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Abstract. Brain metastases are the leading cause of
morbidity and mortality among cancer patients, and are
reported to occur in about 40% of cancer patients with
metastatic disease in the United States of America. Primary
tumor cells appear to detach from the parent tumor site,
migrate, survive and pass through the blood brain barrier in
order to establish cerebral metastases. This complex process
involves distinct molecular and genetic mechanisms that
mediate metastasis from these primary organs to the brain.
Furthermore, an interaction between the invading cells and
cerebral milieu is shown to promote this process as well.
Here, we review the mechanisms by which primary cancer
cells metastasize to the brain via a mechanism called
epithelial-to-mesenchymal transition, as well as the
involvement of certain microRNA and genetic aberrations
implicated in cerebral metastases from the lung, breast, skin,
kidney and colon. While the mechanisms governing the
development of brain metastases remain a major hindrance
in treatment, understanding and identification of the
aforementioned molecular pathways may allow for improved
management and discovery of novel therapeutic targets. 

Brain metastases are a leading cause of morbidity and
mortality among cancer patients, and are reported to occur
in about 40% of cancer patients in the United States of
America (USA), with an incidence approaching 170,000/year
in the USA (1, 2). Primary organ tumors that have the

greatest propensity to metastasize to the brain include lung
(50-60%), breast (15-20%), skin (5-10%), kidney (7%) and
colon cancers (4-6%) (3, 4). In general, the median survival
following a diagnosis of cerebral metastases is between 2
and 25 months, depending on the origin of the primary tumor
and time of diagnosis (5, 6). The diversity of these primary
sites suggests the possibility of a common mechanism by
which these tumors metastasize to the brain. Moreover, a
complex interaction exists with the cerebral
microenvironment that results in a propensity for these
tumors to disseminate to the central nervous system (CNS). 

For many cancer patients, the diagnosis of metastasis to
the brain can be devastating. In some cases, only supportive
care is recommended. However, several studies show that
there is a survival benefit to combined treatment of surgical
resection and radiation therapy. For example, a review of
cerebral metastasis from gastroesophageal cancer showed a
survival advantage in patients treated with resection of the
metastatic lesion followed by radiation, which included
whole-brain radiation therapy or stereotactic radiosurgery
(7). They specifically reported a patient with a cerebellar
metastasis diagnosed five months after treatment for his
primary disease who had no recurrence five years after
undergoing resection of the brain metastasis followed by
stereotactic radiosurgery. Furthermore, Karagkiouzis et al.,
reported that in patients with solitary extrapulmonary
metastasis from NSCLC who underwent surgical resection
of the primary tumor as well as the solitary metastasis had
improved survival, especially if the metastasis was not
present within less than six months from diagnosis (8).
Despite current advances in treatment for metastatic lesions,
including surgical resection, chemotherapy and radiation,
there is limited benefit in the form of prolonged survival. As
such, improvement in therapeutic options for metastatic brain
lesions remains an unmet necessity. 

Tumor cells bypass multiple checkpoints in order to
establish metastasis to the brain. A complex mechanism
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termed epithelial-to-mesenchymal transition (EMT), which is
governed by a sequence of multiple signaling pathways,
appears to govern this process. In addition, the presence of
cancer stem cells (CSC) within the tumor may contribute to
this process and aid in evading current chemotherapeutics.
Moreover, a distinctive genetic signature is associated with a
propensity for cerebral metastases unique to discrete primary
sites. In this review, we discuss the molecular process and
genetic markers associated with the development of cerebral
metastases, with particular focus on the five primary tumor
sites, namely lung, breast, skin, colon and kidney, having the
most propensity for metastasizing to the brain.

Epithelial-to-mesenchymal Transition 
in Cerebral Metastasis

In general, commencement of metastasis begins with
detachment of primary cancer cells from the tumor mass. This
is followed by invasion through the basement membrane and
intravasation into the systemic hematologic and lymphatic
circulation. The circulating tumor cells then extravasate
through gaps in endothelial cells at a distant site, where they
form a secondary lesion. This complex sequence of metastasis
requires a sophisticated process, referred to as EMT. The
process of EMT is well recognized as it plays an important
role in embryogenesis and later in severe wound healing. EMT
is characterized by the loss of cellular apical-basal polarity,
resulting in the formation of a cell with mesenchymal
properties, allowing for dissociation of cell-cell interactions
and migratory potential. Upon reaching the secondary site, the
cells appear to undergo a reversal process termed
mesenchymal-to-epithelial transition (MET) by which the
tumor cells regain phenotypic and genotypic properties of the
primary tissue. This process is analogous in the development
of metastatic tumors. Recent studies have shown that the
process of EMT can propel cancer cells into a CSC-like state
allowing them to acquire a mesenchymal phenotype,
suggesting a functional link between CSCs and the metastatic
process (9). Tam and Weinberg have attempted to elucidate a
detailed and complex transcriptional process that governs the
steps of EMT and its reversal mechanism MET (10). The
canonical EMT/MET processes are characterized by complex
genetic alteration that allows epithelial or mesenchymal cells
to be distinguished by expression of a number of classical
markers (11). Well-recognized epithelial markers include
cadherins and tight junction proteins such as E-cadherin.
Mesenchymal markers include the extracellular matrix
component fibronectin and the intermediate filament protein
vimentin. During embryogenesis, EMT is governed by a
number of diverse growth factors including fibroblast growth
factor (FGF), platelet derived growth factor (PDGF),
epidermal growth factor (EGF) and transforming growth
factor beta (TGFβ), leading to activation of various receptor

tyrosine kinases (RTKs) (12). These mechanisms are shown
to reappear during the metastatic process via EMT, where
TGFβ plays a pivotal role.

Activation of the TGFβ pathway results in translocation of
Smad transcription factor proteins into the nucleus where they
interact with other transcription factors to activate or repress
genes involved in EMT (13). TGFβ has a direct effect on
EMT by down-regulation of epithelial and up-regulation of
mesenchymal markers, through activation of a number of
transcription factors including zinc finger SNAI1 (Snail), zinc
finger SNAI2 (Slug), zinc finger E-box binding homeobox 1
(ZEB1), zinc finger E-box homeobox 2 (ZEB2), and twist
family bHLH transcription factor 1 (TWIST), that are
recognized as master regulators of this process (14). Under
the influence of TGFβ, transcriptional repression of the
transmembrane adhesion protein E-cadherin occurs, which
emerged as a fundamental regulator in the process of tumor
progression and EMT (12, 15, 16). Notably, transcription
factors Snail, Slug and ZEB1/2 are recognized as key
regulators in E-cadherin repression, in addition to their roles
in induction of mesenchymal genes (12, 16). GATA1, a
known repressor of E-cadherin, was found to be up-regulated
in samples of lung-derived brain metastases, suggesting a role
for E-cadherin modulation in the process of cerebral
dissemination (17). Commonly, overexpression of the HER2
gene in breast cancer is shown to be associated with TGFβ
signaling, leading to the activation of Snail, Slug and ZEB1
(18). Suppression of this signaling by cucurbitacin B in
mouse models led to reversal of the EMT process and
reduction of brain metastases (18). Moreover, a link between
TWIST and other regulators of EMT such as Snail, Slug and
ZEB has been seen (16). Induction of ZEB1 by TGFβ was
dependent on cooperation between Snail and TWIST in
mammary epithelial cells undergoing EMT (19). TWIST, a
member of the helix-loop-helix family of factors, is
predominantly expressed during embryogenesis in neural crest
cells. It is believed that TWIST maintains roles in suppressing
expression of E-cadherin, occludins and claudin-7, and
induction of pro-invasive and mesenchymal genes (16, 20-22).
High TWIST expression was observed in metastatic
melanoma and was considered as an independent marker of
poor prognosis in these patients (23). Similar findings are
reported in highly invasive ductal carcinoma, prostate cancer,
esophageal squamous cell carcinoma and hepatocarcinomas
(24-29). A recent study described an increased expression of
EMT markers Snail and TWIST present in samples of brain
metastases from lung, breast, colon and renal primary tumors
(17). Similar to the TGFβ signaling pathway, downstream
effectors of EGFR, namely signal transducer and activator of
transcription 3 (STAT3), is linked to the activation of TWIST
and subsequent promotion of EMT. STAT3 is a member of a
family of latent transcription factors that are activated by
cytokines and growth factors (30) and is constitutively
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activated in many cancers. The link between STAT3 and
TWIST has been suggested in invasive breast (31),
hepatocellular (32) and gastric cancers (33). Increased STAT3
activity was also evident in models of melanoma-derived
brain metastases, which display increased activity of STAT3,
relative to primary melanoma cells (34). Furthermore, an
inhibition of STAT3 may suppress the cerebral metastases as
shown in an animal model of malignant melanoma (34). 

TGFβ also elicits signaling responses via non-Smad
pathways, which are thought to complement Smad signaling
in producing an effective EMT response. Activation of non-
Smad signaling pathways relies on direct interactions between
effector molecules and TGFβRI and/or TGFβRII receptors
(13). The intersection of TGFβ-mediated EMT activation and
non-Smad signaling is thought to occur under the influence of
other signaling pathways associated with Erk MAP kinases,
Rho GTPases and the PI3 Kinase/AKT pathway (13, 35, 36).

MAP kinase pathways appeared to play a significant role in
TGFβ-mediated EMT, as studies have revealed down-
regulation of E-cadherin and up-regulation of N-cadherin and
matrix metalloproteinase expression in response to MEK/Erk
MAP kinase activation (13, 37-41). Interestingly, the MAPK
pathway is also known to be activated by mutations in the
oncogene BRAFV600E, commonly associated with melanoma,
with a higher tendency for metastasizing to the brain (42). In
fact, a recent study demonstrated inhibition of melanoma brain
metastasis cell lines harboring a BRAFV600E mutation, using
the MAPK inhibitor vemurafenib (42). Furthermore, down-
regulation of the PI3K/Akt pathway using temsirolimus, a
mechanistic target of rapamycin (mTOR) inhibitor, reduced
proliferation of melanoma-derived brain metastases harboring
mutations in the PTEN tumor suppressor gene (42).
Additionally, TGFβ is shown to activate PI3K, which results
in a subsequent activation of the Akt kinase via integrins (43-
47). In fact, αv integrin levels in cancer cell are shown to be
positively correlated with the number of brain metastasis as
well with the rate of occurrence. A recent study points to the
role of αv integrin in promoting brain metastases in cancer
cells and may be involved in early steps in the metastatic
process, such as adhesion to brain vasculature and motility.
Therefore, targeting αv integrin with intetumumab could
provide clinical benefit in treating cancer patients with brain
metastases (48). Specific genetic variations in the genes for
PI3K, PTEN, AKT and mTOR have been identified as
predictors of brain metastases in a model of NSCLC (49).
Importantly, the PI3K/Akt pathway facilitates downstream
signaling that is involved in the promotion of EMT, cell
migration and cell survival (13, 43, 50). As such, inhibitors of
this pathway have been found to hinder TGFβ-mediated E-
cadherin down-regulation, thereby halting the process of EMT
(43, 51, 52). Specifically, two multiprotein complexes of
mTOR, mTORC1 and mTORC2 have been implicated in
coordinating various cellular functions associated with EMT

(53, 54). Consistent with these findings, increased mTOR
signaling has been linked to TGFβ activity via mTORC1 and
phosphorylation of p70S6K and 4E-BP1, which subsequently
result in increased protein synthesis and cell size (51). Studies
of metastatic liver (55) and colorectal cancer (56) have
highlighted mTOR as an emerging target of interest in
regulating tumorigenesis and metastasis. With respect to
cerebral metastases, components of the mTOR signaling
pathway are shown to be up-regulated in models of metastatic
breast cancer and suppression of these markers resulted in
significantly diminished metastatic potential (57, 58).
Moreover, silencing of mTOR pathway components
suppresses E-cadherin expression and enhances expression of
the mesenchymal marker vimentin, suggesting an important
regulatory role for mTOR in the processes of both EMT and
MET (57). 

RhoGTPases are also known regulators of cell migration,
gene regulation and cytoskeleton organization (13). TGFβ
regulates Rho activity in many cell types; however, the
interaction between TGFβ, RhoA, and its effector kinase
Rho-associated protein kinase (ROCK), at tight junctions is
most significant in the process of metastasis. Signaling
between TGFβ and TGFβRII results in recruitment of the E3
ubiquitin ligase Smurf1 and subsequent RhoA ubiquination
and degradation at tight junctions (13, 59, 60). These
observations are supported by a study utilizing a model of
metastatic breast cancer, revealing a distinct role for TGFβ-
mediated Par6 signaling in promoting loss of cellular polarity
and morphologic transformation in mammary cells (60).
Furthermore, ROCK inhibition resulted in an increased
number of cells permitted to migrate through the BBB,
promoting the formation of cerebral metastatic lesions (61).

Cancer Stem Cells, EMT and Cerebral Metastasis

A critical role for CSCs in cancer recurrence, maintenance
and metastasis has become evident. Much like normal adult
stem cells, the CSC is endowed with the capacity to self-
renew and differentiate (62). Furthermore, normal stem cells
are active in two phases; cycling or quiescent; and, as such,
CSCs may function in the same manner, potentially
explaining the dormancy phase of a tumor, prior to the
development of a metastatic lesion. Similar to embryonic
stem cells, the CSCs require a specific niche provided by the
microenvironment consisting of components needed to
maintain stemness and differentiation (63). CSCs may
contribute to tumor metastasis by the process of EMT, in
which TGFβ mediated pathways generate cells with stem-
like properties (9, 64). 

Aberrant signaling of the Notch, Hedgehog and Wnt/β-
catenin pathways are crucial in the maintenance and activity
of CSCs, as well as the process of EMT (13, 62). The critical
role of Notch signaling in embryogenesis and development,
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particularly in cellular patterning and allocation of cell types
to tissues strengthens the notion of its role in control of
CSCs (63). Following binding of a Notch receptor to its
specific ligands (i.e. Delta or Jagged), a cleaved intracellular
domain translocates to the nucleus, activating transcription
factors and promoting transcription of downstream target
genes, such as Hes and Hey (65, 66). Signaling crosstalk
between the Notch and components of the EMT pathway
(TGFβ, Snail, Slug and ZEB) has been shown to contribute
to tumor progression (66-68). In fact, TGFβ-mediated EMT
was abrogated by knockdown of Hey1 and Jagged1 or
inactivation of Notch (69). Furthermore, Notch also induces
EMT by stabilizing Snail under hypoxic conditions, via
recruitment of hypoxia-inducible factor (HIF) 1a and HIF-
2a (70-71). In addition, elevated levels of Notch 1-3 and
Jagged1 were found to be associated with disease
progression and serve as markers for poor prognosis and
metastasis in a model of NSCLC (72). Constitutively active
Notch1 in colorectal carcinoma cell lines has been associated
with an increase in EMT and stemness-related proteins such
as Slug, Smad3, Jagged1, and CD44 (73). The role of the
Notch pathway in brain metastasis was initially described
using an animal model of breast cancer, where cerebral
metastases were associated with activation of Notch1
components, along with nuclear localization of Hey1 and
Hes1 (74). Moreover, inhibition of Notch significantly
reduces the incidence of brain metastases, particularly by
altering the CD44+/CD24– sub-population (75). Importantly,
recent evidence suggests that jagged1 and Notch signaling is
involved in establishing and promoting brain metastases
from breast cancer, in a process mediated by interleukin 1b
in astrocytes (63).

The Wnt/β-catenin signaling pathway appears to play a
crucial role in regulation of stem cells and progression of
many cancers including colon, breast and cutaneous
malignancies (76-79). It is worth mentioning that Wnt also
plays an important role in normal brain development,
therefore activity of this pathway in metastases may suggest
emulation, providing further evidence for the “seed and soil”
hypothesis, as suggested by Fidler (80). The clinical
significance of the canonical β-catenin-dependent pathway
pertains to its involvement in cellular proliferation,
differentiation and survival as well as in stem cell
maintenance and reprogramming (81, 82). In addition, the
Wnt signaling pathway regulates TGFβ-mediated EMT
through its interaction with E-cadherin repressors including
Snail, TWIST and ZEB (83, 84). E-cadherin normally exists
in a complex with β-catenin at the cell membrane. Therefore,
loss of E-cadherin during EMT allows β-catenin to
translocate to the nucleus in order to stimulate transcription
of regulatory genes involved in cellular proliferation and
differentiation (82, 85). Further crosstalk between the Wnt
and TGFβ signaling pathways is evidenced by the close

interaction of Smad and transcription factors induced by the
Wnt pathway (86, 87). In a model of lung cancer, increased
levels of dishevelled-3 mRNA in pleural effusions,
suggesting this as a possible marker for micrometastases
(88). Expression of dishevelled-1 and dishevelled-3 has been
found to be increased in lung-derived brain metastases as
well (89). A recent study of triple-negative breast cancer
provided evidence of up-regulated Wnt pathway activity,
identifying this as a marker of poor prognosis and metastatic
disease, particularly to the lung and brain (90). Furthermore,
up-regulation of Wnt/β-catenin activity in brain metastases
from basal-type breast carcinoma have been documented, as
evidenced by gene expression analysis (91). On the other
hand, down-regulation of Wnt/β-catenin signaling in the
luminal B subtype of breast cancer prevents metastasis to the
brain, strengthening its role in this process (91). Therefore,
targeting this pathway may prove effective in inhibiting the
development of brain metastases. In fact, monoclonal
antibodies against Wnt ligands and associated receptors are
currently being tested for their ability to inhibit tumor
growth, though most trials are still in early stages (32). 

The sonic hedgehog (SHH) pathway is known to be a
critical regulator of embryogenesis, body patterning and
cancer progression (92). In the presence of SHH, smoothened
proteins are released and phosphorylated to promote the
activation of glioma-associated oncogene homologs (GLIs),
which subsequently regulate the expression of a multitude of
target genes (93, 94). The interaction of SHH, Wnt and TGFβ
pathways is involved in regulation of the process of EMT. For
example, in fibroblasts and keratinocytes, up-regulation of
TGFβ signaling revealed Smad3-dependent activation of
GLI1 and GLI2 (95). Activated GLI2 was associated with
loss of E-cadherin and the potential to form bone metastases
in a melanoma model (96). In vitro studies of the SHH
pathway and EMT have revealed GLI1-mediated suppression
of E-cadherin expression via induction of Snail (97). Studies
have shown the SHH/GLI pathway to be a critical regulator
of EMT, facilitating recurrence and metastasis, as well as
chemotherapy resistance in models of squamous cell lung
carcinoma and NSCLC (98-100). While there is limited
evidence for the involvement of SHH in promoting brain
metastases, a study conducted using samples of six metastatic
brain tumors demonstrated increased expression of
downstream mediators of the SHH pathway, particularly
GLI1, which correlated positively with expression of Snail,
and negatively with expression of E-cadherin, suggesting a
role for EMT in brain metastases (101). 

Role of Micro RNA in Cerebral Metastasis

miRNAs are small, non-coding, single-stranded RNAs that
regulate gene expression by targeting mRNA transcripts,
leading to their translational repression or degradation (102).
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A single miRNA can simultaneously regulate multiple genes,
resulting in complex functional outcomes (103). The
identification of groups of genes targeted by the same
miRNA provides insight into the cross-talk between multiple
signaling networks and their role in controlling diverse
biological processes. Numerous miRNAs are now being
identified for their role as oncogenes or tumor suppressors
(104). Furthermore, extensive research has provided
evidence that several microRNA are involved in the process
of EMT; many of these having a role in mediating cell-cell
adhesion, cytoskeletal arrangement or oncogene expression
(102, 103, 105). Recently, much of the work regarding
miRNA in EMT regulation focuses on the miR-200 family,
which includes miR-200a, miR-200b, miR-220c, miR-141,
and miR-429 (105). This association was realized upon the
finding that the cells undergoing EMT in response to TGFβ
had noticeably reduced miR-200 expression (15).
Specifically, members of the miR-200 family were found to
exert a negative regulation on ZEB1 and SIP1 expression,
suggesting that down-regulation of these miRNA is required
for initiation of EMT (15). This observation was further
supported by the fact that members of the miR-200 family
repress EMT by silencing ZEB1 and ZEB2 in gastric and
breast cancer (106-108). In addition, miR-429 expression has
been associated with down-regulation of mesenchymal
markers including MMP2, Snail and ZEB2 (109).
Interestingly, induced expression of miR-200 correlated with
increased levels of E-cadherin mRNA, indicative of the
reversal process of EMT, MET (15).  In metastatic NSCLC
cells, the expression of miR-200 correlated with reduced
gene expression, particularly related to genes involved in cell
signaling, invasion and proliferation (110). 

Recently, miRNA expression has become a topic of interest
as it pertains to mediating pathways involved in
tumorgenicity as well as CSC differentiation, self-renewal
and maintenance (111). Of interest, miR-107, miR153, miR-
204 and miR-218 are shown to influence the self-renewal and
maintenance of glioma stem-like cells (112-115). In a model
of breast cancer, Lin28-mediated repression of let-7 was
associated with CSC production (116). Expression of miR-7
in metastatic breast CSCs was correlated with increased
expression of the pluripotency gene KLF4, suggesting an
important role for miRNA in CSC stemness and metastasis
(117). In concordance with these studies, a pivotal role for
microRNA in CSC maintenance has also been reported in
models of colorectal, lung and hepatocellular carcinoma (118-
121). Moreover, a recent review provided evidence for a 30
miRNA signature correlating with expression in the TGFβ,
Notch and Wnt signaling pathways, implicating their role in
regulating EMT and CSCs (103). 

Recently, groups of miRNA have been identified as unique
markers for metastatic tumors, suggesting a role for miRNA
in developing organ-specific metastases. Importantly, a recent

study using expression-based profiling of miRNA was able to
accurately identify the primary tumor of origin of brain
metastases in 84% of samples, suggesting an important role
in diagnosis (122). Also, a group of miRNAs were described
that are exclusively expressed in metastatic tumors based on
the analysis of 336 cancer samples from 22 unique sites,
suggesting a role in site specific metastasis (123). 

While the precise mechanism by which the cerebral
microenvironment interacts with tumor cells has yet to be
understood, studies suggest a possible interaction between
the astrocytic milieu and tumor cells, in which complex
alterations of miRNA expression could take place (124). In
support of this theory, a recent study demonstrated the ability
of astrocytes to alter the microRNA expression patterns of
lung cancer cells when co-cultured together (125).
Specifically, co-cultured cells exhibited reduced expression
of miR-768-3p, which was linked to increased cell viability
via increases in K-ras (125). Additionally, a study of breast
and bone metastatic models revealed down-regulated miR-7
expression in CSC derived from metastatic tumors, as well
as an inverse relationship between miR-7 and the
pluripotency gene KLF4 (117). Interestingly, this inverse
relationship between miR-7 and KLF4 was also associated
with metastasis-free survival only in brain metastases,
demonstrating a site-specific interaction between microRNA,
CSCs and the cerebral microenvironment, leading to
prognostic implications. Global patterns of gene expression
demonstrated an up-regulation of hsa-miR-17-5p in triple-
negative breast cancer tissues in The Cancer Genome Atlas
(TCGA). In addition, a negative correlation between hsa-
miR-17-5p and overall survival as well as PTEN and BCL2
target genes was observed in TCGA breast cancer specimens
(126). Other miRNAs were found to have roles in tumor cell
invasion and extravasation through the BBB. Specifically,
miR-1258 was shown to regulate expression of heparanase,
a pro-metastatic enzyme stored in endothelial and glial cells,
involved in breakdown of heparan-sulfate chains, rendering
cells more capable of crossing the BBB (127, 128). In
addition, miR-22 and miR-378 mediate expression of MMP-
2, MMP-9 and VEGF, implicating a cross-talk between the
tumor cells, extracellular matrix and vasculature in
facilitating invasion and establishing secondary lesions in the
brain. Interestingly, aberrant expression of miR-10b, miR-
29c, miR-145, miR-146a, miR-200, miR-210, miR-199a/b
and miR-768-3p were discovered in cerebral metastatic
lesions from multiple primary tumors, suggesting the pivotal
role of miRNA in brain metastasis, which has potential to aid
in diagnosis, prognosis and discovery of therapeutic targets.  

Involvement of approximately 38 distinct miRNA
associated with cerebral metastases from different primary
tumors (NSCLC, breast, CRC, melanoma and renal tumors)
are presented in Table I (129-165). Of these miRNA, 25
were found to have increased expression, 10 were found to
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have decreased expression, and 3 were found to have
variable expression, when compared to their matched
primary tumor counterparts (Table I).

Genetics Associated with Cerebral Metastasis

Studies of gene expression have suggested the existence of
a genetic signature present in primary tumors that defines
their metastatic potential (166). While, much debate has
since emerged regarding the significance of genetic
signatures and their role in metastasis, Fidler and colleagues
suggested that the process of metastasis requires cancer cells
to acquire additional mutations in order to develop metastatic
potential (167). Furthermore, it has been demonstrated that
while a genetic signature for poor prognosis may exist, an
additional set of genetic aberrations contributes to the site-
specific dissemination of metastatic tumor cells (168). Rather
than directing the process of metastasis, this study suggests
that the genes corresponding to poor prognosis may instead
provide tumor cells with baseline metastatic properties with
a phenotype encouraging metastasis (168). Alternatively, a
model of breast-derived brain metastases suggests that it is
not a genetic signature that predetermines a tumors clinical
course, but rather a unique interaction between the tumor and
its microenvironment that contributes to disease progression
(80). Given the significance of genetic markers in defining
tumor progression and metastasis, it is prudent to detail
genetic markers as they pertain to cerebral dissemination
from the breast, lung, skin, colon and kidney (See Figure 1
for details).

Breast 

Approximately 10-30% of breast cancer patients will develop
cerebral metastases (169). In patients with metastatic breast
cancer brain metastases were shown to have the worst
prognosis (7.35 months), followed by metastases to the liver
(36.7 months), bone (44.4 months) and lung (58.5 months).
Brain metastases from breast cancer can be stratified based
on hormone receptor status. About 25% of patients with
breast cancer have an amplification in HER2 and, of these,
30-55% develop metastatic brain lesions (170-174). This risk
is elevated in the setting of hormone-receptor negativity
(175, 176). Median survival of patients with HER2-positive,
ER-negative brain metastases has been found to be
approximately 28 months (177). A study of 66 patients with
HER2 breast cancer displayed good performance status,
controlled extracranial disease and single brain metastases
had better outcome (178). Patients with triple-negative breast
cancer (ER–/PR–/HER2–), on the other hand, are at increased
risk of first recurrence of cerebral metastasis (179) with a
tendency to cluster early in the patient’s disease trajectory
(175). These patients are at a 25-46% risk of developing

CNS metastasis (180-182) with a survival time of less than
six months (179, 182, 183).

In a model of breast cancer, gene expression analysis
revealed 243 genes that were differentially expressed in
metastatic cell lines, of those, 17 genes were highly correlated
with brain metastasis (184). More importantly, these genes
did not coincide with those involved in metastasis to other
organs. Among the 17 genes, COX2, EGFR ligand HBEGF
and the a2,6-sialyltransferase ST6GALNAC5 were identified
as mediators of homing, cancer cell migration and passage
through the BBB. Findings also indicate that in breast cancer,
a long period of remission often precedes distant relapse,
supporting the notion that breast cancer cells initially lack the
full competence for outgrowth in distant organs but develop
this under the selective pressure of different organ
microenvironments (168, 184-186). Alternatively, a recent
study of 18 primary and 42 breast cancer-derived brain
metastases found mutations in the TP53, PIK3CA, KIT,
MLH1 and RB1 genes, within which no mutations were found
to be unique to cerebral metastases (187). Interestingly, in a
matched pair of primary tumor and metastatic brain lesion, a
mutation in p53 was discovered, however the acquisition of
additional mutations might have occurred during the
metastatic process (187). Mutations in TP53 were also found
with a higher frequency in metastatic tumors, compared to
primary breast cancer cells (187, 188). A similar study, using
expression profiling of 23 matched sets of brain metastases
and primary breast tumors, found DNA double-strand break
repair genes BARD1 and RAD51 to be up-regulated in
samples of metastatic lesions, suggesting a role for these
genes in evading the effects of reactive oxygen species in the
brain (189). Studies of epigenetic gene regulation have
revealed differential methylation patterns of genes exist
between brain metastases and their primary tumor
counterparts (190, 191). Importantly, one study found the
BNC1 gene to be more frequently methylated in metastatic
tumors than in primary breast cancer (190). BNC1 is a target
of TGFβ in mediating EMT, as its expression is preserved in
primary breast tumors while silent in metastatic lesions (191).
This suggests its initial role in promotion of EMT, thereafter
possibly contributing to MET while establishing secondary
lesions (190). 

Lung

The pathogenesis of lung cancer exists in two broad clinical
subtypes, namely non-small cell carcinoma (NSCLC),
representing approximately 75-85% of tumors, and small cell
lung carcinoma (SCLC) accounting for the remaining 
15-25%. Of these, approximately 30-50% are likely to
develop cerebral metastases; where 25% arise from NSCLC
(192, 193). The development of cerebral metastases is
considered an indicator of advanced disease and poor
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prognosis. Without treatment, median survival time ranges
from only 1-2 months, expanding to 4-6 months with the
addition of radiotherapy (193-195). Improved survival in
patients with single brain metastases derived from NSCLC
has been shown with the addition of neurosurgical resection
and/or radiosurgery with mean survival times approaching
12-14 months (193). 

A study comparing expression data between 16 metastatic
brain tumors with 37 primary NSCLC samples revealed 244
genes with altered expression levels, corresponding to genes
involved in adhesion, cell-cell communication and motility
(196). A similar study, comparing brain metastases from
NSCLC to non-metastatic lung tissue assessed 17,000 genes and
found 1,561 to have altered expression, showing genes involved
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Table I. microRNAs involvement in brain metastasis. 

miRNA                  Primary site               Pattern of                                             Proposed role in metastasis                                                Reference
                                                                 expression

miR-1                           CRC                            h                                                       Interaction with MACC1                                                   129, 130
miR-7                            BC                             i                                                     Increased KLF4 expression                                                     117
miR-9                       BC; CRC                        h                                                        Inhibition of E-cadherin                                                   131, 132
miR-10b            BC; CRC; ccRCC              h BC                   Modulation of HOXD10, TIAM1, MICB, TIP30, 129, 133, 134
                                                                    h CRC                                           Twist and E-cadherin expression                                                    
                                                                  i ccRCC
miR-15b                  Melanoma                       h                                                                                                                                                       135
miR-16                    Melanoma                       h                      Inhibition of EMT via phosphorylation of FAK and Akt proteins                  135, 136
miR-19a                        BC                             i                           Regulation of cyclin D1, Bim, TNFa and PTEN expression                      137, 138
miR-20b                        BC                             h                                                          Suppression of PTEN                                                     139, 140
miR-21                      NSCLC                         h                                                 Downstream mediator of STAT3                                                 141
miR-22                         CRC                            h                       Modulation of TIAM1, MMP-2, MMP-9 and VEGF expression                   129, 142
miR-28                         CRC                            h                                      Targeting of CCND1 and HOXB3 expression                                  129, 143
miR-29c                        BC;                         i BC                                  Epigenetic regulation of tumor-related genes;                             137, 144, 145
        Melanoma    i Melanoma                               Targeting of TIMP3, PDCD4 and RASA1
miR-31                         CRC                            i                                  Downstream effector of TGFb that targets TIAM1                              129, 146
mIR-95                      NSCLC                         i                                                       Suppression of cyclin D1                                                       147
miR-125b                     CRC                            h                                                        Suppression of LIN28B                                                        129
miR-126                       CRC                            h                                          Inhibition of the RhoA/ROCK signaling                                     129, 148
miR-133a/b                  CRC                            h                         Downstream target of TPp63 with inhibitory effect on RhoA,                    129, 149
                                                                                                                                  E-cadherin and vimentin 
miR-143                       CRC                            h                                               Regulation of MACC1 expression                                           121, 129
miR-145               NSCLC; CRC             h NSCLC               Targeting of OCT4, EGFR, c-myc, MUC1, TPD52 and NUDT1              129, 150, 151
                 i CRC 
miR-146a                 BC; CRC                     i BC                               Modulation of b-catenin and hnRNPC expression                               129, 152
                 h CRC
miR-150                  Melanoma                       h                                                           Targeting of c-Myb                                                       135, 153
miR-184                    NSCLC                         h                            Inhibitor of c-myc and CCND1; induction of p15 and p21                       154, 155
miR-197                    NSCLC                         h                                                     Negative regulator of FUS1                                                154, 156
miR-199a/b           CRC; ccRCC                h CRC                                    Regulation of HES1; inhibition of c-Met                                     129, 134, 
                h ccRCC                                                                                                                                            157, 158

miR-200                   BC; Lung                    h BC                                               Targeting of ZEB1 and ZEB2                                                   159
                 h Lung
miR-210              BC; Melanoma                h BC                      Targeting of MNT; Induction of angiogenesis after hypoxia                  137, 160, 161
               h Melanoma

miR-328                    NSCLC                         h                                                      Up-regulation of PRKCA                                                      162
miR-374                  Melanoma                       h                                                                                                                                                       135
miR-378                    NSCLC                         h                                      Up-regulation of MMP-2, MMP-9 and VEGF                                      163
miR-509                        BC                             i                                                 Suppression of RhoC and TNFa                                                164
miR-542                  Melanoma                       i                                                      Down-regulation of PIM1                                                      165
miR-576                       CRC                            h                                                                                                                                                       129
miR-768-3p             BC; Lung                    i BC                                                           Targeting K-ras                                                               125
                 i Lung
miR-1258                      BC                             i                                                        Inhibition of heparanase                                                        127
HS_170                        CRC                            i                                                                                                                                                       129
HS_287                        CRC                            h                                                                                                                                                       129



in adhesion, motility and angiogenesis to be up-regulated, and
genes involved in apoptosis and neuroprotection to be down-
regulated (197). Furthermore, analysis of 12 candidate genes
from samples of NSCLC, assessing the correlation between
gene expression and occurrence of brain metastases found three
genes, CDH2, KIFL1 and FALZ, to be predictive of brain
metastases (4). Importantly, CDH2 is known to regulate
adhesion, and is a mediator of EMT, suggesting its role in this
process (4, 198, 199). Similarly, loss of LKB1 and mutation of
KRAS have been shown to be predictive of brain metastases in
NSCLC (200). Recent genomic analysis using comparative
genome hybridization techniques has revealed numerous copy
number variations (CNV) predictive of brain metastases from
primary NSCLC (201, 202). An increase in the number of
CNVs has been observed in secondary tumors in comparison to
their primary counterpart, suggesting a degree of genetic
variability that takes place during the metastatic process (201).  

A recent study has demonstrated that about 21.9% patients
with NSCLC showed the expression of programmed cell
death-ligand 1 (PD-L1) in brain metastases. Furthermore,
PD-L1 positivity in brain metastasis samples was seen in
patients with heavy smoking history as well as radio-
therapeutic treatments giver prior to surgery (203). 

Interestingly, a newly discovered rearrangement of
anaplastic lymphoma kinase (ALK) is seen in about 2-7% of

NSCLC (204) and has recently become a marker of interest for
targeted chemotherapy. The propensity for ALK-rearranged
NSCLC to metastasize to the brain has been a subject of
contention, with several studies citing greater likelihood (205),
however others show no significant increase in brain
metastases (206). Crizotinib, a first-generation ALK inhibitor,
is shown to be highly efficacious against ALK-positive NSCLC
and is currently approved for first-line treatment (207, 208),
however it is important to consider that CNS progression
develops in up to 60% of patients treated with this
chemotherapeutic agent (204). The pattern of CNS progression
in patients receiving crizotinib was studied by Costa et al., who
discovered poor CSF concentrations of the drug, due, in part,
to both passive diffusion restriction and active efflux via P-
glycoprotein (209, 210). Several second generation ALK-
inhibitors, such as alectinib, ceritinib, and brigatinib, are
currently in clinical trials, with positive results due to better
CNS penetrance, however, ongoing preclinical studies are
awaiting outcome (211-213). Perhaps the novel of ALK-
inhibitors is the third-generation, loratinib, believed to be
effective against all resistant mutants of ALK+ NSCLC (214,
215). Clinical trials for this novel chemotherapeutic agent are
currently underway, with published evidence from one patient
indicating a favorable treatment response and re-sensitization
to crizotinib (211, 214). 
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Figure 1. Genes associated with cerebral metastasis from distinct organ sites. Figure represents the alterations in unambiguous genes linked with
brain metastasis from breast, lung, kidney, colon or skin.  



Skin

Brain metastasis is common in association with melanoma,
occurring in up to 75% of patients with stage IV disease (216).
Greater than 50% of melanoma-related deaths are a result of
brain metastases, with the median survival for these patients
determined to be approximately 3 to 6 months (217, 218).
Interestingly, while lung, breast and melanoma cancers are the
most common sources of cerebral metastases; melanoma is by
far the least prevalent in the general population, reflecting its
heightened propensity to metastasize to the brain (216). 

Comparisons of metastatic melanoma to non-metastatic
primary cutaneous malignancies have revealed many genetic
variations, as confirmed by expression array analysis (219).
With respect to melanoma, the BRAF gene is crucial in the
development of disease, while members of the MAPK-ERK
pathway, including MEK1/2 and ERK1/2 components, are
also involved in progression of disease (220, 221). There are
a number of somatic mutations, including an activating
mutation in the BRAF gene, which lead to subsequent
activation of the MAPK pathway in melanomas that are
thought to promote tumorigenic progression and subsequent
invasion of cells with malignant potential (222).
Interestingly, a study of paired primary melanomas with
metastases from the same patients revealed BRAF/NRAS
mutations of similar frequency in both sets of samples,
suggesting that BRAF confers metastatic potential, however
does not confer organ-specificity (223). Studies have shown
that the BRAFV600K mutation is associated with higher
cerebral (75% vs. 36.3%) and lung (91.6% vs. 47.7%)
metastases, relative to other BRAF mutations (224).
Furthermore, patients with BRAFV600K mutations were found
to have a shorter latency to metastasis and overall survival,
suggesting this mutation to be a potential therapeutic target
(224). Ipilimumab, a monoclonal antibody against cytotoxic
T-lymphocyte-associtated antigen 4 (CTLA4), and specific
inhibitors of mutated BRAFV600E protein, such as dabrafenib
and vemurafenib, are newer therapies approved for treating
metastatic melanoma. These therapeutics, however, have
poor efficacy in attenuating cerebral metastases (225).

Recent studies have identified signaling molecules
PSTAT3, SOC1 and PI3K/AKT to be activated in melanoma-
derived brain metastases and have a significant difference
from extra-cranial metastases (34, 226, 227). Molecular
analysis of matched pairs of melanoma-derived brain and
extra-cranial metastases revealed enhanced activation of
PI3K/AKT pathway in patients with brain metastases (216).
The activation of the PI3K/AKT pathway is governed by
multiple upstream signaling components and, as such, it is
possible that an interaction between the tumor cells and
cerebral microenvironment exists and contributes to
progression of disease (216). Interestingly, activation of the
PI3K/AKT pathway is often correlated with treatment

resistance in BRAF-mutant cell lines, implying that
combined inhibition of both the PI3K/AKT and MAPK
pathways in melanoma may be necessary to reduce tumor
burden and disease progression (216).

Colon

Colorectal carcinoma (CRC) is one of the most commonly
diagnosed cancers worldwide, and despite total resection of
the primary lesion; distant metastases have been reported to
occur in up to 15% of patients (228, 229). The incidence of
brain metastases in patients with CRC is between 0.3-6% (3,
230, 231). Interestingly, the brain is the sole organ of
metastatic disease in up to 10% of patients with metastatic
CRC (229, 232, 233). While cerebral metastatic disease is
more uncommon than perhaps the liver or lung, it remains a
primary focus as the course is far more fatal, with median
survival times reported between 3-6 months (229, 234-236). 

Recent advances in genomic analyses have revealed
abnormalities in several genes, namely KRAS, BRAF,
PIK3CA and NRAS, which may play a role in patterns of
metastatic CRC. A study of advanced cancers possessing the
mutant BRAF gene revealed that patients with CRC exhibited
a trend towards a shorter interval to metastasis, albeit this
relationship failed to reach statistical significance due to the
small number of patients (224). Consistent with this, another
study showed trend level data linking BRAF mutations to the
development of brain metastases in colorectal cancer (237).
As seen in studies of metastatic melanoma, one CRC patient
with cerebral metastases exhibited the V600K variant of the
BRAF mutation (224). Interestingly, the BRAF mutation,
found in up to 15% of metastatic CRC, is associated with
induction of EMT and the development of lymph node
metastases (238). These finding suggest an important
functional mechanism governed by mutations in BRAF for
the progression of CRC and overall risk of developing
metastatic disease (239). KRAS mutations are the most
common genetic aberrations associated with CRC, occurring
in up to 50% of colorectal malignancies (239). While there
has been no evidence to suggest the presence of a specific
mechanism linking KRAS mutations to the development of
cerebral metastases, a recent study has shown an increased
prevalence of KRAS mutations in CRC-derived brain and
lung metastases, relative to liver metastases (240).
Furthermore, an association between KRAS mutations and
increased recurrence of brain metastases is seen in up to
14.5%, as compared to only 2% in wild-type populations
(241). Although the KRAS mutation is considered a driver
event in CRC, the mechanism of its involvement in
metastasis remains to be elucidated. Interestingly, another
genetic aberration in the PIK3CA gene, which encodes a
catalytic isoform of the phosphatidylinositol 3-kinase (PI3K)
presents in up to 20% of CRC (239). Up to 1.4% of patients
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with CRC-derived brain metastases display a mutation in the
PIK3CA gene (242). It is important to note that up to 70% of
patients harboring this mutation, concurrently possess
mutations in KRAS, which may exert a strong contribution
to the formation of cerebral metastases (239). 

Kidney

Despite many advances in defining the molecular
mechanisms by which cancers disseminate and form cerebral
metastases, those underlying the progression metastasis of
renal cell carcinoma (RCC) remain unclear. Mutations in the
von Hippel Lindau (VHL) gene and aberrations in mTOR
pathway activity have been established as mediators of cell
growth and disease progression in RCC (243). Evidence
from expression analysis comparing matched samples from
primary and adrenal metastases of RCC revealed 166
differentially expressed genes, which included several genes
related to cell adhesion and extracellular matrix proteins
(244). Importantly, metastatic samples exhibited up-
regulation of TGFβ-related genes, as well as markers of
mesenchymal cell types, suggesting a role for EMT and
MET in the metastatic process in RCC (244). Recent studies
have also shown that a high degree of intratumoral
heterogeneity within primary renal cell carcinoma
contributes to evasion of available therapeutics, which allows
for rapid progression of disease (245, 246). Interestingly,
while RCC appears to be a heterogeneous tumor, a recent
study demonstrated that brain metastases derived from RCC
appear to be monoclonal in origin, implying a discrete cell
population had metastatic potential with a propensity to
disseminate to the brain (246). Additionally, a non-sense
mutation in the PIK3R1 gene, encoding the inhibitory
subunit of PI3K, was identified as a specific mutation unique
to RCC-derived brain metastases (246). Loss of BRCA-
Associated Protein 1 (BAP1), a deubiquitinating enzyme, has
also been implicated as a marker of poor prognosis and
aggressive behavior in RCC, representing a potential target
for new therapeutics (243, 247). While these studies have
shed light on the mechanisms that may be responsible for
cerebral metastasis in RCC, additional studies are needed to
characterize the genetic contribution to cerebral
dissemination, especially given the propensity for these
tumors to metastasize to the brain.

Conclusion

Brain metastases are a leading cause of morbidity and
mortality among cancer patients, and are reported to occur
in about 40% of cancer patients in the United States (1, 2).
In general, the median survival following a diagnosis of
cerebral metastases is between 2 and 25 months, depending
on the origin of the primary tumor and time of diagnosis (5,

6). Most brain metastases are typically associated with
peritumoral edema. A correlation of tumor and edema
volumes with overall survival in patients with cerebral
metastases showed that the extent of edema surrounding
cerebral metastases is not linked to effect overall survival in
patients with brain metastases (248). Given that metastasis
is the driving force behind morbidity and mortality for most
patients, it is essential to identify the characteristics of these
aberrant cancer cells that allow them to spread to distant sites
in the body and develop into metastatic tumors. 

Primary tumors are thought to be comprised of multiple
subpopulations of cells having the capacity to metastasize
through activation of multiple interrelated signaling
pathways and a complex interaction between the primary
cell, host cellular environment (platelets, endothelium,
leukocytes and astrocytes) and effector molecules.
Specifically, TGFβ–mediated EMT and its reversal process
MET play critical roles in the control of many aspects of
cancer progression by allowing epithelial cells the capacity
to extravasate into the peripheral circulation, migrate and
colonize in the cerebral microenvironment. The progression
of tumor cells through a CSC-like state provides a crucial
link in facilitating the transition between cell phenotypes and
offers insight into the mechanisms underlying chemotherapy
resistance and tumor re-growth in metastatic cancers.
Furthermore, the discovery that miRNAs play a significant
role in the regulation of multiple genes related to both the
processes of EMT and CSC maintenance provides another
layer of evidence for the complex interaction between
epigenetic regulation and the molecular pathways responsible
for metastasis, as well as potential therapeutic targets for
intervention.

With improved local control and management of primary
tumors, the incidence of late diagnosed brain metastases as
well as their associated morbidity and mortality remains an
unmet concern (80). While the mechanisms described above
provide insight into a host of potential therapeutic targets,
the development of an effective and innocuous agent remains
a considerable challenge. In recent years, the discovery of
genetic aberrations associated with brain metastases has
provided a fundamental contribution to the development of
novel therapeutic agents. While much progress has been
made, further characterization of these pathways and
processes is necessary to allow for more efficacious
therapeutic targets. The continued development of brain
metastasis models and identification of molecular signatures
of metastatic pathways will advance our understanding of
these complex communication networks and will ultimately
lead to the development of therapeutic strategies.
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