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Cellular/Molecular

Sodium Dynamics in Pyramidal Neuron Dendritic Spines:
Synaptically Evoked Entry Predominantly through AMPA
Receptors and Removal by Diffusion

X Kenichi Miyazaki1,2 and X William N. Ross1,2

1Department of Physiology, New York Medical College, Valhalla, New York 10595, and 2Marine Biological Laboratory, Woods Hole, Massachusetts 02543

Dendritic spines are key elements underlying synaptic integration and cellular plasticity, but many features of these important structures
are not known or are controversial. We examined these properties using newly developed simultaneous sodium and calcium imaging
with single-spine resolution in pyramidal neurons in rat hippocampal slices from either sex. Indicators for both ions were loaded through
the somatic patch pipette, which also recorded electrical responses. Fluorescence changes were detected with a high-speed, low-noise
CCD camera. Following subthreshold electrical stimulation, postsynaptic sodium entry is almost entirely through AMPA receptors with
little contribution from entry through NMDA receptors or voltage-gated sodium channels. Sodium removal from the spine head is
through rapid diffusion out to the dendrite through the spine neck with a half-removal time of �16 ms, which suggests the neck has low
resistance. Peak [Na �]i changes during single EPSPs are �5 mM. Stronger electrical stimulation evoked small plateau potentials that had
significant longer-lasting localized [Na �]i increases mediated through NMDA receptors.

Key words: AMPA receptor; dendrite; hippocampus; NMDA receptor; sodium imaging; spine

Introduction
Dendritic spines are the sites of synaptic contacts among many
neurons in the CNS and are key elements responsible for synaptic
integration and cellular plasticity. Because of their small size,
these spines have not, with one recent exception (Jayant et al.,
2017), been studied with direct electrical recordings. Instead,
their properties have been inferred either by recordings from
nearby dendrites, or by imaging voltage-sensitive dye (VSD)

changes or the [Ca 2�]i changes in the spines evoked by synaptic
transmission or direct stimulation. VSD recordings from spines
are technically challenging, but are beginning to produce results
(Palmer and Stuart, 2009; Popovic et al., 2015; Acker et al., 2016).
Spine-calcium measurements, primarily with two-photon mi-
croscopy (Yuste and Denk, 1995; Sabatini et al., 2002), have been
the main approach to examining spine properties. The [Ca 2�]i

changes themselves are important because they activate key en-
zymes and are implicated directly in the induction of several
forms of plasticity. They also, indirectly, give information about
the channels activated by synaptic transmission and mechanisms
regulating the potential change in the spines. However, there are
some limitations to these calcium measurements. Only some of
the channels [NMDA receptors and voltage-gated calcium chan-
nels (VGCCs)] are permeable to calcium, so activation of other
channels and receptors on pyramidal neuron spines, like AMPA
receptors and voltage-gated sodium channels (VGSCs), cannot
be directly examined with this approach. Also, calcium is not a
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Significance Statement

Dendritic spines, small structures that are difficult to investigate, are important elements in the fundamental processes of synaptic
integration and plasticity. The main tool for examining these structures has been calcium imaging. However, the kinds of infor-
mation that calcium imaging reveals is limited. We used newly developed, high-speed, simultaneous sodium and calcium imaging
to examine ion dynamics in spines in hippocampal pyramidal neurons. We found that following single subthreshold synaptic
activation most sodium entry was through AMPA receptors and not through NMDA receptors or through voltage-gated sodium
channels and that the spine neck is not a significant resistance barrier. Most spine mechanisms are linear. However, regenerative
NMDA conductances can be activated with stronger stimulation.
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significant charge carrier in synaptic activation, so measurements of
[Ca2�]i changes cannot easily reveal information about the am-
plitude and time course of electrical events in spines. In addition,
calcium is often highly buffered by indicator molecules, which
distorts the amplitude and time course of spine [Ca 2�]i changes.

Dynamic sodium imaging in spines can overcome some of these
limitations. It directly gives information about all major charge
carriers in the spine since calcium influxes are relatively small and
do not contribute significantly to potential changes unless they are
regenerative. Also, sodium ions are not buffered either endoge-
nously or by indicators, so the magnitude and time course of the
indicator changes reflects the dynamics of this ion. In addition,
the best sodium indicators [sodium-binding benzofuran isoph-
talate (SBFI) and ANG-2] are low-affinity indicators, which
makes the fluorescence changes linear with changes in [Na�]i.

Fluorescence measurements of sodium dynamics in axons and den-
drites have been recorded (Lasser-Ross and Ross, 1992; Callaway
and Ross, 1997; Rose et al., 1999; Knöpfel et al., 2000; Kole et al.,
2008; Bender and Trussell, 2009; Fleidervish et al., 2010). One
paper reported sodium measurements in groups of spines using

two-photon microscopy (Rose and Kon-
nerth, 2001). However, this study did not
have the time resolution or sensitivity to
follow the dynamics in individual spines.
We recently reported improvements in
these measurements that allow this level
of precision (Miyazaki and Ross, 2015). In
addition, we developed an excitation-
switching technique to simultaneously
measure [Na�]i and [Ca 2�]i changes in
individual spines with high time resolu-
tion (Miyazaki and Ross, 2015). With this
approach, we now have determined the
following: (1) that following simple syn-
aptic activation, the main source of
[Na�]i increases in spines is entry
through AMPA receptors, while the con-
tribution of sodium entry through
NMDA receptors is relatively small; (2)
that sodium entry through VGSCs is in-
significant and calcium entry through
VGCCs is much smaller than through
NMDA receptors; (3) that the main re-
moval mechanism for sodium ions is dif-
fusion through the spine neck, reducing
the peak [Na�]i to half amplitude in �16
ms; this rapid diffusion is consistent with
a low neck resistance; (4) that a single EPSP
generates a [Na�]i change of �5 mM in the
spine head, which may double the resting
concentration; and (5) that longer-lasting
and larger [Na�]i increases are observed
following regenerative NMDA-receptor
activation.

Materials and Methods
Slice preparation and electrophysiological proce-
dures. Most experiments used hippocampal
slices (300 �m thick) from 2– 4-week-old
Sprague Dawley rats of either sex prepared us-
ing protocols standard for our laboratory (Mi-
yazaki and Ross, 2015). All procedures were
approved by institutional animal care and use
committees at New York Medical College and

the Marine Biological Laboratory. Submerged slices were placed in a
chamber mounted on a stage rigidly bolted to an air table and were
viewed with water-immersion lenses in an Olympus BX50WI micro-
scope mounted on an X–Y translation stage. For maximum light detec-
tion and spatial resolution, we used an Olympus 60�, 1.1 numerical
aperture lens. Even with this high numerical aperture lens, it was possible
to patch neurons under visual control. Slices were superfused at 1 ml/min
with standard ACSF consisting of the following (in mM): 124 NaCl, 2.5
KCl, 2 CaCl2, 2 MgCl2, 1.25 NaH2PO4, 26 NaHCO3, 0.01 D-serine, and
10.1 glucose. In approximately half of the experiments, we used ACSF
with 1 mM MgCl2 to reduce the Mg 2� block of the NMDA receptors. This
concentration is used in many slice experiments and is close to the mea-
sured concentration in the CNS (Ding et al., 2016). Where significant,
this change in Mg 2� concentration is noted in the Results. Somatic
whole-cell recordings were made using patch pipettes pulled from 1.5-
mm-outer-diameter thick-walled glass tubing (1511-M, Friedrich &
Dimmock). Tight seals on CA1 pyramidal cell somata were made with
the “blow and seal” technique using video-enhanced differential inter-
ference contrast optics to visualize the cells (Stuart et al., 1993). This
camera (INFINITY3S-1URM, Lumenera) was also used to take high-
resolution fluorescence images of the cell at the end of the experiment.

Figure 1. Synaptic activation evokes localized [Na �]i and [Ca 2�]i changes in pyramidal neuron dendrites. A, Image of pyra-
midal neuron filled with ANG-2 from the patch pipette on the soma. The positions of the stimulating electrode and the region in the
expanded panel are shown. The traces to the right show the sodium signal (increasing ANG-2 fluorescence) and the calcium signal
(decreasing bis-fura-2 fluorescence) measured from the red ROI that includes several spines. In this and all other figures the
pseudocolor difference images (between the times at the ends of the arrows above the traces) show the peak change in fluores-
cence, �F, for all positions in the image field. The color bar scale ranges from the minimum to maximum value (also in all other
figures). The largest changes are in a restricted region on the dendrite. Simultaneously, the synaptic potential in response to two
stimuli 10 ms apart is shown below. B, Left, The 10 –90% rise times for a series of trials in difference cells are plotted against each
other. The blue dots are from experiments as in A; the red dots are from single-spine experiments in Figure 4. There is some scatter
but almost all calcium rise times are slower than sodium rise times. B, Right, There is a wide distribution of sodium signal decay
times (blue bars) but almost all are faster than 50 ms with a peak near 15 ms. The red bars are from the single-spine experiments
in Figure 4. There is less variation in the rise times and half-decay times from single-spine signals than from signals from larger
areas.
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For most experiments, the pipette solution
contained the following (mM): 130 potassium
gluconate, 4 Mg-ATP, 0.3 GTP-Tris salt, and
10 HEPES, 7 potassium phosphocreatine, pH
adjusted to 7.3 with KOH. This solution was
supplemented with different indicator combi-
nations, which were matched with different
pairs of LEDs: SBFI (sodium) and OGB-1 or
fluo-5F (calcium), matched with 385 and 460
nm LEDs; bis-fura-2 or fura-FF (calcium) and
ANG-2 (sodium), matched with 385 and 520
nm LEDs; SBFI and ANG-2 (both sodium),
matched with 385 and 520 nm LEDs; and bis-
fura-2 and fluo-5F (both calcium), matched
with 385 and 460 nm LEDs. The most common
combination was 300 �M bis-fura-2 and 200 –
400 �M ANG-2 (see Results). The high concen-
tration of bis-fura-2 in these experiments was
chosen to aid the visualization of thin oblique
dendrites, but certainly increased the buffering
of calcium ions. Even though this pipette solu-
tion contained almost no sodium, it is unlikely
that the internal [Na �]i at the synapse was sig-
nificantly changed from the normal resting
value since a change would require dialysis of
the synapse from the distant patch pipette on
the soma. Also, the membrane ion pumps are
likely to be the dominant regulators of resting
[Na �]i away from the cell body. Experiments
were done at room temperature (�24°C). All in-
dicators were obtained from Invitrogen except
ANG-2, which was obtained from Teflabs. Other
drugs were obtained from Sigma-Aldrich and
Tocris Bioscience.

Data taking and analysis. For simultaneous
sodium and calcium imaging, we used the ap-
paratus previously described in detail (Mi-
yazaki and Ross, 2015). Experiments were
under the control of Neuroplex software,
which came with the RedShirtImaging NeuroCCD-SMQ camera. This
program determined the frame rate and resolution of the camera (typi-
cally 80 � 80 pixels at 500 Hz; i.e., 250 Hz in each channel), synchronized
the recording of electrical and optical signals, controlled the initiation of
the LED pulse sequence, and triggered a Master-8 pulser, which in turn
controlled the timing and duration of intrasomatic pulses and acti-
vated a synaptic stimulation protocol in some experiments. The result-
ing optical and electrical data were then processed through a custom
Matlab program, SCANDATA, written in our laboratory. As described
by Miyazaki and Ross (2015), this program separated the two data
streams and aligned the sodium and calcium signals with voltage and
current recordings from the soma. The optical signals were corrected for
nonconstancy of the LED intensity during a sweep by normalizing to the
intensity at the corner of the image field, away from the imaged dendrite.
In some traces, an additional, smaller correction for indicator bleaching
was applied by normalizing to the intensity during a sweep without stim-
ulation. With careful attention to avoid unnecessary illumination of
the slice, we typically were able to make 5–10 trials of 200 ms duration
before noticing signs of photodynamic damage. This limitation some-
times prevented us from doing a complete washout in pharmacolog-
ical experiments. When comparing signals over many trials, we
corrected for movement of the slice by registering images to a fiduciary
mark, usually a dendritic spine. Occasionally, spatial and/or temporal filters
were applied as indicated in the Results.

Calibration of indicators. To simultaneously calibrate SBFI and ANG-2
inside pyramidal neurons, we slightly modified the procedures of Rose et
al. (1999). External solutions contained the following (in mM): 170 (Na� �
K�), 140 gluconate, 10 HEPES, pH 7.3, and 3 �M gramacidin D, 10 �M

monensin, and 100 �M ouabain. Gramacidin D and monensin are iono-
phores, to make the membrane permeable to sodium, and oubain blocks

the Na �–K � pump. Together they allow the internal [Na �]i to follow
the external concentration. The patch pipette contained both 2 mM SBFI
and 200 �M ANG-2. After filling the cells with these indicators, we used
the excitation switching technique to measure the resting fluorescence at
a location on the main dendrite near the soma. Background fluorescence
was subtracted from a nearby location. This procedure was repeated for a
series of external sodium concentrations. Further details are given in the
Results.

Statistics. Errors in the text are SD unless indicated otherwise. Statisti-
cal differences between groups were calculated using Student’s t test;
p values are indicated in the figure legends.

Results
We patched the cell bodies of CA1 pyramidal neurons in the
upper part of the hippocampal slice. After waiting �30 min for
the indicators to diffuse into the dendrites, we searched for a
dendritic branch close to the surface of the slice. During this step,
we were careful to use only brief illumination to minimize pho-
todynamic damage to the cell. Then we positioned the �-glass
electrode close to a secondary branch (within 20 �m). We gave
one or two brief (200 �s, 10 ms apart) stimulation pulses to the
slice. The current usually was adjusted to keep the subsequent
EPSPs below the threshold for the generation of postsynaptic
spikes. If necessary, a small (�10 mV) hyperpolarization was
added through the somatic electrode. Simultaneously, we looked
for fluorescence changes in the two channels. All signals were
blocked by 1 �M TTX (n � 3) showing that they were evoked by
generating action potentials in presynaptic fibers.

Figure 2. [Na �]i and [Ca 2�]i changes following synaptic activation of a single spine. A, Signals from two trials are shown from
the red pixel placed on a spine head at the center of a cluster marked on the cell image. A magnified image of this spine region
without overlying pixels marks is shown in Figure 4D. One trial (red traces) generated signals from both indicators (ANG-2 and
bis-fura-2). The second trial (blue traces) generated no signals. The somatically recorded electrical response was almost the same.
Traces from locations around the center pixel had no sodium signals. The pseudocolor images confirm the localization of the signals
to the spine. In this and all following figures the sign of the bis-fura-2 fluorescence change is inverted to correspond to physiological
expectations. ACSF contained 2 mM Mg 2�. B, Two trials from a similar experiment on a different cell. The sharp rise of the spine
sodium signal clearly followed the first stimulus in the first trial and followed the second stimulus (10 ms later) in the second trial.
The somatic electrical responses are shown below. These have EPSPs from both stimuli, showing that the stimulation activated
additional spines beyond the illustrated one. C, Histogram showing which stimulus generated a response in 26 selected trials from
single-spine experiments. Trials that were ambiguous are not included. Success on the second stimulus was more likely.
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Figure 1A shows the results of a typical trial showing simulta-
neous optical and electrical recording. Following synaptic stim-
ulation, the fluorescence of ANG-2 (sodium indicator)
increased and the fluorescence of bis-fura-2 (calcium indicator)
decreased, corresponding to increases in [Na�]i and [Ca 2�]i. In
both channels, the onset was within a one-frame interval (4 ms)
following the stimulus artifact. The rise time (10 –90%) of the
ANG-2 (sodium) signal was �12 ms; the rise time of the bis-
fura-2 (calcium) signal was slower, even though partial satura-
tion of this indicator accelerates the apparent time to peak. The
pseudocolor difference images (measured from a time before the
stimulus to a time just after the peak of the signals) shows that the
signals were localized to a region of �5 �m along the dendrite.
There were a variety of responses in different experiments. In
some cases, there were no signals; in others, signals were detected
in only one channel; and in still others, signals were found in both
channels. In the last category, there were signals that extended
over different spatial extents. If we consider only events where the
EPSP did not evoke spikes and events where plateau potentials
(see Fig. 10) were not generated, then �95% of events from so-
dium measurements and �70% from calcium measurements
had a spatial extent of �6 �m at the time of peak response. These
signals were considerably more localized than the average size of

30 �m found previously in comparable
experiments (Rose and Konnerth, 2001),
probably because our measurements were
more sensitive, allowing us to use weaker
stimulation to evoke detectable [Na�]i

changes. Even so, most responses were
larger than expected for a single spine so
we call them “multiple-spine” responses
as in Figure 1B.

Figure 1B compares the rise times of
the sodium and calcium signals for a rep-
resentative selection of events �5 �m. For
this plot, we included experiments where
we used either 1 or 2 mM Mg 2� since there
was no statistical difference between the
two sets of data (data not shown). The rise
times of the sodium signals were faster
than the calcium signals even though
there was some variation among experi-
ments (average values: sodium, 12.0 � 5.7
ms, n � 37; calcium, 17.6 � 8.1 ms, n �
31). For comparison, we measured signals
from single intrasomatically evoked ac-
tion potentials (measured either in the
axon hillock or proximal dendrites) and
found rise times for sodium 2.85 � 1.0 ms
(n � 7; measured at 250 and 500 Hz) and
for calcium 4.6 � 0.5 ms (n � 3; measured
at 250 Hz). These low values show that the
slower rise times of the synaptic signals
were real and not affected by our appara-
tus. We also plotted the half-decay times
of the sodium signals, which were gener-
ally �50 ms with a peak near 15 ms, again
with wide variation. We did not plot the
calcium decay times since they were in-
fluenced by indicator buffering and sat-
uration (Neher and Augustine, 1992;
Helmchen et al., 1996).

Single-spine responses
There are a variety of potential reasons for the heterogeneity in
time courses. In some cases, we could see spines on the dendrites;
in others, the spines were not visible. Even in cases where we saw
spines, it is likely that many other spines were not clearly visible.
Therefore, in most experiments it was difficult to determine
whether the signals came from the spines, nearby dendrite, or
both. This problem was compounded by light scattering in the
tissue and out-of-focus elements. Furthermore, we could not eas-
ily determine how many presynaptic fibers were activated even
though the responses on the dendrite were often patchy, suggest-
ing activation of separate spines by different presynaptic fibers.

Although we could not predict in advance whether an individ-
ual trial would activate a single spine or whether that spine would
be visible, we were, over time, able to acquire a collection of seven
neurons with nine apparent spines that met those two criteria.
Figure 2A shows one of these cells. Single synaptic stimulation
evoked very localized sodium and calcium signals that originated
from an identified spine. Almost no sodium increase was de-
tected from nearby pixels away from the spine. No signals in
either channel were detected in a subsequent trial even though
the somatic EPSP was almost unchanged. This all-or-none re-
sponse is consistent with activation of a single synapse. In other

Figure 3. Single-spine experiment where the spread of sodium to the dendrite could be observed. A, Two-pulse synaptic
stimulation generated sodium (ANG-2) and calcium (bis-fura-2) changes. Four locations on the dendritic region are marked.
Sodium changes were detected from the spine head, spine neck, and two close dendritic regions. The largest and fastest signal was
from the spine head. The dendritic signals were clearly smaller and slower. In contrast, a [Ca 2�]i change was only detected from
the spine head. ACSF contained 2 mM Mg 2�. B, A selection of simultaneous movie frames of sodium and calcium difference images
from this same experiment referenced to the time of the second stimulus (0 ms). The sodium sequence reached a peak at 10 ms and
was largely confined to the head and neck at that time. At later times spread into the dendrites was detected. The calcium sequence
shows a peak response at 26 ms, which remained confined to the spine head.
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experiments where we gave two stimuli,
we sometimes detected sodium signals
following the first stimulus and, in other
trials, following the second stimulus (Fig.
2B). This variation reflects the well known
low probability of transmitter release at
single pyramidal neuron synapses (Allen
and Stevens, 1994; Sabatini et al., 2002).
Responses starting on the second stimulus
were detected with slightly greater fre-
quency (58%; Fig. 2C). This greater suc-
cess was possibly due to presynaptic
facilitation (Stevens and Wang, 1995;
Oertner et al., 2002) and not the genera-
tion of an NMDA spike (Schiller et al.,
2000; Chalifoux and Carter, 2011) since
3-[(6)-2carboxypiperazin-4-yl]-propyl-
1-phosphonic acid (CPP) did not block
the sodium signal (see Fig. 7). To improve
the success rate in the experiments, we ad-
opted a protocol using two stimuli sepa-
rated by 10 or 12 ms.

In several cells, we detected single-
spine signals that also showed dendritic
responses. One example is in Figure 3. The
sodium signal (ANG-2 fluorescence) rose
sharply over the spine and decayed rapidly
(half-decay time, �13 ms). In locations
over the base of the spine and nearby
dendrites, the sodium signals rose more
slowly and decayed more slowly than the
spine signal. The spine calcium signal (bis-
fura-2 fluorescence) rose and fell more
slowly than the spine sodium signal. The
calcium signal was almost undetectable in
the two dendrite locations. A selection of
movie frames for this sequence is shown
in Figure 3B. The sodium and calcium sig-
nals serve as internal controls for each
other. Since the calcium signal was con-
fined to the spine, we know that there was
no significant light scattering into the
dendrite in this cell. Therefore, the so-
dium signals measured in the dendrite are
real and not due to scattering from the
spine, a point reinforced by the different
time courses of the responses in the two
compartments. Similarly, our detection of
sodium signals in the dendrites shows that
we could detect signals in this compart-
ment in this cell. Therefore, the absence of
a calcium signal in the dendrite shows that
there really was little or no dendritic cal-
cium in this trial (Yuste and Denk, 1995;
Bloodgood and Sabatini, 2007).

The spatial extent of these nine identified spine responses was
comparable to the dimensions of a spine (Fig. 4A). The width of
the sodium signals was 1.3 � 0.2 �m (n � 9) and the width of the
calcium signals was 1.3 � 0.4 �m (n � 8; in one measurement,
the calcium signal was undetectable). The true size was probably
smaller than these dimensions because of light scattering in the
tissue and because the pixel size was 0.4 �m. Remarkably, the
time courses of the signals from these spines were almost identical

(Fig. 4B). The normalized average of these signals (Fig. 4C) shows
that the sodium signal in the spine rose rapidly in 8.6 � 2.7 ms.
The true rise time may have been even faster since the sampling
interval of 4 ms filtered the response. This fast rise time is consis-
tent with the short duration of the AMPA component of the
EPSC (Sah et al., 1990). The signals decayed to half-maximum
amplitude in 16.6 � 4.5 ms (Fig. 4C). We detected similar fast
sodium time courses in five other cells, but could not clearly

Figure 4. Synaptically activated sodium and calcium signals from spine locations have stereotyped time courses and large
amplitude. A, Spatial extent of single-spine signals. The image shows a dendrite with an identified spine. The pseudocolor images
show the spatial distributions of the ANG-2 and bis-fura-2 fluorescence changes following synaptic stimulation. The right panel
shows the fluorescence changes along the black lines on the images. The arrows define the locations where the changes were
half-maximum. The steps are pixels (0.4 �m). B, Normalized overlay of nine sodium signals and eight calcium signals from
identified spines following synaptic stimulation. In five trials, two stimuli, 10 ms apart, were given; in the other four trials, only a
single stimulus was given. To compensate for the variation shown in Figure 2B, all sodium traces were aligned with the start of the
rising phase of the signals (dotted line); the individual calcium traces followed the alignment of their respective sodium traces.
Clearly the heterogeneity of these time courses is less than the heterogeneity of the signals not derived from identified spines (Fig.
1B). C, Averages of these signals. Clearly the sodium signals have very fast rise and decay times; the calcium signals are slower.
D, Left, Profiles of fluorescence levels through these nine spines. Image of cell in Figure 2A. Values are normalized to 100% at the
center of the spine; the dendrites are to the right and usually have higher values; background is to the left and varies between 41
and 85% of the spine value. D, Right, Histogram of �F/F values as measured (raw) and after estimated background levels were
subtracted from the measured F values (corrected).
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assign them to identified spines even though the responses also were
localized, probably because the spines were under or over the den-
drite. The calcium signals all rose more slowly, with a time to peak of
19.6 � 4.9 ms.

These records lead to three conclusions: (1) synaptically acti-
vated calcium signals are largely confined to spines, a result con-
sistent with many previous experiments [Yuste and Denk, 1995;
Kovalchuk et al., 2000; activation of extrasynaptic receptors
(Chalifoux and Carter, 2011) are not significant in our condi-
tions]; (2) the fast rise and fast fall of spine sodium signal repre-
sents the true kinetics of the sodium signal in that location (if
there were any buffering of sodium by ANG-2, then the sodium
kinetics in the spine would be even faster); (3) the smaller amplitude
and slower kinetics of the dendrite sodium signals suggests that they
could come from diffusion of sodium out of the spine. Similarly, the
restriction of calcium signals to the spines indicates that the slow
dendritic sodium signals are not due to direct activation of extrasyn-
aptic NMDA receptors.

The peak ANG-2 fluorescence change for EPSP-evoked sig-
nals in these nine spines ranged from 6.4 to 15.6% (%�F/F: av-
erage, 8.7 � 3.0). We corrected these values to subtract
background fluorescence (Fig. 4D), which was variable and often
difficult to determine. After the correction, the %�F/F values

ranged from 12 to 45 (average, 24.1 �
10.3). We estimated the sodium concen-
tration changes corresponding to these
fluorescence changes using the calibration
procedure described in Materials and
Methods. We found (Fig. 5) that the fluo-
rescence values as a function of [Na�]i fit
the single wavelength formula described
for fura-2 (Grynkiewicz et al., 1985).
From these curves, we determined that
the equilibrium dissociation constant
(Kd) for SBFI was 24.5 � 6.8 and the Kd

for ANG-2 was 84.2 � 8.3. The Kd for
SBFI is close to the value of 26 mM deter-
mined previously (Rose et al., 1999),
which gives us confidence that our proce-
dure with single-photon excitation and
background subtraction (which was not
necessary with two-photon excitation) is
accurate. We also determined the maxi-
mum change in fluorescence, (Fmax 	
Fmin)/Fmin. This value depends on the
apparatus and the spectra of the indica-
tors. Using our excitation filters, we found
this value was 3.7 for ANG-2 and 0.56 for
SBFI. With these calibrations, a 10%
change in fluorescence corresponds to 4.6
mM (SBFI) and 2.3 mM (ANG-2). These
values are valid even when the change is
not from a resting concentration of 0 mM

(e.g., when starting from a resting concen-
tration of 10 mM), since they are calcu-
lated at the lower range of values where
the curves are linear. Using this calibra-
tion, we estimate that a single EPSP gen-
erates a peak [Na�]i increase of 5.7 � 2.4
mM in a spine.

Source of sodium and calcium changes
Synaptically activated increases in [Na�]i

could come from three sources: entry through AMPA receptors
(as suggested above), entry through NMDA receptors, or entry
through VGSCs. The very fast rise time of the spine sodium signal
suggests that they could come from either spine AMPA receptors
or spine VGSCs, both of which would generate rapid signals since
the activated conductances are very brief (Sah et al., 1990). To test
this idea, we applied 5 �M CNQX, a specific AMPA-receptor
blocker. Figure 6A shows an example of this experiment and
Figure 6B shows summary data. In this figure and in Figure 7, the
small ROIs include several spines; we assume that all the spines
are responding similarly to the blockers. CNQX completely
blocked the [Na�]i increase and blocked most of the [Ca 2�]i

increase. The latter result is consistent with the result of some
previous experiments (Emptage et al., 1999; Yuste et al., 1999),
although others found that there was less blockage of the [Ca 2�]i

increase (Kovalchuk et al., 2000). A standard interpretation
(Yuste et al., 1999) of this experiment is that CNQX blocks the
AMPA receptors, which blocks the EPSP. Since some depolariza-
tion is needed to relieve the Mg 2� block of the NMDA receptors,
it is reasonable to conclude that CNQX would block most of the
subthreshold [Ca 2�]i and sodium increase. To test whether we
could detect sodium entry through NMDA receptors, we re-
peated the experiment with CNQX in ACSF containing zero

Figure 5. Calibration of SBFI and ANG-2. A, Image of the proximal part of a pyramidal neuron filled with these indicators
(excitation at 385 nm to excite SBFI; excitation at 520 nm generates an analogous image of ANG-2 fluorescence). The red ROI shows
the region at the base of the dendrite where measurements were made. The trace to the right shows the profile of fluorescence
levels along the yellow line in the image. The background level is �25% of the peak on the dendrite. B, Measurements of the
fluorescence intensity at the ROI at both excitation wavelengths as solutions were changed, varying the external [Na �]i. In each
case, the background fluorescence, estimated from a location away from the cell, was subtracted (Fig. 5A). Results were averaged
from nine cells, normalizing the intensity for SBFI at 0 mM and the intensity for ANG-2 at 100 mM. These values were fit to the
single-wavelength formula (Grynkiewicz et al., 1985) shown on the figure, yielding the indicated Kd values.
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Mg 2� (see Fig. 10C). In this case, synaptic
stimulation generated large sodium sig-
nals, which lasted much longer than the
signals in ACSF with 1 or 2 mM Mg 2�.
These signals probably reflect the entry
of sodium through NMDA receptors,
which are open at resting potential in
this condition.

In parallel experiments, we found that
NMDA-receptor blockage by 10 �M CPP
eliminated almost 90% of the postsynap-
tic [Ca 2�]i increase, measured with bis-
fura-2, but on average only blocked
�20% of the [Na�]i increase (Fig. 7A,B);
there was little change to the EPSP. To
compare with other work (Bloodgood et
al., 2009), we repeated these experiments
using the less saturating indicator fluo-5F,
together with bis-fura-2 in the same pi-
pette (Miyazaki and Ross, 2015), and ob-
tained the same result (Fig. 7C). These
pharmacological experiments are consis-
tent with almost all of the [Na�]i increase
coming via sodium entry through AMPA
receptors and almost all of the [Ca 2�]i in-
crease coming through NMDA receptors.
Therefore, the EPSP primarily reflects so-
dium entry through AMPA receptors.

Another possibility is that some of
the subthreshold sodium increase comes
from sodium entry through VGSCs, me-
diated either by sodium spikes confined to
spines (Segev and Rall, 1988; Araya et al.,
2007) or persistent sodium currents acti-
vated by the synaptic potential (Mittmann
et al., 1997). There are several arguments
that indicate that this pathway is insignif-
icant. First, in previous experiments it was
determined that trains of backpropagat-
ing action potentials (bAPs) make small
[Na�]i increases in the dendrites com-
pared with the axon or soma (Jaffe et al.,
1992; Rose et al., 1999; Fleidervish et al.,
2010). We repeated those earlier experiments, which were done
with the sodium indicator SBFI, with new experiments using
ANG-2 (Fig. 8A). In a typical experiment, we found that in the
oblique dendrites near the main shaft, the spike-evoked signal for
10 bAPs was 1.53 � 0.5% �F/F (n � 8 cells). Typical background
levels under oblique dendrites (Fig. 8A) were �70% of the fluo-
rescence in the dendrite. Correcting for this background in-
creased the amplitudes to 5.6 � 1.6% �F/F. Using the calibration
determined in Figure 5, we estimate that a single bAP generates a
[Na�]i increase of 0.13 mM. In three experiments, we measured
the bAP-evoked sodium change simultaneously using both
ANG-2 and SBFI in the pipette (Miyazaki and Ross, 2015) and
found that a single bAP evoked a sodium change of 0.23 mM using
SBFI (data not shown). Since there was significant variation
among cells and variation in the correction for background fluo-
rescence, we consider the difference between this value and the
value obtained with ANG-2 to be insignificant and both estimates
were close to the value (0.2 mM) estimated previously (Rose et al.,
1999) using SBFI in two-photon measurements that need no
correction for background fluorescence. Our fluorescence mea-

surements were too insensitive to detect bAP signals of this mag-
nitude in the spines above noise level, which corresponds to
previous two-photon imaging results (Rose and Konnerth,
2001). In addition, the image of the fluorescence change (Fig. 8A)
shows no localized hot spots in the dendrites that might corre-
spond to locations with high densities of sodium channels acti-
vated by bAPs (e.g., if there were clusters on spine heads). A
spike-evoked hot spot was found in the axon initial segment (AIS;
Kole et al., 2008; Fleidervish et al., 2010) corresponding to the
known site of bAP initiation (Stuart and Sakmann, 1994). From
these results, it is clear that a single bAP fluorescence change in a
spine region (0.5%) is �3% of the 24% �F/F change evoked by
synaptic activation (see above).

In a second experiment, we used a quaternary lidocaine deriv-
ative QX-314 to block sodium channels (Connors and Prince,
1982). We included 1 mM QX-314 in the patch pipette along with
the indicators and we waited �30 min before making optical
measurements to allow the anesthetic to reach the dendritic re-
gion under examination. At this time, bAPs could no longer be
evoked with intrasomatic stimulation. However, we were still

Figure 6. Both synaptically activated sodium and calcium signals are mostly blocked by the AMPA-receptor antagonist CNQX.
A, Experiment testing the effect of CNQX. The image shows a section of dendrite and an ROI that might include several spines.
Sodium and calcium signals were evoked by a pair of synaptic stimuli separated by 10 ms. Addition of 5 �M CNQX blocked almost
all of the [Na �]i change ( p � 0.0001), most of the [Ca 2�]i change ( p � 0.001), and the EPSP. After washout, most of the signals
returned (Na: p � 0.009; Ca: p � 0.4). The pseudocolor image shows the spatial distribution of the [Na �]i change in control
conditions. B, Histogram of peak signals in 10 experiments testing the effect of 5 �M CNQX. Almost all the sodium increase was
blocked, but some calcium response remained. In three of these experiments, there was washout of CNQX (one shown in A); in
seven experiments, there was no clear washout. ACSF contained 1 mM Mg 2�.
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able to detect synaptically activated [Na�]i increases (mean �
SEM, 8.5 � 1.5% �F/F) of comparable magnitude to the signals
in cells without QX-314 (mean � SEM, 10.1 � 1.6% �F/F; Fig.
8B). This result also suggests that a [Na�]i increase due to syn-
aptic activation of a persistent sodium current in the spine (Mit-
tmann et al., 1997) is small since these channels are also blocked
by QX-314 (Connors and Prince, 1982). A weakness of this ex-
periment is that we are comparing two sets of cells without being
able to determine whether the conditions were the same in each
case. In similar experiments, including QX-314 in the pipette did
not alter synaptically activated calcium transients (Grunditz et
al., 2008), arguing that VGSCs do not significantly affect calcium en-
try through either VGCCs or NMDA receptors. Another, less
direct, argument against a significant contribution from the per-
sistent current, is that previously Fleidervish et al. (2010) found
that in the axon hillock region activation of the persistent current,
for a time comparable to the duration of a synaptic potential, gener-
ated a smaller [Na�]i increase than an action potential. Since the
spine spike signal is small, this suggests that the spine persistent cur-
rent also is small. Nevertheless, we cannot rule out the possibility that
a small contribution to the EPSP from this kind of conductance as
found in some glutamate uncaging experiments (Araya et al., 2007).

A third possibility is that bAPs in dendritic spines could indi-
rectly increase the [Na�]i in the spine by rapidly relieving the

Mg 2� block, allowing sodium to enter
through the NMDA receptor (Rose and
Konnerth, 2001). To test this possibility,
we compared the sodium signals evoked
in consecutive trials where bAPs were
generated or not following synaptic stim-
ulation (Fig. 8C). There was no significant
difference in the sodium changes in the
two conditions, indicating that the spike
contribution was relatively small com-
pared with the synaptic signal. At the same
time, we could detect an increased calcium
transient in the spine from the bAP, show-
ing that the spike reached the spine. This is a
direct demonstration of how spine [Ca2�]i

reports coincidence of presynaptic and
postsynaptic activity while spine [Na�]i

does not. The spine is able to generate two
largely independent signals, one for the reli-
able transmission of electrical information
and another one to signal events of special
relevance, potentially inducing synaptic
plasticity.

In some experiments (see Fig. 10B), we
found that the generation of a bAP by the
EPSP was associated with the generation
of a slow plateau potential. In these cases,
we detected larger and slower [Na�]i in-
creases. These increases were not due to
the spike directly opening NMDA recep-
tors by relieving the Mg 2� block because
the [Na�]i increases were too slow
(Kampa et al., 2004). One possibility is
that the bAP helped to initiate the NMDA
spike.

Sodium removal by diffusion
The rapid removal of sodium from the
spine following synaptic stimulation (Fig.

4) contrasts with the slow removal of sodium from the dendrites
following a train of bAPs (Fig. 8A), as shown in previous experi-
ments (Rose et al., 1999; Fleidervish et al., 2010). The slow re-
moval is due to a membrane pump (Rose et al., 1999). However,
the much faster removal from the spine more closely resembles
the removal from the AIS and node of Ranvier, where diffusion
from a localized source was shown to be responsible (Fleidervish
et al., 2010). Diffusion is not a significant mechanism to remove
sodium from the dendrites following bAPs since there is almost
no concentration gradient in that region after spikes are evoked.
To test the idea that diffusion is critical in removing sodium from
spines, we constructed a simple computational model (Fig. 9A)
using the NEURON simulation platform (Hines and Carnevale,
2001). The model consists of a spine head, spine neck, and a
dendritic segment. Dimensions were determined from published
estimates (Svoboda et al., 1996; Arellano et al., 2007; Takasaki
and Sabatini, 2014). We assume that sodium enters the spine
head during an EPSC dominated by AMPA conductance with a
weak NMDA-receptor contribution consistent with the small ef-
fect of CPP on the [Na�]i increase (Fig. 7B) and is removed by
diffusion out the spine calculated using a diffusion constant of 0.6
�m 2/ms (Kushmerick and Podolsky, 1969). To simplify the
model, we assume no other membrane conductances, no mem-
brane pumps, and no change in driving force following sodium

Figure 7. The NMDA-receptor antagonist CPP blocks almost all the synaptically activated [Ca 2�]i increase but has little effect
on the [Na �]i increase. A, Experiment testing the effect of CPP. The image shows a section of dendrite and an ROI that includes
several spines. Sodium and calcium signals were evoked by a pair of synaptic stimuli separated by 10 ms. Addition of 10 �M CPP
blocked little of the [Na �]i change and almost all of the [Ca 2�]i change; the EPSP was unaffected. The pseudocolor image shows
the spatial distribution of the [Na �]i change in control conditions. B, Histogram of the peak changes in five experiments. Both
signals were reduced (Na: p � 0.007; Ca: p � 0.0002), but calcium much more. Washout was largely unsuccessful in these
experiments. C, Histogram of the effect of 10 �M CPP in experiments where the [Ca 2�]i changes were measured simultaneously
with bis-fura-2 and fluo-5F; [Na �]i changes were not measured. The amplitudes of the [Ca 2�]i changes as measured with each
indicator are shown to the left; the amplitude as a percentage of control is shown to the right. Both indicators measured the same
fractional change (fluo-5F: p � 0.0006; bis-fura-2: p � 0.001). ACSF contained 1 mM Mg 2�.
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entry. Details are in the legend of Figure 9.
The model shows that following synaptic
stimulation, sodium would diffuse out the
spine neck with a half-removal time from
the peak of 15 ms, quite consistent with the
measured value (16.6�4.5 ms). The slower
NMDA component would add �3 ms to
the half-recovery time. At the spine neck
and in the nearby dendrite, the [Na�]i

would rise with a delay and would fall
more slowly than at the spine head. Inter-
estingly, the model reproduced the same
sodium decay kinetics seen in the spine
head (Figs. 3, 4). The decay is fast as long
as the dendritic [Na�]i is low, acting as an
efficient sink. Dissipation of the local
sodium accumulation along the thin den-
drite is a slower process. We also con-
structed models with variations in the
morphological parameters within previ-
ously determined ranges (Fig. 9B). In
these models, the half-removal time in the
spine head varied but not far from the
value in Figure 9A. There were two excep-
tions.Whentheneckdiameterwas0.1�m(at
the low end of observed values), the half-
recovery time was significantly slower
than the observed value, suggesting that
we were not detecting signals from smaller
spines with such narrow necks. This is rea-
sonable since we expect weaker, possibly
undetectable, signals from smaller spines.
Also, when the sodium diffusion constant
in the neck was smaller than the generally
accepted value (Kushmerick and Podol-
sky, 1969), the half-recovery time was sig-
nificantly slower than the observed value.
This suggests that the diffusion (or resis-
tance) properties of the spine neck are not
different from those found in other cellu-
lar compartments.

Previously, spine-neck resistance was estimated in fluores-
cence recovery after photobleaching (FRAP) experiments
where exogenously introduced fluorescein dextrans diffused rap-
idly through spine necks with a time constant consistent with low
neck resistance (Svoboda et al., 1996; Takasaki and Sabatini,
2014). Potential criticisms of these experiments are (1) that they
measured the diffusion of an exogenous, large, uncharged mole-
cule and not a physiological ion (Bloodgood et al., 2009), and (2)
that the photobleaching pulse was a nonphysiological stimulus
and possibly damaging to the spine (Koester et al., 1999). Our
experiments avoided these criticisms. Although we measure the
time course of indicator fluorescence, this accurately reflects the
time course of sodium diffusion since indicator concentration is
much lower than [Na�]i and the indicator Kd is much higher
than the [Na�]i (Fig. 5). We applied the calculation framework of
the FRAP experiments (Svoboda et al., 1996) to our data using the
formula RN � ��iDNa/Vn, where: RN is spine-neck resistance, � is
time constant of decay, �i is specific axoplasmic resistance, DNa is
diffusion constant for sodium in cytoplasm, and Vn is spine head
volume. We estimate that � � 23 ms (from the single-spine events
in our data, assuming an exponential decay; Fig. 4; the recovery
time constant for an impulse jump in [Na�]i, which would cor-

respond to the FRAP experiments, is faster than this value since
there is some sodium entry through both AMPA receptors and
NMDA receptors during the falling phase of the signal); �i � 180

 � cm (Golding et al., 2005); DNa � 6.0 � 10	6 cm 2/s (Kushm-
erick and Podolsky, 1969); Vn � 0.1 �m 3 [from the center of
published values: (Svoboda et al., 1996) range, 0.1– 0.6 �m 3;
(Takasaki and Sabatini, 2014) range, 0.01– 0.1 �m 3; (Arellano et
al., 2007) range, 0.01– 0.3 �m 3]. This calculation yields RN � 250
M
. The biggest uncertainty is spine-neck volume. If we are
biased toward larger spines (Svoboda et al., 1996), then estimates
for RN would be smaller, e.g., if Vn is 0.25 �m 3 (as we assumed in
our model), then RN will be 92 M
, which is in the range of values
(4 –150 M
) previously estimated (Svoboda et al., 1996).

Discussion
An important result of these experiments is the demonstration
that sodium imaging can be used to detect and analyze properties
of synaptic transmission at the single-spine level. In particular, we
can measure AMPA-receptor mechanisms, which are not easily
revealed with calcium imaging. These signals can be combined
with calcium imaging in a way that directly compares the two
changes in single trials, avoiding the complications due to well
known variations in synaptic responses to constant stimuli (Allen

Figure 8. [Na �]i changes evoked by activating VGSCs are small. A, Image of the dendritic region shows a large ROI over an
oblique dendrite. The trace below the image is the profile of the fluorescence level along the yellow line through the oblique
dendrite showing the peak at the dendrite and a background level of �60%. The red signal shows the ANG-2 fluorescence change
in the ROI evoked by a train of 10 bAPs evoked with intrasomatic stimulation. The peak increase was �2% �F/F, one of the largest
signals we measured. The pseudocolor image above shows the spatial distribution of the fluorescence change. The largest signal
was over the main dendrite, both because the bAPs had the largest amplitude there and because there was relatively less
background fluorescence. B, Histogram of peak sodium signals in control conditions and in other cells dialyzed with 1 mM QX-314
from the patch electrode. An effort was made to choose experiments that had comparable electrical responses. The peak changes
are about the same ( p � 0.93). ACSF contained 2 mM Mg 2�. C, Effect of synaptically activated spikes on sodium and calcium
signals in the dendrites. The experiment shows two trials, one just above the threshold for spike generation (red traces) and one
just below the threshold (blue traces). The sodium signals at the synaptic site (yellow ROI) were about the same ( p � 0.35). The
calcium signal associated with the spike was larger ( p � 0.004). The histogram shows the same result from experiments on seven
cells. ACSF contained 1 mM Mg 2�.
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and Stevens, 1994). The technical aspects of this method, using
rapid switching of excitation wavelengths to selectively excite two
different indicator dyes, were described previously (Miyazaki and
Ross, 2015).

Source and magnitude of synaptically activated
sodium increases
Pharmacological experiments (Figs. 6, 7) showed that most of the
subthreshold localized sodium response remained and most of
the calcium response was blocked in the presence of CPP. There
was little contribution of sodium entry through VGSCs to the
synaptic sodium response (Fig. 8). These results suggest that most
of the [Na�]i increase comes from entry through AMPA recep-
tors and most of the [Ca 2�]i increase comes from entry through
NMDA receptors. Consistent with this conclusion, we found that
the rise time of the [Na�]i increase was faster than the rise time of
the [Ca 2�]i increase, which matches the kinetics of these recep-

tors (Sah et al., 1990). The small amount of sodium entry through
NMDA receptors necessarily follows the time course of calcium
entry through these receptors and probably contributes to the
shoulder on the falling phase of the sodium signal (Figs. 4, 9A).
Previous claims (Rose and Konnerth, 2001) that most synapti-
cally activated [Na�]i increase is through NMDA receptors do
not correspond with these results. Calcium entry through NMDA
receptors is important biochemically, but does not contribute
significant charge to the EPSP (Schneggenburger et al., 1993).

Whether VGSCs contribute importantly in generating the
synaptic potential is controversial. Immunological evidence for
the presence of sodium channels in pyramidal neuron spines is
absent (Lorincz and Nusser, 2010). We found that a single bAP
generates �3% of the sodium change in a spine that a single
synaptic response evokes. Since sodium entry is the major gener-
ator of the voltage response, this result suggests that voltage-gated
sodium entry makes a minor contribution to the EPSP. These

Figure 9. Computational model of sodium entry into and diffusion from a dendritic spine. A, Components of the model: spine head, spine neck, two dendritic segments. The starting
dimensions are shown next to each component. Using the NEURON platform, the sodium conductance generating the EPSC was modeled as a point process on the spine head using
gAMPA(t) � gA * [exp(	t/t1) 	 exp(	t/t2)], t1 � 2 ms, t2 � 0.5 ms (Grunditz et al., 2008); gNMDA(t) � gN * [1 	 (1/[1�k/[Mg]])] * exp(	t/t3) * [1 	 exp(	t/t4)], t3 � 71 ms, t4 � 13.2 ms,
k � 1.07 * exp(0.057 * V ), where V is voltage in mV and [Mg] � 2 mM (McCormick et al., 1993); temperature, 22°C. gA and gN are constants that were adjusted to give �5 mM peak [Na �]i at the
spine head. Resting [Na �]i � 4 mM and ENa � �40 mV. The only mechanisms affecting [Na �]i were entry through AMPA and NMDA receptors and diffusion. The traces in the modeled
concentrations were taken from the locations marked with a black dot; on the dendrite, this point was 3 �m from the neck. The time to half decay in the spine head was 15 ms. Removing the NMDA
conductance (dashed black line) had almost no effect on the fast component of the response but decreased the slow component; the half-removal time was reduced by 2.4 ms. B, Variations in the
half-decay time in models where only one of four parameters was varied; the other parameters were as in A. The arrows point to the starting values in A. Most of the models predicted half-decay times
within the range of measured values with two exceptions: small spine-neck diameter and small diffusion constant.
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results are consistent with some previous experiments (Palmer
and Stuart, 2009) but contrast with experiments (Araya et al.,
2007) where TTX reduced the uncaging-evoked synaptic poten-
tials recorded in the soma of pyramidal neurons, although it is
possible that our experiments were not sensitive enough to detect
this contribution. Using related uncaging techniques, VGSCs
have been found to contribute to the synaptic response in some
olfactory neuron spines (Bywalez et al., 2015), which are reported
to be larger than pyramidal neuron spines.

If, as we find, almost all of the synaptic sodium entry in most
experiments is through AMPA receptors, and this sodium entry is
the source of the EPSP, then it is unlikely that the EPSP is ampli-
fied by nonlinear currents through NMDA receptors and VGSCs,
as has been suggested previously (Harnett et al., 2012). However,
in some trials, we detected larger, long-lasting sodium increases
and plateau potentials, which have a regenerative component
(Fig. 10A,B). Addition of CPP eliminated the plateau and the
slower sodium signal, suggesting that both were generated by a
small NMDA spike (Schiller and Schiller, 2001). NMDA spikes
and plateau potentials have been examined in many recent exper-
iments (Antic et al., 2010). The conditions for evoking these
events are still unclear, but they do not appear to contribute to
most subthreshold responses.

In seven cells, we were able to detect clean sodium and calcium
signals that clearly were separately derived from nine single
spines and nearby dendrites. The signals from these cells gave
consistent results. The sodium signals from the spines rose rap-
idly in �10 ms and fell to half amplitude in �16 ms. The synap-

tically activated sodium signal in the nine spines had a peak
fluorescence change (�F/F) of �24% after making crude correc-
tions for background fluorescence. Based on our calibration (Fig.
5), this corresponds to an increase of �5 mM, which would al-
most double the resting concentration often assumed in neurons
(Rose, 2002). This increase would cause a modest decrease in the
driving force for sodium. Therefore, a second EPSP, following
immediately, will generate a smaller amount of sodium entry
than the first one. However, the recovery time is very rapid so the
resting concentration will be quickly restored. Following multi-
ple EPSPs at the same synapse, the driving force will be further
reduced and the recovery time will be extended as the concentra-
tion gradient for sodium is reduced. Also, if several nearby spines
were activated, the buildup of sodium in the dendrite would be
greater than from activating a single spine. This buildup would
oppose diffusion out of the spine leading to a higher concentra-
tion compared with the activation of a single spine.

Sodium diffusion and spine-neck resistance
The rapid decline of [Na�]i in the spine and slower rise in the
dendrite is consistent with sodium diffusion through the spine
neck into the dendrite and was reproduced in a simulation that
only considered diffusion and no membrane pump in the re-
moval process (Fig. 9). This rapid time course has important
implications. It demonstrates that diffusion is the main mecha-
nism removing charge from the spine after synaptic activation.
Sodium pumping through the plasma membrane, examined in
conditions where diffusion is minimal (e.g., following bAPs in the

Figure 10. Sodium signals from activation of NMDA receptors. A, In a few experiments, double stimulation generated a long-lasting sodium signal associated with a long-lasting EPSP. Since the
long-lasting response and the [Ca 2�]i change were blocked by 10 �M CPP, we interpret this response as an NMDA spike. B, Sometimes large [Na �]i and [Ca 2�]i changes can be initiated by a bAP.
In the control trial (orange traces, without bAP) synaptic activation evoked a [Ca 2�]i change and a very small [Na �]i change. In another trial (with bAP, blue traces) large sodium and calcium traces
were evoked. The flat top on the calcium trace suggests that the bis-fura-2 response was saturated. The large responses in A and B probably reflect regenerative NMDA-receptor activation. C, Large,
long-lasting sodium signals were detected following synaptic stimulation in ACSF containing 0 mM Mg 2�. These signals were only weakly reduced in CNQX ( p � 0.04), showing they resulted from
sodium entry through NMDA receptors. All these signals extended over a few micrometers so they did not come from activation of single spines.
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dendrites), has a removal time constant of seconds (Rose et al.,
1999), �100� slower than the removal rate in the spine.

Removal with a half-decay time of 16 ms only has a small effect
on the peak [Na�]i and EPSP amplitude determined only by
activation of AMPA receptors since the duration of this conduc-
tance is only a few milliseconds (Sah et al., 1990). However, acti-
vation of NMDA receptors is slower. Since the duration of the
EPSP in spines in these cells is short (�6 ms using VSDs or
nanopipette recording; Popovic et al., 2015; Jayant et al., 2017),
the Mg 2� block will be restored quickly (in conditions where
plateau potentials are not generated), limiting the time when
NMDA receptors are open. Even in the time when these receptors
are open, there will be significant removal of sodium by diffusion,
limiting the contribution of NMDA receptors to the [Na�]i

buildup.
The rapid diffusion out the spine neck of synaptically elevated

sodium is also consistent with a low spine-neck resistance. Our
simulation (Fig. 9) suggests that if the sodium diffusion constant
in the spine neck was significantly smaller than found experimen-
tally in the cytoplasm of other cells (presumably corresponding to
a higher neck resistance), it would lead to a much slower recovery
time. Other simulations and VSD measurements (Popovic et al.,
2015) suggest that if the electrical properties of the spine neck
correspond to properties in other neuronal compartments, then
the neck resistance would be �50 M
. Analysis of spine-neck
resistance using the FRAP approach gave the same result in some
experiments (Svoboda et al., 1996; Tønnesen et al., 2014) and
slightly higher in others (Acker et al., 2016). Other recent exper-
iments using calcium measurements (Harnett et al., 2012) or
direct electrical recording (Jayant et al., 2017) gave higher values.

It is important to note that this analysis assumes the basic
hypotheses of cable theory and linear diffusion. It does not con-
sider possible complications from electrodiffusion (Qian and Se-
jnowski, 1989; Holcman and Yuste, 2015). These include (1)
changes in the EPSP driving force due to [Na�]i change, (2) changes
in the longitudinal driving force due to [Na�]i gradients, and (3)
differences in axial resistance for different ions.

Spine-calcium changes
Although it was not our main objective to examine synaptically
activated [Ca 2�]i changes, some of our results can be compared
with previous observations about such changes. We found that
�90% of this component could be blocked by CPP, indicating
that entry through VGCCs was small. The role of sodium imaging
in these experiments (Fig. 7A) was to confirm that application of
the blockers did not significantly reduce the synaptic current
driving the EPSP that opened the VGCCs, a result consistent with
the small effect of CPP on the synaptic potential. This result
agrees with earlier experiments on pyramidal neurons (Emptage
et al., 1999; Yuste et al., 1999) and with more recent related re-
search (Grunditz et al., 2008; Popovic et al., 2015). Other exper-
iments (Bloodgood and Sabatini, 2005; Bloodgood et al., 2009)
that used two-photon glutamate uncaging to activate spines, found a
larger VGCC component. One way to reconcile these results is to
postulate that on average the uncaging experiments generated a
slightly larger EPSP in the spine than direct synaptic activation gen-
erated in our experiments. Another possibility is that the slight so-
matic hyperpolarization we sometimes imposed to prevent firing
reduced the activation of VGCCs in our experiments.

The nearly consistent half-recovery times of the nine spines
might suggest that neck and other spine properties are homoge-
neous. However, the modeling results suggest that a wide range of
morphological parameters could result in recovery times within

the range we measured. Nevertheless, neck properties may be
more varied than we found. Signaling in long-neck spines
(Bloodgood and Sabatini, 2005; Araya et al., 2006) or stubby
spines might be different from signaling in the spines we exam-
ined. We made no effort to select different types of spines. In
addition, recent results indicate that spine properties may be
plastic, e.g., changing neck resistance depending on previous ac-
tivity (Bloodgood and Sabatini, 2005; Grunditz et al., 2008; Araya
et al., 2014; Tønnesen et al., 2014). In some experiments, we
observed local regenerative events (Fig. 10A), which may have
been triggered by simultaneous activation of �1 synapse. These
variations may be explored in the future when sodium imaging
achieves higher signal-to-noise ratios in synaptic experiments
and the success rates in these experiments improve. Until now
there have been no published reports of sodium imaging on sin-
gle spines using two-photon recording, which may be necessary
to make these discriminations. Better indicators would be a big
step forward.

References
Acker CD, Hoyos E, Loew LM (2016) EPSPs measured in proximal den-

dritic spines of cortical pyramidal neurons. eNeuro 3:pii:ENEURO.0050-
15.2016. CrossRef Medline.

Allen C, Stevens CF (1994) An evaluation of causes for unreliability of syn-
aptic transmission. Proc Natl Acad Sci U S A 91:10380 –10383. CrossRef
Medline

Antic SD, Zhou WL, Moore AR, Short SM, Ikonomu KD (2010) The decade
of the dendritic NMDA spike. J Neurosci Res 88:2991–3001. CrossRef
Medline

Araya R, Jiang J, Eisenthal KB, Yuste R (2006) The spine neck filters mem-
brane potentials. Proc Natl Acad Sci U S A 103:17961–17966. CrossRef
Medline

Araya R, Nikolenko V, Eisenthal KB, Yuste R (2007) Sodium channels
amplify spine potentials. Proc Natl Acad Sci U S A 104:12347–12352.
CrossRef Medline

Araya R, Vogels TP, Yuste R (2014) Activity-dependent dendritic spine neck
changes are correlated with synaptic strength. Proc Natl Acad Sci U S A
111:E2895–E2904. CrossRef Medline

Arellano JI, Benavides-Piccione R, Defelipe J, Yuste R (2007) Ultrastructure
of dendritic spines: correlation between synaptic and spine morphologies.
Front Neurosci 1:131–143. CrossRef Medline

Bender KJ, Trussell LO (2009) Axon initial segment Ca2� channels influence
action potential generation and timing. Neuron 61:259 –271. CrossRef
Medline

Bloodgood BL, Sabatini BL (2005) Neuronal activity regulates diffusion across
the neck of dendritic spines. Science 310:866–869. CrossRef Medline

Bloodgood BL, Sabatini BL (2007) Nonlinear regulation of unitary synaptic
signals by CaV2.3 voltage-sensitive calcium channels located in dendritic
spines. Neuron 53:249 –260. CrossRef Medline

Bloodgood BL, Giessel AJ, Sabatini BL (2009) Biphasic synaptic Ca influx
arising from compartmentalized electrical signals in dendritic spines.
PLoS Biol 7:e1000190. CrossRef Medline

Bywalez WG, Patirniche D, Rupprecht V, Stemmler M, Herz AV, Pálfi D,
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