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RESEARCH ARTICLE
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Abstract

Background

Incidence and mortality rates of colorectal carcinoma (CRC) are higher in African Americans

(AAs) than in Caucasian Americans (CAs). Deficient micronutrient intake due to dietary

restrictions in racial/ethnic populations can alter genetic and molecular profiles leading to

dysregulated methylation patterns and the inheritance of somatic to germline mutations.

Materials and Methods

Total DNA and RNA samples of paired tumor and adjacent normal colon tissues were pre-

pared from AA and CA CRC specimens. Reduced Representation Bisulfite Sequencing

(RRBS) and RNA sequencing were employed to evaluate total genome methylation of 5’-

regulatory regions and dysregulation of gene expression, respectively. Robust analysis

was conducted using a trimming-and-retrieving scheme for RRBS library mapping in con-

junction with the BStool toolkit.

Results

DNA from the tumor of AA CRC patients, compared to adjacent normal tissues, contained

1,588 hypermethylated and 100 hypomethylated differentially methylated regions (DMRs).

Whereas, 109 hypermethylated and 4 hypomethylated DMRs were observed in DNA from

the tumor of CA CRC patients; representing a 14.6-fold and 25-fold change, respectively.

Specifically; CHL1, 4 anti-inflammatory genes (i.e., NELL1, GDF1, ARHGEF4, and ITGA4),

and 7 miRNAs (of which miR-9-3p and miR-124-3p have been implicated in CRC) were

hypermethylated in DNA samples from AA patients with CRC. From the same sample set,

RNAseq analysis revealed 108 downregulated genes (including 14 ribosomal proteins) and

34 upregulated genes (including POLR2B and CYP1B1 [targets of miR-124-3p]) in AA

patients with CRC versus CA patients.
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Conclusion

DNAmethylation profile and/or products of its downstream targets could serve as bio-

marker(s) addressing racial health disparity.

Introduction
The incidence and mortality rates of colorectal cancer (CRC) in the United States are higher in
African Americans (AAs) as compared to all other ethnic/racial groups [1]. One report illus-
trated a 30–50% higher rate of CRC mortality in AAs post-diagnosis compared to CAs. More-
over, this racial health disparity continues to expand despite increased CRC screening [2–7].
AAs also develop and are diagnosed with CRC at a younger age compared to CAs [8]. Cumula-
tively, it is hypothesized that 1) epigenetic or molecular differences elicit this prevalent racial
disparity, and 2) socio-economic factors are at least partly responsible for these variances. In
addition, the initiation and progression of CRC is linked to chronic intestinal inflammation. In
North America, the risk of CRC in patients with inflammatory bowel disease is 2 times greater
as compared to the general population [9].

It is well documented that factors such as diet and lack of preventive medical care are influ-
ential in incidence and early detection of disease. 12% of all CRC cases, regardless of ethnic
background or other demographic factors, are attributed to a Western diet/nutrition [10].
Recent epidemiological studies have concluded that the abundance or deficiency of specific die-
tary micronutrients increases the risk for development and progression of CRC. For example,
dietary folate levels regulate nucleotide synthesis and impact DNA methylation, which in turn
alters cell proliferation, DNA repair and genomic stability [11]. Disparity in CRC incidence
and ethnic genomic variation may have a direct correlation due in part to ethnic dietary pat-
terns. Importantly somatic mutations may progressively become germline mutations [12]. For
example, the p53 tumor suppressor gene, known to be mutated in over 50% of all human can-
cers [13], has unique polymorphisms within AAs further contributing to racial disparity seen
in CRC patients [14].

Aberrant CpG island hypermethylation at the promoter of tumor suppressor transcription
factors [15] and hypomethylation of oncogenes [16] are important mechanisms for gene inacti-
vation or activation, respectively. This aberration is influential in accumulating genomic alter-
ations leading to carcinogenesis. While many studies seek to define methylation patterns in
CRC across the broad population, little is known about the role epigenetic differences play in
racial/ethnic health disparity. For instance, sporadic CRC caused by promoter hypermethyla-
tion of the mismatch repair gene MLH1 could result in underlying genetic predisposition for
AA in later generations [17]. Such is true in hereditary non-polyposis CRC with germline
mutations in mismatch repair genes MLH1, MLH2, MSH6, and PMS2. Resulting microsatellite
instabilities (MSIs) disproportionately occur in AAs compared to CAs which contribute to
accelerated CRC progression [18]. In addition, dysregulation of microRNAs (miRNAs) are
well-documented across many types of cancers and are potential biomarkers for cancer classifi-
cation and prognosis [19]. The mechanism underlying miRNA dysregulation in cancer is not
fully understood; however, recent studies have shown that epigenetic mechanisms play impor-
tant roles in the regulation of miRNA expression [20]. Importantly, miRNAs can act as either
tumor suppressors by inhibiting oncogenic gene expression or, conversely, as oncomirs by
inhibiting tumor suppressor gene expression.

Here, we demonstrate that AA CRC specimens have significantly higher levels of hyper-
and hypomethylation versus CA CRC specimens. Comparative analysis was conducted to elu-
cidate epigenetic differences that may be drivers of racial disparity seen in incidence of CRC.

Aberrant DNAMethylation and Racial Health Disparity
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Association of aberrant methylation to its effects on downstream gene transcription was
assessed by RNA sequencing. Here, we report that hypermethylation of the anti-inflammatory
transcription factors NELL1, GDF1, ARHGEF4, and ITGA4 and multiple miRNAs including
miR-9-3p and miR-124-3p may be factors driving the disparity observed in incidence of CRC
between racial and ethnic groups. We also reveal, as determined by RNA sequencing analysis,
that two targets of miR-124-3p (Polymerase (RNA) II Polypeptide B (POLR2B) and Cyto-
chrome P450, Family 1, Subfamily B, Polypeptide 1 (CYP1B1)) are upregulated and 14 ribo-
somal proteins (RPs) are downregulated in tumors of AA CRC patients. This would suggest
that functional and genetic studies are necessary to determine which hyper/hypomethylation
events are truly relevant to human tumorigenesis and contribute to racial health disparity.

Materials and Methods

Ethics statement
This study was approved by the Washington University (WU) School of Medicine-St. Louis
and Stony Brook University (SBU) Institutional Review Boards, approval #93677–16. Tissues
were obtained from the WU (http://www.siteman.wustl.edu/ContentPage.aspx?id=243) and
SBU human biobanks. The samples and clinical metadata were de-identified, assigned inde-
pendent patient and sample codes prior to release to the researchers, and qualified for a waiver
of consent per 45CFR46.116.d.

Nucleic acid extraction fromWU colon cancer tumor and adjacent
normal colon tissue samples
Total DNA and total RNA were prepared by and acquired from the Siteman Cancer Center
Tissue Procurement Facility at Washington University (WU)-St. Louis for 6 AA and 7 CA
colon cancer patients who underwent colon cancer surgery at Barnes Jewish Hospital. The total
RNA was extracted from the 13 pairs of snap-frozen tumors and adjacent matching normal
colon using TRIzol followed by lithium precipitation (Invitrogen, Carlsbad, CA) according to
the manufacturer’s protocol. RNA was qualitatively and quantitatively assessed using a Nano-
drop 2000C (Thermo Scientific, Waltham, MA).

DNAmethylation at CpG islands
Methylation of the 5’-regulatory region of the genome was analyzed by Reduced Representa-
tion Bisulfite Sequencing (RRBS) using the ABI 37370 (Applied Biosystems, Foster City, CA)
with a 48 cm capillary array (Cold Spring Harbor Laboratory [CSHL] Core Facility).

RNA sequencing
RNA sequencing analysis was conducted by Illumina sequencing (CSHL core facility). A False
Discovery Rate (FDR) of 0.05 was used to determine differentially expressed genes. Genes
selected were analyzed for log2 transformed fold change of expression level in tumor tissues
compared to adjacent normal tissues. Those�0.05 were disregarded in the analyses.

Statistical analysis
A trimming-and-retrieving alignment scheme, recently described by our group, was use for
accurate global profiling of DNA methylation. This algorithm is specifically designed for the
mapping of bisulfite converted reads from RRBS libraries. The methylation percentage calling
is performed by counting methylated and unmethylated bases (and their ratio) on each site

Aberrant DNAMethylation and Racial Health Disparity

PLOS ONE | DOI:10.1371/journal.pone.0153125 April 25, 2016 3 / 16

http://www.siteman.wustl.edu/ContentPage.aspx?id=243


that is a C in the reference genome. This strategy ensures both accurate bisulfite-converted
read alignment and methylation calling [21].

Results

Demographics of colon cancer subjects
The clinical metadata available for the WU samples were limited to age (at time of surgical
resection of the tumor), sex (male/female) and race (AA or CA). DNA and RNA samples iso-
lated from paired tumor and adjacent normal colon were prepared from 6 AA and 7 CA sub-
jects. The average ages of the AA subjects (72.7±3.6) and CA subjects (62.4±6.3) were not
significantly different. Similarly, the sex distribution was comparable between AA (3 female, 2
male, 1 unspecified) and CA (4 female, 3 male) patients.

Increased genome-wide methylation in AA patients with colon cancer
The total DNAmethylation profiles of AA and CA CRC patients were examined using RRBS
and analyzed using the BStool toolkit with a trimming-and-retrieving scheme. In total, there
was a significantly greater number of DMR regions across the AA colon cancer samples com-
pared to that found in samples of CA colon cancer patients. In DNA samples examined from
AA patients, 27,059 methylated CpG sites were detected in 1,688 DMRs. 93% (1,569 sites) of
methylated CpG sites was located within the island regions whereas 4% (67 sites) was within
the shore regions. Furthermore, 15.8% (266 DMRs) of methylated DMRs was contained within
the promoter, 5.4% (91 DMRs) spanned the promoter and gene body, and a majority (58.9%;
995 DMRs) existed within the gene body (Fig 1A). In comparison, 764 methylated CpG sites

Fig 1. Aberrant methylation in tumors of AA patients with CRC. (A) A total of 27,059 methylated CpG sites were detected in 1,688 DMRs in AA CRC
specimens. (B) 1,588 DMRs (94.1% of total DMRs) were hypermethylated, and (C) 100 DMRs (5.9%) were hypomethylated.

doi:10.1371/journal.pone.0153125.g001

Aberrant DNAMethylation and Racial Health Disparity
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were identified across 113 DMRs of DNA from tumor samples of CA. 96.5% (109 sites) of
methylated CpG sites was found within the island regions whereas 2.7% (3 sites) was within
the shore regions. Furthermore, 21.2% (24 DMRs) of methylated DMRs was located within the
promoter, 0.9% (1 DMR) spanned the promoter and gene body, and a majority (59.3%; 67
DMRs) existed within the gene body (Fig 2A). This represents a 35.4-fold and a 14.9-fold dif-
ference in methylated CpG sites and in DMRs in AA patients, respectively, with no observed
differences in the percent composition of CpG sites (islands and shores) or DMRs (promoter,
promoter and gene body, and gene body).

The rates of hyper- and hypomethylation were also analyzed for both sample sets. In DNA
obtained from AA tumor samples, 1,588 DMRs were hypermethylated of which 95.8% (1,521
sites) was within CpG islands and 3% (48 sites) was within shores, and 16.7% (265 DMRs) was
within the promoter, 5.7% (91 DMRs) spanned the promoter and gene body, and 58.4% (928
DMRs) was within the gene body (Fig 1B). In DNA from CA CRC specimens, 109 DMRs were
hypermethylated of which 97.2% (106 sites) was within CpG islands and 1.8% (2 sites) was
within shores, and 22% (24 DMRs) was within the promoter, 0.9% (1 DMR) spanned the pro-
moter and gene body, and 57.8% (63 DMRs) was within the gene body (Fig 2B). Additionally,
100 DMRs were hypomethylated (5.9% of total DMRs) in AA CRC samples of which 48.8%
(48 sites) was within CpG islands and 19% (19 sites) was within shores, and 1% (1 DMR) was
within the promoter, 0% spanned the promoter and gene body, and 67% (67 DMRs) was
within the gene body (Fig 1C). In contrast, 4 hypomethylated DMRs (3.5% of total DMRs)
were observed in DNA obtained from CA tumor and compared to normal samples of which

Fig 2. Aberrant methylation in tumors of CA patients with CRC. (A) 764 methylated CpG sites were identified across 113 DMRs in CA CRC specimens.
(B) 109 DMRs (96.5% of total DMRs) were hypermethylated, and (C) 4 DMRs (3.5%) were hypomethylated. Aberrant methylation occurs in CA patients, but
not to the same extent as for AA patients with CRC.

doi:10.1371/journal.pone.0153125.g002

Aberrant DNAMethylation and Racial Health Disparity
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75% (3 sites) was within CpG islands and 25% (1 site) was within shores, and 100% (4 DMRs)
was within the gene body (Fig 2C).

Genes are differentially methylated in AA CRC compared to CA CRC
Genes were ranked by their statistical significance of differential methylation for both AA and
CA specimens compared to their respective matched normal tissue samples. An abridged list
contains 23 hypermethylated genes and 4 hypomethylated genes (CACNA2D4;LRTM2,
ESPNL, SECTM1, PCDH8) for AA tumor samples; whereas, 29 hypermethylated genes and 1
hypomethylated gene (BRSK2) are listed for the CA tumor samples (Table 1). These lists were
then cross-referenced in order to illustrate shared differentially methylated genes in the AA
and CA samples. 2 hypermethylated genes (CCDC178 and FLI1) were common between the
two sample sets. Of note, the hypermethylation of CHL1, a member of neuronal cell adhesion
molecules involved in neuronal development and synaptic plasticity, was found in AA CRC
but not CA CRC.

Table 1. Annotated list of the highest differentially methylated genes for AA and CA CRC specimens, ranked by statistical significance.

African American Tumor Sample Caucasian American Tumor Sample

Gene p-value Gene p-value

CACNA2D4;LRTM2 3.49E-25 QKI;CAHM 3.88E-29

FENDRR 4.77E-18 BRSK2 3.21E-17

APC2 8.43E-18 NDRG4 1.53E-16

GSC 1.16E-16 SDC2 2.73E-16

CHL1 4.64E-16 PHYHIPL 6.78E-15

KIAA1211L 1.26E-15 VWC2 2.01E-14

KCNA1 3.42E-15 GPR75-ASB3;GPR75 2.22E-14

ESPNL 5.85E-15 FBLL1 2.19E-13

LHX5 2.32E-14 LOC146880 4.14E-13

HOXA3 3.90E-14 FGF14 8.28E-12

LINC01398 3.31E-13 SH3GL3 8.48E-12

PTPRN2 3.53E-13 ESR1 3.28E-11

ECEL1 1.23E-12 FGF12 7.20E-11

GPR158;GPR158-AS1 1.88E-12 FLI1 3.01E-10

IFITM10 1.91E-12 ERICH1-AS1 4.03E-10

NELL1 2.39E-12 NRG3 5.61E-10

NPR3 2.40E-12 CCDC178 9.01E-10

MMD2 2.89E-12 CHST2 9.23E-10

C9orf50; NTMT1 9.34E-12 KCNG3 1.28E-09

CCDC178 1.05E-11 GDF6 6.50E-09

FLI1; SENCR 1.32E-11 HS3ST2 6.58E-09

C8orf34;LOC286189 2.42E-11 FLI1 8.38E-09

MDFI;MDFI 2.50E-11 ADAMTS2 1.57E-08

GUCY2D 3.02E-11 NKX6-2 2.02E-08

SECTM1 3.65E-11 RASA3 2.78E-08

GDF1;CERS1 4.15E-11 SLC6A2 3.13E-08

PCDH8;PCDH8 4.21E-11 CDH4 6.17E-08

ALX4 7.18E-08

FAM19A5 8.17E-08

ANKRD13B 9.54E-08

doi:10.1371/journal.pone.0153125.t001

Aberrant DNAMethylation and Racial Health Disparity
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Racial disparity of differentially methylated microRNAs in CRC
Within the entire DNA methlyome of AA CRC specimens, 7 microRNAs were found to be
hypermethylated compared to the respective matching adjacent normal tissue (Table 2) includ-
ing miR-9-3p and miR-124-3p (S1 Fig). Likewise, two isoforms of miR-34 were the only miR-
NAs found to be hypermethylated in CA CRC samples. This study was unable to distinguish
miRNAs that were significantly hypomethylated in either AA or CA tumors.

Differential gene expression in AA CRC
RNA sequencing was conducted using total RNA from the same patient CRC samples that
were submitted for DNAmethylation analysis. Analysis was first used to identify differentially
expressed genes within the ethnic background for both AA and CA by evaluating CRC speci-
mens against the respective matching adjacent normal tissues. For all analysis, only genes with
p< 0.05 and a False Discovery Rate (FDR)< 0.05 were considered to be dysregulated. In AA
CRC, 205 genes were downregulated (S1 Table) and 150 genes were upregulated (S2 Table)
compared to the normal tissue (Fig 3A). Two miRNAs were reported within these differentially
regulated genes; miR-4253 was upregulated and miR-3074 was downregulated. In the CA CRC
specimens, 7 genes were upregulated (S3 Table) whereas no genes were reported to be downre-
gulated when compared to normal adjacent tissue. Additionally, only SLCO4A1 and OXGR1
were upregulated in both AA and CA cases of CRC.

To evaluate the disparity of gene dysregulation between race, results obtained from AA
CRC specimens were statistically analyzed against those results obtained from specimens of
CA CRC. 108 genes were downregulated (S4 Table) and 34 genes were upregulated (S5 Table)
in tumors of AA CRC patients versus CA CRC (Fig 3B). The top 15 downregulated and upre-
gulated genes ranked by statistical significance are shown in Table 3 and Table 4, respectively.
miR-1279 was found to be differentially upregulated in AA CRC compared to CA CRC, and
was the only miRNA dysregulated between tumors of AA and CA CRC patients. Most strik-
ingly, of the 108 genes downregulated in AA CRC tumors, 14 were ribosomal proteins includ-
ing 10 members of the large 60S subunit (RPL7A, RPL8, RPL13, RPL13A, RPL18, RPL28,
RPL29, RPL36, RPLP0, and RPLP1), 3 members of the small 40S subunit (RPS2, RPS15, and
RPS19), and 1 mitochondrial ribosomal protein (MRPL12) of the large 39S subunit (Table 5).
Additionally, two targets of miR-124-3p (POLR2Band CYP1B1) were upregulated.

Discussion
Chronic colonic inflammation from inflammatory bowel diseases (IBDs) results in a well-rec-
ognized increased risk of colon carcinogenesis [44–47]. As stated by Rubin et al, “It has become

Table 2. Differently methylated miRNAs in AA and CA CRC specimens, ranked by statistical
significance.

African American Tumor Sample Caucasian American Tumor Sample

miRNA p-value miRNA p-value

miR-137HG;miR-2682 9.94E-11 miR-34b;miR-34c 2.51E-07

miR-9-3 2.01E-05

miR-663A;miR-663AHG 5.84E-05

miR-6130;RORB 6.65E-05

miR-548AO 0.00016

miR-124-3 0.000747316

doi:10.1371/journal.pone.0153125.t002

Aberrant DNAMethylation and Racial Health Disparity
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increasingly clear that IBD is a polygenic, complex disorder with region- and ethnic-specific
differences in genetic risk factors. In the past several years, progress in understanding the
molecular basis of IBD has accelerated, beginning with the generation of animal models of coli-
tis and progressing to the identification of specific genetic markers from candidate gene, gene
linkage, and genome-wide association analyses” [48]. Therefore suppression of anti-inflamma-
tory transcription factors, as with hypermethylation, would promote the development and pro-
gression of CRC. Here, we observed the aberrant hypermethylation of several genes that are
implicated in anti-inflammatory mechanisms including NEL-Like 1 (NELL1) [49], Growth
Differentiation Factor 1 (GDF1) [50], and Rho Guanine Nucleotide Exchange Factor (ARH-
GEF4) [51], and Integrin Alpha 4 (ITGA4) [52] in AA CRC but not CA CRC. Previous studies
have demonstrated that ITGA4 is hypermethylated in inflamed colon tissue/colitis, and that
the treatment of anti-ITGA4 antibodies further aggravate colitis by IL-1β, TNF-α, and IFN-γ
recruitment [53]. Conversely, the treatment of ITGA4 antibodies in combination with

Fig 3. Dysregulation of gene expression is more prominent in AA compared to CA patients with CRC.
(A) 205 genes were downregulated and 150 genes were upregulated in AA CRC compared to matching
normal adjacent tissue. (B) 108 genes were downregulated and 34 genes were upregulated in AA CRC
compared to CA CRC.

doi:10.1371/journal.pone.0153125.g003

Aberrant DNAMethylation and Racial Health Disparity
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conventional therapies alleviated colitis by suppression of IL-1β and iNOS in mouse models
[54]. If these anti-inflammatory genes are constitutively hypermethylated in tumors of AA
CRC patients, these proteins could potentially drive CRC initiation and progression and
thereby serve as targets for pharmaceutical intervention and therapy.

Similarly, examining differentially methylated miRNAs and their effects on presumptive
downstream gene targets is also critical in understanding the epigenetic variances responsible
for increased incidence and mortality of CRC in African Americans. Here, we demonstrate
that 7 miRNAs are hypermethylated in AA CRC specimens via RRBS. Two of these miRNAs
have been implicated in the initiation of CRC; miR-9 and miR-124. miR-9 is downregulated in

Table 3. Annotated list of differentially downregulated genes in AA CRC compared to CA CRC, ranked
by statistical significance.

Gene Fold Change (log2) p-value FDR

RPL13 -2.650 6.91E-09 6.41E-05

HMGCS2 -4.244 1.55E-08 7.20E-05

MYH14 -2.591 4.15E-08 0.00013

TFF3 -3.381 1.13E-07 0.00023

CES2 -2.945 1.71E-07 0.00023

KRT19 -3.054 1.80E-07 0.00023

RPS2 -2.739 1.87E-07 0.00023

FAM3D -3.447 2.02E-07 0.00023

RPL36 -2.350 2.39E-07 0.00025

RPL28 -2.351 4.69E-07 0.00037

C10orf99 -3.804 8.22E-07 0.00051

CDX1 -3.132 1.08E-06 0.00060

CHMP4B -1.693 1.10E-06 0.00060

CXCL14 -2.548 1.20E-06 0.00062

YBX1 -1.786 1.65E-06 0.00081

doi:10.1371/journal.pone.0153125.t003

Table 4. Annotated list of differentially upregulated genes in AA CRC compared to CA CRC, ranked
by statistical significance.

Gene Fold Change (log2) p-value FDR

THBS2 2.192 3.22E-07 0.00030

MNS1 1.920 4.73E-07 0.00037

BDNF-AS1 3.451 5.83E-07 0.00041

PCA3 3.530 6.24E-07 0.00041

DNM1P46 2.911 4.53E-06 0.00200

CYP1B1 3.149 1.15E-05 0.00357

OBSCN 2.066 1.61E-05 0.00428

BCAT1 2.980 3.63E-05 0.00823

RNF224 2.672 4.27E-05 0.00863

ZNF772 2.993 5.85E-05 0.01024

MAP4K4 1.452 6.52E-05 0.01070

EMB 2.660 8.19E-05 0.01226

MIR1279 1.563 8.65E-05 0.01249

SLC2A3 2.647 8.74E-05 0.01249

ZFHX4 3.021 0.00014 0.01745

doi:10.1371/journal.pone.0153125.t004
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CRC resulting in the promotion of tumor survival and proliferation [55, 56]. Increased mortal-
ity rates are correlated with this inhibition [57]. miR-124 inhibits CRC progression in vitro and
in vivo [58] and is suppressed in clinical specimens associated with IBD [59].

Analysis of altered downstream gene expression validates the observation of aberrant meth-
ylation. The upregulation of POLR2B and CYP1B1, 2 known targets of miR-124-3p [60], in
AA CRC but not in CA CRC was the result of the hypermethylation of miR-124-3p. POLR2B,
a DNA-dependent RNA polymerase, catalyzes the transcription of DNA to mRNA, micro-
RNA, and small non-coding RNAs [61], and while POLR2B is not known to have a prominent
role in the tumorigenesis and progression of cancer(s), a specific haplotype derived from single
nucleotide polymorphisms (SNPs) is associated with an increased frequency of head and neck
cancers [62]. CYP1B1, a member of the monooxygenase cytochrome P450 family, catalyzes
drug metabolism and lipid synthesis. CYP1B1 localizes to the endoplasmic reticulum and
metabolizes a variety of procarcinogens and xenobiotics [63]. Previous studies have demon-
strated that CYP1B1 is overexpressed in colon cancers, and that the enzymatic activity is signif-
icantly higher in tumor specimens compared to normal colon tissue [64–66]. Interestingly,
overexpression of CYP1B1 leads to the metabolism/biotransformation of docetaxel in in vitro
models of breast cancer [67] and of flutamide, commonly prescribed in prostate cancer [68];
resulting in acquired chemotherapeutic resistance. Our preliminary data indicated that

Table 5. Ribosomal proteins are downregulated in AA CRC vs CA CRC.

Ribosomal
Subunit

Protein Extraribosomal Function(s) in Homo Sapiens Expression Profile in CRC

RPL7a Rearranges with the TRK proto-oncogene thus encoding an oncoprotein
consisting of the N-terminus of RPL7a fused to the receptor TRK domain
[22]

Unknown

RPL8 Unknown Upregulated [23]

RPL13 Unknown Unknown; Overexpression in GI cancers leads
to tumor growth and chemoresistance [24]

RPL13a Reduces inflammation via IFN-γ-activated inhibitor of translation (GAIT)
complex [25, 26]

Downregulated [27]

RPL18 Prevents PKR activation when associated with the ribosome; Upregulated [23, 28]

60S Overexpression may promote protein synthesis and cell growth through
inhibition of PKR activity [29]

Downregulated [27]

RPL28 Unknown Upregulated [30]

Downregulated [27]

RPL29 Unknown; Knockdown in HT-29 cells induces overexpression of p21 and
p53 and cell differentiation in vitro [31]

Upregulated [23]

Downregulated [32]

RPL36 Unknown Hypermethylated [33]

RPLP0 Regulates tumor progression, invasion, metastasis, and differentiation by
influencing p21 and p53 expression [34, 35]

Upregulated [28, 34]

RPLP1 Induces immortalization and proliferation in MEFs via activation of E2F
transcription factors [36]

Upregulated with an accumulation of mutant
p53 [36]

RPS2 Implicated in the regulation of cell growth and proliferation [37, 38] Unknown

40S RPS15 Binds to MDM2 thus activating p53 and cell cycle arrest [39] Unknown

RPS19 In vitro knockdown 1) activates inflammation via p53-dependent TNF-α
expression, and p38 MAPK expression leading to tumorigenesis, growth,
and metastasis [40], and 2) decreases differentiation/maturation via
GATA1 suppression [41]

Upregulated [23, 42]

Mito 39S MRPL12 Binds to mitochondrial RNA polymerase POLRMT to promote
transcription [43]

Unknown

doi:10.1371/journal.pone.0153125.t005
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chemoresponse to 5-Fluorouracil was lower in an in vivo patient-derived mouse xenograft
model of AA CRC but not in that of CA CRC (data not shown). The overexpression of
CYP1B1 and consequential chemotherapeutic resistance in AA CRC is potentially a new ave-
nue of investigation for defining effective treatments for CRC.

In the same vein, the dysregulation of RPs is a fundamental observation in nearly all carci-
nomas [69]. Identifying and characterizing disease-specific expression profile aids in the
understanding and treatment of disease. Although RPs are primarily involved in translation,
many have known secondary extraribosomal functions in cell proliferation, differentiation,
tumorigenesis, and/or metastasis [69]. Even more roles are likely to exist as many RPs are not
fully characterized. Conflicting reports have been published on the expression patterns of RPs
in CRC. It may be intuitive that RPs would be constitutively upregulated in carcinomas as
hyperactive translation contributes to uncontrolled proliferation, however several findings
including our current data conclude that specific RPs are in fact downregulated in CRC. We
have illustrated that 14 RPs are downregulated in AA CRC versus CA CRC including 10 mem-
bers of the large 60S subunit, 3 members of the small 40S subunit, and 1 mitochondrial ribo-
somal protein of the large 39S subunit. Experimental design (i.e. specimen collection, sample
size) and demographic data (age, sex, race/ethnicity) may contribute to contradictory results,
but a biological explanation may lie within the extraribosomal functions of these RPs. For
example, RPL13a regulates IFN-γ-activated inhibitor of translation complex-mediated inflam-
mation, and silencing of RPL13a in macrophages results in the overexpression of inflammatory
chemokines and systemic macrophage infiltration [25, 26]. In vitro knockdown of RPS19 in
hematopoietic progenitor cells activates inflammation via increased p53-dependent TNF-α
expression. Downregulated GATA1 expression mediated by p38 MAPK preventing hemato-
poietic differentiation was also observed, which may promote tumorigenesis, growth, and
metastasis [40, 41]. Decreased RPL13a and RPS19 expression in AA CRC may contribute to
inflammation, thus predisposing AAs to increased incidence and severity of CRC as previously
discussed. Furthermore, the suppressed expression of ribosomal subunits, together with the
hypermethylation of miR-124-3p and resulting upregulation of POLR2B, suggests a key role
for aberrant mRNA transcription in the incidence of CRC for AA that is altogether unique
from CA CRC patients. Overall, dysregulated transcription levels could result in increased cell
proliferation and growth, migration/metastasis to secondary tissues, and acquired
chemoresistance.

An important mechanism of tumorigenesis is epigenetic silencing of selected genes such as
tumor suppressor or inflammation genes, by promoter methylation or by miRNAs. Here, our
results demonstrate that hypermethylation of CHL1 was found to be significantly increased in
the CRC tumors of AA as compared to CA patients. Hypermethylation of CHL1 is reportedly
associated with its downregulation of gene expression. Downregulation of CHL1 has been
implicated in several cancers including 48% of all CRC cases [70], and hypermethylation of
CHL1 is associated with increased rates of deletions and MSIs in Iranian CRC specimens [71].
Still, the role of CHL1 in CRC is not fully understood or characterized. Interestingly, micro-
RNA-182 is a negative regulator of CHL1 in human papillary thyroid carcinoma (PTC) with
overexpression of miR-182 suppressing CHL1 and therefore promoting PTC cell proliferation
and invasion [72]. Indeed, our lab has previously demonstrated overexpression of miR-182 in
AA compared to CA CRC tumor samples [73].

These, and our previous findings, have provided potential candidates for addressing racial
disparity in CRC. Overall, understanding dysregulation of methylation patterns in CRC will
provide us with the tools for preventive or therapeutic interventions.
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