs ($267 ton-1). This difference was described as "insignificant," given the 

scope of analyst choices in the allocation of sunk costs and department-wide expenses. 

1.2 Study Rationale 

Cost effectiveness analysis compares the relative costs and outcomes of two or more 

courses of action (Levin, 1983). The instrument of cost effectiveness is applied to the planning 

and evaluation of many types of organized activity, including the economics of service or 

program usage such as education programs (Levin, 1983), environmental polices (Dissou, 2005; 

Goulder et al., 1999), and recycling initiatives (Lund, 1990; Deyle and Schade, 1991). In this 

http://en.wikipedia.org/wiki/Economics_of_automobile_usage
http://en.wikipedia.org/wiki/Economics_of_automobile_usage
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paper we present a systems model of refuse collection. The model accounts for changes in 

distribution of effort as recycling tonnages displace disposal tonnages. We consider various 

costs, labor, trucks, refuse tonnages, etc., to carry out cost effectiveness analysis of seven 

different scenarios of refuse collection in a Long Island, New York, municipality. The seven 

cases relatively vary by tipping fees, including or excluding the collection of yard waste, and 

truck financing (lease or own). We examine the results of all cases to explore the optimum 

recycling rate in each of scenarios individually (i.e. recycling rate at lowest cost point) and 

determine which cases are most cost effective and have optimal recycling rates. 

The model we present here is empirical, with the terms drawn from practices as we 

observed them. There may be error from these observations, but the process is transparent, and 

can be easily validated or rejected by those with practical experience. To make system cost 

assumptions and calculations transparent and explicit, we have assumed that the Long Island 

system uses contract services with defined costs to accomplish its tasks (rather than using 

internal municipal resources and consequent murky accounting). We have grounded the 

modeling by using data generated in a real-world setting. 

2. Materials and Methods 

2.1. Model Structure 

We created a simplified model of costs associated with a curbside collection program and 

subsequent management of collected materials (see the Appendix). Our objective function 

determines the total cost per week (TC): 

)()( PITFITFFLTC   

(Eq. 1) 

with  
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 L = labor cost (derived in Eq. A10) 

 Ftot = fuel cost (derived in Eq. A11) 

 TF = tip fees (derived in Eq. A12) 

 TFI = total financial cost (derived in Eq. A16) 

 P = profit rate 

We applied the model to a set of seven cases, based upon baseline conditions developed 

from the suburban New York residential waste management program. 

2.2 Model Setting 

The Town of Brookhaven (Long Island, New York) is a municipality with a population 

of approximately 500,000, located 125 km east of New York City. The Town organized 

municipal collections services in 1988 in support of a curbside collection program begun in 

1989. All one, two, and three family houses in the Town, outside of nine incorporated villages 

and exclusive of condominiums and multi-family dwellings, receive Town collection services. 

About 116,000 households are covered through the program. 

Collection services are organized through 35 districts, which are offered for contract 

services. These districts were organized so as to reflect natural “hamlet” boundaries and to be 

approximately the same size, although growth throughout the Town since 1988 has distorted the 

congruencies somewhat. The Town solicits bids from private carting companies to conduct the 

actual collection work. Currently the Town requires contractors to use CNG-fueled trucks, and 

has a refueling station at its solid waste complex. The Town specifies collection days, requires 

each district to be collected separately, has mandatory source separation laws for recyclables and 

yard waste, and a ban on managing grass clippings and otherwise disposing of yard waste, but 

otherwise does not manage the means by which collection services are provided. Residents 

receive twice weekly collection of waste, weekly collection of recyclables (paper materials 

alternating with glass, metal, and plastic containers), and 19 yard waste collections (twice a 
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month April-December, plus a January Christmas tree collection). Grass clippings are not 

managed and yard waste management through disposal is forbidden. In 2011, the Town collected 

179,321.76 tons of MSW, 23,016.63 tons of recyclables, and 34,914.72 tons of yard waste. This 

resulted in a curbside source separation rate of 24.4%. 

The Town had an agreement to dispose of its waste at the Hempstead Waste-to-Energy 

plant in exchange for landfilling the ash produced by the plant. The explicitly combined “Ash for 

Trash” agreement expired in 2011, but the Town has entered into two distinct contracts with the 

operator of the plant, which accomplishes the same goal. The Town pays approximately $80 ton-

1 for disposal at the plant, and $15 ton-1 to a contractor to operate its transfer station and truck 

wastes to the disposal point. The Town constructed a recycling facility in 1991, and has operated 

the facility through three successive contractors since then. The Town was responsible for paying 

the capital costs of construction, and the operator received a per ton fee for processing 

recyclables and marketing them, one that varies primarily based upon the number of shifts 

needed at the plant and outside materials solicited by either party. The Town receives 80% of the 

revenues from recyclables sales, and the operator is responsible for covering any negative 

markets (e.g., for glass) and disposal of residues. The Town has its own yard waste composting 

facility, but as development in its immediate vicinity increased, the Town began using the site 

less (residents complain of odors and noise). The Town, since the inception of its mandatory 

yard waste separation program in 2001 (with a concurrent ban on collecting grass clippings 

either for disposal or composting) therefore has used a composting contractor. The 2011 cost for 

delivery of bagged yard waste to the contractor was $45 ton-1. 

The Town charges each household in the waste districts a fixed fee for solid waste 

services. In 2011, this fee was $375 yr-1. The fee is intended to cover the cost of the waste 
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districts, plus a portion of administrative costs, some of the facility costs, other services provided 

to all residents of the Town (drop-off disposal and recycling services, hazardous wastes drop-off 

and management, collection of bulky and metal wastes, etc.), but accurate accounting is not 

possible due to the complexity of the intertwined services. 

2.3 Base Parameterization of the Model 

We simplified elements of the Town setting and conditions for our model. First of all, we 

considered that all waste districts were exactly the same and that waste generation does not vary 

over time. Thus, each of the districts generates 130 tons week-1 of wastes (excluding grass 

clippings) and is equidistant from the waste management complex where the transfer station and 

recycling facility are located, and which also abuts the yard waste contractor’s facility (this 

avoids differential travel times, and is a rough approximation of reality, as the waste 

management facility is approximately in the center of the Town). We also assumed that the base 

element of collection was a half-day shift (4 hours). We made this assumption because most 

trucks in the Town make two disposal stops at the waste facility per day. We translated this to a 4 

hour unit where it either takes 4 hours to fill a truck (with the waste being collected) or to 

complete a transit of the waste district (resulting in an incompletely filled truck). We assumed 

that the collection contractors could pay partial days’ pay to employees, but only in 4 hr 

increments, and that no overtime was offered. These assumptions were made so as to underscore 

the shift in collection emphasis and costs as the set-out balances change between disposal, 

recycling, and composting. We assumed a driver and a helper for each truck, and that each 

earned the mean New York State wage for the position (see 

www.bls.gov/oes/current/oes537081.htm). We assumed trucks could be financed at favorable 

rates (3%) over the life of the contract (currently 5 years with two 1 year extensions possible) 

http://www.bls.gov/oes/current/oes537081.htm
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and that the trucks had a useful service life for premier collection at 10 years, with some useful 

life after that (thus, a salvage value of $50,000). We assumed a purchase price of $250,000 (from 

the US Department of Energy Clean Cities CNG program, information available at 

http://ecocomplex.rutgers.edu/ray.pdf), and received information that a reasonable estimate for 

CNG fuel cost is $10 hour-1 (Harry Gladfelter, Business Development manager, Clean Energy 

Fuels Corp., personal communication, February 22, 2013). We drew from an unpublished Town 

consultant report to determine maintenance and insurance costs for the vehicles. We assumed 

that all trucks used in the Town were the same size. We used scalehouse data (ignoring very low 

records, assuming them to be partial loads) from two weeks in October 2012 to determine 

disposal trucks average 9 tons in weight, recyclables trucks average 8 tons in weight (container 

trucks hold less and paper trucks hold more, but we assumed a 1:2 container:paper split, based on 

recycling facility records), and that yard waste trucks could hold 9 tons. We assumed that, on 

balance, partial loads covered any effort differences between collecting MSW and recyclables-

compost (partial loads were allocated full 4-hour shift segments, although presumably all the 

time was not needed), and our emphasis on system costs means we do not need to allocate costs 

accurately to each element in the system. We included no margin for profit for the collection 

contractors. These baseline parameters are listed in Table 1. 

*****Table 1 about here***** 

2.4 Particular Cases to be Modeled 

2.4.1 Case 1 

In Case 1, we consider the situation for the Town of Brookhaven when there was no 

separate collection of yard waste, but there was curbside collection of recyclables. We set the 

tipping fee for non-recycled MSW (TFMSW) at $80. The true cost for the Town is closer to $95 

http://ecocomplex.rutgers.edu/ray.pdf
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ton-1; however, that fee is based at least partially on assumed compensation for the ash that is 

landfilled. The lowest tip fee for a local municipality in the vicinity of Brookhaven is in the 

range of $60-$65 for long-distance transport to off-Long Island landfills (in Pennsylvania or 

upstate New York) or to Newark, New Jersey, for subsequent rail haul to an Ohio landfill. This, 

together with a transfer station management fee would lead to an overall disposal tip fee in the 

vicinity of $80. We chose this lower value to make the analysis more conservative. For 

recyclables tip fee (TFRM), we selected $20 ton-1. The agreement between the Town and the 

recycling facility operator is not straight-forward, and not especially amenable to simplification 

to a per ton fee. A good estimate is the Town paid approximately $1 million in 2011 to manage 

45,000 tons that were processed at the facility (some 20,000 tons of which were from sources 

other than the curbside program). The Town collected on the order of $2 million from the sale of 

recyclables in 2011. This would suggest a negative tip fee of $22 ton-1 (getting paid for 

recyclables) would be in order. Recyclables markets, although more stable than in the 1990s, are 

still somewhat volatile (hitting lows during 2008, for instance), so assuming continued strong 

markets may not be warranted. In addition, the Town posts a nominal tip fee of $20 ton-1 for non-

District recyclables (although most non-District recyclables processed at the facility were 

acquired via negotiated contracts, at various rates that were all less than this). We chose to use 

the 20 ton-1 fee as a conservative recyclables processing estimate; this fee suggests that 

recyclables could go to market at approximately no overall cost. In Case 1, recyclables collection 

was allowed to vary from 0 tons to 130 tons in 1 ton increments. This is a contrary-to-fact 

situation for higher tonnages, since NYSDEC (2010) data suggest only 30% or so of suburban 

New York wastes is recyclable paper and containers; managing tonnages above 40 tons as 

recyclables suggests that increasing amounts of MSW are being processed as recyclables, which 
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would not be allowed, either operationally by the recyclable facility, or under regulations. 

However, tracing the change in costs over the entire spectrum of possibilities gave us some 

insight into the relations among avoided costs, effort, and equipment costs. 

2.4.2 Case 2 

In Case 2 we added yard waste services to Case 1. Yard waste collection was assumed to 

occur each week (instead of 19 weeks of the year) to allow us to use a week as the basic service 

time. We set the tipping fee at $45 ton-1. The tons collected were varied from 1 to 20 tons. The 

residual waste stream was then recycled from 0 tons to the maximum available tonnage for each 

of the 20 variants. 

2.4.3 Case 3 and Case 4 

In Cases 3-4, we allowed the trucks to be leased for 7 years, per US Department of 

Energy Clean Cities CNG program information showing this greatly reduces the costs of 

operating the trucks (available at http://ecocomplex.rutgers.edu/ray.pdf). We re-ran Case 1 and 2 

with the reduced truck costs, but kept all other parameters the same. 

2.4.4 Cases 5-7 

In Cases 5-6, we reconsidered costs using lower disposal costs, and used the lower cost 

leasing scenario only. We set the disposal cost at $40 ton-1, kept recyclables management at $20 

ton-1, and set yard waste composting at $10 ton-1. Long Island is a high waste management cost 

area, and tip fees in much of the US are lower. Since recently recycling has been a net source of 

income for Brookhaven, we believe using $20 ton-1 cost is a conservative estimate for those 

without processing capabilities or far from markets. We used $10 ton-1 composting costs in order 

to retain an avoided costs element to the analysis, and to reflect that many insist yard waste 

composting can be accomplished relatively cheaply (considering net costs, assuming some return 

http://ecocomplex.rutgers.edu/ray.pdf
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on finished products). Recycling and composting facilities are not as common as disposal 

facilities in the US; therefore, either a site has these facilities, has a transfer station for the 

facilities not immediately on site, or needs greater transport time to access facilities not at the 

base facility. It is more likely that extra transport time will be required to reach either (or both) 

recycling and composting facilities. For Case 7, we used Case 6 conditions and added a 1 hr per 

trip penalty to address conditions where longer trips may be required to recycling-composting 

facilities; again, our emphasis on overall systems costs means that accurate allocation of the time 

to different elements is not necessary. Table 2 summarizes cases 1-7. 

*****Table 2 about here***** 

3 Results 

A range of results followed from the seven cases. The most expensive case was Case 1 

(large truck purchase expenses, highest disposal cost). The base cost in Case 1 (all 130 tons 

disposed, no recycling, no yard waste collection) was $22,104 week-1 ($40.2M for the all 

districts yr-1), which compares well to the monies raised by the Town through district fees 

($43.5M) (the model result was 7.5% less), suggesting that our estimated costs model is not 

entirely inaccurate. The lowest cost result came with the lowest disposal fees and where there 

were only 15 collection routes week-1 (2 for yard waste, 5 for recyclables, 8 for MSW, requiring 

only 60 hours and 3 trucks). However, in all cases, recycling saved money over at least a portion 

of the spectrum of diversion tonnage possibilities. 

Cases 1 and 2 were defined by balancing between avoided costs and the large capital 

costs associated with truck purchases. An optimal recovery rate (37% for recycling only, 52% 

with yard waste collection) resulted in lowest costs (Fig. 1), with the yard waste collection case 

being offset by 20 tons, and slightly less, than the recycling only case. Charting elasticity for 
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changes in recycling tonnages shows that as truck shifts are added or subtracted small 

perturbations from the underlying $60 ton-1 difference between disposal and recycling are 

measured. Larger differences accrue as trucks are subtracted (at 22 tons of recycling, 108 tons of 

disposal) or added (at 49 tons of recycling and every 16 tons thereafter to 129 tons of recycling) 

(Fig. 2). The changes in costs associated with adding or subtracting trucks from the district 

dominate the cost considerations. 

*****Figure 1 about here***** 

*****Figure 2 about here***** 

In Case 3, the lower weekly truck costs associated with leasing allow the avoided costs to 

control the cost equation (Fig. 3). Recycling more waste reduces costs fairly steeply at first, but 

after the truck is taken out of service at 22 tons of recycling, there is a general balance between 

avoided costs, and extra costs associated with adding shifts or trucks. Overall, the avoided costs 

are slightly more than the extra labor and equipment charges, so it implies that increasing 

recycling always saves money. Adding yard waste diversion (Case 3) shifts the curve to the 

right, as for Case 2, and reduces costs a little more. 

*****Figure 3 about here***** 

Changing the avoided costs calculation (Cases 5-6) changes the controlling factors. The 

step function created by adding or subtracting trucks is flatter between changes in truck numbers, 

indicating that labor costs are balancing avoided costs. In Case 5, unlike Case 3, the smaller cost 

for the trucks is not impacted as much by avoided costs (which is only $20 ton-1). Again, the 

function between step changes is primarily flat, and so the optimal recycling rate is 31%, with 

the costs at 31% recycling not very different from those at 37% recycling. Table 3 shows the 

maximum and minimum costs for each of the cases. 
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*****Table 3 about here***** 

The primary effect of yard waste collection is to shift the costs curve to the right. The 

relatively large avoided costs ($25 ton-1 in Cases 2 and 4, $30 ton-1 in Cases 6 and 7) have more 

impact than additional effort costs (fuel and wages); in some scenarios we have run (not shown 

here), when avoided costs are much smaller than those associated with recycling, yard waste 

collection does not have much effect on costs once the number of trucks needed to service the 

area is reduced (>22 tons week-1, or 17%). 

If collection-transportation costs are increased by 25% to address non-local recycling and 

composting facilities, overall costs increase by 7.5%. This means that disposal only collection 

can be cheaper than certain scenarios of recycling and composting, as the base cost under Case 5 

is $12,501. It takes longer to achieve systems savings: 22 tons per week recyclables (17% 

recycling) with no composting, but less recycling as composting increases. For instance with 

50% capture of yard waste (10 tons per week), 12 tons per week of recycling (9% recycling) 

results in systems savings over 100% disposal, and if all yard waste is collected, only 2 tons per 

week of recyclables collection (1.5% recycling) results in overall decreased systems cost. 

4 Discussion 

This exercise provides scant support for analytical solutions that show recycling cannot 

be cost effective (Modak and Everett, 1996; Tanskanen et al., 1998; Tanskanen and Kaila, 2001; 

Bohm et al., 2010). Similarly, at least some of the results conflict with data collections that found 

recycling was more expensive than disposal (Lave et al., 1999; McDavid, 2000; Aadland and 

Caplan, 2006; Kinnaman, 2006). The results here do not accord with models that found 

consistent advantages for recycling (Badran and El-Haggar, 2006; Callan and Thomas, 2001) nor 

with the survey by Folz (1999a,b) that implied a consistent advantage for recycling. Rather, these 



19 

cases suggest that the economic advantage for recycling is contingent, as was found by Emery et 

al. (2007) for a few select conditions, Lombrano’s (2009) model with recovery rates more than 

30% or so, and Larsen et al.’s model (2010) with overall recovery rates of 20%-31%. Lavee’s 

study (2007) matched ours best, as his model accounted for changes in collection frequency and 

avoided costs, which our approach also addressed; however, his model assumed recycling 

resulted in positive revenues, which ours did not. We note that Judge and Becker (1993) also 

approached these issues in a similar fashion as we did. They balanced cost of recycling (defined 

as collection costs, calculated similarly to our effort here minus recyclables sales) versus disposal 

costs – but did not include any costs for collection of disposed wastes. 

We think our result is important because it looks at the systemic interactions of disposal 

and collection. For instance, most of the studies cited here do not consider differences in the 

number of trucks as collection emphases shift, but we found this to be a very important factor. 

Instead, because collection costs have been found to be on the order of 70% of all system costs in 

both Europe (Tavares et al., 2009) and the US (Ackerman, 1997; Bohm et al., 2010; but modified 

to “50-57% by Nguyen and Wilson, 2010), it has been assumed that the extra efforts that appear 

to be required for recycling necessarily cause greater overall costs. That diversion from disposal 

means less collection effort seems often to have been forgotten. Note that Everett et al. (1998) 

found overall costs decreased per ton as the rate rose, but Huhtala (1997) assumed the opposite; 

we found both to be true, over the ranges of rates we observed. 

For all of our case studies the first several tons of recyclables collection cause additional 

system costs. However, again for all cases, generally costs decrease as the next third of the waste 

stream is source separated, and overall system financial benefits are realized. However, 

depending on the balance between avoided costs, truck expenses, and increased labor and fuel 
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charges, additional savings associated with recycling are not guaranteed, as marginal costs can 

sometimes exceed benefits above a 31%-37% recycling rate (overall 46%-52% recovery rates if 

yard waste collection is conducted). Please note that by optimizing collection routing, Teixeira et 

al. (2004) were able to model route mileage reductions of 29%, and Arribas et al. (2010) were 

able to model decreases in overall system costs of up to 50%, which suggests that our assessment 

may be biased high due to inefficiencies in collection routing. 

New York State estimated waste composition for various sectors of New York 

populations (NYSDEC, 2010). Applying the residential suburban waste composition to the Town 

of Brookhaven suggests that 22.5% of the waste stream was mandated paper recyclables 

(newspaper, corrugated cardboard, mail, telephone books, magazines, and printed paper), and 

7.5% was mandated container recyclables (aluminum, steel, bi-metal, glass, and PET and HDPE 

plastic containers). This suggests that the maximum recovery rate for curbside recycling in a 

suburban residential program targeting this common set of materials is about 30%. Our model 

suggests that cost savings will accrue under common tip fee-labor cost-fuel cost scenarios if 

curbside recycling is maximized, therefore. Mandatory separate collection of yard wastes adds to 

systems savings under the avoided costs scenarios we considered. Increasing labor and fuel costs 

by 25% to address non-local management sites increased overall costs by 7.5%, and under some 

combinations of recyclables and compostables collection led to increased systems cost. 

However, if yard waste were to be banned from disposal (100% yard waste collection), then as 

little as 1.5% recyclables source separation (to a maximum of 65 tons per week, 59% recycling) 

causes system savings. 

Unit pricing is often identified as the soundest means of incorporating economic 

decision-making into waste management, and is often described as a good approach to increase 
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diversion and recycling rates, since recycling is explicitly no cost to residents but disposal has 

defined costs (Palmer and Walls, 1999; Gellynck and Verhelst, 2007; Reichenbach, 2008; 

Skumatz, 2008; van Beukering et al., 2009; Dahlen and Lagerqvist, 2010). These kinds of 

programs are difficult to implement in multi-family housing (Porter, 2004), which limits their 

applicability. Several studies also question whether trying to motivate individuals through 

economics is universally successful or even effective (Hong and Adams, 1999; Sterner and 

Bartelings, 1999; Jenkins et al., 2003; Pickin, 2008; Best, 2009; Dahlen and Lagerqvist, 2010; 

Kinnaman, 2010; DeJaeger et al., 2011). Here we show that fixed cost collection programs also 

can have favorable economics for recycling, albeit not functionally aimed at the waste producer. 

The implications of cost-effective recycling include: 

1) program managers can increase outreach-enforcement-reward efforts to increase 

recycling, knowing that additional collections will improve the system bottom line; 

2) commercial source separated recyclables collection, which is stillborn in many areas 

because of the difficulty of creating efficient collection routes, may be fostered. It is clear 

that efficiency is not key to realizing savings for the residential sector; rather, savings 

accrue from avoided costs and offsets of collection efforts, both of which should be 

realized with even fairly inefficient commercial routing. Greater efficiencies will increase 

profits, of course. 

3) Our analysis did not depend on robust recyclables markets. This suggests that even in 

poor markets these findings should hold. Therefore, those who wish to reduce the size 

and scope of municipal government, without losing provided services, could consider 

turning waste management over to the private sector. Private sector managers should 

realize that it is profitable to increase recovery rates, and so should take all possible steps 
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to encourage customers to source separate to the greatest degree possible. Thus, 

environmentally sound waste management could flow from desires to increase company 

profits. 

Our findings depend on realizing routing efficiencies as waste allocations change among 

different set-out possibilities. If real-world contingencies, such as union work rules or managerial 

inability to identify opportunities for more efficient truck allocations, interfere with achieving 

better arrangements of effort, then smaller savings will be realized. However, savings were 

generally commonplace, even when additional labor costs were added to simulate poor access to 

recycling or composting opportunities.  

It would seem that all that is necessary for achieving cost savings from curbside 

collection of recyclables, under an approximation of real world conditions, is to have some 

avoided costs between disposal and recovery options. This should hold both for residential 

collection, and, as near as we can tell, commercial collection. Previous considerations that 

collection costs overwhelm the savings do not appear to hold. This means that if efficient 

collection practices can be followed, considerable program savings should be achieved under 

most reasonable recovery conditions. 

5 Conclusions 

A number of analytical models have found that recycling is not cost effective unless 

environmental or household cost externalities are considered. We have shown here that over the 

effective scope of common curbside recycling programs, separate collection programs for yard 

waste and household recyclables make economic good sense. We used realistic values from a 

suburban New York waste management program, and also investigated tip fee scenarios that are 

not as overtly favorable to recycling. This suggests that program managers are justified in 
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pushing for increased recovery for cost effectiveness reasons alone. There is also the suggestion 

that these results would also apply to commercial collection routes – as they showed efficiency 

was not a necessary component to garnering cost savings. It also suggests that managers could 

devolve municipal programs onto the private sector, and that sage private industry managers 

would then seek to optimize source separation in order to increase profitability. 

In most of our scenarios, as the recycling rate rose above a certain level, overall system 

costs began to increase, as we did not alter the existing schedule of two days of MSW and one 

day of recyclables collection. An extension of this work to test if different orderings of 

collection, such as the San Francisco Fantastic Three (one MSW-one recyclable-one 

compostable collection per week) or Canadian programs where MSW is collected on a less than 

weekly schedule, also justify themselves economically would appear to be in order. 
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Appendix: Model Derivation 

The total amount of waste (Q) in a waste district served by a unique set of trucks is 

composed of three waste categories: disposed municipal solid waste (QMSW), recycled material 

(QRM), and separated yard waste (QYW). Each collection truck has a payload capacity, meaning 

the truck can carry an amount of waste less or equal to the payload. By the ceiling of a fraction, 

we mean the value of the fraction rounded up to the nearest integer. Thus, the number of truck 

loads for a certain class of waste is the ceiling fraction of the dividend of the waste managed 

divided by the assigned payload capacity.  

So, let TLMSW be the number of disposed solid waste (MSW) collection truck loads:  
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(Eq. A1) 

with 

 QMSW = disposed MSW in the district (tons) 

 PMSW  = average payload capacity of MSW collection truck (tons) 

Let TLRM be the number of recyclable material (RM) collection truck loads:  
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(Eq. A2) 

with 

 QRM = recycled waste in the district (tons) 

 PRM = average payload capacity of RM collection truck (tons) 

Let TLYW be the number of yard waste (YW) collection truck loads:  
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(Eq. A3) 

with 

 QYW = separated yard waste in the district (tons) 

 PYW = average payload capacity of YW collection truck (tons) 

The total number of truck loads required to manage the waste under all classifications in a week 

is TL: 

 YWRMMSW TLTLTLTL   

(Eq. A4) 

A single collection truck can be used for multiple collection trips in any day. The number of 

trucks needed to manage a waste classification is a function of the number of collection days for 

that waste class, the number of trips a crew makes in a day, and the respective truck loads of that 

waste class. The three equations are: 
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with 
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 TRMSW = number of trucks to manage MSW 

 TRRM = number of trucks to manage RM 

 TRYW = number of trucks to manage YW 

 CMSW = number of collection days week-1 for MSW 

 CRM = number of collection days week-1 for RM 

 CYW = number of collection days week-1 for YW 

 T = number of trips a crew can make in a day  

The total number of trucks needed to service an area (TR) is the maximum value of the trucks 

needed to manage different waste classifications, as it is assumed all classes of waste must be 

completely collected within the week, and each waste is collected on a unique day or days:  

 YWRMMSW TRTRTRMaxTR ,,  

(Eq. A8) 

Typically, a collection truck is operated by a driver and a helper for specific hours to collect and 

manage the truck load (effort hours). The total effort in a week (TE) is given by:  

eh TTL TE    

(Eq. A9) 

with 

 TL = total number of truck loads (derived in Eq. 5) 

 Teh = effort required for one truck load (hrs.) 

The total labor cost (L) is a function of the effort and wages:  

  H) (D TE L    

(Eq. A10) 

with 

 TE = total effort in a week (hrs.) (derived in Eq. 10)  

 D = Driver wage (dollars hr-1) 

 H = Helper wage (dollars hr-1) 

The total fuel cost for all operated trucks and truck trips in a week (Ftot) is a function of total 

effort hours that the trucks operate in a week and average cost of fuel consumed per hour: 
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hrtot  FTE F    

(Eq. A11) 

with  

TE = total effort in a week (hrs.) (derived in Eq. 10) 

Fhr = fuel cost hr-1 (dollars hr-1) 

The tip fee is the tariff paid to manage the collected wastes. Tip fees are charged per ton, and 

differ across waste classes. The total tip fee (TF) is: 

      YWYWRMRMMSWMSW  TF Q TF Q  TF QTF   

(Eq. A12) 

with 

 TFMSW = Tip fee for MSW (in dollars ton-1) 

 TFRM = Tip fee for RM (in dollars ton-1) 

 TFYW = Tip fee for YW (in dollars ton-1) 

The cost of owning the truck per month (Enet) is given by: 
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(Eq. A13) 

with 

Ecap = cost of the truck 

EIR = interest rate (percent mo-1) 

Epp = finance time (length of the contract) (mos.) 

A refuse collection truck is a tangible asset with certain operating life and its value depreciates 

throughout its service life. The depreciation rate (using straight-line depreciation method) is 

computed here simply as  

serv
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(Eq. A14) 

with  

Dpp = depreciation per payment period 

Esalv = salvage value of the truck 

Eserv = service life of the truck 

The trucks are mechanically operated heavy motor vehicles and need regular maintenance and 

insurance. Weekly financial cost for each truck (FI) is given by, 

CFICMCEFI net /)(   

(Eq. A15) 

with  

Enet = Cost of owning the truck per month (derived in Eq. A13) 

MC = Average truck maintenance cost per month 

IC = Truck insurance cost per month 

CF = monthly to weekly conversion factor (4.35 = 365/7/12) 

The total financial cost (TFI) is dependent on the number of trucks needed: 

 FITR TFI    

(Eq. A16) 

with 

 TR = total number of trucks needed to service the area (derived in Eq. 9) 

 FI = the financial cost for each truck (derived in Eq. 16) 
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Tables 

Parameter Value 

Payload capacity, MSW PMSW 9 tons 

Payload capacity, recyclables PRM 8 tons 

Payload capacity, yard waste PYW 9 tons 

Maximum number of trips day-1 (maximum of T) 2 

Driver wage D $29.36 

Helper wage H $23.77 

Fuel cost hour-1 Fhr $10 

Truck capital cost Ecap $250,000 

Interest rate EIR 3% 

Truck payment period Epp 7 yrs. 

Truck service life Eserv 10 yrs. 

Truck salvage value Esalv $50,000 

Maintenance cost week-1 $126 

Insurance cost week-1 $92 

Financial cost (Lease payments, maintenance costs, and insurance costs ) week-1 FI $878 

Profit 0% 

 

Table 1. Baseline Parameterization 
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Case 1 2 3 4 5 6 7* 

MSW tip fee (ton-1) $80 $80 $80 $80 $40 $40 $40 

Recyclables cost (ton-1) $20 $20 $20 $20 $20 $20 $20 

Truck financing Own Own Lease Lease Lease Lease Lease 

YW collection No Yes No Yes No Yes Yes 

YW cost (ton-1) - $45 - $45 - $10 $10 

* 25% more time required to collect waste for each truck to account for greater distance to 

facilities 

 

Table 2. Cases for the model 
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Case No Recovery cost Max. cost Recyclables max Min. cost Recyclables min 

1 $22,104 $25,018 129 $17,498 48 

2 $22,104 $24,983 129 

(YW = 1) 

$16,798 48 

(YW = 20) 

3 $17,701 $17,894 1 $13,869 112 

4 $17,701 $18,111 1 

(YW = 1) 

$13,239 112 

(YW = 18) 

5 $12,501 $15,071 129 $10,823 40 

6 $12,501 $15,041 129 

(YW = 1) 

$10,283 40 

(YW = 18) 

7 $12,501 $16,177 129 

(YW = 1) 

$11,230 40 

YW = 18 

 

Table 3. Maximum and minimum costs week-1, at associated recyclables tonnages (total of 130 

tons) 
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Figure Captions 

Figure 1. Case 1 (solid line) and Case 2 (20 tons week-1 yard waste collection) (dashed line) 

weekly costs 

Figure 2. Case 1 elasticity associated with changes in recycling tonnages (RM) 

Figure 3. Weekly costs for Case 3 
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