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and metabolite concentrations to the cells in the human body. 
This characteristic helps to deprioritize drug candidates that 
are incapable of competing with endogenous co-substrates or 
co-ligands. Moreover, compounds that are unable to permeate 
cell membranes or that display direct toxicities would be also 
eliminated. However, work with the cell-line based models has 
a fundamental shortcoming: the human body is built from many 
hundreds of cell types, while commonly established cell cultures 
are typically homogenous. 

One way to bridge this gap is to perform secondary screens in 
cell types representing the tissues most commonly contributing 
to the systemic toxicity that may arise when the whole body is 
exposed to a novel pharmaceutical. The culprit is often the liver, 
which is responsible for biotransformation of the majority of xe-
nobiotics. Direct toxicity to the hepatic parenchyma is also quite 
common. Historically, approximately 20-30% of all drug with-
drawals from US and EU markets are due to hepatotoxicity, with 
drug-induced liver injury (DILI) contributing at least 40% to the 

1  Introduction

Drug development is becoming more and more expensive: It 
takes 12-15 years and around two billion dollars to bring a single 
drug into the market. The current paradigm of drug discovery 
relies on high throughput screening (HTS) of chemical libraries 
to identify compounds that bind purified target molecules pro-
duced by means of genetic engineering (Coussens et al., 2017; 
Raucy and Lasker, 2010). Lead compounds identified in HTS in 
vitro assays are subjected to secondary screens in established cell 
models before proceeding into animal testing. Currently, there is 
a substantial push for the development of standardized cell-based 
assays compatible with HTS format (Nickischer et al., 2018; Xia 
and Wong, 2012) or even the whole-animal assays (Delvecchio et 
al., 2011; O’Reilly et al., 2014; Pandey and Nichols, 2011). 

Using human-derived cell line-based assays as the secondary 
screen has a number of advantages, the most important one 
being that cultivated cells are very close in their composition 
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Abstract
Most common drug development failures originate from either bioavailability problems or unexpected toxic effects. 
The culprit is often the liver, which is responsible for biotransformation of the majority of xenobiotics. Liver may 
be modeled using liver-on-a-chip devices, which may include established cell lines, primary human cells, and stem 
cell-derived hepatocyte-like cells. The choice of biological material along with its processing and maintenance greatly 
influence both the device performance and the resultant toxicity predictions. Impediments to the development of liver-on-
a-chip technology include problems with standardization of cells, limitations imposed by culturing, and the necessity to 
develop more complicated fluidic contours. Recent breakthroughs in the development of cell-based reporters, including 
ones with fluorescent labels, permit monitoring of the behavior of the cells embedded into the liver-on-a-chip devices. 
Finally, a set of computational approaches has been developed to model both toxic responses and the homeostasis 
of human liver as a whole; these approaches pave the way to enhance the in silico assessment of potential toxicity.
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synthesis of various blood components, metabolism of glucose, 
fatty acids and cholesterol, production of bile, and detoxification/
biotransformation of endogenous and exogenous substances. Of 
all the important liver functions, its metabolism – especially that 
of pharmaceutical drugs and other xenobiotics – is perhaps the 
most important in the context of pharmaceutical toxicology. In 
hepatic parenchyma, xenobiotics undergo three phases of me-
tabolism and transport: (1) Phase I, which is mainly catalyzed by 
the cytochrome P450 enzymes (CYP450) and results in transfor-
mation of lipophilic compounds into water-soluble metabolites; 
(2) Phase II, where various enzymes conjugate xenobiotics and/
or their metabolites to highly polar molecules such as glucose, 
glucuronic acid, sulfate, or glutathione; (3) Phase III, where 
specific or non-specific transporters efflux these highly polar 
metabolites out of hepatocytes into the bile, or release them back 
to the blood for subsequent excretion with urine. The extreme 
diversity of the Phase I/II enzymatic system is a root cause for 
poor predictive performance of cell-based hepatotoxicity assays 
for possible adverse effects of potential drugs in humans.

Although Phase I reactions may be carried out by any com-
bination of 50 cytochrome P450 (CYP450) monooxygenases, 
some of these enzymes are more important than others. Six 
cytochromes, namely CYP1A2, CYP2C9, CYP2C19, CYP2D6,  
CYP3A4, and CYP3A5, are capable of metabolizing 90% of 
known drugs (Liddle and Stedman, 2007; Lynch and Price, 
2007). Both the isoenzyme profile of these cytochromes and the 
relative catalytic activity within a particular source of the liver 

number of withdrawals in the United States (Olson et al., 2000; 
Peters, 2005). Ideally, potential drug toxicities should be discov-
ered during preclinical testing in cellular or animal models. Nev-
ertheless, many drugs were found to cause injury to human liver 
only after marketing and were subsequently either discontinued 
or received the warning label. Whether the failure of preclinical 
modeling is due to human genetic variants, immune reactions or 
disease-related metabolic problems, the animal models are limit-
ed in detecting human-specific phenomena. In addition, there is 
also a strong push to minimize the use of animal models due to 
ethical concerns (Langley et al., 2015). 

Therefore, in this review we concentrate on liver cell-based 
platforms amenable to standardizing for their eventual use in 
toxicity screening compatible with HTS mode. This goal can be 
achieved with the development of liver-on-a-chip devices with 
embedded human cells. Such platforms may be useful both at 
the earliest steps of drug development (Fig. 1), which embraces 
the paradigm of “failing early-failing cheaply”, and at later de-
velopment stages, where they will eventually reduce the use of 
animals and provide more human-relevant information. 

2  Human liver metabolism differs from that  
of animals

Liver is an intricate factory built by a variety of cooperating cells 
that perform over 500 distinct functions, including large scale 

Fig. 1: HTS-based drug discovery paradigm 
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compared one to another across the batches of disposable de-
vices. The easiest way to standardize biological components 
of the chip without reverting to cell immortalization is to use 
cells prepared from inbred animals, for example, a particular 
strain of mice. Unfortunately, the comparison of the content of 
nine CYP450 enzymes in the microsomes derived from hepatic 
specimens procured from mouse, rat, rabbit, dog, micropig and 
monkey revealed that no single model species resembles the 
enzyme activities in human liver (Bogaards et al., 2000). More-

material are most critical for the standardization and for proper 
functioning of the liver-on-a-chip device. 

Phases I and II are commonly referred to as “metabolic detox-
ification,” which is a misnomer, as many xenobiotics are metab-
olized into either bioactive or toxic compounds. Recapitulation 
of the in vitro liver drug metabolism is the pivotal aim of a liver-
on-a-chip development. Ideally, preclinical assays would require 
use of highly standardized cellular components; at the end, the 
potencies and other characteristics of various drugs should be 

Tab. 1: Comparison of cell sources for liver-on-a-chip technology

Cell source 
 
(relevant 
references) 
 
 

Genetic 
similarity 
to human 
hepatocytes 
 
 

Variability

Standardization

Use in 
personalized 
medicine

Supply

Viability

Number of 
passages

Functional 
stability

P450 enzymatic 
profile 
 

Total P450 
activity

Transporters 
 
 
 
 
 
 
 
 

Generation of 
reporter lines

Primary 
hepatocytes 
(Bell et al., 2017; 
Hart et al., 2010) 
 
 

Exact (derived 
from particular 
individual) 
 
 
 

High

Impossible

Yes 
 

Limited

10-14 days

n/a 

Yes 

1A2, 2A6, 2C8, 
2B6, 2C19, 2C8, 
2D6, 2E1, 2C9, 
3A4, 3A5, 3A7

High 

ABCBA, ABCB7, 
ABCF3, ABCB1, 
ABCC1, ABCC2, 
ABCC3, ABCE1, 
ABCF1, ABCF2, 
GTR1, SLCO1B1, 
SLC22A1 
 
 

Impossible

Upcyte® 
 
(Ramachandran 
et al., 2015b; 
Herzog et al., 2016; 
Schaefer et al., 
2016, 2018)

Exact (derived 
from particular 
individual) 
 
 
 

Low

Possible

No 
 

Unlimited

10-14 days

40 

Yes 

1A2, 2C8, 2B6, 
2C19, 2C9, 2D6, 
3A4 

Low 

ABCF3, ABCB1, 
ABCC1, ABCC2, 
ABCE1, ABCF1, 
ABCF2, GTR1, 
ABCB11, 
SLCO1B1, 
SLC22A1, 
SLC47A1 
 

Possible

HepG2  
 
(Gerets et al., 2012; 
Hart et al., 2010) 
 
 

Medium 
(derived from 
hepatoblastoma 
with abnormal 
karyotype and 
highly malignant 
phenotype)

High

Impossible

No 
 

Unlimited

7 days

Unlimited 

No 

1A2, 2C8, 2B6, 
2C9, 3A5, 3A7 
 

Low 

ABCF3, ABCB1, 
ABCC1, ABCE1, 
ABCF1, ABCF2, 
GTR1 
 
 
 
 
 

Possible

Differentiated 
HepaRG  
(Bell et al., 2017; 
Gerets et al., 2012; 
Hart et al., 2010;  
Le Vee M. et al., 
2006)

High (quiescent, 
differentiated 
cancer cell line with 
stable sub-diploid 
karyotype with 
minimal alterations) 

Low

Possible

No 
 

Relatively unlimited

30 days

20 to preclude 
instability

Yes 

1A2, 2A6, 2B6, 
2C19, 2C8, 2E1, 
2D6, 2C9, 3A4, 
3A5, 3A7

Medium 

ABCBA, ABCB7, 
ABCF3, ABCB1, 
ABCB11, ABCC1, 
ABCC2, ABCC3, 
ABCE1, ABCF1, 
ABCF2, GTR1, 
SLC22A1, 
SLCO2B1, 
SLCO1B1, 
SLC10A1

Possible with 
limitations

iPSC derived 
 
(Baxter et al.,  
2015;  
Chaudhari et al., 
2016) 

Exact (derived 
from particular 
individual) 
 
 
 

High

Impossible

Yes 
 

Unlimited

2-4 days

50 

Unknown 

1A2, 2A6, 2B6, 
2C19, 2C8, 2E1, 
2D6, 2C9, 3A4, 
3A5, 3A7

Relatively low, as in 
fetal hepatocytes 

ABCBA, ABCB7, 
ABCF3, ABCB1, 
ABCB11, ABCC1, 
ABCC2, ABCE1, 
ABCF1, ABCF2, 
GTR1, SLC10A1 
 
 
 

Possible
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activity, for at least three weeks after seeding (Arakawa et al., 
2017), which make them suitable for cytochrome induction tests. 
Hepatocyte spheroids are compatible with a serum-free medium 
and co-culturing with non-parenchymal Kupffer, stellate and 
biliary cells (Bell et al., 2016). Heterotypic spheroids reflect 
tissue environments in vivo, and, at least theoretically, permit 
construction of larger tissue models by higher order assembly 
of individual spheroids. In composite spheroids, i.e., spheroids 
composed of collagen microparticle scaffolds and cells, the 
optimal ratio of hepatocytes to type I collagen microparticles 
is approximately 1:1; the shift towards more of the collagen 
microparticles compromises hepatocyte functions (Yamada et 
al., 2015). On the other hand, an optimal co-culturing ratio for 
hepatocytes supported with endothelial progenitor cells is 5:1, 
in the presence of alginate-collagen (Chan et al., 2016). Another 
recent work used a 3D printing technique to combine alginate 
hydrogels with primary hepatocytes and mesenchymal stem 
cells (MSCs). This approach improved the viability of isolated 
hepatocytes to more than 90% and their morphological stability 
to up to 7 days (Kim et al., 2018).

Another hepatic modeling approach is based on sandwich 
cultures, also known as overlays. Sandwiching hepatocytes 
between two layers of ECM leads to formation of “plate” struc-
tures similar to the in vivo liver anatomy. The planar structure of 
the sandwich allows easy microscopic imaging. This technique 
preserves the polarity, including basal surfaces induced by ECM 
layers and apical surfaces by cell-to-cell contact, and leads to 
the development of a canalicular network and the secretion of 
bile (Swift et al., 2010). In sandwich cultures, the viable period 
may be increased to up to 6-8 weeks. However, sandwiched 
hepatocytes maintain their biotransformation activities and the 
ability to induce many Phase I and Phase II enzymes for the first 
two 2 weeks only. 

Culturing primary hepatocytes within 3D structures formed 
by porous poly(L-lactide-co-glycolide) (PLGA) modified type I 
collagen nanofibers that mimic the natural liver environment is a 
promising strategy to improve the synthetic function of the liver 
cells over time (Brown et al., 2018).

In a recent study, primary human hepatocytes grown in a sand-
wich overlaid with extracellular matrix were directly compared 
to 3D spheroids in repeated-dose toxicity studies using 5 differ-
ent liver toxins. To ensure robustness of the findings, the study 
was performed in six different laboratories using cryopreserved 
cells collected from the same set of donors. The study showed 
superiority of the 3D spheroids in expression of ADME-related 
proteins, as well as in catalytic activities of five different cyto-
chromes (Bell et al., 2018).

3.2  Upcyte® hepatocytes
The upcyte® (“upregulated”) technology involves virus-guided 
introduction of a unique combination of genes that induce and 
maintain cell proliferation until the cells reach confluence. This 
allows the primary cells to be passaged many times with the 
generation of billions of cells. Human upcyte® hepatocytes1 are 
primary human hepatocytes derived by transducing E6 and E7 

over, the metabolic abilities of Phase II enzymes also markedly 
differ among species as was demonstrated for UDP-glucuronos-
yltransferase (UGT) activity (Hanioka et al., 2016) as well as for 
sulfation and glutathione conjugation (Miller et al., 1993). 

Therefore, we would have to create liver chips using cells of 
human origin to best predict human liver metabolism. Let us 
consider how close different preparations of liver cells may re-
semble human liver (Tab. 1). 

3  Liver cells and cell lines: available choices

Liver slices and whole perfused organs preserve an intact tissue 
structure, thereby being the most physiologically realistic model. 
However, their standardization and long-term maintenance have 
proven close to impossible. However, some reliable approxima-
tion of the liver could be achieved with the aid of microfabrica-
tion and advanced tissue engineering, capable of the generation 
of “on-a-chip” tissue and organ models suitable for HTS purpos-
es. Of note, these models can be imaging- and analysis-friendly 
as they allow for real-time monitoring of the state of the living 
cells and their extracellular environment. A successful platform 
for mimicking liver physiology and hepatic drug metabolism 
in vitro is expected to replicate all major liver functions by 
controlling cellular dynamics over a prolonged period of time, 
which is currently defined as more than 28 days.

3.1  Hepatocytes 
Human hepatocytes represent nearly 60% of the total cell pop-
ulation within the liver. These cells, capable of performing a 
majority of liver functions, can be isolated from the human liver 
via collagenase perfusion. Primary hepatocytes are commonly 
accepted as the “gold standard” for constructing liver models 
for drug testing and other applications. Maintaining an in vi-
vo-like phenotype for isolated hepatocytes is challenging, since 
in a monolayer culture these cells undergo significant changes 
in Phase I and II metabolism and lose function over 72 hours 
(Rodriquez-Antona et al., 2002). Moreover, cultured primary 
hepatocytes may also lose their polarization, which would, in 
turn, greatly affect their ability to efflux biotransformed com-
pounds (Luttringer et al., 2002; Noel et al., 2013). Luckily, both 
the widely used well-differentiated human hepatoma cell line 
HepaRG and primary human hepatocytes retain their polariza-
tion even in monolayers, as is evident by differential expression 
of a proper set of influx and efflux transporters at their sinusoidal 
and canalicular poles, respectively (Le Vee et al., 2013, 2015).

The functional life of hepatocytes may be prolonged by a va-
riety of techniques. One promising approach is to culture them 
as spheroids, through inhibiting hepatocyte attachment to vessel 
walls and, thereby, enforcing their floating as aggregates. Spher-
oids may be formed by mechanical agitation by rotary shaker 
or spinner flask, hanging drop or using non-adherent surface 
chemistry. Hepatocellular spheroids retain a majority of the pa-
renchymal functions, including the secretion of albumin, urea, 
transferrin and bile, along with Phase I and II biotransformation 

1 http://www.upcyte.technologies.com 

http://www.upcyte.technologies.com


Poloznikov et al.

ALTEX 35(3), 2018 401

Historically, HepG2 cells were extensively exploited to 
examine cytoprotective, antioxidative, hepatoprotective, an-
ti-hepatoma, hypocholesterolemic, anti-steatosis, bioenergetic 
homeostatic and anti-insulin resistant properties of various bio-
active compounds of chemical and botanical origin (Kaur et al., 
2018). Due to high content of organelles and mtDNA, HepG2 
cells remain a model of choice for investigation of mitochondrial 
toxicity through evaluations of mitochondrial fragmentation, ly-
sosome content and mitophagy as well as mitochondrial release 
of cytochrome c, leading to apoptosis and/or necrosis (Paech et 
al., 2018; Paemanee et al., 2017). Because of that, attempts to 
improve the overall performance of HepG2 are continued, with 
the chief strategy to overcome their limitations being the devel-
opment of three dimensional (3D) models, including co-cultur-
ing (He et al., 2018) and generation of the spheroids maintained 
in the hanging drops or otherwise (Hurrell et al., 2018; Shah et 
al., 2018). 

3.4  HepaRG cells
Although the HepaRG cell line was derived from a hepatoma 
of a female patient with cirrhosis following hepatitis C virus 
infection (Gripon et al., 2002), unlike other human liver cell 
lines, HepaRG cells express many drug processing genes at lev-
els similar to those in primary human hepatocytes. In particular, 
HepaRG express various nuclear receptors, transporters, and 
specific markers of adult hepatocytes (albumin, haptoglobins, 
and aldolase B) (Guillouzo et al., 2007). In confluent cultures, 
HepaRG cells differentiate from a stem cell/progenitor state to 
mature hepatocytes and primitive biliary cells and maintain a 
relatively stable function for several weeks (Jossé et al., 2008). 
HepaRG cells, including 3D-organotypic HepaRG cultures 
obtained using a scaffold-free, high-throughput hanging drop 
system are considered a viable option for evaluating hepatotoxic 
chemicals with reproducible responses (Gunness et al., 2013).

A high-throughput transcriptional profiling of both differen-
tiated and undifferentiated HepaRG cells found that these cells 
have much higher resemblance to primary human hepatocytes 
and biopsied livers that HepG2 (Hart et al., 2010). These tran-
scriptomics data have been recently supported by proteomics: 
a global proteomic analysis of HepG2, upcyte®, and HepaRG 
showed that the cytochrome activity levels of both HepG2 and 
upcyte® were reduced by 90% in comparison to primary he-
patocytes, while levels in HepaRG cells were reduced by 60% 
(Sison-Young et al., 2015). Remarkably, HepaRG cells also re-
tained expression of MRP3 and P-gp (MDR1) transporters. 

Molecular profiling data described above indicate that the 
HepaRG cell line in many ways resembles human primary 
hepatocytes, which is encouraging for utilization of these cells 
in the studies of xenobiotic metabolism, hepatotoxicology, and 
hepatocyte differentiation. It is, however, important to note that 
HepaRG cells eliminate galactose/sorbitol and produce albumin 
at rates higher than in primary hepatocytes, while being unable 
to excrete urea (Lübberstedt et al., 2011). As HepaRG cells are 
a clone derived from a particular individual, it is not surprising 
that the levels of cytochrome activities and their relative induc-

proteins of human papillomaviruses, which release hepatocytes 
from cell cycle arrest and allow their proliferation in response 
to oncostatin M (OSM), a member of the interleukin-6 (IL-6) 
superfamily involved in liver regeneration. In cultures, upcyte® 
hepatocytes undergo a finite number of cell divisions without 
being immortalized or losing adult primary cell phenotype 
(Burkard et al., 2012). Upon stimulation with OSM, doubling 
time for these cells is between 33 and 49 hours. After OSM 
is withdrawn, upcyte® hepatocytes differentiate to generate 
highly functional cells. This method allows expanding human 
hepatocytes for 35 population doublings, resulting in 1015 (a 
quadrillion) cells from each liver biopsy. Over 12 billion up-
cyte® hepatocytes can be generated from one vial of primary 
human hepatocytes, thus meeting the high demand for stan-
dardized cells necessary for HTS studies. In the first-generation 
upcyte® hepatocytes, cytochromes CYP1A2, CYP2B6, and 
CYP3A4, but not CYP2B6, were drug-inducible at the mRNA 
level, suggesting the necessity for additional optimization. Sec-
ond-generation upcyte® hepatocytes (Levy et al., 2015) form 
metabolically functional, polarized cultures with functional bile 
canaliculi and expression profiles for nuclear receptors, Phase I 
and II enzymes, and drug transporter genes comparable to those 
in primary human hepatocytes. As with the first-generation up-
cyte® hepatocytes, second-generation cells lack fetal markers 
and express cytokeratin 8 and 18, human serum albumin and 
store glycogen (Levy et al., 2015). 

Upcyte® technology opens new horizons in modeling or-
ganotypic cultures. In a recent report, functional 3D hepatic 
structures were generated using a defined mixture of three types 
of differentiated human upcyte® cells, namely hepatocytes, 
liver sinusoidal endothelial cells (LSECs) and mesenchymal 
stem cells (MSCs). When all three types of cells were plated 
on a thick layer of Matrigel™, they self-organized to form liver 
organoid-like structures within 24 hours; during a 10 day cul-
turing in a bioreactor, these liver organoids showed typical func-
tional characteristics of liver parenchyma including activity of 
CYP3A4, CYP2B6 and CYP2C9 as well as mRNA expression 
of several marker genes and other enzymes (Ramachandran et 
al., 2015a). 

It is also important to note that upcyte® hepatocytes can be 
transformed with reporter constructs to permit real time moni-
toring of hepatocyte functions and/or drug effects.

3.3  HepG2 cells
The HepG2 cell line was derived from a hepatocellular carci-
noma of a 15-year-old Caucasian male. Due to low endogenous 
expression of cytochromes, HepG2 cells are a relatively poor 
choice for detection of hepatotoxicity (Wilkening et al., 2003) 
(Tab. 1). Even when HepG2 cells are made to express cyto-
chromes forcibly, via adenoviral transfection, these cells do not 
reach liver model standards, as they also lack activity of aldolase 
B; several drug transporters such as BSEP, OATP-C, NTCP, and 
OCT-1; and a range of non-cytochrome Phase II enzymes, such 
as GSTA 1/2 and GSTM1 (Gripon et al., 2002; Guillouzo et al., 
2007; Wilkening et al., 2003).
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best protocols are used (Chistiakov and Chistiakov, 2012) deriv-
ing the line requires expensive and time consuming extraction 
and purification steps.

To overcome the mentioned limitations, Cellular Dynamics 
International (CDI) has developed 95% pure iPSC derived iCell® 
Hepatocytes, which are claimed to closely resemble primary 
cells. However, a recent comparative study of these cells along 
with HepaRG and human hepatocyte co-cultures showed that 
their metabolic activity is more than tenfold lower and approx-
imates that of HepG2 (Kratochwil et al., 2017). This regretful 
outcome stresses the importance of keeping an eye on a “Holy 
Grail” of iPSC-based cellular modeling: a resemblance between 
the naturally differentiated cells residing within the body and 
forcefully differentiated cells produced from iPSCs. 

One way to make sure that the produced cells perform ade-
quately is to compare their expression profiles with those of natu-
rally differentiated cells using CellNet, a computational platform 
which evaluates the extent to which cell- and tissue-specific 
gene regulatory networks are established under one or another 
differentiation protocol (Cahan et al., 2014; Radley et al., 2017). 
When correctly assessed for the resemblance of their target cell 
type, iPSC-derived hepatocyte-like cells may become a valuable 
tool for personalized toxicology and metabolism studies.

4  Cell line standardization problem

An induction of liver-on-a-chip technology into the main aisle 
of toxicology labs is critically dependent on our ability to stan-
dardize the cells seeded on to the chip. In principle, cell stan-
dardization requires the stability and reproducibility of the four 
main characteristics: (a) Viability for prolonged periods of time, 
which may be assessed via fluorescence imaging techniques 
that rely on a combination of nuclear and cytosolic dyes; (b) the 
retention of a toxicologically-relevant metabolic profile with sta-
ble activity of Phase I and Phase II enzymes; (c) drug transporter 
activity, which should be taken into consideration during initial 
vetting of an in vitro platform for studies of drug metabolism;  
(d) secretory capacity, which is approximated by albumin bio-
synthesis and urea excretion. Notably, a consistently high albu-
min production at levels of approximately ~1-5 μg per 106 cells 
per hour serves as an indispensable indicator of the overall met-
abolic health of the cells; urea plays a similar role for evaluating 
general metabolic capacity. To directly detect albumin secreted 
by hepatocyte culture, 3D scaffold-based immunoassay chips 
have been developed recently (Yan et al., 2015).

As can be seen from Table 1, the standardization requirements 
are fulfilled only by upcyte® and HepaRG cells, with HepaRG 
being even closer in their cytochrome and transporter profiles 
to primary hepatocytes than the upcyte® cultures. To fully stan-
dardize the cell behavior in the liver-on-a-chip devices, there is 
a need to collect data to evaluate their response to exposure to 
a panel of at least 100 drugs, roughly divided into four catego-
ries that include safe and efficacious, safe and non-efficacious, 
non-safe and efficacious, and non-safe and non-efficacious com-
pounds, all with well characterized in vivo metabolism. More-

ibility in these cells match some primary hepatocyte cultures but 
not others (Berger et al., 2016; Hart et al., 2010; Lübberstedt et 
al., 2011; Sison-Young et al., 2015). These differences are most 
likely intrinsic as they reflect variation in the expression levels 
of individual cytochromes across healthy humans.

3.5  Induced pluripotent stem cells (iPSC)
Induced pluripotent stem cell (iPSC) technology was introduced 
in 2006 (Takahashi and Yamanaka, 2006). iPSCs originate from 
adult cells reprogrammed by the introduction of several genes 
essential for embryonic stemness, namely Oct3/4, Sox2, c-Myc, 
and Klf4. Similar to embryonic stem cells, iPSCs can be dif-
ferentiated into endoderm, mesoderm or ectoderm. This tech-
nology has important implications for drug toxicology (Anson 
et al., 2011). In particular, utilization of iPSCs in drug testing 
addresses the main problems arising from utilization of primary 
cells, such as limited quantities, donor to donor variation and 
relatively short lifespan in vitro, and circumvents ethical require-
ments since these cells do not come from embryos (Shafritz et 
al., 2009). iPSCs allow construction of surrogate liver panels to 
represent the most common combinations of Phase II enzyme 
variants and, therefore, to evaluate the potential of adverse drug 
reactions in the population and to provide an additional step to-
wards the personalization of medicine. Thus, iPSCs may help 
to identify the potential for idiosyncratic hepatotoxicity, which 
may develop in some patients but not others – something which 
may be missed in the course of typical hepatotoxicity studies. 

Since 2009, when the first protocol for the production of iPSC 
derived hepatocyte-like cells was published (Song et al., 2009), 
a variety of optimizing modifications to the standard procedure 
were proposed (Chen et al., 2012; Chin et al., 2009; Huang et 
al., 2014; Liu et al., 2010; Schwartz et al., 2014; Si-Tayeb et 
al., 2010; Takayama et al., 2012). Remarkably, some of these 
modifications simplified the workflow: instead of differentiating 
the cells in the presence of serum supplemented with growth fac-
tors and small metabolites, the protocols shifted towards greater 
standardization, with elimination of primary feeder cell require-
ments and introducing serum-free media.

iPSC-derived hepatocyte-like cells maintain a majority of 
hepatocytic functions, including the production of albumin, 
expression of cytochromes, and the storage of glycogen, while 
displaying global expression profiles resembling those of pri-
mary human hepatocytes (Gao and Liu, 2017). However, tran-
scriptomic analyses revealed that for certain functional gene 
sets, the expression patterns of iPSC and of cultured primary 
hepatocytes differ substantially, with genes related to endocyto-
sis upregulated (Bell et al., 2017), and cytochrome production 
downregulated (Bell et al., 2017; Si-Tayeb et al., 2010). Another 
aspect that limits wide utilization of iPSCs in drug testing is the 
standardization issue. The genetics of each iPSC line reflect the 
genetics of its donor. Consequently, iPSC lines differ in their 
epigenetic profiles, miRNA patterns and differentiation prop-
erties (Chin et al., 2009; Marchetto et al., 2009; Miura et al., 
2009), which greatly contribute to lab-to-lab variations typically 
observed in toxicological studies. Furthermore, the efficiency of 
iPSC differentiation into hepatocytes is at 60% and even when 
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It is important to note that hepatocyte-produced drug metab-
olites may be non-toxic for liver cells while exerting adverse 
effects on other organs and tissues. To address this problem, sev-
eral heterotypic cell cultures have been developed. For example, 
a microfluidic-based platform for co-culture of neurospheres and 
liver equivalents was recently employed in a two-week assay 
involving repeated exposure to the neurotoxin 2,5-hexanedione. 
It showed a significantly higher sensitivity compared to either 
hepatocyte or neurosphere monocultures (Materne et al., 2015). 
The same group also developed a platform for co-culture of liver 
organoids with skin (Wagner et al., 2013). On a microfluidic chip 
for the co-culture of HepaRG and kidney cells (MDCK) creat-
ed by another group (Choucha-Snouber et al., 2013), a 3-day 
exposure to ifosfamide led to the detection of apparent nephro-
toxic effects, while no toxicity was observed in monocultured  
MDCKs. In spheroid co-culture of HepaRG with primary human 
hepatic stellate cells (HSCs), exposure to pro-fibrotic compounds 
allowed the detection of multiple fibrotic features such as HSC 
activation, collagen secretion and deposition, thereby providing 
an avenue for in vitro testing of possible contributors to liver 
fibrosis (Leite et al., 2016).

6  The way to improve hardware 

The need for better detection and instrumentation, as well as bet-
ter materials, stems from the need to pump controlled microliter 
volumes of medium through the chip circuits and, in particular, 
to distribute the flow at critical junctions with a high degree of 
precision. Most scientists agree that devices of 100 μm in height 
or less are preferable since at that scale they approach the diame-
ter of the liver sinusoids, which is in the order of 5-10 μm. At this 
height, the problems with the signal and/or metabolite dilution 
that plague larger-scale platforms are reduced. 

Interpretation of the data generated with the aid of a microflu-
idic device critically depends on correct scaling of the physical 
and physiological parameters and on the relevance of the select-
ed computational model of drug response and toxicity. One of 
the most important parameters that control the adsorption, distri-
bution, metabolism, excretion and toxicity (ADMET) in physi-
ological systems is the exposure time of the tissue to drugs and 
other xenobiotics, which is called the organ-specific transit time. 
According to an initial model generated in 1963 after experi-
mentation on dogs, liver-specific transit time is between 10 and  
20 seconds (Goresky, 1963). However, later studies demonstrat-
ed that in humans the hepatic transit time is substantially longer, 
from minutes to hours (Chiou, 1983). Moreover, hepatic transit 
time depends on the structure of a compound (Chiou, 1983) and 
may vary between individuals, being influenced by their genetics 
and overall state of health (Pedersen et al., 2005). Accordingly, 
to mimic in vivo ADMET characteristics in the fluidic systems, 
one has to have an ability to adjust fluidic residence times to the 
required physiological values. 

To evaluate drug metabolite-induced toxicity, more compli-
cated fluidic systems are necessary (Fig. 2) (Marx et al., 2016). 
Multi-parametric evaluation of the drug effects may include the 

over, each drug has to be studied in a range of concentrations to 
determine both acute and chronic effects. In other words, both 
IC50/LD50 and a variety of the biomarkers of functional impair-
ment have to be assessed.

5  Limitations imposed by culturing 

Until recently, liver cell monocultures were a mainstay of tox-
icology practice for a number of well-defined “fit-for-purpose” 
assays. Nowadays, it is widely recognized that single cell type 
monolayers do not reflect the complexity of a tissue developed 
within a living organism. The limitations of hepatocyte mono-
culture are obvious. One of the most promising approaches to 
overcome the issues with viability of hepatocyte monoculture 
is the utilization of microfluidic perfusion devices (Knöspel et 
al., 2016; Shulman and Nahmias, 2013; Tehranirokh et al., 2013; 
Wagner et al., 2013). Unfortunately, for a majority of cell types, 
the cultivation period still does not exceed 14 days. Recently, 
Klein et al. (2014) demonstrated that HepaRG cells can be 
maintained in optimized serum-free media for 30 days without 
a decline in their viability. This finding certainly opens up the 
opportunity for the use of these cells in systems toxicology. 

Both viability and functioning of hepatocytes are reduced in 
the absence of non-parenchymal cells. These supportive cells 
include fibroblasts, endothelial cells, stellate and Kupffer cells, 
and biliary epithelial cells (Ries et al., 2000; Soto-Gutierrez et 
al., 2010). Importantly, the addition of even one type of auxiliary 
cell often helps. For example, Okamoto et al. (1998) developed 
a co-culture system of primary human hepatocytes with the he-
patic stellate cell line LI90, which retains a substantial activity 
of P450 cytochromes for at least 2 weeks, however, no rescue 
of urea excretion was noted. In another study, primary human 
hepatocytes were co-cultured with human umbilical vein endo-
thelial cells (HUVEC) to achieve marked improvement of albu-
min production, urea biosynthesis and the rate of diazepam bio-
transformation (Salerno et al., 2011). Kostadinova et al. (2013) 
developed a 3D mixed culture of primary hepatocytes with a 
variety of non-parenchymal cell types. This liver-like culture 
maintained the production of albumin, fibrinogen, transferrin 
and urea for up to 3 months, while retaining the ability to induce 
the synthesis of cytochrome P450 on a drug exposure cue.

From the standpoint of liver biology, non-homotypic cultures 
have a better chance to correctly predict drug-induced liver in-
jury as its development often depends on the communication 
between hepatocytes and the resident macrophages, which, 
upon exposure to certain drug metabolites, may be activated 
to serve as intrahepatic sources of inflammation (Endo et al., 
2012; Kegel et al., 2015). Indeed, previously mentioned 3D 
liver equivalents containing a variety of non-parenchymal cells, 
including Kupffer macrophages, already demonstrated their 
value in the detection of potential inducers of idiosyncratic liver 
injury (Kostadinova et al., 2013). Similar results were obtained 
for micropatterned co-cultures containing either primary human 
hepatocytes or iPSC-derived hepatocytes and murine fibroblasts 
(Ware et al., 2015). 
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miRNAs in all biological fluids suggests that miRNAs might 
also act as signaling molecules outside the cell, and may be uti-
lized as biomarkers (Makarova et al., 2014, 2016).

To monitor the state of the hepatocyte cell culture, both hepato-
cyte-specific microRNAs (miR-122) and miRNA species highly 
expressed in the liver (miR-21, miR-19a/b, miR-106a/b) may be 
employed. The change in the representation of these microRNAs 
in the culture medium may be utilized for sensing a physiological 
change in the hepatocytes under the influence of the studied com-
pound. Also, a number of microRNAs affecting the expression 
of ADMET genes were discovered. So, for example, miR-27b 
and miR-378 (Mohri et al., 2010) regulate the expression of cyto-
chromes 1B1, 2E1 and 3A4. The appearance of such microRNAs 
in the microfluidic system cell culture medium may thus signifi-
cantly affect the functional capacity of the device. 

Metabolomics presents yet another, very interesting alternative 
for extracting quantitative information about the dynamic meta-
bolic response of the modelled liver to pathophysiological con-
ditions. In two recent studies, the metabolite profiles of HepG2 
cells treated with various test substances were analyzed to re-
veal concentration-response effects mapped to a variety of the 
response patterns consistent with different liver toxicity mecha-
nisms (García-Cañaveras et al., 2016; Ramirez et al., 2018).

On the other hand, the spatiotemporal dynamics of the mul-
ticellular milieu could be monitored with the aid of a small 
fluorescent molecule (probe) or a protein-based fluorescent bi-
osensor. In this respect, reporter cells have great promise; such 

studies of intestinal permeability, biotransformation pathways, 
as well as tests for the toxicity of a drug and its metabolites 
(Semenova et al., 2016; Zakhariants et al., 2016). Employing a 
combination of different cell types that reflect tissue-tissue inter-
actions observed in whole organisms could significantly add to 
the value of the collected data. However, the disadvantages of 
multi-cell type devices stem from their underlying complexity 
and include low throughput and questionable scalability. 

Detection in the microfluidic platforms is a challenge. In order 
to capture both acute and chronic effects of exposure to drugs, 
toxins or environmental factors, successful liver-on-a-chip  
devices should sum and present the data stream collected in re-
al-time. On top of that, due to cell to cell differences observed 
in all types of culture, quantitative monitoring of intracellular 
changes and cell-cell interactions should be performed on a per 
cell basis, rather than in bulk. Growing trends of single-cell 
transcriptomics and biochip compatible reporters, are, in part, 
catering to this need. 

One of the approaches to explore intracellular changes might 
be microRNA level monitoring in the culture medium of the 
microfluidic platform. MicroRNA (miRNA) is a class of small 
non-coding RNAs that mediate post-transcriptional gene si-
lencing by sequence-specific inhibition of the target mRNAs’ 
translation and/or lowering their half-lives in the cytoplasm 
(Turchinovich et al., 2015, 2016). Together with their binding 
partners, Argonaute proteins, miRNAs form cores of RNA-in-
duced silencing complexes. Finally, the discovery of cell-free 

Fig. 2: Microfluidic platform for long-term multi-tissue coculture with closed circuit
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The choice of reporter constructs for transforming hepato-
cyte-like cell lines is wide (Tab. 1). In particular, classic pro-
moter-based reporters comprised of a fluorescent or luminescent 
protein gene under the promoter of a gene of interest, are readily 
available from commercial sources. Such promoter-based re-
porters are useful for monitoring of expression, and have been 
recently employed to monitor activation of CYP genes in HepG2 
and HepaRG cells (Tsuji et al., 2014). The chief disadvantage 
of these reporters is their relatively low level of signal, which 
is often detected with a substantial delay due to the time nec-
essary for promoter activation, transcription and translation of 
the reporter protein. Another problem is that many genes require 
for proper expression either relatively large promoter regions or 
even the presence of distant enhancers, which cannot be spliced 
into the plasmid- or virus-based reporter construct due to size 
limitation. This limitation could be surmounted by using bacte-
rial artificial chromosome (BAC) transgene-based cell lines with 
very large, locus-wide holding capacity inclusive to all regula-
tory elements ensuring the normal physiological regulation of a 
fluorescent or luciferase reporter expression (Poser et al., 2008). 
The Bscl2-GFP and Srxn1-GFP BAC reporter assays were suc-
cessfully employed to differentiate between two different types 
of response to genotoxic agents in many stably transfected cell 
lines (Hendriks et al., 2012). Recently, the feasibility of the 
BAC-reporter approach has been evaluated by testing the effect 
of over 2000 FDA approved drugs and active natural product 
compounds on the modulation of the Srxn1-GFP reporter in 

cells natively fluoresce upon stimulation or under certain stress 
conditions, thus revealing specific information about the state 
of the cell. Optical interrogation of the hepatocyte culture with 
integrated “sensor” cells engineered to respond to particular sig-
nals may provide a way to extract this type of information in a 
real-time format.

7  Biochip compatible reporter assays

One of the most important modern trends in drug discovery is 
the switch from the “one disease – one target” mentality to the 
understanding that diseases are driven by shifts in a homeostatic 
balance. Even the smallest of these changes may involve many 
interacting genes and proteins upstream and downstream of a 
malfunctioning element in a biological puzzle. Hence, the focus 
of the HTS efforts has also shifted toward a search for various 
modulators which exert their action either through fine-tuning 
various transcription factors, or by controlling epigenetics land-
scapes. Cell-based reporter-enabled biochips are ideally suited 
for the purpose of HTS for activators and inhibitors of transcrip-
tion factors. Reporters with fluorescent labels are preferable for 
use on the liver-on-a-chip devices, since they permit monitor-
ing of the reporter response in intact cells. However, the recent 
development of a cell-permeable reagent for Renilla luciferase 
(Lindberg et al., 2013) opens the possibility of measuring lumi-
nescence within the intact cells.

Fig. 3: Luciferase fusion reporter concept in the case of NRF2
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ified, and Nrf2 protein is released for subsequent translocation to 
the nucleus, where it induces expression from the promoters with 
the antioxidant response elements (ARE) (Kaspar et al., 2009).

Importantly, Nrf2 is constitutively active in many prima-
ry tumors (de la Vega et al., 2016). Hence, it is not surprising 
that tumor-derived HepG2 and HepaRG cells overexpress 
Nrf2-regulated genes. Upcyte® cultures do that too, however, 
to a lesser degree (Sison-Young et al., 2015). When HepaRG 
were compared to upcyte® cells, peroxiredoxin-1 and -2, thiore-
doxin reductase and thioredoxin were found to be overexpressed 
substantially (Sison-Young et al., 2015), indicating that HepaRG 
cells are protected against effects of the drugs causing glutathi-
one depletion. In other words, drug toxicity estimates obtained 
while working with HepaRG or HepG2 tend to be a bit more 
optimistic than they should be.

A reporter for monitoring Nrf2 activation, Neh2-luc (Smirno-
va et al., 2011), permits the real time monitoring right after ad-
dition, with no lag-period, while being 10-fold more sensitive 
than ARE-luc reporters (Smirnova et al., 2011). This reporter has 
already found its use in the discovery labs, especially when an 
estimate of the intracellular alkylating power of a drug is needed. 
Neh2-luc enabled screening of drug libraries showed that at least 
10% of all compounds behave as non-specific Nrf2 activators, 
meaning that they may alkylate active protein and peptide thiols 
in general, and glutathione in particular. In other words, admin-
istration of these drugs actively shifts the cellular redox balance 
and triggers the adaptive response. It is expected that Neh2-de-
rived reporter will be fitted with a fluorescent label compatible 
with liver-on-a-chip devices. 

7.2  HIF
HIF, a transcription factor capable of activating a battery of 
genes involved in glucose uptake and metabolism, extracellular 
pH control, angiogenesis, erythropoiesis, mitogenesis, and apop-
tosis, is expressed ubiquitously. It consists of 2 subunits, known 
as HIF1-α and HIF1-β. The levels of HIF1-α are regulated by hy-
droxylation of its Pro564 and/or 402 residues. This modification 
serves as a prerequisite for interaction with the tumor suppressor 
von Hippel-Lindau (VHL) protein, yielding a complex that pro-
vides for a rapid HIF ubiquitination and degradation (see review 
(Kaelin, 2005) and references therein). HIF hydroxylation is 
executed by the so-called HIF prolyl hydroxylases represented 
by 3 isozymes. Upregulation of HIF is an indication of the low 
oxygen supply and the enactment of the Warburg effect, a meta-
bolic shift towards glycolysis.

A luc-reporter with ODD (oxygen degradable domain) of HIF 
has been developed (Safran et al., 2006) and its variant with 
Renilla luciferase has just become commercially available from 
Promega. In HTS, employment of HIF1 ODD-luc reporter al-
lowed an identification of the hit with excellent neuroprotective 
properties later confirmed in hemorrhagic stroke models in vivo 
(Smirnova et al., 2010; Karuppagounder et al., 2016). Such a 
reporter might also be utilized for evaluation of substrate speci-
ficity of HIF prolyl hydroxylase isoforms and structure-activity 
relationship studies (Osipyants et al., 2017; Poloznikov et al., 
2017; Smirnova et al., 2017). This fact clearly demonstrates 

HepG2 cells (Wink et al., 2014). Integration of BAC-reporters 
into the cell component of the liver-on-a-chip devices is expect-
ed in the nearest future. The most current panel of BAC-GFP 
modified HepG2 cells, each complete with an upstream sensor, 
downstream transcription factor and their respective target gene, 
include reporters for the oxidative stress response pathway 
(Keap1/Nrf2/Srxn1), the unfolded protein response in the endo-
plasmic reticulum (Xbp1/Atf4/BiP/Chop), and the DNA damage 
response (53bp1/p53/p21) (Wink et al., 2017). 

Another way to overcome the size limitation obstacle is to 
use a fusion-based reporter, which, typically, is comprised of 
either fluorescent or luminescent protein label enjoined with a 
full-size protein of interest expressed under a constitutive pro-
moter, for example, pcmv. These reporters permit monitoring the 
half-life and the trafficking of the protein in the living cell. The 
overwhelming problem with these types of reporters is that the 
fused protein is fully physiologically active and is often capable 
of disturbing the intracellular balance, thus triggering an ex-
pression of the downstream genes and significantly shifting the 
transcriptomic and proteomic profile of the cells. In turn, these 
shifts reflect upon the efficacy and toxicity profiles obtained for 
the drugs under study. Another drawback of the fusion systems 
is that the promoter is constitutively active, often leading to 
overexpression of the construct over the physiological limits and 
resultant perturbation of cell homeostasis. 

Yet another type of reporter has been developed for the mon-
itoring of transcription factors regulated by ubiquitination and 
proteasomal degradation. The concept for these reporters is 
shown in Figure 3. In a nutshell, it is a fusion where a lumines-
cent or fluorescent label is added to an isolated ubiquitination 
machinery recognition domain instead of a complete target 
protein. As the recognition domain has no affinity for DNA, it 
does not activate the specific program regulated by a particular 
transcription factor, even when overexpressed. There is still a 
possibility that overexpression of the recognition domain may 
serve as a decoy for ubiquitination machinery, hence, to at least 
some degree, stabilizing the endogenously expressed transcrip-
tion factor, but these effects are usually negligible.

Among transcription factors regulated by ubiquitination and 
proteasomal degradation, there are three which are directly rel-
evant to monitoring performance of hepatocytes embedded into 
liver-on-a-chip devices. These are the transcription factors Nrf2, 
HIF (hypoxia inducible factor), and NF-κB. 

7.1  Nrf2
Nrf2 (nuclear factor erythroid 2-related factor 2) orchestrates 
the antioxidant response by inducing the expression of cyto-
protective, pro-survival proteins such as thioredoxin reductase, 
glutathione reductase, glutathione S-transferase (GST), hemeox-
ygenase-1 (HO1), catalase and others. Under homeostatic con-
ditions, Nrf2 is sequestered by binding to its inhibitory protein, 
Keap1 (Kelch-like ECH-associated protein-1). Keap1 serves as 
a bridge between Nrf2 and the Cul3-Rbx1 E3 ubiquitin ligase, 
which permits polyubiquitination of the lysines positioned within 
the central α-helix of the Neh2 recognition domain. As a result of 
oxidative/electrophilic stress, active cysteines of Keap1 are mod-
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(Capuzzi et al., 2016; Chen et al., 2012). On the other hand, the 
larger the dataset is, the higher the chance of mislabeling either 
the chemical structures or their toxicity classes. Consequently, 
manual trimming of large datasets may lead to improvement of 
model precision. To expand availability of highly confident data, 
industry-driven collaborative efforts are required. One example 
of such efforts is the eTOX project, which is comprised of a 
database filled with unpublished toxicology reports donated by 
13 members of the pharmaceutical industry along with public 
toxicology data, and its customizable interface eTOXsys (Sanz 
et al., 2015). The models developed in the course of the eTOX 
project are available as possible augmentations for higher-level 
predictors. In one recent study, the models for BSEP, BCRP, 
P-glycoprotein and for OATP1B1 and 1B3 were investigated for 
their potential to improve the DILI-predicting algorithm. Sur-
prisingly, in this particular case, an integration of the transport-
er-related data did not significantly improve the performance of 
the resultant model (Kotsampasakou et al., 2017).

There are some interesting attempts to model the liver “as a 
whole”, with the homeostasis or the “starting state” of the liver 
being described by a set of differential equations, which can 
be modified as a reflection of the respective change observed 
under certain disease conditions and immunological states. This 
approach treats hepatotoxicity as a complex outcome of the 
factors at play, which includes the genotype of the patient, the 
drugs he or she is exposed to, and any underlying diseases, for 
example, steatosis. An example of this type of systemic model 
would be a VirtualLiver, developed by Strand Life Sciences, 
which couples equations describing the kinetics of biochemical 
pathways involved in liver homeostasis with those obtained after 
collection of a set of in vitro measurements quantifying various 
drug-induced perturbations (Subramanian et al., 2008). Clear-
ly, this type of approach describes the biological system better 
than any endpoint analysis of toxicity, as it is able to reflect a 
steady accumulation of changes which eventually culminate in 
reaching an irreversible outcome. The development of holistic 
in silico models that simulate the metabolism of the liver is a 
necessary step towards an adequate and timely assessment of 
various chemical entities, natural or synthetic. 

9  Conclusion 

In this review, we describe the current approaches to develop 
liver-on-a-chip devices for the prediction of the liver toxicity in 
humans. These devices may include established immortal cell 
lines, for example, HepG2 – a “workhorse” of liver toxicology –  
or its less malignant counterpart HepaRG, unmodified or modi-
fied primary human cells, and stem cell-derived hepatocyte-like 
cells, or iPSC. Like many technologies developing on the inter-
face of applied biology and bioengineering, the liver-on-a-chip 
devices were started in an attempt to produce a “one-fits-all” 
solution, but eventually ended facing a variety of important di-
lemmas. In particular, the choice of biological material greatly 
influences both the performance of the devices and the precision 
of the toxicity reports. Unfortunately, unavoidable manipulations 

superior properties of novel generation of cell-based reporters 
with respect to drug development. In liver-on-a-chip devices, in 
addition to drug discovery purposes, the reporter can be used to 
quantitate hypoxia and HIF activation. In hypoxia (or with HIF1 
activation by other means), expression of cytochromes P450 
and Phase II enzymes is down-regulated. This metabolic feature 
principally affects drug toxicity profiles; this is especially true 
for drugs developed for oncological treatment. Under hypoxia, 
HepaRG cells have been shown to display metabolic changes 
similar to those observed in poorly differentiated hepatocarcino-
mas; therefore, these cells may serve as a suitable in vitro model 
for testing of anticancer agents in hypoxic versus normoxic con-
ditions (Legendre et al., 2009). 

7.3  NF-κB
NF-κB (nuclear factor kappa-light-chain-enhancer of activated 
B cells) controls both the inflammatory cytokine production and 
the survival of cells. In an inactive state, NF-κB is complexed 
with the inhibitory protein IκBα. Activation of IκB kinase (IKK) 
results in phosphorylation of IκBα protein, and its subsequent 
ubiquitination, which leads to dissociation of IκBα from NF-κB 
and eventual degradation of IκBα by the proteasome. The ac-
tivated NF-κB is then translocated into the nucleus. Inhibiting 
NF-κB signaling has a potential for the treatment of cancers 
and inflammatory diseases. Importantly, persistant activation 
of NF-κB, which is known as chronic inflammation, is known 
to be a component of idiosyncratic hepatotoxicity (Jiang et 
al., 2017). Currently, there is no cell-based reporter to monitor  
NF-κB activation directly. However, a reporter monitoring deg-
radation of its inhibitory partner IκBα can be constructed under 
the same principle as Neh2- and HIF ODD-derived reporters. 
The IκBα-derived reporter can be used for drug discovery and 
for assessing drug toxicity, similarly to other reporters of this 
kind, with a special value for studying idiosyncratic hepatotox-
icity in assays of controllably activated NF-κB.

8  In silico modelling of liver function

There has been significant progress in developing the liver-on-
a-chip and other liver-emulating technologies. However, the 
field is still somewhat in its infancy in terms of the standards, 
procedures and methods for translating the data obtained in vitro 
into reliable predictions applicable to human body responses. In 
parallel to various in vitro efforts, the development of predictive 
computational models of hepatic metabolism is also under way. 
Although many models perform quite well on the datasets they 
were developed on, they sometimes suffer from low statistical 
performance, with imbalanced sensitivity vs specificity ratios. 

Speaking generally, the predictive power of any computa-
tional model heavily depends on the quality of the respective 
training data set. When machine learning approaches are used, 
bigger datasets are preferable to smaller ones. The frameworks 
of large-scale screening programs, e.g., Tox21, already allowed 
the development of prediction models with an accuracy as 
high as 86.9%, sensitivity of 82.5%, and specificity of 92.9% 
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