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Article

Phosphorylation Alters the Properties
of Pol h: Implications
for Translesion Synthesis
Chandana Peddu,1 Sufang Zhang,1 Hong Zhao,2 Agnes Wong,1,3 Ernest Y.C. Lee,1 Marietta Y.W.T. Lee,1

and Zhongtao Zhang1,4,*

SUMMARY

There are significant ambiguities regarding how DNA polymerase h is recruited to DNA lesion sites in

stressed cells while avoiding normal replication forks in non-stressed cells. Even less is known about

the mechanisms responsible for Pol h-induced mutations in cancer genomes. We show that there

are two safeguards to prevent Pol h from adventitious participation in normal DNA replication. These

include sequestration by a partner protein and low basal activity. Upon cellular UV irradiation, phos-

phorylation enables Pol h to be released from sequestration by PDIP38 and activates its polymerase

function through increased affinity toward monoubiquitinated proliferating cell nuclear antigen (Ub-

PCNA). Moreover, the high-affinity binding of phosphorylated Pol h to Ub-PCNA limits its subsequent

displacement by Pol d. Consequently, activated Pol h replicates DNA beyond the lesion site and

potentially introduces clusters of mutations due to its low fidelity. This mechanism could account

for the prevalence of Pol h signatures in cancer genome.

INTRODUCTION

In non-stressed cells, the exclusive participation of high-fidelity DNA polymerases (Pol d and Pol 3) in

routine DNA replication processes is critical for genomic stability. However, mechanisms that limit the ac-

cess of low-fidelity DNA polymerases, such as polymerase h (Pol h), to the replication fork are not well un-

derstood or characterized. Both classes of polymerases share a common mechanism to access the DNA

primer/template (P/T) terminus by the possession of a PCNA-interacting peptide (PIP) motif (Choe and

Moldovan, 2017).

Upon exposure to stresses that cause DNA lesions, maintenance of the integrity of the replication fork

becomes a major priority (Segurado and Tercero, 2009). Replicative polymerases are blocked by bulky

lesions on the template strand, leading to stalling of the replication fork. Failure to resolve the stalled

fork in a timely manner leads to fork collapse and likely cell death (Cortez, 2015; Roos and Kaina,

2006). Under these circumstances, the DNA damage tolerance pathway is activated, leading to the

recruitment of translesion synthesis (TLS) Pols (Goodman and Woodgate, 2013; Waters et al., 2009).

These Pols displace replicative polymerases at the lesion sites to replicate across the lesion and rescue

the stalled fork. Pol h is the most intensively studied of TLS Pols, and it replicates across UV-induced le-

sions, especially cyclobutane pyrimidine dimers (CPDs) formed between neighboring pyrimidine bases in

DNA, with high accuracy (Johnson et al., 1999; Masutani et al., 2000). It is not essential for routine DNA

replication and Pol h-null mice display normal size, fertility, and life expectancy in the absence of external

DNA damage (Lin et al., 2006). However, germline loss of Pol h function results in increased UV sensitivity

and propensity for cancer in a subset of patients with xeroderma pigmentosum (XP) (Cordonnier and

Fuchs, 1999), the variant form (XP-V).

The ability of Pol h to replicate across bulky lesions arises from a relatively more spacious active site (Silver-

stein et al., 2010; Zhao et al., 2012) when compared with those of Pol d and Pol 3. However, this property

also contributes to its reduced replication fidelity (Kunkel, 2003). Pol h is about 10,000 times (error rate

of�1/100) more error-prone than Pol d or Pol 3when replicating normal templates, typified by the signature

mutations of A to G or C to T transitions under certain sequence contexts (Chen and Sugiyama, 2017; Mat-

suda et al., 2001). Both types of mutations have been observed in a number of recently identified cancer

mutational signatures (Rogozin et al., 2018; Rubin and Green, 2009; Supek and Lehner, 2017). Thus, it is
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prohibitive for unregulated participation of Pol h in routine DNA replication, a process that demands an

error rate of less than one in a billion.

The mechanisms that regulate the recruitment of Pol h to DNA damage sites initially seemed to be clearly

defined. It was discovered that monoubiquitination on K164 of PCNA (Ub-PCNA) by RAD6/RAD18 is critical

for UV resistance in Saccharomyces cerevisiae (Hoege et al., 2002). Two subsequent studies demonstrated

that yeast Pol h activity is stimulated by Ub-PCNA through its possession of a ubiquitin-binding domain

(UBZ) in its non-catalytic C-terminal sequence (Garg and Burgers, 2005; Watanabe et al., 2004). These

studies painted a clear picture of recruitment and regulation: monoubiquitination of PCNA induced by

DNAdamage stress recruits Pol h through enhanced affinity to the damage site to perform TLS (Kannouche

et al., 2004). However, in vitro reconstitution studies (Acharya et al., 2007, 2008; Bertoletti et al., 2017; Jung

et al., 2011; Ma et al., 2017; Sabbioneda et al., 2009) provided contradicting results and failed to recapture

the elegance of the proposed model (Hedglin et al., 2016). Furthermore, subsequent cellular studies failed

to resolve the ambiguities (Acharya et al., 2010; Kannouche et al., 2001).

Meantime, accumulating evidence suggests that post-translational modifications (Chen et al., 2008; Dai

et al., 2016; Göhler et al., 2011; Jung et al., 2011) of Pol h and interactions with partner proteins play major

roles in its regulation (Maga et al., 2013; Tissier et al., 2010). Among these, two studies demonstrated that

phosphorylation of Pol h by ataxia telangiectasia and Rad3 related (ATR) (Göhler et al., 2011) and protein

kinase C (PKC) (Chen et al., 2008) is critical for its function in intact cells.

We aimed to resolve some of the aforementioned inconsistencies through comparative studies on wild-

type (WT) and phosphomimetic mutants (PM) of Pol h. Our data show that phosphorylation of Pol h greatly

potentiates its activity when Ub-PCNA is present, which reveals a mechanism whereby phosphorylation of

Pol h enhances its affinity for Ub-PCNA. This mechanism sheds new light not only on the control of TLS but

also on the avoidance of Pol h participation in normal DNA replication.

On the protein interaction front, PDIP38 proved to be an intriguing partner. PDIP38 interacts with the C-ter-

minal UBZ domain (Tissier et al., 2010) of Pol h and was proposed to facilitate the recruitment of Pol h to

UV-induced DNA damage sites. In in vitro reconstitution studies, PDIP38 stimulated the activities of Pol h

(Maga et al., 2013). However, there has been no evidence showing that PDIP38 localizes to DNA damage

foci with TLS Pols. In fact, PDIP38 is translocated to the spliceosome upon UV exposure (Wong et al., 2013).

Our studies show that PDIP38 acts as a key regulator in restricting Pol h participation in DNA replication in

unstressed cells.

RESULTS

Phosphorylation Activates Pol h

To address the effects of ubiquitination of PCNA and phosphorylation on Pol h activities, we performed

in vitro experiments using recombinant Pol h. Human Pol h possesses a UBZ domain that readily unfolds

when stripped of a required zinc ion by EDTA (Woodruff et al., 2010); thus variable loss of UBZ function

could give rise to a range of variations in Pol h properties. We took specific steps to maintain the functional

integrity of its UBZ domains. We generated recombinant Pol h tagged at the C-terminus with six histidine

residues by overexpression in E. coli strain Rosetta 2 (DE3). The expression level and solubility were further

optimized by co-expression with ubiquitin, which can interact with the UBZ domain and stabilize Pol h. Zinc-

charged chelating resin was used for purification of Pol h, instead of the traditionally used Ni-charged

resins, to avoid metal ion exchange and maintain proper UBZ folding. Detailed protocols are provided

in Supplemental Information. All recombinant Pol h preparations were over 90% pure and monomeric

upon characterization by gel filtration chromatography (Figure S1). A phosphomimetic mutant of Pol h

was also expressed to investigate the effects of phosphorylation on its activity. This phosphomimetic

mutant (Pol hPM) bears glutamate residues at the aforementioned phosphorylation sites for PKC (S587,

T617) (Chen et al., 2008) and ATR (S601) (Göhler et al., 2011).

To validate our enzyme production and purification procedure, we conducted single nucleotide incorpo-

ration assays using protocols adopted from reports in the literature (Guilliam et al., 2016; Maga et al., 2013;

Washington et al., 2003). Steady-state kinetic analysis indicates that Pol h exhibits similar catalytic con-

stants in terms of Km (0.15 mM for dATP opposite of dTTP) as reported in the literature, and the kcat value

(0.22 s�1) is similar to that reported by Washington et al. (2003).
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Upon validation of our purified enzymes, we sought to investigate the role of Pol h in two cellular processes:

routine DNA replication and TLS. Pol h replicates native and CPD-lesioned templates with similar efficacy

(Johnson et al., 2005; Masutani et al., 2000; Yagi et al., 2005), with the determining factor being the efficacy

with which Pol h binds to the P/T terminus. Therefore, a single pair of primer and template without lesions

was used in both assays for fair comparison. The substrate consisted of a 70mer template with a 34mer

primer radiolabeled at the 50 end by 32P (Figure 1A). The template was modified at both ends with biotin

Figure 1. Phosphomimetic Pol h Exhibits Increased Activity

(A–C) (A) Schematic representation of 32P-labeled primer/template (P/T). P/T pre-loaded with PCNA (B) or Ub-PCNA (C).

The template was modified by biotinylation on both ends and blocked with streptavidin.

(D) Representative sequencing gel showing resolved extension products at 1 and 2 min. The labeled primer and the full-

length product are indicated as 34 and 70, respectively.

(E) Relative quantification of full-length 70mer products of Pol hPM with Ub-PCNA normalized to Pol hwith PCNA at 2 min.

Data shown as mean G SD of 3 individual experiments and differences between groups analyzed by unpaired t test,

**p % 0.01.

(F and G) Extension products of increasing concentrations of Pol h or Pol hPM (10–100 nM) titrated against a fixed

concentration of either PCNA-loaded P/T (+PCNA) or Ub-PCNA-loaded P/T (+Ub-PCNA) at 2 min. The 70mer extension

products formed by Pol hPM on Ub-PCNA-loaded P/T in (F) were analyzed and fitted to one-site binding kinetics (G).
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and blocked with streptavidin to allow quantitative pre-loading of PCNA (Figure 1B) or Ub-PCNA (Fig-

ure 1C) by human replication factor C (RFC) (Lin et al., 2013). Concentrations of RFC were chosen such

that P/T > RFC > PCNA or Ub-PCNA to favor the complete loading of PCNA and Ub-PCNA to the P/T

termini. Assay conditions were chosen to mimic the cellular ionic environment in terms of pH, ion type,

and strength. Specifically, the assay buffer contained 150 mM KCl and 50 mM NaCl (the ionic environment

of nuclei consists of 150–260 mM KCl and 40 to 50 mM NaCl [Dick, 1978; Paine et al., 1981]).

The primer extension activities of Pol h and Pol hPM in the absence or presence of either pre-loaded PCNA

(Figure 1B) or pre-loaded Ub-PCNA (Figure 1C) were compared. The reactions were initiated by the addi-

tion of Pol h and terminated at 1 and 2 min. A representative autoradiogram of the primer extension prod-

ucts is shown in Figure 1D. The activities of both Pol h and Pol hPM are stimulated by PCNA, and even more

so by Ub-PCNA (Figure 1D). The results are consistent with the models in which the PIP-motifs in Pol h are

functionally effective in stimulating Pol h activity in the presence of PCNA, and causing a greater increase in

Pol h activity (Figure 1D, first 3 lanes) with the binding of the added ubiquitin on Ub-PCNA. However,

Pol hPM is much more active than Pol h, as can be seen by the production of the full-length products

(70mer) (Figure 1D, last 3 lanes). These findings show for the first time that phosphorylation of Pol h is a

mechanism that leads to a significant activation of Pol h. This is illustrated by comparison of the activity

of Pol h on a PCNA-loaded P/T and Pol hPM on an Ub-PCNA loaded P/T (Figure 1E). The Pol hPM/Ub-

PCNA combination forms �73 more 70mer products than the Pol h/PCNA.

To investigate the mechanisms leading to the activation of Pol h, a series of titration studies were per-

formed in which the concentrations of Pol h or Pol hPM were increased from 10 to 100 nM, whereas the sub-

strate concentrations were kept constant (Figure 1F). A similar pattern of activity changes as found in the

previous assay (Figure 1D) was observed. Pol h was more active with Ub-PCNA than PCNA, and in both

cases, Pol hPM was much more active than Pol h. A plot of 70mer product formation against Pol hPM for

substrate P/T/Ub-PCNA showed that Pol hPM exhibits one-site binding kinetics with an apparent Kd of

12.4 G 1.7 nM (Figure 1G). Analysis for Pol h/Ub-PCNA or Pol hPM/PCNA combinations indicated that

the plots did not reach the saturation part of the curve (indicating Kd values of greater than 100 nM, Fig-

ure S1). Taken together, the above-mentioned observations indicate that optimal DNA TLS by Pol h re-

quires phosphorylation of the enzyme as well as monoubiquitination of PCNA.

Phosphomimetic Pol h Binds Tightly to Ub-PCNA

The titration studies presented above demonstrated that Pol hPM has an enhanced affinity for Ub-PCNA

pre-loaded onto a P/T terminus. This affinity could reflect the affinity of Pol hPM for either Ub-PCNA per

se or the P/T/Ub-PCNA complex. To distinguish between these possibilities, we directly assessed the as-

sociation of Pol hPM with Ub-PCNA in the absence of DNA. Various size exclusion chromatographic tech-

niques are commonly used to characterize both dynamic and stable protein-protein interactions (Bai, 2015;

Beeckmans, 1999). The PIP box-PCNA interactions are examples of the dynamic interactions that facilitate

Okazaki fragment maturation process (Choe andMoldovan, 2017; Lin et al., 2013). Thus, a majority of PCNA

interactions are transient in nature, with the affinities (Kd) between PIP boxes and PCNA ranging from

10�4 M to 10�7 M (Bruning and Shamoo, 2004; Pedley et al., 2014). On the other hand, subunits of a holo-

enzyme generally form stable complexes with dissociation half-lives of hours or longer, and dissociation

rates are difficult to measure by quantitative methods. The classical size-exclusion technique is suited

for the analysis of these stable complexes. Fast protein liquid chromatography gel filtration (Supplemental

Information) was used to investigate the strength of interaction between Pol hPM and Ub-PCNA. High-

ionic-strength buffers (350 mM NaCl) were used to eliminate any potential non-specific interactions.

Upon establishing individual elution profiles of PolhPM andUb-PCNA (Figures 2A–2D), wemixed PolhPMwith

Ub-PCNA in amolar ratio of 1:2 (6mMand12mM,calculatedasUb-PCNA trimer, in a total volumeof 100mL) and

applied themixture to a Superdex 200 10/300 GL column (GE). The elution profiles as well as SDS-PAGE anal-

ysis (Figures 2E and 2F) revealed that Pol hPM and Ub-PCNA formed a stable complex in a 1:1molar ratio. Inci-

dentally, the SDS gel for the column fractions (Figure 2F) demonstrated that practically all of the Pol hPM is

engaged in complex formation, confirming the integrity of the preparation with regard to the functionality

of UBZ domains. The absolute requirement for an intact UBZ domain for this binding was demonstrated by

the inclusion of EDTA (Figures S2A and S2B), which acts to remove the zinc required for the folding of UBZ

domain (Woodruff et al., 2010). The disruption of ubiquitin-Pol hPM interaction by EDTA was further demon-

strated by pull-down assays with glutathione S-transferase (GST)-ubiquitin (Figures S2C and S2D).
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These interactions depend on the phosphomimetic mutation of Pol h on the aforementioned ATR and PKC

sites. Neither the WT enzyme nor a Pol h mutant (Pol h2E) with two of the residues mutated to glutamates

(S587E and S601E) formed a tight complex with Ub-PCNA when assayed under identical conditions (Fig-

ures 2G–2J). However, the Pol h2E mutant shows a slight shift on gel filtration (Figure 2J) and may indicate

enhanced yet dynamic interaction with Ub-PCNA. These studies demonstrate that Pol hPM and Ub-PCNA

form a complex in a 1:1 molar ratio with affinities reminiscent of those between subunits of holoenzymes,

which have a dissociative half-life of hours or longer (Bai, 2015; Beeckmans, 1999).

Phosphorylated Pol h at the Primer/Template/Ub-PCNA Terminus Cannot be Readily

Displaced by Pol d

The preceding experiments show that Pol hPM binds to Ub-PCNA with high affinity. Under physiological

conditions, the binding of phosphorylated Pol h would occur in the presence of Pol d as a competitor.

To investigate the possible exchange of Pol h with Pol d, we constructed a synthetic P/T with Ub-PCNA

Figure 2. Pol hPM and Monoubiquitinated PCNA form a High-Affinity Complex

Elution profiles of Superdex 200 10/300 GL column are shown on the left, and the corresponding fractions analyzed by

SDS-PAGE analysis and Coomassie blue staining are shown on the right.

(A–J) (A and B) Ub-PCNA, (C and D) Pol hPM, (E and F) Pol hPM and Ub-PCNA mixture, (G and H) Pol h and Ub-PCNA

mixture, and (I and J) phosphomimetic mutant Pol h2E (S601E and T617E) and Ub-PCNA mixture.
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(or PCNA) covalently linked near the primer terminus by N-hydroxysuccinimide(NHS)-psoralen (Figures 3A

and 3D; Supplemental Information and S3). The complex was immobilized to streptavidin beads through

the biotin-modified template at the 50 end. We titrated the binding capacity of both beads: P/T/Ub-PCNA

beads bind Pol h (60–90 ng/mL) and Pol d (170–200 ng/mL). The P/T/PCNA beads bound about 2.53 greater

amounts of these proteins than the /P/T/Ub-PCNA beads.

The initial experiments utilized P/T/Ub-PCNA beads to mimic a stalled replication fork post-UV irradiation.

A limiting amount of P/T/Ub-PCNA beads (1 mL, <100 ng capacity) was used to bind a mixture of Pol hPM

(500 ng) and Pol d (500 ng) in addition to control samples where individual proteins were used (Figure 3B).

The binding buffer contained 160mMKCl and 50mMNaCl tomaintain ionic strength comparable to that of

nucleus (25 mM HEPES, pH 7.5). In addition, zinc (5 mM) and citrate (10 mM) were added to maintain a

constant zinc ion concentration. The zinc-citrate complex has an apparent dissociation constant of

1.17 3 10�12 M2 (Krezel and Maret, 2016), and therefore our additions produce conditions close to cellular

soluble zinc ion concentrations (Krezel and Maret, 2006). After incubation at 4�C for 2 hr, unbound proteins

were washed by binding buffer with a stringent washing protocol (53, 10-min incubation each). Bound

proteins were analyzed by western blot analysis to detect Pol h and Pol d (p68 subunit). Regardless of

the presence (Figure, 3B, lanes 1–3, triplicates) or absence (lane 6) of Pol d, Pol hPM bound to full capacity

Figure 3. Pol hPM on P/T/Ub-PCNA Terminus Is Resistant to Displacement by Pol d

(A) Schematic representation of Ub-PCNA cross-linked to a primer/template (P/T).

(B) Lanes 1–3 (triplicates) contain 0.5 mg each of Pol d and Pol h incubated with �100 ng binding capacity of Ub-PCNA-

loaded P/T beads for 2 hr at 4�C. The beads were then washed with a stringent protocol. Lanes 4–6 are control reactions

with 0.5 mg of individual proteins incubated with Ub-PCNA-loaded P/T beads. Bound proteins were detected by western

blotting with antibodies against Pol h and Pol d (p68 subunit).

(C) Increasing amounts of Pol d (0.5–2.5 mg) incubated with 0.5 mg of Pol hPM (lanes 1–5). Lanes 6 and 7 are control lanes

with each protein individually. Lanes 8 and 9 are input.

(D) Schematic representation of PCNA cross-linked to a P/T.

(E) Binding of a mixture of Pol d and Pol h to P/T/PCNA beads was performed as in (B). The beads were washed 33 with

PBS, and bound proteins detected by western blot.
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of the beads, whereas Pol d could not be detected when Pol hPM was present (lanes 1 to 3). Under identical

conditions, Pol h alone showed minimal binding (Figure 3B, lane 5) and Pol d alone bound to 20%–30% of

beads capacity (Figure 3B, lane 4). To characterize the interactions further, we increased the concentration

of Pol d while keeping the concentration of Pol hPM constant (Figure 3C). Regardless of how high the Pol d

concentration was, Pol hPM still bound to the full capacity of the beads, whereas no detectible Pol d was

bound (Figure 3C, lanes 1–5). These observations indicate that ATR- and PKC-phosphorylated Pol h will

bind P/T/Ub-PCNA terminus regardless of the presence of related replicative Pols.

The binding preference of P/T/PCNA beads (Figure 3D) was also examined with a milder wash method, as

the stringent washing protocol reduced the signal beyond detection. The aim of these experiments was to

evaluate the extent to which Pol h can interfere with routine DNA replication process by Pol d. Under milder

washing conditions, Pol d bound to DNA to a similar extent in the presence (Figure 3E, lanes 1–3, triplicates)

or absence of Pol h (lane 4). Pol h also displayed similar binding to P/T/PCNA in the presence (Figure 3E,

lanes 1–3) or absence of Pol d (lane 5). In essence, bindings of Pol d or Pol h to P/T/PCNA terminus are dy-

namic processes, which is consistent with studies of polymerase transactions on PCNA (Hedglin et al.,

2016). These data do pose an important question: how is Pol h kept away from participation in routine

DNA replication process under cellular conditions? Our in vitro assays mentioned above have shown

that replication termini loaded with PCNA apparently recruited Pol d and Pol h with similar efficacies in

the absence of DNA damage stress. There must be additional mechanisms that prevent Pol h from partici-

pating in routine DNA replication.

Phosphorylation Is Responsible for Pol h Persistence at the Damage Foci

Having demonstrated that Pol hPM and Ub-PCNA form a tight complex, which does not readily dissociate,

we sought to replicate these findings under cellular conditions. We attempted to generate stable cell lines

with ectopic expression of GFP-Pol hPM as well asWT and a phosphorylation-deficient mutant (all three res-

idues to A, Pol h3A). Cells expressing the WT enzyme were stable as established in many laboratories (Bi-

enko et al., 2010; Kannouche et al., 2001; Watanabe et al., 2004), as were Pol h3A-expressing cells. However,

repeated attempts to establish a stable GFP-Pol hPM expression cell line failed. We tried immortalized XPV

cells (GM02359-hTERT and XP30RO), 293T cells, and MRC5 lung cells with either antibiotic selection or len-

tiviral infection. Initially, all three constructs were transfected with similar efficiency judging by the fluores-

cence signals. However, cells expressing Pol hPM gradually died and no cells with fluorescent signals

survived after 2 weeks. Thus, the overexpression of Pol hPM is clearly toxic to the cells. Therefore, we

compared the fluorescent signal and localization of Pol h and Pol hPM on a transient transfection basis

within 48 hr in both 293T and MRC5 cells. Examination under the microscope at 36 hr after transfection re-

vealed that ectopic expression of GFP-Pol hPM resulted in the formation of bright foci. Even though WT

Pol h has been shown to form some relatively large foci, the Pol hPM foci are more intense with sharper

boundaries and are significantly more in number (Figures 4A and 4B, MRC5 cells). We analyzed approxi-

mately 60 GFP cells in a single continuous field. Pol hPM -expressing cells formed 4 times as many foci

per cell (52.5) as Pol h-expressing cells (13.7), and with more cells (56.5% versus 21.7%) with 20 or more foci.

Upon UV-C irradiation (30 J/m2), Pol h (Figure 4C) as well as Pol hPM (Figure 4D) formed bright foci after

fixation with formalin. Even Pol h3A showed some diffused foci (Figure 4E). Our in vitro studies with Pol

hPM suggest that the binding of phosphorylated Pol h to Ub-PCNA at the damage sites on chromatin

would no longer be a dynamic process, i.e., phosphorylated Pol h-Ub-PCNA or Pol hPM-Ub-PCNA foci

will have limited dynamic exchange with non-chromatin bound Pol h. However, technical proof of this phe-

nomenon is complicated by the fact that Pol h/PCNA foci could arise from many combinations. Phosphor-

ylated Pol h (or Pol hPM) also possess tendencies to be recruited by PCNA (as shown without UV stress, Fig-

ure 4B). In addition, Ub-PCNA can also recruit Pol h to a greater extent than PCNA regardless of the

phosphorylation status (Figure 1D). Indeed, earlier studies using fluorescence quenching methods showed

that there are mixed populations of Pol h at the foci as well (Sabbioneda et al., 2008).

We took a different approach to investigate the stability of the Pol hPM and Ub-PCNA complex. We perfo-

rated the cytoplasmic and nuclear membranes with buffers containing 1% Triton X-100 (Kannouche et al.,

2001) and high salt concentrations (150 mM KCl and 50 mMNaCl) before fixation with formalin. We hypoth-

esized that proteins not bound to chromatin or bound to chromatin dynamically would be washed away at

room temperature with excess buffer; hence only proteins stably bound to chromatin would be observed.

Upon perforation, transfected cells were washed extensively at room temperature with shaking for 5 to
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8 min. The effectiveness of the washing protocol is illustrated by the total disappearance of fluorescence

signal from the nuclei of GFP-Pol h3A cells (Figure 4P). In either 293T or MRC5 cells, this wash protocol

has minimal impact on the number of foci in cells expressing WT Pol h or Pol hPM (Figures 4F and 4K).

Some loss of fluorescence intensity, especially in WT-Pol h-expressing cells (Figure 4F, all figures are

adjusted for equal exposure) was observed. The individual foci were mapped for Pol h and Pol hPM green

Figure 4. Efficient Retention of Pol h on UV-Induced DNA Damage Foci Requires Phosphorylation

(A and B) MRC5-SV2 cells were transfected with GFP- Pol h (A) or GFP- Pol hPM (B) and fixed with 4% paraformaldehyde

36 hr later and imaged at 66X.

(C–E) MRC5-SV2 cells were transfected with GFP- Pol h, GFP-Pol hPM, or GFP- Pol h3A and 36 hr later exposed to 30 J/m2

of UV-C. Cells were allowed to recover for 5 hr before subsequent fixation by 4% paraformaldehyde and imaged.

(F–S) 293T cells transfected with the GFP-Pol h (F–J), GFP- Pol hPM (K–O), and GFP- Pol h3A (P–S) were exposed to UV

irradiation 36 hr later. After recovery for 5 hr, cells were extracted with 1%Triton X-100-containing buffer at room

temperature (�22�C) before fixation by methanol at �20�C. Subsequently cells were imaged at 663 magnification. GFP

signal exposures weremaintained constant across samples. The strength of individual foci fluorescence for panels F and K

were mapped using the 3D surface plot plug-in of ImageJ (J and O). Merge indicates the stacking of the GFP (green) and

the PCNA (red) fluorescence signals, GFP intensity adjusted to indicate localization.
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Figure 5. PDIP38 Sequesters Pol h from Normal Replication Fork

(A) 2D gel electrophoresis of nuclear extract of 293T cells transfected with Flag-tagged PDIP38 (full-length with C-terminal

tag) and its phosphorylation-deficient mutant, PDIP38AA. 24 Hours after transfection, cells were exposed to 30 J/m2 of

UV-C irradiation and allowed to recover for 5 hr. Nuclear fractions were prepared and subsequently resolved by 2D gel

electrophoresis before being transferred to nitrocellulose. PDIP38 was identified by anti-Flag antibody. The pH range

(5–8) of the isoelectric focusing strip range is indicated above.

(B) Effects of PDIP38 (200 nM) on Pol h activity in primer extension assays using P/T/PCNA (see Figure 1B). The extension

products were analyzed on sequencing gel and quantified (70mer product, 2 min) (Figure S5A). Data shown as meanG SD

of 3 individual experiments, and differences between groups analyzed by unpaired t test. **p < 0.01.

(C) Effects of PDIP38PM (200 nM) on Pol hPM in primer extension assays using P/T/Ub-PCNA (see Figure 1C). A

representative extension gel is included in Figure S5B. The extension products were analyzed on sequencing gel and

quantified (70mer product, 2 min). Data shown asmeanG SD of 3 individual experiments and differences between groups

analyzed by unpaired t test. ns indicates not significantly different.

(D) Pull down of recombinant Pol h using GST-tagged PDIP38 and its phosphomimetic mutant, PDIP38PM. Pol h (500 ng)

was pulled down with GST, GST-PDIP38, or GST-PDIP38PM. To demonstrate the requirement for an intact UBZ domain,

the pull-down assays were performed in the presence of 2 mM EDTA. Ponceau staining of GST-tagged proteins as

loading controls is shown. Pol h bound to beads was analyzed by western blot.

(E and F) Effects of PDIP38 on binding of Pol h to P/T/PCNA beads. Each condition had 0.5 mg Pol h incubated with 100 ng

binding capacity of PCNA-loaded P/T beads in the presence of increasing concentration of PDIP38 (50 nM–500 nM) for

2 hr at 4�C. After subsequent washes with PBS, the beads were boiled and bound proteins detected by western blot
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fluorescence with ImageJ (Figures 4J and 4O). The fluorescence signals from the foci of the whole-cell pop-

ulations were further quantified by laser scanning cytometry (Figure S4). Taken together, these data sug-

gest that transfected Pol hPM is recruited to the replication fork by PCNA-loaded primer ends even in

the absence of UV stress, which could account for observed cell death. Post UV exposure, phosphorylated

Pol h binds to Ub-PCNA and forms a stable complex that does not readily dissociate.

PDIP38 Sequesters Pol h from Participation in Routine DNA Replication in Unstressed Cells

The preceding studies show the importance of excluding Pol h from DNA replication except when abso-

lutely needed. The mechanism(s) that exclude Pol h from the DNA are not fully understood. One likely

mechanism is the association of Pol h with PDID38, based on previous observations that PDIP38 binds

Pol h (Maga et al., 2013; Tissier et al., 2010). However, PDIP38 is subsequently enriched in the spliceosomes

instead of the DNA repair foci in response to UV stress (Wong et al., 2013). Therefore, we hypothesize that

PDIP38 sequesters Pol h away from replication fork to prevent its participation in DNA replication in un-

stressed cells.

Our laboratory has observed that PDIP38 is phosphorylated post-UV irradiation (Figure S5) in an ATR-

dependent manner. PDIP38 possesses two potential ATR phosphorylation sites at Ser147 and Ser150.

Ectopic expression of Flag-tagged Wt PDIP38 and its phosphorylation-null mutant, PDIP38AA (S147A/

S150A), followed by 2D gel electrophoresis (Figure 5A) showed that these two residues are targeted for

UV-induced phosphorylation.

In the next set of experiments, we investigated the impact of direct PDIP38-Pol h interaction on the enzy-

matic activities in conditions mimicking pre- and post-UV irradiation. To conduct reconstitution studies, we

optimized the production of the recombinant PDIP38. Using standard protocols, PDIP38 expressed in

E. coli does not fold well and is present mainly as insoluble inclusion bodies (Maga et al., 2013). PDIP38 pu-

rified from the soluble fraction did not behave consistently in our hands. Therefore, we optimized the

expression system and discovered that osmotic stress (0.5 M NaCl and 1 mM betaine) (Oganesyan et al.,

2007) provided the optimal conditions. Under these conditions, the recombinant PDIP38 was soluble

and exhibited minimal degradation (Figure S1B). We purified PDIP38 and its phosphomimetic mutant,

as well as the GST fusion variants of these proteins (Figure S1B). The phosphomimetic mutant (PDIP38PM)

was constructed by mutation of serine 147 and 150 to glutamates within the ATR consensus sequence (Kim

et al., 1999) SQRSQ.

The effects of PDIP38 and PDIP38PM on Pol h and Pol hPM activities were examined using the P/T sub-

strates loaded with PCNA or Ub-PCNA (see Figures 1B and 1C). Representative gels are shown in Figures

S6A and S6B. When PCNA loaded P/T was used in the activity assays, which represented routine DNA

replication, PDIP38 inhibited Pol h activity (Figure 5B), whereas PDIP38PM did not show any significant

inhibition (Figure 5B). When Ub-PCNA loaded P/T was used, which mimics TLS post-UV stress, neither

PDIP38 nor PDIP38PM showed any inhibition of Pol hPM activities (Figure 5C). These results were consis-

tent with GST-fusion protein pull-down assays (Figure 5D). GST-PDIP38 showed direct interaction with

Pol h, whereas GST-PDIP38PM showed diminished interaction with Pol h (Figure 5D). Interestingly, the

PDIP38-Pol h interaction depended on an intact UBZ domain, as the inclusion of 2 mM EDTA disrupted

the binding (Figure 5D).

Inhibition of polymerase activity can arise from two scenarios: direct inhibition of catalysis or exclusion of

Pol h from binding to the P/T/PCNA terminus. To distinguish between these possibilities, we determined

Figure 5. Continued

against Pol h to detect the amount bound to PCNA cross-linked P/T. PCNA was also detected as a loading control.

Data shown as mean G SD of 3 individual experiments, and differences between groups analyzed by unpaired t test,

**p < 0.01, *p < 0.05.

(G and H) Effects of PDIP38PM on binding of Pol hPM to P/T/Ub-PCNA beads. Each condition had 0.5 mg Pol hPM incubated

with 100 ng binding capacity of Ub-PCNA-loaded P/T beads in the presence of increasing concentration of PDIP38PM (50–

500 nM) for 2 hr at 4�C. After subsequent washes with PBS, the beads were boiled and bound proteins detected by

western blot against Pol h to detect the amount bound to Ub-PCNA cross-linked P/T. Ub-PCNA was also detected as a

loading control by using antibody against PCNA. Data shown as mean G SD of 3 individual experiments, and differences

between groups analyzed by unpaired t test, ns indicates not significantly different. Statistical comparison between

presence of 50 nM PDIP38PM and 500 nM PDIP38PM is indicated.
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the impact of increasing concentrations of PDIP38 on Pol h binding to P/T/PCNA terminus (Figure 5E).

Synthetic chromatin (P/T/PCNA) was incubated with constant concentrations of Pol h and increasing con-

centrations of PDIP38 (50–500 nM). The amount of Pol h bound to chromatin was analyzed by western blot

analysis (Figures 5E and 5F). Under these conditions, PDIP38 inhibited Pol h binding to the P/T/PCNA ter-

minus in a concentration-dependent manner. By contrast, PDIP38PM had no impact on Pol hPM binding to

P/T/Ub-PCNA terminus (Figures 5G and 5H).

At the cellular level, the hypothesis predicts that, upon loss of sequestration by PDIP38, some Pol h will be

recruited to the replication fork and form foci even in the absence of UV irradiation. To test this, we gener-

ated PDIP38-null A549 cells by CRISPRmethods (Figure 6B). Parental and PDIP38-null cells were then trans-

fected with GFP-Pol h for ectopic expression and visualization. PDIP38-null cells showed significantly more

Pol h foci co-localized with PCNA, whereas the parental cells display more diffused green fluorescence,

typical of Pol h distribution in non-stressed cells (Göhler et al., 2011; Kannouche et al., 2001, 2004)

(Figure 6A).

Collectively these studies show that PDIP38 interaction with Pol h prevents its participation in DNA repli-

cation process in the absence of DNA damage. Upon UV irradiation, both PDIP38 and Pol h are phosphor-

ylated by ATR and the phosphorylated forms lose the ability to interact with each other.

DISCUSSION

Mechanism for the Recruitment of Pol h to a Stalled Replication Fork

Our present studies permit a reappraisal of the mechanisms involved in the recruitment of Pol h to stalled

replication forks. This is illustrated in Figure 7. In unstressed cells (Figure 7, I), DNA replication fidelity is the

sole priority. Consequently, low-fidelity Pol h is sequestered by PDIP38 to prevent its participation in DNA

replication. Post-UV exposure, phosphorylation of Pol h by ATR and PKC is necessary and sufficient for its

recruitment to the lesion site with monoubiquitinated PCNA regardless of whether the terminus is released

from Pol d (Figure 7, II). The high affinity of phosphorylated Pol h for Ub-PCNA can overcome the binding of

Figure 6. Loss of PDIP38 Leads to Pol h Recruitment to Replication Foci without UV Stress

(A) Parental and PDIP38-null A549 cells were transfected with GFP-Pol h and imaged 36 hr later for localization of Pol h

and PCNA. Merge channel shows the superimposition of the GFP (green) and PCNA (red) fluorescence signals.

(B) CRISPR knockout of PDIP38 in A549 cells. b-Actin as loading control is shown.
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other molecules that occupy the terminus through the PCNA-PIP interactions. The prompt recruitment of

Pol h relieves replication fork stalling and promotes cell survival.

There are multiple potential PIP motifs and Rev1-interacting motif in addition to UBZ domain at the C-ter-

minus of Pol h (Haracska et al., 2001; Pozhidaeva et al., 2012). The PIP motif is required for its translesion

function and is most likely the initial anchor for its recruitment to PCNA or Ub-PCNA (Goodman andWood-

gate, 2013). Our study suggests that the C-terminal non-catalytic domain of Pol h could adopt different

conformations upon phosphorylation. How the PIP motif, Rev1-interacting region, and the UBZ domain

interact with each other should be explored further, although caution should be exercised while interpret-

ing the experimental results. Alterations in one of the motifs could very likely alter the conformations of the

other motifs.

Exclusion of Pol h from Routine DNA Replication Is as Vital to Cell Fate as Timely Recruitment

upon Lesion Encounter

Research on translesion polymerases has focused on the mechanisms that recruit them to the lesion sites

and provide subsequent efficacy and specificity in TLS. There is scant information on the exclusion mech-

anisms that prevent TLS polymerases from unregulated participation in routine DNA replication process,

which could result in far direr organismal or cellular fates due to their low fidelity and processivity in

replication.

Our studies reveal two avenues that lead to the restriction of Pol h from unwanted participation in routine

DNA replication. The first comes from differential affinities of Pol h and its UV-activated form. Pol h has low

Figure 7. Proposed Model of Pol h Regulation by Phosphorylation and Sequestration

(I) Before DNA damage stress, Pol h is sequestered by PDIP38 away from the replication fork to ensure chromosome

duplication is conducted by high-fidelity polymerases. (II) Upon UV irradiation, phosphorylation by ATR and PKC endows

Pol h with overpowering affinity toward P/T/Ub-PCNA terminus so that it has sole access to conduct TLS and to maximize

cell survival. PDIP38 is shuttled to spliceosomes for alternative splicing. (III) The high affinity between phosphorylated

Pol h and Ub-PCNA protects the P/T terminus post-UV stress at the price of mutation clusters.
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activities in terms of being recruited to P/T/PCNA terminus until being phosphorylated by ATR and PKC

under the regulation of the DNA damage tolerance pathway (Figure 7, II). It seems likely that activation mu-

tations of Pol h, or deregulation of the control of its phosphorylation, could have significant impact on cell

fate. Our studies revealed that ectopic expression of activationmutant of Polh (Pol hPM) leads to cell death.

The other safeguard involves sequestration by an interacting protein, PDIP38 (Figure 7, I). Our results indi-

cate that a single mechanism regulates both safeguard pathways: ATR phosphorylation induced by UV irra-

diation (Figure 7). Upon UV irradiation, PDIP38 is phosphorylated by ATR and loses its affinity toward Pol h

and hence the ability to sequester. On the other hand, ATR and PKC phosphorylation of Pol h increases its

affinity toward Ub-PCNA to facilitate TLS (Figure 7, II). The sequestration mechanism demands that there

should be adequate quantity of PDIP38 under cellular conditions to bind Pol h, although it is impossible to

assess all cells. In U2OS cells, it is estimated that there are about 70,000 molecules of PDIP38 and less than

500 molecules of Pol h (Beck et al., 2011). However, caution should be taken as most of PDIP38 molecules

are localized in the cytosol and mitochondria, although PDIP38 can be shuttled between the nucleus and

cytosol (Hernandes et al., 2017).

Our proposedmodel suggests that loss of either safeguard could lead to a dire consequence: unregulated

participation of low-fidelity Pol h in routine DNA replication processes. Indeed, ectopic expression of the

phosphomimetic mutant, Pol hPM, leads to cell death. In some respects, Pol hPM-expressing cells have a

similar phenotype as primary PDIP38-null fibroblasts in that they can only replicate a few generations

before dying (Brown et al., 2014). The lethal phenotype of PDIP38-null mice could originate from multiple

functions endowed by PDIP38. It is tempting to suggest that the phenotype of PDIP38-null mice results

from Pol h participation in routine DNA replication process. Our study shows that PDIP38 knockout leads

to Pol h loading to PCNA foci in the absence of UV irradiation. Consistent with our studies, Tissier et al.

demonstrated that PDIP38 knockdown by small interfering RNA also results in increased Pol h foci forma-

tion (Tissier et al., 2010) in the absence of UV damage.

The proposed model suggests that overexpression of Pol hPM or suppression of PDIP38 may lead to a mu-

tator phenotype, although these studies are challenging due to the fragile status of the resulting cell lines.

The availability of PCNAK164R cell lines (Arakawa et al., 2006; Hendel et al., 2011) used in antibody diversi-

fication studies might provide a means for additional investigation. The inability to form Ub-PCNA in these

cells might provide resistance to the formation of stable complexes of Pol h or Pol hPM at the replication

form and increase the chances of survival.

Implications in Cancer Etiology

The stability of the complex formed between Ub-PCNA and phosphorylated Pol h at the lesion site has

important implications in determining which enzyme finishes the post-translesion DNA synthesis on the

lagging strand. It raises questions of when or whether the second switch, i.e., Pol d displacing Pol h

post-lesion bypass in the classical TLS model, really occurs. Pol hPM in combination with Ub-PCNA can

processively replicate a fragment the size of Okazaki fragment within minutes, as our results showed.

Post-UV irradiation, phosphorylated Pol h resides at the foci for a significant duration and is resistant to

triton extraction (�10 min) before fixation, in our study and has also been previoulsy reported (Kannouche

et al., 2001). That is more than enough time for phosphorylated Pol h to complete the replication the Oka-

zaki fragment. It is interesting to note that in yeast, lack of TLS in S-phase results in DNA gaps in G2 and

these are no larger than Okazaki fragments under low to moderate UV exposure (Daigaku et al., 2010).

In addition, post-UV stress, both phosphorylated Pol h (Chen et al., 2008; Göhler et al., 2011) and mono-

ubiquitinated PCNA exist for significant duration, with Ub-PCNA levels detectible up to 72 hr in MRC5 cells

(Niimi et al., 2008). When and how, or if the TLS signals are terminated in S-phase is still to be determined.

The fact that post-replication repair can be separated from S-phase (Daigaku et al., 2010) may suggest a

more globally activated termination signal in late-S or G2. The high affinity between phosphorylated

Pol h and Ub-PCNA can exert a protective role for each individual terminus until all TLS operations are

near completion for a more synchronized termination. Our data suggest that phosphorylated Pol h can

and likely does replicate rest of the Okazaki fragment post-lesion bypass and introduces mutation clusters

in that fragment (Figure 7, III).

Pol h is evolved to counter the effect of the most ancient DNA damaging agent and carcinogen: sunlight.

This enzyme is ubiquitously expressed and involved in resolving many other bulky lesions. In fact, it can be
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argued that any DNA damage or replication stress that activates the ATR pathway could lead to Pol h

participation in gap filling, as ATR activation causes the phosphorylation of Pol h and monoubiquitination

of PCNA. The low fidelity of Pol h, estimated at about 1/100 (Chen and Sugiyama, 2017; Johnson et al.,

2000), can lead to clusters of mutations. Statistically, if Pol h fills a gap of 100 bases, there is a probability

of more than 25% of two or moremutations within the hundred bases following probability mass function of

binomial distribution.

Probability=

�
n
k

�
pk

�
1� p

�n�k

where n is the gap size, k is the number of mutations within n, and p is the fidelity of polymerase.

The odds of clustered mutations increase with gap size. In a gap of 150 bases, typical of an Okazaki frag-

ment, the odds increase to about 45% of two or more mutations. Compromises in mismatch repair system

could further exacerbate Pol h-induced mutation clusters. Thus, our data suggest a mechanism that could

explain the prevalence of Pol h signatures in cancer mutations (Nik-Zainal et al., 2012; Supek and Lehner,

2017).

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Transparent Methods and six figures and can be found with this article
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Figure S1, related to Figure 1. Purified recombinant proteins and quantification of titration 
studies. 
(A) SDS-PAGE of purified Pol post-gel-filtration chromatography on HiLoad 26/600 Superdex 
200 pg column (GE Healthcare). (B) SDS-PAGE of purified recombinant GST-tagged PDIP38 
and its phosphomimetic mutant, GST-PDIP38PM on beads (lanes 2-5) or eluted fractions (lanes 6-
8, collected fractions of glutathione elution). (C-E) Quantification of Figure 1F in same scale as in 
Figure 1G. 
 

  



Figure S2, related to Figure 2. Intact UBZ domain is essential for high affinity binding 
between Pol PM and Ub-PCNA. This figure is related to Figure 2.  
(A) Pol PM and Ub-PCNA forms a complex that co-eluted on gel-filtration column (Superdex 200 
10/300 GL). This is the same figure as figure 2C. (B) Inclusion of 2 mM EDTA disrupts the tight 
binding of Pol PM with Ub-PCNA. Protein contents of fractions post gel-filtration were analyzed 
by SDS-PAGE and visualized by Coomassie staining. (C-D) Western Blot of recombinant Pol  
and Pol PM pulled down by GST-tagged ubiquitin in the absence and presence 2 mM EDTA. GST 
alone serves as a negative control and Ponceau staining of GST-Ub as a loading control. Relative 
protein amount was quantified using ImageJ and data shown as mean ± SD of 3 individual 
experiments and differences between groups analyzed by unpaired t-test. ** indicates P < 0.01. 
  



 

Figure S3, related to Figure 3. Schematic representation for preparation of the synthetic 
chromatin. This figure is related to Figure 3. 
 (A-B) Synthetic chromatin with monoubiquitinated-PCNA (Ub-PCNA) loaded at the 
primer/template (p/t) end. NHS-Psoralen (succinimidyl-[4-(psoralen-8-yloxy)]-butyrate) was used 
as the crosslinker. NHS-Psoralen can react with amino group (Ub-PCNA) on one end while react 
with DNA upon UV irradiation (UV-A) on the other.  
  



 
Figure S4, related to Figure 4. Efficient retention of Pol  on UV-induced damage foci 
requires phosphorylation. This figure is related to Figure 4. 
Whole cell population was analyzed for GFP-Pol  signal after UV damage by laser scanning 
cytometry.  MRC5-SV2 cells were transfected with GFP-Pol , GFP-Pol PM, or GFP-Pol 3A and 
irradiated by 30 J/m2 of UV. After 5 hours, GFP signals were analyzed pre- and post-triton 
extraction. The GFP signals were read in pixels as integrated per cell basis (GFP integral, signal 
retained by all foci in a cell), or the highest signal within each cell (MaxPixel, intensity of the 
strongest foci).  
  



 
Figure S5, related to Figure 5. PDIP38 is post-translationally modified by the ATR kinase 
after UVC irradiation. (A) ATR knockdown by shRNA in HEK293T cells. HEK293T cells were 
transfected either with empty vector or shRNA targeting ATR. Stable clones were selected by 
antibiotic. ATR suppression was detected by Western blot analysis. Clone 10 is selected for 
subsequent studies. (B) HEK293T cells were subjected to global UVC irradiation at a dose of 60 
J/m2. The nuclear protein fraction from non-UV-treated cells as well as UV treated cells were 
isolated and subjected to isoelectric focusing for the first dimension (IPG strips with pH range 5-
8) and separated on a 10% SDS-PAGE for the second dimension. Subsequently Western blot 
analysis using anti-PDIP38 antibody was used to determine modified isoforms of PDIP38. 
Phosphorylated isoforms of PDIP38 were detected in UV irradiated cells. (C)  Phosphorylated 
isoforms of PDIP38 were not detected in ATR knockdown (shATR) cells after UVC irradiation. 
  



Figure S6, related to Figure 5. PDIP38 inhibits Pol  activity in oligo extension while 
PDIP38PM shows no effect. This figure is related to Figure 5. 
(A) Pol η activity is inhibited in the presence of PDIP38. Representative sequencing gel showing 
resolved extension products of Pol η on P/T alone (-PCNA), PCNA or Ub-PCNA preloaded P/T 
(+PCNA) or (+Ub-PCNA) at 1 min and 2 mins. (Ctrl) Indicates control lane; (38) indicates reaction 
performed in the presence of 200 nM of PDIP38; (38PM) indicates reaction performed in the 
presence of 200 nM of phosphomimetic mutant of PDIP38. (B) Activity of Pol ηPM is not affected 
by the presence of PDIP38. Representative sequencing gel showing resolved extension products 
of Pol PM on PCNA or ub-PCNA-preloaded p/t at 1 min and 2 mins. (Ctrl) Indicates control lane; 
(38PM) indicates reaction performed in the presence of 200 nM of phosphomimetic mutant of 
PDIP38; (38) indicates in presence of 200 nM of PDIP38.  
 
 



Transparent Methods 
 
Constructs for expression and purification of recombinant Pol η  
The coding region for full-length Pol  was cloned into pET22b vector between Nde I and Xho I 
sites with the initiation codons coinciding with Nde I restriction site and the stop-codon eliminated 
to generate C-terminal 6-Histidine tag from vector. Mutagenesis of three phosphorylation sites was 
sequentially constructed with QuickChange Site-Directed Mutagenesis Kit (Agilent). All single 
and combinatorial double mutants were generated and constructs were subsequently sequenced.  
The resulting construct was transformed into E coli (Resetta 2) containing an ubiquitin expressing 
plasmid (pET28b). E. Coli was grown overnight at 37°C in LB media before dilution (1 to 40) into 
TB with antibiotics (100 g/ml ampicillin and 50 g/ml Kanamycin) and grown at 30°C until 
culture reached an O.D.600 value of 1.0. IPTG was added to 1 mM and the incubation was 
continued at 22°C overnight before harvesting. Pellet from 1 litre culture (~10 g) was suspended 
in about 50 ml lysis buffer (50 mM phosphate buffer, pH 7.0, 0.5 M NaCl, 10 mM benzamidine, 
0.25% triton X-100, 10 mM mercaptoethanol and 5 mM imidazole) and lysed by sonication (30 s 
burst at 80% power, 3 to 4 times on ice). Cell lysates were clarified by centrifugation at 21000 rpm 
for 60 minutes with Beckman 45 T1 Rotor. The supernatant were then loaded onto an 8 ml His-
Select (Sigma) column pre-charged with Zn2+ at flow rate of 0.5 ml/min.  The column was washed 
with 100 ml lysis buffer (2 ml/min) after loading. Bound protein was eluted in 30 ml by elution 
buffer (20 mM HEPES, pH 7.5, 250 mM NaCl, 10 mM mercaptoethanol, and 200 mM imidazole). 
Subsequently, the eluent was applied to a 5-ml Hi-Trap Heparin column (GE Healthcare) pre-
equilibrated with buffer A (20 mM HEPES, pH 7.5, 250 mM NaCl, 10% glycerol, 10 mM 
mercaptoethanol). Pol  was then eluted by a linear gradient of NaCl from 0.25 M to 1 M with 
FPLC (buffer A to B. Buffer B: 20 mM HEPES, pH 7.5, 1 M NaCl, 10% glycerol, 10 mM 
mercaptoethanol) in 40 fractions (1ml/min, 1 ml per fraction). Fractions with the highest 
concentration of Pol  (6-7 fractions, 400 to 550 mM NaCl) were pooled and concentrated to less 
than 2 ml. The resulting sample was then applied to Gel filtration column (HiLoad Superdex 200 
pg, 26/60, GE) equilibrated with buffer C (15 mM citrate, pH 6.5, 0.3 M NaCl, 1 mM DTT, 10% 
glycerol). Protein was eluted at 0.5 ml/min with 2 ml fraction size. Purified Pol  was aliquoted 
and flash frozen with liquid nitrogen and stored at -80°C. 
 
Expression and purification of other recombinant proteins   
Fragment coding for residue 51 to 368 of PDIP38 was amplified by PCR and inserted into pET-
sumo and pGEX-2T vectors for recombinant protein production. Resulting plasmids were 
transfected into E coli (Rosetta, DE3, pLys) with corresponding antibiotic selection. For protein 
production, cells were grown over night in LB media with 0.5 M NaCl at 37°C.  Overnight culture 
was then diluted 1:50 into fresh LB media with 0.5 M NaCl and 1 mM betaine and grew until the 
O. D. 600 of 0.6–0.8. IPTG was added to final concentration of 1 mM after cells were cooled to 
22°C for overnight induction. Cells were then harvested by centrifugation next morning and stored 
at -80°C. Pellet from 1liter culture (sumo-PDIP38, ~5 g) was suspended in about 30 ml lysis buffer 
(50 mM phosphate buffer, pH 7.0, 0.5 M NaCl, 10 mM benzamidine, 0.25% triton X-100, 10 mM 
mercaptoethanol and 30 mM imidazole) and lysed by sonication (30s burst at 80% power, 3 to 4 
times on ice). Cell lysates were clarified by centrifugation at 21000 rpm for 60 minutes with 
Beckman 45 T1 Rotor. The supernatant was then loaded onto a 5 ml Hi-trap chelating column pre-
charged with Ni2+ at flow rate of 1 ml/min.  The column was washed with 100 ml lysis buffer (2 
ml/min) after loading. Bound protein was eluted in 30 ml by elution buffer (20 mM HEPES, pH 



7.5, 250 mM NaCl, 10 mM mercaptoethanol, and 200 mM imidazole). The eluted protein was then 
added 1 mg sumo specific isopeptidase 1 (SENP1) and the resulting mixture was dialyzed against 
1-liter buffer (20 mM TRIS, pH 8.0, 200 mM NaCl, and 5 mM mercaptoethanol) overnight. His-
tagged sumo was then removed by binding to 2 ml Ni-NTA beads and the supernatant was applied 
to Mono-Q column. Recombinant PDIP38 was eluted as a single peak at about 200 mM NaCl. For 
GST-fusion PDIP38 production, the cell pellet (~5g from 1 liter culture) was lysed in lysis buffer 
(20 mM HEPES, pH 7.5, 200 mM NaCl, 0.5% triton X-100, 1 mM DTT, and 1 mM EDTA). 
Cleared supernatant post-centrifugation was added to 1 ml glutathione beads (Sigma) and 
incubated for 2 hours. After wash with lysis buffer, half of the beads was stored and the other half 
was eluted with 100 mM reduced glutathione. All samples were stored at -80°C.  
 
Preparation of synthetic chromatin mimicking DNA replication and repair termini  
Biotinylated template (3’-biotin-TGCAAAATAGGAGGGGATGGAATAAA-5’) was annealed 
to primer (5’-ACGTTTTATCCTCCCCTAC-3’) in PBS buffer at 200 M concentration. Since 
psoralen preferentially binds to double stranded DNA grooves formed by T/A pairing and reacts 
with pyrimidine bases, we designed the template/primer pair with a single stretch of T/A bases 
(TTTT/AAAA) for crosslinking with PCNA or Ub-PCNA. There are 13 base pairs after the 
modification site to allow polymerase binding as suggested by the crystal structure of Pol  and 
Pol . The annealed oligos were mixed with Ub-PCNA in 2 ml borate buffer (20 mM, pH 8.5) to 
final concentration of 20 M (oligo) and 10 M (Ub-PCNA) in a 6-well plate on ice. Succinimidyl-
[4-9psoralen-8-yloxy0]-butyrate (SPB) was added to a final concentration of 0.5 mM from a 100 
mM stock in DMSO. The mixture was incubated on ice for 15 min before irradiation by UVA at 
365 nm for 10 minutes. The samples were further irradiated twice for 10 minutes with 30 minutes 
intervals in between. The resulting sample was then applied to SUPERDEX 200 pg (16/60) column 
equilibrated with PBS buffer. Excess oligo was separated from cross-linked template/primer/Ub-
PCNA and unmodified Ub-PCNA due to size differences. Fractions containing a mixture of 
crosslinked template/primer/Ub-PCNA and unmodified Ub-PCNA were pooled and subsequently 
separated by immobilized streptavidin beads. The cross-linking of template/primer/PCNA was 
conducted in identical protocol with increased concentration (20 M oligo and 40 M PCNA). 
The binding capacities of both beads were determined by increasing concentrations of either Pol 
 or Pol 4 until saturation as determined by western-blot analysis. 
 
Oligo Extension assay 
The standard reaction buffer contained 50 mM Tris-Cl pH 7.5, 5 mM MgCl2, 50 mM NaCl, 150 
mM KCl, 2 mM dithiothreitol, 100 μg/mL BSA, 40 μM dNTPs and 0.5 mM ATP.  32P radiolabelled 
34 mer annealed to 70 mer was used as a substrate. Annealed biotin end-modified 70 mer/34 mer 
was incubated with streptavidin (New England Biolabs, MA) in an excess of 1:1.2 at 37°C for an 
hour before use to block the ends. Enzymes were diluted in a dilution buffer containing 50 mM 
Tris-Cl pH 7.5, 4 mM dithiothreitol, 200 μg/mL BSA, 30 mM NaCl and 10% glycerol (v/v). DNA 
was preloaded with PCNA or Ub-PCNA at 37°C for 5 minutes according to the following reaction 
mix:  10 mM Tris-Cl pH 7.5, 0.2 mM ATP, 2 mM MgCl2, 6 mM NaCl, 50 mM DNA, 60 nM RFC, 
and 40 nM PCNA or 40 nM Ub-PCNA. Reactions were then incubated on ice for 5 minutes with 
respective polymerases (Pol η / Pol ηPM) before addition of mix containing all four dNTPs (40 μM) 
and MgCl2 (5 mM) to start the reaction in a final volume of 30 μL. Reactions were performed at 
37°C and reaction aliquots (11 μL) terminated at different time points by addition of 7.5 μL of 
loading/stop buffer (25 mM EDTA in 95% formaldehyde, 0.01% bromophenol blue and 0.01% 



xylene cyanol) and heated at 95°C for 5 minutes to denature. Extension products were then 
resolved by electrophoresis on 18% polyacrylamide (acrylamide/bisacrylamide 19:1) 8 M urea 
denaturing gel using Sequi-Gen GT Sequencing Cell (Bio-Rad, CA). Resolved products were 
visualized by Molecular Dynamics Storm Phosphorimaging system (Amersham Biosciences, NJ). 
Full-length extension products (70 mer) were expressed as a percentage of the substrate available 
in respective reactions. For titration studies, the substrate concentrations were maintained constant 
by using biotin-blocked primer/template (50 nM) that were preloaded by PCNA (40 nM) OR Ub-
PCNA (40 nM) using RFC (60 nM). Polymerases (Pol η / Pol ηPM) were then added against the 
substrate at varying concentrations from 0 nM to 100 nM and incubated on ice for 5 minutes before 
starting the reaction at 37°C by addition of mix containing all four dNTPs (40 μM) and MgCl2 (5 
mM) to start the reaction in a final volume of 15 μl. Reaction aliquots (11 μl) were then quenched 
with 7.5 μl of loading/stop buffer (25 mM EDTA in 95% formaldehyde, 0.01% bromophenol blue 
and 0.01% xylene cyanol). Extension products were denatured at 95°C for 5 minutes to be 
separated by 18% polyacrylamide (acrylamide/bisacrylamide 19:1) 8M urea denaturing gel. 
Fraction of the total substrate that was extended to full-length extension products (70 mer) were 
quantified and fitted to non-linear regression against enzyme concentration by GraphPad Prism 
6.0 (La Jolla, CA), using one-site binding kinetics, to determine apparent Kd from the plotted 
saturation curves. The sequences of the corresponding oligos are as follows: 70mer: 5’ -/5Biosg/ CCT 
ATC TGA GCA CTA TCA TCG GTC GCA TCG TTG GCT GAA ATC GTG CTG TAG TGG CTG AAT CCC 
AAC CAA C/3Bio/ -3’; 34mer: 5’ – GTT GGT TGG GAT TCA GCC ACT ACA GCA CGA TTT C -3’; Biotin-
26-Temp: 5’ – AAA TAA GGT AGG GGA GGA TAA AAC GT [Biotin-Q] – 3’; Biotin-Primer: 5’ – ACG TTT 
TAT CCT CCC CTA C – 3’. 
 
Binding of polymerase to synthetic chromatin 
Streptavidin immobilized primer/template (P/T) that was cross-linked either with PCNA or Ub-
PCNA was assayed to bind recombinant Pol δ either in the presence of purified Pol η or Pol ηPM. 
Corresponding control reactions were also set up with individual proteins to estimate binding 
capacity. Each reaction had 500 ng of individual protein and was incubated with the immobilized 
P/T at a binding capacity of 200 ng per reaction in a final reaction mix volume of 200 μL. Assay 
buffer containing 10 mM HEPES pH 7.5, 15 mM citrate, 1 μM ZnCl2, 40mM NaCl, 160 mM KCl, 
1mg/mL BSA, 5% glycerol and 1mM dithiothreitol was used. After incubation at 4°C for 2 hours, 
the immobilized streptavidin beads were spun down and subsequently washed for at least 3 times. 
For PCNA immobilized P/T, PBS was used for washing, whereas for Ub-PCNA immobilized, 
subsequent washes were carried out in the 1X assay buffer. Beads were then boiled in 1X SDS dye 
(50 mM Tris-HCl pH 6.8, 2% SDS, 10% glycerol, 1% β-mercaptoethanol, 12.5 mM EDTA, 0.02 
% bromophenol blue) at 95°C for 5 min. Bound proteins were then resolved by SDS-PAGE and 
western blot. P/T cross-linked with Ub-PCNA was used to set up a titration assay to determine the 
relative amounts of Pol ηPM or Pol δ bound in the assay buffer mentioned above. In each reaction 
immobilized P/T at a binding capacity of ~100 ng was incubated with 500 ng of Pol ηPM and 
increasing concentration of Pol δ (500 ng, 1 μg, 1.5 μg, 2 μg, 2.5 μg) for 2 hours at 4°C. Control 
reactions contained ~100 ng immobilized P/T incubated with either Pol ηPM (500 ng) or Pol δ (500 
ng) individually. Beads were then spun down and subsequently washed in 1X assay buffer 5 times 
and bound proteins analyzed by SDS-PAGE and western blot as described above. In order to 
determine the ability of PDIP38 to sequester Pol η, titration study was performed using the 
immobilized P/T and recombinant purified PDIP38 and its phosphomimetic mutant, PDIP38PM in 
two distinct reaction conditions. To mimic conditions of DNA replication, immobilized P/T cross-
linked with PCNA was incubated with 500ng of Pol η and titrated with increasing concentrations 



of PDIP38 (50, 100, 200, 400, 500 nM). To reflect conditions of DNA repair, immobilized P/T 
cross-linked with Ub-PCNA was incubated with 500 ng of Pol ηPM and titrated with increasing 
concentrations of PDIP38PM (50, 100, 200, 400, 500 nM). The assay buffer composition as well as 
incubation, washing and subsequent analysis were performed under the same conditions described 
above.  
 
GST-fusion protein pull-down assays 
For pull down assays, the bait was expressed as a GST – tagged protein bound to glutathione-
agarose beads and incubated with either purified recombinant protein or nuclear extract to detect 
interacting partners. A GST negative control experiment was also set up to rule out GST mediated 
interaction. The standard reaction mix contained 25 mM HEPES pH 7.5, 50mM NaCl, 160 mM 
KCl, 0.1 mg/mL BSA, 10% glycerol, 0.25% Triton X-100, 10 mM citrate, 5 μM ZnCl2 and 1mM 
dithiothreitol unless otherwise specified. HEK 293T nuclear proteins were collected as described 
above in nuclear extraction buffer (15 mM Tris.Cl pH 7.5, 0.4 M NaCl, 10% (w/v) sucrose, 1 mM 
DTT) and diluted to reduce the salt concentration to 0.2 M NaCl. GSH-agarose beads with bound 
GST- (bait protein) were pre-equilibrated with pull down buffer before adding 500 ng of purified 
protein or 300 μg of nuclear extract and incubated on a shaker at 4°C for 2 hours. Beads were then 
collected by spinning down at a low speed of 4000 rpm for 1 min and consecutively washed three 
times in PBS. Bound proteins to bait protein were then collected by boiling in 1X SDS loading 
buffer (0.1% 2-mercaptoethanol, 0.0005% bromophenol blue, 10% Glycerol, 2% SDS, 63 mM 
Tris-Cl, pH 6.8) and later analyzed by western blot. 
 
Ectopic expression of proteins in mammalian cells 
Pol η cloned into pAcGFP-C1 to be expressed as a C-terminal fusion product of GFP was used to 
transfect HEK 293T by using lipofectamine 3000 (Thermo fisher, NJ). Simultaneously 
corresponding phosphorylation deficient mutant GFP-Pol η3A and the phosphomimetic mutant 
GFP-Pol ηPM were also transfected to study the impact of phosphorylation on Pol η localization. 
Poly-L-lysine (Sigma-Aldrich, MO) coated coverslips were used to plate the cells 36 hrs before 
transfections to achieve 80% confluence. The next day, cells were rinsed once with PBS and 
replenished with antibiotic-antimycotic free media and transfected with lipofectamine 3000.  
Optimized conditions were chosen for transfection of HEK-293T for a well in a 6-welled culture 
dish. After 6 hours, the media containing the transfection complexes was replaced with fresh media 
and GFP expression confirmed 36 hours later. SV40- transformed MRC-5 lung fetal fibroblasts, 
MRC-5 SV2 (Sigma-Aldrich, MO), were also used to study localization of GFP-tagged Pol η and 
its mutants. FuGENE HD (Promega, WI) was used to transfect these fibroblasts according to the 
manufacturers protocols. The transfection complexes were added to 3 mL of antibiotic-antimycotic 
free media and GFP expression was confirmed about 48 hours later. Cells were rinsed once in ice-
cold PBS on ice before subsequent fixation and imaging. Control A549 and CRISPR/Cas9 PDIP38 
KO A549 cells were plated on Poly-L-lysine coated coverslips 24 hours prior to transfection to 
achieve 80% confluency at the time of transfection.  Lipofectamine 2000 (Thermo fisher, NJ) was 
used to transfect GFP-tagged Pol η according to manufacturer’s protocol. Media containing the 
transfection complexes was replaced 6 hours later and cells were replenished with fresh media. 
GFP expression was confirmed 36 hours later and cells were subsequently fixed for imaging. 
 
Immunofluorescence assays  
HEK 293T and MRC-5 SV2 cells transiently expressing GFP-tagged Pol η and its mutants, GFP-
ηPM and GFP- η3A, were exposed to UV-C irradiation to study the effect of UV damage on 



localization of Pol η. A dose of 30 J/m2 of UVC (254 nM) was delivered using UVLMS-38EL 
series 3 UV lamp with a fluence rate of 2 J/m2/s. On confirming GFP signal under Axiovert 200M 
fluorescent microscope (Carl Zeiss, DE) cells were washed once with PBS before UV irradiation 
and then allowed to recover in replenished media for 5 hours. Cells were then rinsed once in ice-
cold PBS before subsequent steps. Cells were fixed either in 4% paraformaldehyde at room 
temperature for 15 minutes or in 100% methanol at -20° C for 20 minutes. Depending on antibody 
optimized protocols, cells were permeabilized by using either 0.1% Triton X-100 in PBS at room 
temperature for 15 minutes or 100% acetone at -20°C for 0.5 min. Subsequently cells were blocked 
in 5% BSA in PBS at room temperature for 1 hour before incubating in primary antibody overnight 
at 4° C. Cells were washed three times with PBS and then incubated in fluorescent dye conjugated 
secondary antibody (Life technologies, CA) for 1 hour at 4° C. To study the chromatin bound 
fraction cells were subjected to pre-extraction in protease/phosphatase inhibitor (HALT 100X 
protease phosphatase inhibitor cocktail, EDTA free) supplemented 1% Triton X-100 for 8 minutes 
at room temperature before fixation to get rid of soluble protein fraction. Protocol was adapted 
from Kannouche et al. (Kannouche et al., 2001). Supernatant containing the extracted protein 
fraction is removed and rinsed once with PBS before fixation as described above. Cells were then 
washed with PBS for 3 times before staining with DAPI (Life technologies, CA) at 1 μg/ μL for 
15 minutes at room temperature before a final wash and mounting using Prolong Diamond 
Antifade (Thermo fisher, NJ) onto slides. Slides were imaged using Nikon Eclipse Ti and images 
captured using NIS Elements Imaging Software, version 4.60. 
 
Cell analysis by Laser Scanning Cytometry   
Cells were maintained on coverslips and mounted onto slides using Prolong Diamond Antifade, 
similar to the protocols followed for imaging of immunofluorescence. After transfection and 
confirming the GFP signal 36 hours later, one set of cells were fixed with 4% paraformaldehyde 
while another set was subjected to pre-extraction in 1%Triton X-100 before subsequent fixation. 
Cellular DNA was counterstained with DAPI. Green fluorescence (GFP) representing GFP-tagged 
Pol  and its mutants as well as the blue emission of the DAPI-stained DNA were quantified using 
LSC (iCys; CompuCyte, Westwood, MA) with standard filter settings. Fluorescence was excited 
using helium-neon (633 nm), argon (488 nm) and violet (405 nm). DAPI staining was used to 
define the nucleus and set the primary contour for all experiments. At least 3000 cells were counted 
for each condition; the intensities of GFP max pixel and integrated GFP fluorescence were 
measured and recorded for each cell. No electronic compensation for possible spectral overlap was 
applied. For further details of the cell analysis refer to Zhao et al.  (Zhao, Rybak, Dobrucki, 
Traganos, & Darzynkiewicz, 2012)  
 
Quantification and Statistical Analysis 
Western Blots and Sequencing gels were quantified using ImageJ. All datasets were performed 
with a n ≥ 3 and are presented as mean ± the standard error of the mean (SEM). Differences 
between groups were analysed using unpaired t-test and respective p values were calculated. 
Differences were considered significant at the 95% confidence level (p < 0.05). 
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