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SUMMARY: We propose a method for calculating power and sample size for studies in-

volving interval-censored failure time data that only involves standard software required for

fitting the appropriate parametric survival model. We use the framework of a longitudinal

study where patients are assessed periodically for a response and the only resultant informa-

tion available to the investigators is the failure window: the time between the last negative

and first positive test results. The survival model is fit to an expanded data set using easily

computed weights. We illustrate with a Weibull survival model and a two-group comparison.

The investigator can specify a group difference in terms of a hazards ratio. Our simulation

results demonstrate the merits of these proposed power calculations. We also explore how

the number of assessments (visits), and thus the corresponding lengths of the failure inter-

vals, affect study power. The proposed method can be easily extended to more complex

study designs and a variety of survival and censoring distributions.

Keywords: Interval-censored data; power; sample size; parametric survival analysis.
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1 Introduction

Interval-censored failure data often arise in longitudinal studies in which subjects are assessed

only periodically for the response of interest [1]. The time when the event of interest occurs is

not directly observed but is known to take place within some time interval. For example, in

HIV studies, investigators cannot observe the exact moment when the virus develops; all they

can determine is that the virus developed before or after the test. Interval-censored failure

data often occur in observational or follow-up studies where patients are not continuously

being observed. Whether or not the event occurred is ascertained at the observation times,

and the failure time of the event itself is not available.

There have been numerous methods proposed for the analysis of interval-censored failure

data. Peto and Peto [2] first considered the comparison of the interval-censored survival

curves of two samples under the Lehman-type alternative S1(t) = Sθ2(t) where θ is the

parameter of interest. They test θ = 0 using the score test and describe it as the log-rank

test. Finkelstein [3] proposed a semiparametric method in which the baseline distribution

and regression parameters are fit simultaneously by maximizing the full likelihood of the

data. Sun [4] proposed a test statistic for interval-censored failure data having the same

algebraic form as the original log-rank test. Zhao and Sun [5] generalized the Sun’s [4] log-

rank test to include exact failure times in interval-censored data. Sun, Zhao, and Zhao [6]

proposed a class of non-parametric tests for the comparison of k interval-censored survival

curves that are generalizations of Peto and Peto’s [2] log-rank test. Their test statistic

includes Finkelstein’s [3] test statistic as a special case.

Fay [7] proposed a weighted log-rank test under the proportional odds model, which

gives more weight to earlier times. Satten [8] considered a marginal likelihood approach

to fitting the proportional hazards model [9, 10] by maximizing a likelihood that is the
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sum over all rankings of the data that are consistent with the observed censoring intervals.

Satten, Datta, and Williamson [11] suggested a parametric model for the baseline hazard

to generate imputed failure times. In their model the usual proportional hazards model for

right-censored data is used to estimate the regression parameters. Heller [12] proposed a

method for estimation and inference of the regression parameters in the Cox proportional

hazards model with interval censoring based on estimating equations and using an inverse

probability weight to select event time pairs where the ordering is unambiguous. A Bayesian

estimation approach has recently been proposed for analyzing interval-censored data under

the proportional hazards model [13].

A special case of interval-censored data is current-status data, where individuals are seen

only once after enrollment. Current-status data often arise in cross-sectional surveys, where

the purpose is calculation of the distribution of age of onset for a disease or life event. Thus,

the observations are either of the form (0, C] or (C,∞) (i.e., left- or right- censored). These

data are also commonly referred to as case 1 interval-censored data [14]. Current status data

are common in demography [15, 16], economics, and epidemiology [17, 18]. In the medical

sciences, animal tumorigenicity and HIV studies often result in such data because the inves-

tigator cannot measure the outcome directly or accurately [19]. The proportional hazards

models and tests referenced above for analyzing interval-censored data can be used for the

analysis of current status data. Murphy and van der Vaart [20] considered semiparametric

likelihood ratio inference and proposed a test for significance of the regression coefficient in

Cox’s regression model for current status data. Banerjee [21] examined the power of the test

under contiguous alternatives.

Methods for calculating power and sample size for studies involving interval-censored

survival data are scarce. Such calculations are important because studies without a sufficient

sample size may not detect a clinically important effect. This consideration must be balanced
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with the high cost of recruiting and evaluating large numbers of subjects, thus making sample

size and power calculations an important element in the design of medical research studies.

Sample size calculations are especially important for studies using interval-censored failure

data because they have less information and power than survival studies with the usual

right-censored outcome data.

Williamson, Lin and Kim [22] proposed power and sample size calculations for current

status survival analysis based on the Wald test assuming a Weibull survival model and various

censoring distributions. As expected, the power calculations demonstrated that studies with

current status data have substantially less power than studies with the usual right-censored

failure time data. Marschner [23] proposed a method for designing a cross-sectional survey

to estimate the age-specific incidence of an irreversible disease (resulting in current status

data). It is assumed that the sample consists only of information on the current age and

disease status of the individuals. Marschner focused on determining the total size of the

sample and how to best choose the distribution of sampling across various age groups. Zhao,

Duan, Zhao and Sun [24] proposed a new class of generalized log-rank tests and derived

their asymptotic distributions under both null and alternative hypotheses. Their derivations

allow power estimation under the specification of an alternative hypothesis.

In Section 2, we propose power calculations for studies comparing two groups with interval-

censored failure data. We first specify the scenario (underlying survival distribution, group

sizes, hazard ratio, length of study, number of study visits, dropout rate, missing data, etc.)

for which we want to conduct the power calculation. We then fit the specified interval-

censored failure model to an appropriate expanded data set, which is a created dataset that

exemplifies the sampling distribution of the population of interest. The use of an expanded

dataset has been applied to aid power and sample size calculation for fixed effect linear and

generalized linear models [25-29]. Specifically, the expanded dataset comprises one record
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for each possible value of the outcome per combination of covariate values. In the presence

of interval-censored data with no missing visits, there is only one possible outcome (i.e.,

drop out) before the first follow-up visit. All other subsequent intervals, except the last one,

either have a failure in that interval or a drop out (right censoring) after the previous visit.

The last interval also has two possible outcomes: failed in that interval or right censored at

study end. Therefore, for a simple 2-group comparison, the expanded dataset will consist of

((2 × total number of scheduled follow-up visits) + 1) data lines for each subject assuming

no missed visits.

In addition, we need to provide a weight for each record to reflect the probability of such

occurrence, with the weight calculated from the parameters specified for the survival and

censoring distributions. The weights sum across the potential failure and right-censoring

intervals to 1.0 for each individual. The resulting expanded or ’exemplary’ interval-censored

failure data set can be easily analyzed with commonly used software (e.g., PROC LIF-

EREG in SAS, v 9.3 [30]) that incorporates weighting. The resulting maximum likelihood

estimate of the parameters will have the same values as the assumed parameters. The

variance-covariance matrix computed from the model fit is then used in conjunction with an

established non-central chi-square approximation to the distribution of the Wald statistic.

The same formulation of weights can be extended to allow for missed study visits. For the

purpose of illustration we focus on a simple situation where the probability of a missed visit

is common across visits and two visits can not be missed consecutively. As there are numer-

ous potential failure intervals resulting from missing visits, this exercise demonstrates how

one can modify the weights for the missing visit pattern applicable to one’s study.

We present the details of our approach in Section 2. In Section 3 we present simulation

studies to detail its performance. We also explore the relationship between the number of

study visits (size of failure intervals) with power. We illustrate the proposed calculations in
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Section 4 with a hypothetical example based on a breast cancer study [31]. We conclude

with a short discussion on the merits of the proposed power calculations.

2 Methods

Let Ti denote the log-transformed failure time for the ith observation (i = 1, · · · , N, where N

is the sample size). If data are interval censored, then for each individual, instead of a failure

time, we observe a censoring interval (li, ui] that is known to contain the actual failure time.

The failure indicator is defined as δi = 1 if the ith observation is of the form (li, ui] (interval

censored, or left-censored if li = 0). If the observation is right-censored (ui =∞) then δi = 0.

We assume throughout that the censoring/dropout mechanism is independent of both the

response time and the covariates. Let the survivor distribution for the failure time random

variable T be denoted by S(t;α,β) = Pr(T ≥ t), where t ≥ 0, α is a column vector of

scale or shape parameters, and β is a (p × 1) column vector of regression parameters. The

likelihood for such interval-censored failure data is

L(li, ui, δi,β,α) =
N∏
i=1

[S(li)− S(ui)]
δi [S(li)]

1−δi , (1)

where S(0) = 1. Further assume that the log-transformed failure times follow a Weibull

distribution that can be parameterized with an intercept ∆ as Pr(Ti ≥ ti) = S(ti; ∆, β) =

exp(−e(ti−∆−β′xi)γ), where xi is a column vector of covariates and γ is a shape parameter.

This model is equivalent to an accelerated failure time model and is also a member of the

proportional hazards family for the Weibull distribution.

We are interested generally in the following hypothesis test:

H0 : Hβ = h0 versus HA : Hβ 6= h0, (2)
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where H is an (h × p) matrix of full row rank and h0 is an (h × 1) constant vector. The

Wald test statistic is given by

TW = (Hβ̂ − h0)′[Hv̂ar(β̂)H′]−1(Hβ̂ − h0). (3)

Assume that our future study will be based on a two-group (e.g., new drug versus placebo)

comparison, which is usually the case for most sample size calculations conducted for medical

and public health studies. Thus, we have a binary covariate x = 0, 1 depending on group

membership. Let there be n subjects in group 1 (xi = 0) and rn subjects (with r > 0) in

group 2 (xi = 1). The hypothesis of interest is H0 : β = 0 versus HA : β 6= 0 where β is a

scalar. In particular, exp(−β) is the hazard ratio between groups 2 (xi = 1) and 1 (xi = 0).

Further assume that both groups have the same censoring/dropout distribution.

For this two-group comparison the Wald test statistic is given by

TWald = β̂ 2/(vâr(β̂)),

where β̂ is the maximum likelihood estimate of β. Under H0, the test statistic is asymptot-

ically distributed as a central chi-square random variable with 1 degree of freedom. Under

HA, and following Wald [32], TWald is asymptotically distributed as a non-central chi-square

random variable with 1 degree of freedom where the non-centrality parameter ω is equal

to the value of TWald, except with β̂ and vâr(β̂) replaced with β and var(β̂). Let α repre-

sent the specified type I error rate and χ2
1,1−α represent the critical value from the central

χ2
1 distribution. The power for testing H0 with the Wald test is

Pr(χ2
1,(ω) ≥ χ2

1,1−α) (4)

with χ2
1,1−α denoting the 100(1− α)th percentile of the central chi-square distribution with

one degree of freedom and χ2
1,(ω) denoting a chi-square random variable with one degree of

freedom and non-centrality parameter ω.
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2.1 Study Design Consideration

2.1.1 No Missing Visits

Assume our study design is a longitudinal one with regularly scheduled visits. Let ST denote

the length of the study and assume there are Q scheduled follow-up visits for each individual

with a visit every ST/Q units of time. For instance, we could have two years of follow-up

with bi-monthly visits implying ST = 24 and Q = 12. We allow that individuals may be

variable in their visit times, which we denote ti1, ti2, · · · , tiQi and some visits may be missed

due to dropout. We can assume that the first follow-up visit time scheduled at 2 months

for each individual is uniformly varied between 1.5 and 2.5 months, and the remaining visit

times are spaced out in exact increments there after (e.g., an individual having a first visit at

1.93 months has remaining visits at 3.93, 5.93, 7.93, ... months). We specify the percentage

of failures occurring prior to the end of the study for the x = 0 group to account for censoring

at study end. The corresponding percentage of failures for the x = 1 group will be lower or

higher depending on the direction of the specified hazard ratio. We also incorporate dropout

into our scenario by specifying a percentage of dropout by study end and assume that it is

uniformly distributed throughout the study and is the same for both groups. For example,

if we assume 20% dropout by month 24 then 10% of the subjects will not have another visit

after their 12-month follow-up.

We are interested in calculating conditional power (power given any pre-specified fixed

covariate design matrix) for a given sample size. In order to conduct the power calculations

we need to obtain var(β̂) for computing the chi-square non-centrality parameter. We do this

by following Lyles et al. [29] and create an expanded data set. We define a weight, wij, for

each potential failure/censoring interval (indexed by j) for each individual i that equals the

probability that such interval will occur. For our scenario failure intervals can occur between
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successive visits and individuals can be right censored at visit times for dropout, or censored

at study end. Accordingly, potential failure intervals will be of the form (tiq, ti,q+1], and right-

censored observations will be of the form (tiq,∞). For the former intervals (tiq, ti,q+1], weights

are calculated as Pr(tiq < Ti ≤ ti,q+1)Pr(Ci > ti,q+1). For the latter intervals (tiq,∞),

weights are calculated as Pr(tiq < Ti)Pr(tiq < Ci ≤ ti,q+1), and Pr(24 < Ti)Pr(24 < Ci)

for the last interval ((24,∞)). The weights will sum to 1.0 for each individual ensuring that

the expanded data set has total sample size N . The data lines for individual i in group

j, j = 1, 2, in this expanded or ’exemplary’ interval-censored failure dataset resemble the

following:

interval limit

id group lower upper failure status weight

i j 0 ∞ 0 wij,1

i j 0 tij1 1 wij,2

i j tij1 ∞ 0 wij,3

i j tij1 tij2 1 wij,4

i j tij2 ∞ 0 wij,5

· · ·

i j tij(Q−1) tijQ 1 wij,(2Q)

i j tijQ ∞ 0 wij,(2Q+1)

See Table 1 for an illustration of an expanded data set for one of the data sets used in

the simulation section. As shown in Table 1, the weight calculations are determined by the

failure, dropout, and censoring distributions. Therefore, it is straightforward to extend the

proposed method to allow for different dropout rates between groups or to have more than

2 groups in the study. Subjects may dropout before the first follow-up visit and therefore

the interval (0,∞) will have a corresponding non-zero weight. These data lines will add no
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information when fit in the parametric survival model.

Table 1 about here

2.1.2 Missing Visits

Thus far we have assumed that all subjects make their scheduled visits until study end or

until they have the outcome of interest. However, subjects may miss a study visit for a

number of reasons, usually resulting in data with larger failure intervals. To account for

potential missing visits, we make the following simplifying assumptions. First, we assume

that each subject has the same probability (denoted by p) of missing a specific visit that

is the same for all Q visits. For simplicity we also assume that a subject can not miss two

consecutive visits, i.e., if a subject misses visit q then he or she makes visit q + 1. This

implies that p is constrained to be ≤ 0.5. The major modification to the proposed method

for missing data is to reconstruct the weights to incorporate the resulting larger intervals.

As before, no information is gained when a subject drops out without any follow-up. There

are five potential outcomes for the interval between visits q and q+ 1 for 1 ≤ q < Q− 1: (a)

Making visit q and then dropping out; (b) Missing visit q and then dropping out; (c) Making

visit q and then failing; (d) Missing visit q and then failing; and (e) Failing and then missing

visit q + 1. See Table S1 of the Web Appendix for an example of one of the exemplary data

sets that incorporates missing visits.

We then fit a Weibull failure model to the expanded data set in an available software

package that incorporates weighting (e.g., PROC LIFEREG). The resulting maximum like-

lihood estimate of the parameters will have the same values as the assumed parameters. In

addition, the resulting var(β̂) will equal the true variance for the specified sample size and

can then be used for power calculation. In summary, power calculations for the proposed

scenario proceed as follows:
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1. Specify the sample sizes for each group, n and rn (n + rn = N), and the type I error

rate (usually 0.05).

2. Specify the length of the study (ST ) and how many schedule visits (Q) during follow-

up. This will determine the time interval between two visits (ST/Q).

3. Specify a distribution (e.g., uniform distribution) for the first visit time (centered at

time t = ST/Q) and assume that the remaining visit times are spaced out in exact

increments thereafter. This will allow variation in visit time around any given scheduled

visit.

4. Specify the regression parameter β, or the hazard ratio e−β.

5. Assume the log-transformed survival time follows a Weibull distribution with intercept

∆, which can be estimated by specifying the percentage of subjects in group x = 0

who fail by study end assuming no dropout, and the shape parameter γ.

6. Specify a percentage of dropout by study end that is assumed to be uniformly dis-

tributed across study time and is the same for both groups.

7. Specify a probability (p) that a subject will miss a visit that is assumed to be constant

across all Q visits.

8. Based on the specified failure time model, dropout model, and missing visit probability,

construct the weights wij for each subject for all potential failure/censoring intervals.

9. Create an expanded dataset that has multiple lines corresponding to all possible out-

comes for each of the N subjects, where each line includes a subject identifier i, group

indicator (xi), lower and upper limits (lij and uij corresponding to the appropriate visit

times) of a given interval, and the corresponding weights wij. With no missing visits,
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the number of lines is 2Q+ 1, and with the missing visit scenario considered here, the

number of lines is 5Q.

10. Calculate the variance-covariance matrix based on the specified parameters and sample

size by fitting the parametric model (e.g., in PROC LIFEREG with the WEIGHT

statement).

11. Obtain the noncentrality parameter ω = β̂2/vâr(β̂).

12. Use equation (4) to calculate the power.

13. Repeat steps 9-12 by increasing or decreasing the sample size (N) until the desired

power is achieved.

3 Simulations

We conducted a simulation trial to assess the performance of the proposed power calculations

by comparing the calculated power from the proposed method with the empirical power from

the simulations. Each simulated data set consisted of two groups (exposed or unexposed) of

observations. The log-transformed survival times were generated with a Weibull distribution

as follows:

S(ti) = exp(−e(ti−∆−βxi)γ),

where i denoted the subject i = 1, · · · , N . The covariate xi = 0 (1) for the unexposed

(exposed) group. The regression parameter of interest is denoted by β and γ is the shape

parameter. We assumed individuals were scheduled for 6 visits every 4 months (up to 24

months) until they had the event of interest. The first visit time for each individual was

uniformly varied between 3.5 and 4.5 months and the remaining visit times were spaced

out in exact 4 month increments (e.g., an individual having a first visit at 3.93 months had
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remaining visits at 7.93, 11.93, 15.93, ... months). The probability of missing a visit (p) was

specified as 0.0 and 0.4.

Censoring/dropout was generated as follows. We generated differing censoring levels by

varying ∆ to accommodate censoring percentages for the x = 0 group at 24 months of

10%, 30%, and 50%. We also incorporated dropout of 10%, 20%, and 30% uniformly by 24

months. This resulted in 3 overall censoring schemes: low, medium, and high. Data sets

were generated for 18 triplets of β =log(1.3), log(1.5), and log(1.7) (corresponding to hazard

ratios of 0.77, 0.67, and 0.57), γ = 0.5, 1.0, 1.5, and missing visit probabilities (p = 0.0, 0.4)

for each of the three censoring schemes, resulting in a total of 54 scenarios. A value of γ = 1.0

corresponds to the exponential distribution.

There were an equal number of exposed and unexposed observations in each data set, and

5,000 data sets were generated for each scenario. See Table 1 for an example of one of the

exemplary data sets for the first scenario when p = 0.0 (no missed visits) and Table S1 of

the Web Appendix for the same subjects when p = 0.4. The data sets were analyzed with

a parametric Weibull model and with Sun, Zhao and Zhao’s [6] generalized log-rank test

using PROC LIFEREG and PROC ICLIFETEST in SAS (v 9.4), respectively. Power was

calculated for each scenario using the proposed method. Empirical power was calculated for

each of the two tests as the number of data sets resulting in the rejection of H0 : β = 0

(α = 0.05) divided by 5,000.

The simulation results for the first trial are presented in Table 2. The expected percentage

of observations failing (δ = 1) was calculated for each triplet of β values, γ values, and

censoring amounts (light, medium, or heavy). The calculated power was within an absolute

1% of the empirical power for 29 of the 54 scenarios with the parametric Weibull model, and

with 28 of the 54 scenarios for Sun, Zhao, and Zhao’s [6] test. The calculated power was

within an absolute 5% of the empirical power for all but one scenario with the parametric
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Weibull model and for all but two scenarios with Sun, Zhao, and Zhao’s [6] test. As expected,

power increases as the effect sizes, shape values, and failure percentages increase for a given

sample size. Power decreases as the probability of a subject missing a visit increases due to

wider failure intervals. The scenarios with a greater difference between the calculated and

empirical power were those with larger β and γ values, and smaller expected numbers of

failures.

As with most power calculations, accuracy of the proposed method is dependent upon

correct specification of the survival distribution. We conducted a new simulation trial where

we generated data with a log-logistic distribution with shape parameters 2.0 and 3.0; β

values of 1.2, 1.4 and 1.6; and the same 3 censoring schemes as in the Simulation section

(light, medium, and heavy), with no chance of a missing visit (p = 0). We calculated

the interval weights based on the specified log-logistic distribution but then analyzed the

5000 simulated data sets for each scenario assuming a Weibull distribution, and calculated

empirical power. As expected the power calculations were somewhat off. For the parametric

model the calculated power was only within an absolute 5% of the empirical power for 8 of

the 18 scenarios, although within an absolute 10% for all but 2 scenarios. For Sun, Zhao,

and Zhao’s [6] test the calculated power was only within an absolute 5% of the empirical

power for 10 of the 18 scenarios, and within an absolute 10% for 15 scenarios. See Table S2

of the Web Appendix for the results. All simulations were conducted via SAS IML [33].

Table 2 about here

3.1 Impact of Failure Interval Size on Power

We chose three scenarios (amount of dropout/censoring and effect size) from the exponential

distribution (γ = 1.0) with p = 0.0 in the simulation trial (Table 2) and conducted power
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calculations varying the number of visits from 1 to 24 (size of failure intervals). See Table

3. In particular, the first line of Table 3 corresponds to a current status study design (one

assessment time). For each of the three scenarios power increased as the number of visits

increased (smaller failure intervals), as expected, with the biggest increase occurring between

one visit (current status data) and two visits. However, there is only a negligible increase

in power after 3 or 4 visits. Investigators should examine the relationship between power,

number of study visits, and the financial cost of each visit for their potential study as a

small increase in power due to more visits may not offset the increase in expense and time

due to more hospital or clinic visits and/or laboratory tests. Raab, Davies, and Salter [34]

considerd the design of follow-up intervals in the context of the estimation of the median

and mean survival and for covariates in parametric regression models with equally spaced

examination times. Bayesian approaches [35, 36] have been proposed for planning optimal

follow-up times in a sequential manner, based on accumulated data. Others have examined

the loss of information due to interval censoring for various parametric distributions [37, 38].

Table 3 about here

4 Illustrative Example

Suppose one wants to design a breast cancer study where two treatments are being com-

pared for an interval-censored failure outcome. This illustration is motivated by the data

in Table 3 of Finkelstein and Wolfe [31] and presented in Guo, So, and Johnston [39]. A

retrospective study of 94 women was conducted on the risk of breast cosmetic deteriora-

tion after tumorectomy. The women received either radiation therapy (x = 0) or radiation

plus chemotherapy (x = 1) and visited the clinic every four to six months. No woman was

seen after 48 months and 38 women never experienced the outcome. Finkelstein and Wolfe
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[31] and Finkelstein [3] analyzed the data with a semiparametric regression model and a

semiparametric proportional hazards model, respectively.

Assume that two groups of women of equal size (e.g., treatment groups A and B) will be ex-

amined every 6 months for breast cosmetic deterioration. Assume an exponential survival dis-

tribution (γ = 1.0) with 40% of the women in the x = 0 group not having the event by study

end of 48 months. Also assume that 5% of the enrolled will drop out each year. See Table 4

for sample size calculation for varying effect sizes (hazard ratios= 1.50, 1.75, 2.00, 2.25, 2.50),

power values (0.80, 0.90), and probabilities of missing a visit (0.0, 0.2, 0.4). As expected, the

required sample size decreases with an increasing hazard ratio (effect size) for given power.

Sample size increases with a larger probability of missing a visit for given power. Although

the investigator needs to add more subjects for smaller hazard ratios when accounting for

missing visits, the percent increase of sample size compared to no missing visits remains

similar across the range of hazard ratios. Assume one is interested in specifically detecting

a clinically important effect corresponding to a hazard ratio of at least 2.0 (β = −log(2)). A

sample of 69 women in each group would achieve 90% power for the proposed study assuming

no missed visits, but 72 women per group would be required if p = 0.4.

Table 4 about here

5 Discussion

Interval-censored failure data are a special case of survival data in which the only information

available to the investigator is whether an event occurred before or after one or more visit

(examination) times. Such data are increasing in medical studies due in part to the greater

use of biomarkers that define a disease progression endpoint [12]. One loses information and

thus power when analyzing such data as compared to the usual right-censored survival data
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due to the increased imprecision in the failure time. Here, we propose power calculations

for studies with interval-censored data based on a Weibull survival model and a two-group

comparison via the Wald test using an expanded data set following Lyles et al. [29]. There

are few power calculations for interval-censored data analysis and most methods for the usual

right-censored scenario assume the more restrictive exponential distribution.

Simulation results demonstrate that our proposed power method performs well with a

Weibull survival model or Sun, Zhao, and Zhao’s [6] generalized log-rank test. Our method

also performs well under the simple missing visit scenario considered here. Our approach is

easily extended to other parametric survival and censoring distributions, and other tests such

as the likelihood ratio test. It can also be extended to study designs with more than 2 groups

and designs with different dropout patterns between the groups. Moreover, the requirement

that scheduled visits are equally spaced out can also be relaxed. For example, to allow for

more flexible visit times one can apply a pre-established algorithm to better mimic the timing

of study visits in practice. One such algorithm is similar to a split-plot design. First one can

divide the number of visits into blocks. Then permutations of ’+’, ’o’, and ’-’ are produced

within each block. The three signs correspond to add, don’t change, or subtract 5% of the

interval lengths to the initially scheduled time. There are six possible permutations: each

subject will start with a permutation type and then the remaining permutation types will

be sequentially assigned to each of the other blocks. For example, the first subject would

start with the first permutation type for the first block, the second permutation type for the

second block, and so forth. The second subject would start with the second permutation

type for the first block, the third permutation type for the second block, and so forth. The

process of assigning permutation types can be rotated again across and within subjects if

necessary. We would use the newly specified visit times to generate the weights for the

follow-up intervals based on this algorithm. The proposed power calculations are dependent
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upon correct specification of the survival and censoring distributions regardless of how one

modifies the study design.

Although we trust the accuracy of power calculations using a simulation approach, ap-

propriately generating response data in some cases is significantly more challenging than

applying the proposed technique [29]. One may encounter convergence difficulties when ap-

proximating power via simulation under more specialized models or with smaller sample

sizes. Glueck and Muller [40] also hesitated to recommend simulation as a general solution

for power approximation. These power and sample-size programs are written in SAS IML

[33] and are available from the authors.
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Table 1: An illustrative example of our expanded data set for two individuals whose first

follow-up visits are scheduled at 3.50 and 4.00 months after study onset, assuming that the

investigator specified N = 200, β = log(1.3), γ = 1, 10% dropout at 24 months, and a 90%

failure rate for the x = 0 group by 24 months, with 6 visits (every 4 months) and no missing

visits (p = 0.0).

ID x l u weight (wi)

1 0 0 ∞ Dropout before 1st visit 1− Pr(Ci ≥ 3.5)a = 0.014

1 0 0 3.5 Failed in 1st interval Pr(Ti ≤ 3.5) Pr(Ci > 3.5) = 0.281

1 0 3.5 ∞ Dropout after 1st visit Pr(Ti > 3.5)b Pr(3.5 < Ci ≤ 7.5) = 0.012

1 0 3.5 7.5 Failed in 2nd interval Pr(3.5 < Ti ≤ 7.5) Pr(Ci > 7.5) = 0.221

1 0 7.5 ∞ Dropout after 2nd visit Pr(Ti > 7.5) Pr(7.5 < Ci ≤ 11.5) = 0.008

1 0 7.5 11.5 Failed in 3rd interval Pr(7.5 < Ti ≤ 11.5) Pr(Ci > 11.5) = 0.148

1 0 11.5 ∞ Dropout after 3rd visit Pr(Ti > 11.5) Pr(11.5 < Ci ≤ 15.5) = 0.005

1 0 11.5 15.5 Failed in 4th interval Pr(11.5 < Ti ≤ 15.5) Pr(Ci > 15.5) = 0.099

1 0 15.5 ∞ Dropout after 4th visit Pr(Ti > 15.5) Pr(15.5 < Ci ≤ 19.5) = 0.004

1 0 15.5 19.5 Failed in 5th interval Pr(15.5 < Ti ≤ 19.5) Pr(Ci > 19.5) = 0.066

1 0 19.5 ∞ Dropout after 5th visit Pr(Ti > 19.5) Pr(19.5 < Ci ≤ 23.5) = 0.003

1 0 19.5 23.5 Failed in 6th interval Pr(19.5 < Ti ≤ 23.5) Pr(Ci > 23.5) = 0.044

1 0 23.5 ∞ Censored at study end Pr(Ti > 23.5) Pr(Ci > 23.5) = 0.095

Sum of weights = 1.000

ID x l u weight (wi)

151 1 0 ∞ Dropout before 1st visit 1− Pr(Ci ≥ 4.0)a = 0.016

151 1 0 4.0 Failed in 1st interval Pr(Ti ≤ 4.0) Pr(Ci > 4.0) = 0.252

151 1 4.0 ∞ Dropout after 1st visit Pr(Ti > 4.0)b Pr(4.0 < Ci ≤ 8.0) = 0.012

151 1 4.0 8.0 Failed in 2nd interval Pr(4.0 < Ti ≤ 8.0) Pr(Ci > 8.0) = 0.184

151 1 8.0 ∞ Dropout after 2nd visit Pr(Ti > 8.0) Pr(8.0 < Ci ≤ 12.0) = 0.009

151 1 8.0 12.0 Failed in 3rd interval Pr(8.0 < Ti ≤ 12.0) Pr(Ci > 12.0) = 0.135

151 1 12.0 ∞ Dropout after 3rd visit Pr(Ti > 12.0) Pr(12.0 < Ci ≤ 16.0) = 0.007

151 1 12.0 16.0 Failed in 4th interval Pr(12.0 < Ti ≤ 16.0) Pr(Ci > 16.0) = 0.099

151 1 16.0 ∞ Dropout after 4th visit Pr(Ti > 16.0) Pr(16.0 < Ci ≤ 20.0) = 0.005

151 1 16.0 20.0 Failed in 5th interval Pr(16.0 < Ti ≤ 20.0) Pr(Ci > 20.0) = 0.072

151 1 20.0 ∞ Dropout after 5th visit Pr(Ti > 20.0) Pr(20.0 < Ci ≤ 24.0) = 0.004

151 1 20.0 24.0 Failed in 6th interval Pr(20.0 < Ti ≤ 24.0) Pr(Ci > 24.0) = 0.053

151 1 24.0 ∞ Censored at study end Pr(Ti > 24.0) Pr(Ci > 24.0) = 0.153

Sum of weights = 1.000

a Pr(Ci ≥ ci) = 1− (ci/24)ψ, where ψ (dropout rate at 24 months) = 0.1

b Pr(Ti ≥ ti) = exp(−e(ti−∆−βxi)γ), where ∆ = log(24)− log(− log(1− 0.90)) = 2.344, β = log(1.3) and γ = 1.
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Table 2: Power calculations for a two-group comparison with 6 visits (every 4 months) and

varying β (effect size) values, γ (shape) values, and missing visit probabilites (p). The log-

transformed failure times are generated with a Weibull distribution as follows: Pr(Ti ≥ ti) =

S(ti; ∆, β) = exp(−e(ti−∆−βxi)γ) with ∆ varying according to the censoring percentage for

the x = 0 group at 24 months. Dropout varies by 10%, 20%, to 30% uniformly by 24 months

for both groups. Data sets are of total size N with equal group sizes. Calculated power is

in bold. Empirical power for each analysis method is presented below and is based on 5,000

simulated data sets.

γ, Shape

Censoring p Analysis 0.5 1.0 1.5

Method β, Effect Size

log(1.3) log(1.5) log(1.7) log(1.3) log(1.5) log(1.7) log(1.3) log(1.5) log(1.7)

Lighta Ave. % of failures 85.9% 84.9% 83.9% 82.9% 80.6% 78.5% 79.9% 76.4% 73.1%

p = 0.00 0.306 0.605 0.824 0.390 0.725 0.909 0.510 0.842 0.962

Weibullb 0.300 0.611 0.826 0.402 0.736 0.909 0.514 0.853 0.973

SZZc 0.301 0.610 0.828 0.399 0.732 0.906 0.507 0.851 0.971

p = 0.40 0.295 0.585 0.805 0.374 0.704 0.895 0.483 0.814 0.947

Weibull 0.305 0.602 0.828 0.377 0.709 0.900 0.505 0.834 0.961

SZZ 0.301 0.601 0.824 0.369 0.707 0.894 0.499 0.830 0.959

Mediumd Ave. % of failures 63.0% 61.7% 60.6% 58.8% 56.4% 54.4% 55.4% 52.0% 49.3%

p = 0.00 0.277 0.548 0.766 0.354 0.665 0.862 0.467 0.783 0.923

Weibull 0.279 0.552 0.774 0.359 0.676 0.879 0.460 0.800 0.948

SZZ 0.283 0.556 0.778 0.362 0.675 0.878 0.472 0.807 0.950

p = 0.40 0.268 0.531 0.747 0.338 0.641 0.842 0.436 0.745 0.896

Weibull 0.279 0.548 0.768 0.335 0.650 0.846 0.443 0.772 0.924

SZZ 0.280 0.547 0.770 0.341 0.657 0.850 0.449 0.781 0.928

Heavye Ave. % of failures 42.4% 41.4% 40.5% 38.5% 36.7% 35.2% 35.5% 33.1% 31.2%

p = 0.00 0.225 0.446 0.650 0.289 0.556 0.760 0.397 0.688 0.849

Weibull 0.227 0.461 0.644 0.289 0.551 0.766 0.390 0.712 0.891

SZZ 0.228 0.468 0.648 0.290 0.553 0.766 0.406 0.731 0.900

p = 0.40 0.217 0.429 0.628 0.274 0.528 0.732 0.367 0.643 0.808

Weibull 0.220 0.446 0.645 0.271 0.526 0.734 0.363 0.666 0.861

SZZ 0.227 0.453 0.652 0.283 0.544 0.752 0.381 0.687 0.872

a Data sets are of size N = 600, N = 200, and N = 130 for γ = 0.5, γ = 1.0 and γ = 1.5, respectively.

b Weibull refers to a parametric Weibull survival model.

c SZZ refers to Sun, Zhao and Zhao’s (2005) generalized log-rank test.

d Data sets are of size N = 700, N = 250, and N = 170 for γ = 0.5, γ = 1.0 and γ = 1.5, respectively.

e Data sets are of size N = 800, N = 300, and N = 220 for γ = 0.5, γ = 1.0 and γ = 1.5, respectively.
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Table 3: Power calculations for a two-group comparison varying the number of visits and

effect size (β) with a total sample of size N and equal group sizes. The study is assumed

to be 24 months long with no missing visits (p = 0.0). The log-transformed failure times

are generated with an exponential distribution as follows: Pr(Ti ≥ ti) = S(ti; ∆, β) =

exp(−e(ti−∆−βxi)) with ∆ and study dropout percentages varying.

Effect Size (β)

log(1.3) log(1.5) log(1.7)

Censoring

Number of visits Interval length (months) Lighta Mediumb Heavyc

1d 24 0.282 0.582 0.676

2 12 0.359 0.640 0.731

3 8 0.377 0.654 0.747

4 6 0.384 0.660 0.754

6 4 0.390 0.665 0.760

8 3 0.392 0.668 0.764

12 2 0.393 0.670 0.767

24 1 0.395 0.672 0.770

a Light censoring refers to 10% dropout at 24 months, and a 90% failure rate for the x = 0 group at 24

months (∆ = log(24)− log(− log(1− 0.90)) = 2.344). Data sets are of size N = 200.

b Medium censoring refers to 20% dropout at 24 months, and a 70% failure rate for the x = 0 group at 24

months (∆ = log(24)− log(− log(1− 0.70)) = 2.992). Data sets are of size N = 250.

c Heavy censoring refers to 30% dropout at 24 months, and a 50% failure rate for the x = 0 group at 24

months (∆ = log(24)− log(− log(1− 0.50)) = 3.545). Data sets are of size N = 300.

d Corresponds to current-status data.
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Table 4: Total sample sizes for a two-group comparison varying power, missing visit proba-

bility and effect size (hazard ratio) with equal group sizes. Assume an exponential survival

distribution with 40% of the women in the x = 0 group not having the event by study end

of 48 months, with scheduled visits every 6 months, and 5% of the enrolled dropping out

each year.

Missing visit probability

0.0 0.2 0.4

Power

Hazard Ratio 80% 90% 80% 90% 80% 90%

1.50 318 426 324 434 332 442

1.75 162 218 166 222 170 226

2.00 104 138 106 142 108 144

2.25 74 100 76 102 78 104

2.50 58 78 60 80 60 80
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