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RESEARCH ARTICLE
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Abstract
The bacterial stringent response is triggered by deficiencies of available nutrients and other

environmental stresses. It is mediated by 5'-triphosphate-guanosine-3'-diphosphate and 5'-

diphosphate-guanosine-3'-diphosphate (collectively (p)ppGpp) and generates global

changes in gene expression and metabolism that enable bacteria to adapt to and survive

these challenges. Borrelia burgdorferi encounters multiple stressors in its cycling between

ticks and mammals that could trigger the stringent response. We have previously shown

that the B. burgdorferi stringent response is mediated by a single enzyme, RelBbu, with both

(p)ppGpp synthase and hydrolase activities, and that a B. burgdorferi 297 relBbu null dele-

tion mutant was defective in adapting to stationary phase, incapable of down-regulating

synthesis of rRNA and could not infect mice. We have now used this deletion mutant and

microarray analysis to identify genes comprising the rel regulon in B. burgdorferi cultured at

34°C, and found that transcription of genes involved in glycerol metabolism is induced by

relBbu. Culture of the wild type parental strain, the relBbu deletion mutant and its comple-

mented derivative at 34°C and 25°C in media containing glucose or glycerol as principal

carbon sources revealed a growth defect in the mutant, most evident at the lower tempera-

ture. Transcriptional analysis of the glp operon for glycerol uptake and metabolism in these

three strains confirmed that relBbu was necessary and sufficient to increase transcription of

this operon in the presence of glycerol at both temperatures. These results confirm and ex-

tend previous findings regarding the stringent response in B. burgdorferi. They also demon-

strate that the stringent response regulates glycerol metabolism in this organism and is

likely crucial for its optimal growth in ticks.
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Introduction
Nutritional exigencies and other environmental challenges are met by bacteria through the use of
global regulatory pathways [1–4]. The comprehensive shifts in gene expression induced by these
regulatory pathways at the transcriptional and post-transcriptional level permit the rapid and
dramatic modulation of bacterial growth and metabolism needed to adapt to these challenges.
One of these global regulatory responses, the stringent response, is conserved in virtually all bac-
teria. It was originally described in Escherichia coli in association with amino acid scarcity, but
has subsequently been shown to be triggered by many other environmental stressors including
insufficiencies of iron, glucose and fatty acids [1–4]. It is mediated by the nucleotide alarmones
guanosine-3'-diphosphate-5'-diphosphate and guanosine-3'-diphosphate-5'-triphosphate (collec-
tively (p)ppGpp), each with a similar but distinct regulatory potential [1,2,5].

In E. coli, cytosolic levels of (p)ppGpp are regulated by RelA, a synthase, and SpoT, an en-
zyme with both synthase and hydrolase activities [1,4]. In other bacteria including B. burgdor-
feri, a single gene, rel or rsh (rel/spo homolog), encodes an enzyme with both synthase and
hydrolase activities [6–8]. In those bacteria with a single rel/rsh ortholog, the N-terminal do-
main is responsible for the dual enzymatic activity while the C-terminal domain contains po-
tential regulatory elements. Cytosolic levels of (p)ppGpp may also be controlled by other small
GTPases [9]. Triggering of the stringent response by uncharged tRNA and activation and diffu-
sion of ribosomal-bound RelA generates (p)ppGpp and leads to global changes in gene expres-
sion and intermediary metabolism [1–4]. These include decreased synthesis of stable rRNA
and tRNA, proteolysis of ribosomal proteins, increased synthesis of amino acids, inhibition of
motility, activation of rpoN-rpoS regulons and changes in carbon source utilization [1–3,10–
13]. The net result is a shift to a slow- or non-growing state. Once stresses triggering the strin-
gent response are removed, the short half-life of RelA/Rel and (p)ppGpp facilitates renewed
synthesis of macromolecules and resumption of growth [1–4]. The ability of (p)ppGpp to shift
transcription depends on its interaction with RNA polymerase, directing transcription from
σ70 promoters to alternative promoters [1–3,13,14] often in synergy with the small regulator,
DksA [11,12,15–17], as well as interactions with other proteins and regulatory RNAs [18]. In
E. coli, relA expression is also regulated by the carbon storage regulator CsrA [19].

The stringent response is involved in bacterial virulence at multiple levels, having been
shown to facilitate survival of extracellular pathogens in the host, transmissibility and persis-
tence of a variety of intracellular pathogens [18,20,21], production of toxins [22], and host-vec-
tor cycling of vector-transmitted pathogens [23,24]. It also appears to be involved in the
development of antimicrobial tolerance in bacteria by increasing the number of persister cells
in culture [25–27]. Mutants of pathogens unable to produce (p)ppGpp are generally attenuated
and have been proposed as live vaccines [24,28,29], while compounds able to block the produc-
tion of (p)ppGpp may have therapeutic potential [30].

The life cycle of Borrelia burgdorferi sensu lato depends on its survival in several tissues and
organs of ixodid tick vectors and mammalian reservoirs where it is exposed to challenging, vari-
able and rapidly shifting availability of a range of nutrients [31,32]. The two component system-
triggered regulatory pathway composed of Hk1/Rrp1/c-di-GMP increases borrelial survival dur-
ing the larval and nymphal blood meals [33,34]. This pathway stimulates B. burgdorferi glycerol
metabolism and together with genes of the glp operon is crucial for maximum fitness of the bac-
terium under these conditions [35,36]. Initial survival in mammalian reservoirs, in contrast, pre-
dominantly involves the Rrp2/RpoN(BosR)/RpoS cascade [33,34]. Linkage of other potential
global regulators to these regulatory loops in Borrelia spp. (e.g., the stringent response, the car-
bon storage regulator protein CsrA) is still being characterized [37–43].
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B. burgdorferi B31 contains a single chromosomal rel gene, relBbu (BB0198, nt195693–197696),
orthologous to E. coli relA and spoT [38,44,45]. Cloned relBbu transcribed from its own promoter
produced relBbumRNA and RelBbu protein [37], was the only source of (p)ppGpp production in
B. burgdorferi [37,38], and could complement an E. coli relA/spoT double null mutant [37]. The
stringent response in B. burgdorferi was ameliorated during in vitro growth in the presence of tick
cells and in engorged ticks [37,44]. Expression of relBbumRNA increased under in vitro condi-
tions that presumably simulate the unfed tick state [46]. Amounts of RelBbu were higher in B.
burgdorferi growing in dialysis membrane chambers in vivo than in organisms growing in vitro
despite similar levels of relBbumRNA under these two conditions [37]. A B. burgdorferi relBbu null
mutant (ΔrelBbu) did not down-regulate synthesis of rRNA in stationary phase, a phenotype re-
sembling that of a “relaxed” E. colimutant, and was not infectious in mice [38,47].

In order to expand our understanding of the role of relBbu and the stringent response in bor-
relial gene regulation and carbon source utilization, we have used B. burgdorferimicroarrays to
compare the global transcriptome in wild type B. burgdorferi 297 and its ΔrelBbu derivative dur-
ing in vitro growth, and found the mutant to have a substantially altered transcriptome. Addi-
tional analyses confirmed that genes involved in glycerol utilization and metabolism are
modulated by (p)ppGpp under these conditions [35,36].

Results

Effect of deletion of relBbu on B. burgdorferi gene expression during
exponential and stationary growth phases
The global alarmone nature of (p)ppGpp indicated that microarray analysis of wild type and
ΔrelBbu strains would be useful for examining the role of RelBbu and thus of (p)ppGpp in B. burg-
dorferi 297. From the multiplicity of growth conditions that could be chosen for these studies,
we focused on the role of RelBbu during in vitro growth at 34°C under two growth phases, expo-
nential and stationary. Genes were considered to have altered expression between wild type and
mutant strains if transcript levels differed by at least 2-fold at P� 0.02. Increased expression of
genes in the mutant relative to wild type implies (p)ppGpp-mediated repression of these genes
in the wild type, whereas decreased expression is consistent with (p)ppGpp-mediated induction
in the wild type. During the exponential phase of growth, 38 genes exhibited increased expres-
sion and 37 genes exhibited decreased expression in the mutant as compared to the parental B.
burgdorferi wild type strain (S1 Table). The ΔrelBbu phenotype was more evident during station-
ary phase: 174 genes showed increased expression and 103 showed decreased expression in
comparison to the wild type strain (S2 Table). Nineteen of 38 genes with higher expression in
the exponential phase in B. burgdorferi ΔrelBbu were also elevated in stationary phase; 25 of 37
genes with lower expression in exponential phase in the mutant were also lower in stationary
phase. These findings indicate that RelBbu regulates expression of these genes in a similar man-
ner in both exponential and stationary growth phases (S1 Table, S2 Table), and are also consis-
tent with the production of (p)ppGpp during both growth phases in vitro [48,49]

For validation of the microarray results, 16 genes (11 chromosomal, 5 plasmid) were select-
ed for analysis by quantitative reverse transcription real-time PCR (RT-PCR) (Fig. 1). These
genes were chosen on the basis of assigned functions: transcriptional regulators (dksA, rpoD);
metabolism/transporters (glpK, glpD,mvaA, apt, oppA-3, oppF, potC, potA, chbC); cell enve-
lope/membrane proteins (bmpD, BBA03, BBA74, BBB07, blyA). Expression levels of mRNA
determined by quantitative RT-PCR were consistent with results from microarrays for 10 of 16
genes in exponentially growing cells and for 15 of 16 genes in stationary phase cells (Fig. 1).
They were discordant for potA,mvaA, rpoD, apt, BBB07, and blyA whose expression in the
exponential phase was elevated in the mutant by RT-PCR but not by microarray analysis,

(p)ppGpp Modulates of Glycerol Metabolism in B. burgdorferi

PLOSONE | DOI:10.1371/journal.pone.0118063 February 17, 2015 3 / 19



and for oppF whose expression in the stationary phase was decreased in the mutant by microar-
ray but not by RT-PCR analysis (Table 1, S1 Table, S2 Table, Fig. 1).

B. burgdorferi RelBbu regulon in exponential and stationary growth
phases
More than 50% of the genes showing changes in transcriptional levels by microarray analysis
(S1 Table, S2 Table) are annotated as hypothetical proteins and have no predicted biological
role. This made functional analysis difficult. Genes with annotated functions in the B. burgdor-
feri RelBbu regulon included those encoding transcriptional regulators or proteins involved in
DNA synthesis and repair, cell division, protein synthesis, motility and chemotaxis, cell enve-
lope synthesis, central metabolism and carbon source transport (Table 1, Fig. 1). These are all
functions regulated by the stringent response in E. coli and other bacteria [1,12,50]

Several important transcriptional regulators were induced as a result of relBbu deletion. The
stringent response regulator dksA (BB0168) and σ70 (rpoD, BB0712) were upregulated in the
ΔrelBbu mutant in both exponential and stationary growth phases (Table 1, Fig. 1). Genes cod-
ing for the two-component regulatory system 1 were also upregulated in the ΔrelBbu mutant.
Expression of rrp1 (BB0419) increased in stationary phase while expression of sensory histidine
kinase hk1 (BB0420) increased in both growth phases (Table 1), indicating that expression of
these genes is repressed in the presence of (p)ppGpp. Neither rpoN nor rpoS was modulated by
the stringent response in B. burgdorferi. This lack of effect of the B. burgdorferi stringent re-
sponse on RpoS and OspC expression had been previously reported [38].

The relmutant exhibited altered expression for genes encoding proteins involved in central
metabolism and transport of carbon sources. Transcripts for two of the three subunits of the
chitobiose transporter, chbC (BBB04) and chbA (BBB05), were elevated in the mutant during
exponential phase and all three subunits (including chbB, BBB06) were elevated during

Fig 1. Transcriptional analysis by qRT-PCR of selected genes in B. burgdorferi 297ΔrelBbu relative to
expression of these genes in the wild type parental strain during (A) exponential and (B) stationary
phases of growth in BSK-H at 34°C. *, P< 0.02; **, P< 0.005; ***, P< 0.001. Genes selected either had
an assigned function and were regulated in operons, were involved in various aspects of cellular metabolism,
were regulatory in nature or were localized to the cell envelope. Increased expression of genes in the mutant
relative to wild type is consistent with rel-mediated repression of these genes in the wild type, while
decreased expression is consistent with rel-mediated induction in the wild type. RT-PCR data were
discordant with microarrays for potA,mvaA, rpoD, apt, BBB07, and blyA in the exponential phase of growth,
and for oppF in the stationary phase of growth. See Materials and Methods for details of transcriptional
analyses.

doi:10.1371/journal.pone.0118063.g001
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Table 1. Modulated selected genes with annotated function in B. burgdorferi 297 ΔrelBbu during growth in vitro at 34°Ca.

Gene Description Exponential phase Stationary phase

Mean expression
(log2 [ΔrelBbu/WT])

P Mean expression
(log2 [ΔrelBbu/WT])

P

Transcriptional regulators

BB0168 dnaK suppressor (dksA) 1.31 0.002 3.26 <0.001

BB0419 response regulatory protein (rrp-1) 1.42 0.001

BB0420 sensory transduction histidine kinase/response
regulator (hk1)

2.65 0.001 2.39 <0.001

BB0712 RNA polymerase σ70 factor (rpoD) 1.05 0.013 2.19 <0.001

DNA synthesis/repair

BB0022 Holliday junction DNA helicase (ruvB) 2.58 <0.001

BB0344 DNA helicase (uvrD) 2.79 0.006

BB0438 DNA polymerase III, β subunit (dnaN) 2.41 0.006 1.56 <0.001

BB0552 DNA ligase (lig) 2.64 0.010

BB0579 DNA polymerase III, α subunit (dnaE) 4.95 0.001

BB0710 DNA primase (dnaG), authentic frameshift 1.26 <0.001 1.33 <0.001

BB0836 excinuclease ABC, B subunit (uvrB) 2.35 <0.001

BB0837 excinuclease ABC, A subunit (uvrA) 1.04 0.003

Cell division

BB0177 glucose inhibited division protein B (gidB) 3.81 0.007

BB0178 glucose inhibited division protein A (gidA) 3.07 0.005

BB0302 cell division protein (ftsW) 2.96 0.001

BB0781 GTP-binding protein (obg) 1.03 0.004 1.95 <0.001

BB0789 cell division protein (ftsH) 1.01 <0.001

Protein synthesis

BB0229 ribosomal protein L31 (rpmE) 1.54 <0.001

BB0251 leucyl-tRNA synthetase (leuS) 3.41 <0.001

BB0514 phenylalanyl-tRNA synthetase, β subunit (pheT) 1.63 0.009

BB0615 ribosomal protein S4 (rpsD) 2.87 <0.001

BB0691 translation elongation factor G (fus-2) 0.96 0.001

BB0778 ribosomal protein L21 (rplU) 1.51 0.002

BB0780 ribosomal protein L27 (rpmA) 1.03 <0.001

Motility/chemotaxis

BB0147 flagellar filament 41 kDa core protein (flaB) -1.31 0.001

BB0181 flagellar hook-associated protein (flgK) -1.14 0.010

BB0271 flagellar biosynthesis protein (flhA) 1.95 0.002

BB0578 methyl-accepting chemotaxis protein (mcp-1) 3.06 0.012

BB0668 flagellar filament outer layer protein (flaA) -1.13 <0.001

BB0670 purine-binding chemotaxis protein (cheW-3) 2.03 0.011

BB0775 flagellar hook-basal body complex protein (flhO) 1.03 <0.001

Cell envelope

BB0382d basic membrane protein B (bmpB) -1.02 0.012 -1.59 <0.001

BB0383 basic membrane protein A (bmpA) -1.15 0.016

BB0385 basic membrane protein D (bmpD) -2.93 0.007

BBA15 outer surface protein A (ospA) -1.81 0.001

BBA16 outer surface protein B (ospB) -1.54 0.002

BBA60 surface lipoprotein P27 -5.07 <0.001

(Continued)
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stationary phase (Table 1, Fig. 1). In contrast, expression of the glp operon (BB0240-BB0243),
encoding proteins involved in glycerol transport and metabolism were diminished in the relBbu
mutant (Table 1, Fig. 1). Genes encoding components of the oligopeptide ABC transporter,
oppA (BB0328) and oppD (BB0334) were decreased in the relmutant during the exponential
phase, while many more of the genes of this transporter (BB0328-BB330, BB0334, BB0335) de-
creased in the mutant during stationary phase (Table 1, S1 Table, S2 Table). Expression of
HMG-CoA synthase (hmgs, BB0683) was increased in the relmutant during both exponential
and stationary phase and HMG-CoA reductase (mvaA, BB0685) expression was increased dur-
ing stationary phase (Table 1, Fig. 1), indicating that (p)ppGpp repression of the mevalonate
pathway is part of the stringent response in B. burgdorferi [51].

Effect of glucose and glycerol on growth of B. burgdorferi relBbu mutant
and derivatives
Microarray analysis strongly suggested that the lack of (p)ppGpp in the relBbu deletion mutant
reduced expression of the glp operon. Because glycerol and glucose are among the limited

Table 1. (Continued)

Gene Description Exponential phase Stationary phase

Mean expression
(log2 [ΔrelBbu/WT])

P Mean expression
(log2 [ΔrelBbu/WT])

P

BBA74 membrane-associated periplasmic protein -2.03 <0.001

BBB07 α3β1 integrin-binding protein 1.42 <0.001

BBJ41 antigen P35, putative -8.62 <0.001

BBM23b holin (blyA) 1.74 <0.001 1.43 <0.001

BBN24c holin (blyB) 2.99 <0.001 1.17 <0.001

Central metabolism/carbon source transporters

BB0240 glycerol uptake facilitator (glpF) -4.54 <0.001 -4.76 <0.001

BB0241 glycerol kinase (glpK) -8.27 <0.001 -5.47 <0.001

BB0243 glycerol-3-phosphate dehydrogenase (glpD) -6.52 <0.001 -3.79 <0.001

BB0328 oligopeptide ABC transporter, periplasmic oligopeptide-binding protein
(oppA-1)

-1.16 0.001 -2.65 0.002

BB0329 oligopeptide ABC transporter, periplasmic oligopeptide-binding protein
(oppA-2)

-1.33 <0.001

BB0330 oligopeptide ABC transporter, periplasmic oligopeptide-binding protein
(oppA-3)

-4.07 0.015

BB0334 oligopeptide ABC transporter, ATP-binding protein (oppD) -3.25 0.006 -1.21 0.002

BB0335 oligopeptide ABC transporter, ATP-binding protein (oppF) -1.51 <0.001

BBB04 chitobiose transporter protein (chbC) 1.83 0.004 2.11 <0.001

BBB05 chitobiose transporter protein (chbA) 4.05 0.013 5.07 <0.001

BBB06 chitobiose transporter protein (chbB) 5.02 <0.001

BB0683 3-hydroxy-3-methylglutaryl-CoA synthase (hmgs) 1.23 0.010 1.65 <0.001

BB0685 3-hydroxy-3-methylglutaryl-CoA reductase (mvaA) 1.36 <0.001 4.39 <0.001

a. Transcriptional analysis from microarrays (regular font) or RT-PCR (boldface). Where data from RT-PCR is shown, microarrays showed no significant

difference in gene expression between B. burgdorferi 297 ΔrelBbu and wild type.

b. Expression values for blyA orthologs BBM23, BBP23, BBR23 that showed increased expression in stationary phase and BBN23, BBR23 and BBS23

that showed increased expression in exponential phase were considered as a single transcript because they are 100% identical in sequence.

c. Expression values for blyB orthologs BBN24, BBR24, BBS24 that showed increased expression in stationary phase and BBN24, BBR24, and BBS23

that showed increased expression in exponential phase were considered as a single transcript because they are 100% identical in sequence.

doi:10.1371/journal.pone.0118063.t001
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number of carbohydrates that can support B. burgdorferi growth [52–54], we investigated the
ability of B. burgdorferi and its rel deletion mutant to utilize glycerol in BSK-Lite medium con-
taining glycerol as the principal carbon source. The B. burgdorferi 297 parental wild type strain
reached significantly higher cell concentrations during stationary phase than did the ΔrelBbu
derivative during growth at either 25°C or 34°C in BSK-Lite containing glucose as the principal
carbon source (P< 0.001, one-way ANOVA, Bonferroni post-test) (Fig. 2A and 2C). This im-
pairment was partially reversed in the complemented strain (P< 0.001) (Fig. 2). These data are
in agreement with earlier studies using BSK-H media containing glucose as the principal car-
bon source [38].

During growth at 34°C in BSK-Lite with glycerol as the principal carbon source, the wild
type strain reached significantly higher cell concentrations in the stationary phase than the
ΔrelBbu derivative and was not affected by complementation with the extrachromosomally-lo-
cated gene (P< 0.01, one-way ANOVA, Bonferroni post-test) (Fig. 2B). During growth at
25°C in BSK-Lite containing glycerol, the wild type strain also reached a significantly higher
cell density in the stationary phase than the ΔrelBbumutant (P< 0.001, one-way ANOVA, Bon-
ferroni post-test). The difference in cell concentrations between wild type B. burgdorferi and
the relBbu mutant was more obvious at 25°C than at 34°C with either glucose or glycerol sug-
gesting a more important role for the stringent response in metabolic regulation at 25°C than
at 34°C.

Fig 2. Growth of wild typeB. burgdorferi 297 (solid circles),ΔrelBbu (open circles), orΔrelBbu
complemented with pKFSS1-ΔrelBbu (solid triangles) in BSK-Lite containing either glucose or
glycerol as principal carbon sources. Insets show enlargement of cell concentrations for clarity. Glucose-
containing medium, 34°C(A). Differences between stationary phase cell concentrations of wild type and ΔrelBbu
mutant are significant as are differences in stationary phase concentrations between the ΔrelBbu mutant and
its complemented derivative (P< 0.001, one-way ANOVA, Bonferroni post-test). Glycerol-containingmedium,
34°C (B). Differences between stationary phase cell concentrations of wild type and ΔrelBbu mutant are
significant (P< 0.001, one-way ANOVA, Bonferroni post-test). Differences in stationary phase concentrations
between the ΔrelBbu mutant and its complemented derivative are not significant (P> 0.05, one-way ANOVA,
Bonferroni post-test). Glucose-containing medium, 25°C (C). Differences between stationary phase cell
concentrations of wild type and ΔrelBbu mutant are significant as are differences in stationary phase
concentrations between theΔrelBbu mutant and its complemented derivative (P< 0.001, one-way ANOVA,
Bonferroni post-test). Glycerol-containing medium, 25°C (D). Differences between stationary phase cell
concentrations of wild type and ΔrelBbu mutant are significant (P< 0.001, one-way ANOVA, Bonferroni post-
test) as are differences in stationary phase concentrations between the ΔrelBbu mutant and its complemented
derivative (P< 0.05, one-way ANOVA, Bonferroni post-test).

doi:10.1371/journal.pone.0118063.g002
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Transcriptional analysis of relBbu and the glp operon in B. burgdorferi
relBbu mutant and derivatives
The impairment of growth experienced by the ΔrelBbu mutant, coupled with the transcriptome
data indicating reduced expression of the glp operon in the mutant, suggested that the stringent
response might play a role in glycerol utilization in B. burgdorferi, particularly at 25°C. Tran-
scriptional analysis in temperature-shifted organisms during logarithmic growth of wild type
and ΔrelBbu mutant strains at 34°C and 25°C confirmed that relBbu was not expressed in the de-
letion mutant and that expression of relBbu at 34°C was greater in wild type cells growing on
glycerol than in cells growing on glucose (Fig. 3). It also confirmed the role of (p)ppGpp in
modifying transcription of glycerol metabolism genes. Transcript levels for the glycerol uptake
facilitator (glpF, BB0240) and glycerol-3-phosphate dehydrogenase (glpD, BB0243), the first
and the last genes in the glp operon, were substantially higher in wild type B. burgdorferi and in
complemented ΔrelBbu mutant grown in media with glycerol as principal carbon source than in
cells grown at 34°C in media with glucose as principal carbon source (Fig. 4A, 4B). Under both
conditions, transcription of these genes was considerably lower in the ΔrelBbu mutant com-
pared to the wild type or complemented strains (Fig. 4A, 4B). At 25°C, there was essentially no
transcription of glpD and glpF in wild type or mutant B. burgdorferi grown in medium with
glucose as principal carbon source (Fig. 4C). In contrast, these genes were actively transcribed
in wild type and relBbu complemented B. burgdorferi strains, but not in the ΔrelBbu mutant dur-
ing growth in medium with glycerol as principal carbon source at this temperature (Fig. 4D).
These changes in transcriptional levels of glp operon genes are expected to correlate with
changes in levels of glp gene products, as we previously determined with glpD [36] and data
not shown.

Fig 3. Transcriptional analysis of relBbu in wild type B. burgdorferi 297 (solid bars),ΔrelBbu (open
bars), and ΔrelBbu complemented with pKFSS1-ΔrelBbu (grey bars) during logarithmic growth in BSK-
Lite medium containing glucose or glycerol as principal carbon sources.No bar is visible for the ΔrelBbu
mutant because its expression level was zero. Glucose-containing medium, 34°C (A). Glycerol-containing
medium, 34°C (B). Glucose-containing medium, 25°C (C). Glycerol-containing medium, 25°C (D).

doi:10.1371/journal.pone.0118063.g003
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Co-regulation of gene expression by stringent response and other global
regulators in B. burgdorferi
To determine if the stringent response regulates glycerol uptake in B. burgdorferi indirectly
through transcriptional cross talk with other global regulators, transcript levels of rpoS, rpoN,
bosR, rrp-1 and rrp-2 were determined in wild type B. burgdorferi and its relBbu derivatives dur-
ing temperature-shifted exponential growth at 25°C and 34°C in media with glucose or glycerol
as principal carbon sources. There were no significant differences in transcription of any of
these genes between the wild type and the relBbumutant during exponential growth in either me-
dium at either temperature (data not shown), similar to results frommicroarrays derived from
the non-temperature-shifted exponential growth of B. burgdorferi at 34°C (Table 1, S1 Table).

Discussion
The (p)ppGpp-mediated stringent response is a broadly conserved global regulatory response
in bacteria that acts to preserve critical amounts of intracellular molecules in response to nutri-
tional scarcity and/or other environmental stressors [1–3,5,48,50,55] such as those faced by B.
burgdorferi in the distinctive vector and mammalian host environments it encounters in the
course of its life cycle. We previously demonstrated that the B. burgdorferi stringent response
could control growth, rRNA accumulation and virulence [38,47]. Microarray analysis validated
by direct examination of gene expression of selected genes has shown that deletion of relBbu
and the subsequent lack of (p)ppGpp affects transcription of many genes in B. burgdorferi (75
during the exponential growth phase, 277 during stationary phase), and have confirmed pro-
duction of this alarmone during both exponential and stationary growth phases [49]. The
greater effects of (p)ppGpp during stationary phase were to be expected on the basis of our pre-
vious work showing that the lack of synthesis of (p)ppGpp preferentially affected borrelial
growth and rRNA accumulation during transition from exponential growth to stationary
phase and in the stationary phase itself [38,47]. The subsequent more detailed characterization
of genes coding for glycerol transport and metabolism in the present study confirmed the regu-
lation of glycerol metabolism in B. burgdorferi by the stringent response, a regulation likely cru-
cial for its optimal growth in ticks.

Genes whose transcription was affected by deletion of relBbu included those associated with
DNA synthesis and repair, protein synthesis, cell motility and chemotaxis, cell wall synthesis
and carbohydrate intermediary metabolism (Table 1, S1 Table, S2 Table). If genes with greater

Fig 4. Transcriptional analysis of glp operon genes in wild type B. burgdorferi 297 (solid bars),ΔrelBbu
(open bars), and ΔrelBbu complemented with pKFSS1-ΔrelBbu (grey bars) during late logarithmic
growth phase in BSK-Lite medium containing glucose or glycerol as principal carbon sources.
Glucose-containing medium, 34°C (A). Glycerol-containing medium, 34°C (B). Glucose-containing medium,
25°C (C). Glycerol-containing medium, 25°C (D).

doi:10.1371/journal.pone.0118063.g004
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expression in the relBbu deletion mutant than in the parental wild type are assumed to be re-
pressed by (p)ppGpp (or other regulatory factors whose expression requires the presence of (p)
ppGpp) and those with reduced expression in the relBbu mutant are assumed to be induced in
the presence of (p)ppGpp (or other regulatory factors whose synthesis is stimulated by (p)
ppGpp), the stringent response in B. burgdorferi shares many similarities with this response in
other bacteria [2,3,5,6,48,55–59]. The stringent response classically depresses motility and che-
motaxis to save energy, and together with DksA, acts especially in stationary phase [11,12].
Modulation of borrelial motility by the stringent response may be particularly relevant in ticks
where B. burgdorferi undergo temporal and spatial starvation and must migrate from the gut to
the salivary glands to complete the enzootic cycle [60,61].

Despite these similarities, the stringent response in B. burgdorferi is not identical to that of
other bacteria (Table 1, S1 Table, S2 Table). This is not surprising, given the phylogenetic dis-
tance between spirochetes and, for example, gammaproteobacteria such as E. coli [62]. While
the stringent response in E. colimodulates expression of rpoN and rpoS [10,11,63], the strin-
gent response in B. burgdorferi does not. Interestingly, comparison of microarray studies of
null mutants of rel/(p)ppGpp (this study) and rpoS [64] uncovered 17 genes that were modu-
lated in both studies (Table 2). Fifteen of these 17 genes were repressed by (p)ppGpp only in
the stationary phase, while all 17 were activated by RpoS. This might suggest that the effects of
(p)ppGpp and RpoS on gene expression in B. burgdorferi during in vitro growth are indepen-
dent of, or counterbalance, each other. Unfortunately, comparison between the in vitro strin-
gent response regulon in cells at stationary phase and the RpoS regulon in exponentially
growing cells may not be relevant, particularly since both microarrays and quantitative RT-
PCR found no significant differences in transcript levels between these and other global regula-
tors in B. burgdorferi wild type and relBbu mutant during exponential growth at 34°C in vitro.
While several genes induced by (p)ppGpp (the glp operon, BB365, ospA/B, BBA62, BBA69,
BBA74, BBD18, BBJ41) during stationary phase in vitro were repressed by RpoS under

Table 2. Genes modulated during growth in vitro in B. burgdorferi ΔrelBbu (S2 Table) and B. burgdorferi ΔrpoS [64].

Gene Description Mean expression

log2 (ΔrelBbu/WT) log2 (ΔrpoSBbu/WT)

BB0670 purine-binding chemotaxis protein (cheW-3) 2.03 -2.56

BB0782 nicotinate (nicotinamide) nucleotide adenylyltransferase 2.99 -2.88

BBA12 conserved hypothetical protein 2.81 -2.73

BBA60 surface lipoprotein P27 -5.07 -2.58

BBM01 hypothetical protein 3.57 -3.05

BBM08 conserved hypothetical protein 3.04 -2.76

BBN01 hypothetical protein 3.82 -2.85

BBN29 hypothetical protein, paralogous family 161, authentic point mutation 3.07 -4.62

BBO03 hypothetical protein 3.91 -2.59

BBO04 hypothetical protein 3.08 -2.85

BBO29 hypothetical protein 2.54 -3.30

BBP21 conserved hypothetical protein 2.14 -2.81

BBP25 conserved hypothetical protein 4.83 -3.28

BBP28 Lipoprotein -3.07 -3.72

BBR02 hypothetical protein, paralogous family 147, authentic frameshift 4.36 -3.31

BBR29 conserved hypothetical protein 2.83 -7.17

BBS01 hypothetical protein 4.22 -3.14

doi:10.1371/journal.pone.0118063.t002
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mammalian host-like conditions [64], the difference between these two culture conditions
again makes evaluation of any potential interplay between these two transcriptional
regulators uncertain.

Additional differences between the stringent response in B. burgdorferi and that of other
bacteria result from genes modulated by the stringent response that are unique to this bacteri-
um (e.g., genes for antigenic surface proteins, bly genes) [52,65,66]. Regulation of these genes
by the stringent response could influence the composition of the B. burgdorferi cell envelope to
provide a surface better able to endure variable environments such as those encountered in the
tick [34]. The ability of the stringent response to modulate peptidoglycan synthesis through its
modulation of the mevalonate pathway could also result in antigenic alterations and round
forms [67]. Existence of these changes could suggest that niche nutritional signals can be cou-
pled to cell surface antigenic composition and functionality to develop interactions that favor
B. burgdorferi residence [34,60,61].

Stringent response-mediated regulation of genes involved in nutrient transport and metabo-
lism is common in E. coli and many other bacteria [1,5]. B. burgdorferi lacks amino acid bio-
synthetic pathways [52] and is dependent on oligopeptide uptake to satisfy its requirement for
amino acids. Transcriptional modulation of the oligopeptide transporter system by the strin-
gent response observed in the present study expands the role of (p)ppGpp to this essential bor-
relial function [68,69]. Expression of the glp operon (Table 1) was inhibited in the relmutant in
both exponential and stationary growth phases, suggesting that transcription of this operon is
induced by (p)ppGpp. In contrast, transcription of genes encoding the three components of
the chitobiose phosphotransferase system transporter located on plasmid cp26 (Table 1) was
elevated in the relmutant in the exponential and stationary phase of growth, suggesting that
their transcription is directly or indirectly repressed by (p)ppGpp. Alterations in expression of
genes involved in utilization of carbon sources such as glycerol and chitobiose strongly suggest
that the borrelial stringent response plays an important role in modifying synthesis of macro-
molecules, central metabolism and carbon utilization in ticks [2,50,55].

Previous reports of regulation of glp operon expression by RpoS and Rrp1 [35,64], and the
essential role of glycerol uptake and metabolism for maximum B. burgdorferi fitness in ticks
[35,36] prompted a more detailed examination of the regulation of this operon by the stringent
response and (p)ppGpp. Decreased ability of the relBbu mutant to grow in medium with glycer-
ol as the principal carbon source (Fig. 2B, 2D) and repression of transcription of glycerol me-
tabolism genes at 25°C compared to 34°C during exponential growth (Fig. 4B, 4D) is similar to
a phenotype previously described for a B. burgdorferi rrp1mutant that cannot synthesize c-di-
GMP [35]. This could suggest that the stringent response controls glycerol uptake by down-
modulating Rrp1 in B. burgdorferi at 25°C in ticks. Because (p)ppGpp repressed rrp1 in station-
ary phase and induced expression of the glp operon in both exponential and stationary phases
at 34°C (Table 1), one would expect to see increased c-di-GMP and increased transcription of
glycerol metabolism genes in the relBbu mutant rather than the observed decrease. This could
suggest that despite down-modulation of Rrp1 expression by (p)ppGpp, sufficient Rrp1 re-
mains to allow production of c-di-GMP. This might indicate that c-di-GMP and (p)ppGpp act
synergistically to increase expression of the glp operon in both exponential and stationary
phases (Table 1), and are both necessary for development of optimal regulatory activity. Alter-
natively, synthesis of c-di-GMP by Rrp1 might be dependent on the presence of (p)ppGpp
[70]. In any case, these data suggest that (p)ppGpp adds an additional layer of control to the
regulation of glp operon expression by Rrp1 [35]. The precise mechanism by which (p)ppGpp
and c-di-GMP act to induce glp operon expression, and the inter-relationships of relBbu and
rrp1 in modulating this expression, clearly warrant further study.
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The greater expression of the glp genes at 34°C contradicts previous results where these
genes were better expressed at 25°C than at 34°C [36]. Although there was little relBbu transcript
in the wild type at 25°C, it remains unclear how much RelBbu activity is required for expression
of glycerol utilization genes. The apparent discrepancy between the low expression of relBbu
and the glp genes at 25°C with strong growth of wild type B. burgdorferi 297 and its comple-
mented derivative at this temperature could indicate that this amount of relBbu expression pro-
duces adequate (p)ppGpp to maintain sufficient expression of glpD and glpF for growth under
these conditions [49]. It could also result from strain differences, since different B. burgdorferi
strains have been shown to exhibit differences in the stringent response [37,38].

Expression of the genes encoding components of the chitobiose PTS was elevated in the
relBbu mutant, implying that (p)ppGpp inhibits chitobiose uptake. In contrast to the glp operon
which is regulated by RpoS, Rrp1 and BosR, chbCAB transporter genes are not members of any
of these regulons [35,64,71]. However, a recent study did suggest that chbC expression was sig-
nificantly lower in an Rrp1 mutant not expressing RpoS or BosR [72]. While this implies that
either RpoS or BosR are required for minimal expression of chbC and is consistent with the
findings of Rhodes et al. [73], it is not consistent with those of Pappas et al [36]. These latter
workers found that chbC transcripts were significantly higher in ticks than in mouse joints
[36]. Although a chbCmutant could not utilize chitobiose, it could successfully complete the
mouse-tick infectious cycle, suggesting that chitobiose utilization is dispensable for this latter
process [74]. Resolution of these apparently contradictory findings and the possible role of (p)
ppGpp in modulating chitobiose uptake will require further research.

The relationship between glycerol and chitobiose utilization is complex. Modulation of
genes involved in utilization of glycerol and chitobiose by global regulators is likely to be rele-
vant for survival of B. burgdorferi in ticks [35,36,72–75]. The ability of B. burgdorferi to utilize
glycerol in unfed nymphs may in fact be essential for effectively surviving the non-replicative
quiescent state [76]. In other bacteria, the stringent response and glycerol metabolism are asso-
ciated with establishing and maintaining the persistent state [76,77]. The data presented here
could suggest that a similar situation is operative in B. burgdorferi.

Although both the glp operon and chitobiose transporter genes are expressed at significantly
higher levels in ticks than in mammals [36], the regulatory mechanisms controlling utilization
of the two carbohydrates are distinct. Repression of glp operon expression during the mamma-
lian phase is RpoS-dependent, but this has not been definitively demonstrated for chbC. Eleva-
tion of transcripts for all components of the chiotobiose transporter in the relBbu mutant
suggests that (p)ppGpp might be the regulatory molecule responsible for expression of the chit-
obiose transport genes. Further studies of B. burgdorferi growing under in vivo conditions
throughout the enzootic cycle will be necessary to clarify the potential contribution of rel and
(p)ppGpp to the regulation of glycerol and chitobiose utilization.

It was previously suggested that B. burgdorferi glpmutants survived in flat and feeding
nymphs because they had access to chitobiose that became available during dissolution of the
peritrophic matrix and molting [36]. It could be hypothesized that the stringent response in B.
burgdorferi links nutritional stress with sequential utilization of hexoses, glycerol and chito-
biose [1,50,53,55]. The role played by (p)ppGpp in this sequential utilization during shifts from
exponential phase in feeding larvae to stationary phase in flat nymphs and again to exponential
growth in feeding nymphs is consonant with the role this alarmone plays in other bacteria, and
is comparable to diauxic growth in E. coli facing similar nutritional challenges [1,50,53,55].

There are several possible mechanisms by which (p)ppGpp could regulate gene expression
in B. burgdorferi. It could directly affect transcription, or act indirectly by changing levels of
other transcriptional regulators [2,3,19,48] or by modifying protein function by direct binding
[78]. For example, we found that mRNA expression of two transcriptional regulators, DksA
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and Rrp1 was increased in the relBbu deletion mutant relative to wild type (Table 1). While this
is consistent with repression of expression of these genes by (p)ppGpp, it could also result from
a mechanism where the absence of one of these regulators was compensated by overproduction
of another [10,11,79]. In E. coli, an increase in DksA can compensate for the lack of (p)ppGpp
and can act synergistically, antagonistically and independently of (p)ppGpp to regulate mRNA
transcription [80]. In other bacteria, DksA is required for negative regulation of rRNA and ri-
bosomal protein expression and positive regulation of maintenance and stress-resistance pro-
moters during the stringent response [17,81,82]. In the present case, our results suggest that
DksA may act synergistically with (p)ppGpp in B. burgdorferi; further work is needed to deter-
mine whether there is a total or partial coincidence of the Rel and DskA regulons in this organ-
ism. (p)ppGpp does not seem to be involved in regulation of Rrp2, RpoN and BosR in B.
burgdorferi since transcript amounts for the genes encoding these regulators were not affected
by the deletion of relBbu.

Stringent response regulation of glycerol and chitobiose gene expression might be mediated
directly at the level of transcription by interactions of (p)ppGpp and DksA with the RNA poly-
merase complex at the glycerol and chitobiose gene promoters [1,14,83]. That there were no
differences in transcriptional levels of rpoS, rpoN, bosR, and rrp2 between the relBbu mutant
and wild type B. burgdorferi under any experimental conditions examined suggests a direct in-
teraction of (p)ppGpp with the RNA polymerase complexes at the glp and chitobiose operon
promoters or interactions with still uncharacterized regulators [1,14,48,50,83]. The B. burgdor-
feri genome does not encode regulators such as SlyA and PigR that are directly involved in
transcriptional regulation mediated by (p)ppGpp in other bacteria, but the role of DksA as a
global regulator in B. burgdorferi has not yet been defined [1]. In E. coli, the CsrA and stringent
response regulatory pathways have been shown to be linked [19]. The recently characterized B.
burgdorferi CsrA and PlzA homologues could therefore be potential regulators responsible for
linking the stringent response to Hk2-Rrp2/BosR-RpoN/RpoS and the Hk1-Rrp1-c-di-GMP
cascades in their ability to regulate glycerol and chitobiose metabolism [19,39,43,84]. However,
more recent work suggests that CsrA is not involved in regulation of the RpoN-RpoS axis in B.
burgdorferi [85].

In summary, we have established the stringent response/(p)ppGpp regulon in B. burgdorferi
during exponential and stationary phase growth in vitro. We show that (p)ppGpp stimulates
induction of the glp operon and repression of chitobiose transporter gene expression. A limita-
tion of the present findings is that they are based on expression analysis of B. burgdorferi dur-
ing in vitro culture. Additional studies will be necessary to examine the nature of the stringent
response in vivo in both ticks and mammals. Possible differences in the stringent response in
B. burgdorferi strains with differing virulence potential may also warrant investigation.

Materials and Methods

B. burgdorferi strains and culture conditions
B. burgdorferi 297 (clone BbAH130) was kindly provided by Dr. M. V. Norgard, University of
Texas Southwestern Medical Center. This strain was the parental strain for the B. burgdorferi
ΔrelBbu deletion mutant and its complemented derivative, B. burgdorferi ΔrelBbu pKFSS1-relBbu
[38]. B. burgdorferi strains were maintained at 34°C in Barbour-Stoenner-Kelley (BSK)-H
(Sigma-Aldrich, St. Louis, MO) supplemented with 6% heat-inactivated rabbit serum (Sigma).
B. burgdorferi ΔrelBbu was grown in the presence of 400 μg/ml of kanamycin (Sigma), B. burgdor-
feri ΔrelBbu pKFSS1-relBbu was grown in the presence of 400 μg/ml of kanamycin and 50 μg/ml of
streptomycin (Sigma).
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For microarray experiments, strains were grown continuously at 34°C, and were not tem-
perature shifted [46]. For growth experiments and expression analysis of relBbu and glp genes in
modified growth medium with different carbon sources at different temperatures, B. burgdor-
feri 297 and ΔrelBbu derivatives were temperature shifted. The cells for each strain were grown
to late log phase (5–10 x 107 cells/ml) in BSK-II medium [86] at 25°C, and then diluted to a
final concentration of 5 x 104 in 40 ml of BSK-Lite with N-acetylglucosamine [36,53] and either
0.4% glucose or 0.4% glycerol as principal carbon source. Quadruplicate 5 ml aliquots of each
strain with each principal carbon source were incubated at 25°C or 34°C for up to 60 days, or
until one week after stationary phase was reached. Technical replicate tubes were counted daily
(for cultures incubated at 34°C) or every two days (for cultures incubated at 25°C) by dark
field microscopy.

Microarray analysis
B. burgdorferi parental and ΔrelBbu cells were collected from duplicate cultures during exponen-
tial growth (5 x 107 cells/ml for wild type, 2 x 107 cells/ml for ΔrelBbu) and stationary phase
(4x108 cells/ml for wild type, 8x107 cells/ml for ΔrelBbu) at 34°C. RNA was isolated using TRI-
zol (Invitrogen Life Technologies, Carlsbad, CA), treated with RQ1 RNase-free DNase (Pro-
mega Corporation, Madison, WI) and fluorescently labeled with Cy3 or Cy5 dye by reverse
transcription. Microarray hybridizations were performed as described [64] with cDNA pre-
pared from cells for each growth phase with two biological replicates and with two technical
replicates (dye swap). Data acquired using GenePix software were transferred to Microsoft
Excel for background subtraction and normalization [64]. Significance of differential expres-
sion was determined by two-tailed, unpaired Student t test at P<0.02 and fold-comparison>2.
Genes located on plasmids of B. burgdorferi B31 that are printed on microarray slides, but are
absent in B. burgdorferi 297 [87] were removed from the final output. Microarray data have
been submitted under ArrayExpress (https://www.ebi.ac.uk/arrayexpress), accession number
E-MTAB-3029.

Reverse transcription and real-time PCR
Two reverse transcription real-time PCR protocols were used in this work: one to validate the
results of the microarrays of B. burgdorferi strains grown in exponential and stationary phases
and the other to determine gene expression in B. burgdorferi strains growing in BSK-Lite.

To validate microarray results, cDNA was synthesized using 1 μg of total B. burgdorferi
RNA isolated for microarray analysis, the primers listed in Table 2, and AMV reverse tran-
scriptase (Promega) following the manufacturer’s instructions. The resulting cDNA was quan-
tified by real-time PCR with primers specific for each gene (S3 Table) using the LightCycler
Master SYBR Green I Mixture (Roche) and a LightCycler Real-time PCR instrument (Roche).
To compare mRNA levels, PCR reactions were performed with both biological replicates used
for microarray analysis. Each experimental sample was analyzed in duplicate. Genomic DNA
from 103–106 cells of the corresponding B. burgdorferi strain was used as a standard to estimate
the amount of cDNA of genes studied in each real-time PCR. Transcript amounts for each
gene were normalized to cDNA of constitutively expressed flaB. Results are reported as log2
mean expression of relevant genes in B. burgdorferi ΔrelBbu relative to their expression in the
parental wild type strain.

To determine gene expression in B. burgdorferi strains growing in BSK-Lite, RNA was iso-
lated from late log phase cells growing at 34°C and 25°C using TRIzol and treated twice with
the Ambion DNA free kit (Ambion, Austin, TX) according to the manufactuer’s instructions
to remove DNA. cDNA was synthesized using 2 μg of purified RNA, random hexamer primers
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(Promega), and AMV reverse transcriptase enzyme (Promega). Real-time PCR reactions were
performed as previously described [88] using primers listed in S3 Table. Copy number for flaB
was determined for each biological sample and copy number for each gene was then normal-
ized to copies of flaB.

Data analysis
Statistical analysis of growth curves was performed on log2 transformed data using one-way
ANOVA. Significance was defined as P� 0.05. Data from microarrays were analyzed as previ-
ously described [64].
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