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NPY1 Receptor Agonist Modulates
Development of Depressive-Like
Behavior and Gene Expression in
Hypothalamus in SPS Rodent PTSD
Model
Lidia Serova, Hannah Mulhall and Esther Sabban*

Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, USA

Delivery of neuropeptide Y (NPY) to the brain by intranasal infusion soon after traumatic

stress has shown therapeutic potential, and prevented development of many behavioral

and neuroendocrine impairments in the single prolonged stress (SPS) animal model of

PTSD. Therefore, we examined whether the Y1R preferring agonist [Leu31Pro34]NPY is

sufficient to prevent development of SPS induced depressive-like behavioral changes,

and hypothalamic gene expression as obtained with intranasal NPY intervention. Male

Sprague-Dawely rats were given intranasal infusion of either NPY (150µg/rat), a low

(68µg /rat), or high (132µg/rat) dose of [Leu31Pro34]NPY or vehicle immediately following

the last SPS stressor, left undisturbed for 1 week and then tested for depressive-like

behavior together with naïve unstressed controls. Vehicle treated animals had elevated

immobility forced swim test (FST) and reduced sucrose preference, which were not

observed in animals given NPY or the higher dose of [Leu31Pro34]NPY. This dose of

[Leu31Pro34]NPY, like NPY, also prevented the SPS-elicited induction of CRF mRNA

in the mediobasal hypothalamus. However, [Leu31Pro34]NPY did not prevent, but

rather enhanced, the SPS-triggered induction of GR and FKBP5 mRNA levels in the

mediobasal hypothalamus. Thus, [Leu31Pro34]NPY may be as effective as NPY and

displays therapeutic potential for preventing development of depressive-like behaviors

and dysregulation of the CRF/HPA system in PTSD. However, due to its different effects

compared to NPY on GR and FKBP5 a broader agonist, such as NPY, may be more

desirable.

Keywords: stress, neuropeptide Y, corticotropin releasing factor, glucocorticoid receptor, FKBP5, depression,

PTSD

INTRODUCTION

Considerable evidence indicates that in the CNS neuropeptide Y (NPY) can attenuate the response
to stress, and has therapeutic potential for PTSD as well as for depression (reviewed in Heilig,
2004; Morales-Medina et al., 2010; Wu et al., 2011; Sah and Geracioti, 2013; Enman et al., 2015;
Reichmann and Holzer, 2016; Sabban et al., 2016; Schmeltzer et al., 2016). Our recent studies
revealed proof of concept that delivery of NPY to the brain shortly before or immediately after
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exposure to traumatic stress can prevent the development
of many PTSD associated behavioral and neuroendocrine
impairments. Intranasal infusion of NPY after exposure to
traumatic stress in the single prolonged stress (SPS) protocol,
rodent model of PTSD, averted the elevation of anxiety,
depressive-like behavior and hyperarousal observed in vehicle
treated animals a week or more afterwards. Intervention with
intranasal NPY also provided resistance against prolonged
activation of the hypothalamic pituitary adrenal (HPA) axis,
and molecular changes in multiple brain regions, including the
mediobasal hypothalamus (Serova et al., 2013; Laukova et al.,
2014; Sabban et al., 2015a, 2016).

At least four NPY receptors, Y1R, Y2R, Y4R, and Y5R,
mediate the biological effects of NPY (Michel et al., 1998;
Hirsch and Zukowska, 2012). The Y6 subtype is truncated,
non-functional in humans and absent in the rat. The NPY
receptors associate with Gi/Go and regulate several signaling
cascades leading to hyperpolarization by inhibiting calcium
channels and activation of GIRK or IH channels, inactivation
of adenylyl cyclase and thus cAMP dependent pathways and
mobilization of intracellular calcium by phospholipase C and
phosphatidyl inositol kinase. NPY can lead to changes ERK
or CREB signaling resulting in alterations in gene expression
(reviewed in Brothers and Wahlestedt, 2010; Sah and Geracioti,
2013).

Y1R, Y2R, and Y5R are abundantly expressed in brain
areas implicated in anxiety and depression (reviewed in Kask
et al., 2002; Heilig, 2004; Eva et al., 2006). The importance
of Y1 transmission in depressive disorders was emphasized
in the Flinders Sensitive Line, a genetic model of depression.
In these animals, hippocampal and hypothalamic Y1 receptor
mRNA levels were lower and Y1 receptor binding higher
than in the control Flinders Resistant Line (Jiménez-Vasquez
et al., 2007). The beneficial effect of NPY was also observed
in the acute model of depression, likely mediated by the Y1
receptors (Redrobe et al., 2002; Goyal et al., 2009). Moreover,
antidepressant like effects of agmatine occur via the NPYergic
system and probably by stimulation of the Y1 receptor subtype
(Kotagale et al., 2013). Immunohistochemistry showed that
neuroendocrine CRF neurons in the PVN coexpress Y1R.
Direct infusion of the Y1 preferring agonist [Leu31Pro34]NPY
into the PVN increased c-Fos and phosphorylated CREB
expression in populations of CRF/Y1r-ir cells and elevated
plasma corticosterone levels (Dimitrov et al., 2007). This
suggests that NPY afferents and subsequent activation of NPY
Y1 receptors play an important role in the regulation of
the HPA.

Due to the widespread distribution of NPY into the brain
following intranasal infusion (Sabban et al., 2016), it remains
to be determined the activation of what receptor subtypes are
sufficient for NPY’s stress-reductive and therapeutic effects. In
addition, a more selective agonist than NPY may able to be
effective at low dose, and provide less opportunity for potential
side effects.

In this study we examined whether the Y1 receptor preferring
agonist [Leu31Pro34]NPY is able to provide selective protective
effects on traumatic stress triggered depressive-like behaviors and
changes in hypothalamic gene expression.

MATERIALS AND METHODS

Materials
[Leu31,Pro34]-Neuropeptide Y (human, rat) was purchased from
Tocris. NPY was synthesized by NeoScientific (Cambridge, MA).
They were stored lyophilized at −80◦C and dissolved in distilled
water immediately before infusion.

Animals
All experiments were performed in accordance with the National
Institute of Health Guide for the Care and Use of Laboratory
Animals and approved by Institutional Animal Care and Use
Committee at NYMC and the USAMRMC Animal Care and
Use Review Office. Male Sprague-Dawley rats (150–160 g) were
purchased from Charles River (Wilmington, MA) and housed
(4 per cage) in a barrier area on 12 h light/dark cycle at 23± 2◦C
with ad libitum access to food and water.

Experimental Design
The experimental design is shown in Figure 1. After 2 week
acclimation period, the rats were randomly assigned to the
experimental or control groups (10 rats per group). SPS was
performed between 9 a.m. and 2 p.m. as previously described
(Serova et al., 2013). First, rats were subjected to a 2 h
immobilization on metal board by taping the limbs with a
surgical tape and restricting the motion of the head. Immediately
afterwards, they were subjected to a 20 min forced swim in a
plexiglass cylinder (50 cm height, 24 cm diameter, Stoelting,
Wood Dale, IL) filled to two-thirds with 24◦C fresh water. The
animals were dried and allowed to recuperate for 15min and then
exposed to ether vapor until loss of consciousness.

While still under the influence of ether from the last SPS
stressor, each rat received intranasal infusion of either: (1) 150µg
NPY; (2) 68µg [Leu31Pro34]NPY; (3) 132µg [Leu31Pro34]NPY,
or (4) vehicle (distilled water). The infusion was administered,
10µl into each nare, with pipetteman and disposable plastic tip.
Extreme care was taken to avoid contact with the intranasal
mucosa. Following administration, the head of the animal was
held in a tilted back position for approximately 15 s.

Following the SPS procedure, animals left undisturbed (2
per cage) for 7 d and were then tested on the forced swim
test and sucrose preference test (Experiment 1) or euthanized
to determine changes in gene expression in the mediobasal
hypothalamus (Experiment 2).

Forced Swim Test (FST)
Rats were examined in a modified version of the Porsolt swim
test (Cryan et al., 2002) as previously described (Serova et al.,
2013). They were put into the same plexiglass cylinders filled to
two-thirds with 24◦C fresh water for 5 min and their behavior
was recorded. A trained individual blinded to the experimental
group scored the time spent swimming, defined as movement of
the forelimbs and hind limbs and the time spent immobile when
the animal showed no movement, or only movements needed to
keep its head above the water.

Sucrose Preference Test (SPT)
For the sucrose preference test (Briones and Woods, 2013), rats
were trained to a two-bottle choice of drinking water and 1%
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FIGURE 1 | Experimental design. After 2 weeks accommodation, rats were exposed to SPS stressor consisting of 2 h immobilization stress (Imo) followed

immediately by 20 min forced swim (FS), and after 15 min rest exposed to ether vapors until loss of consciousness. While still under the influence of ether they

received intranasal infusion of either NPY, [Leu31Pro34]NPY, or vehicle. Control animals were unstressed. Seven days later they were either tested for depressive like

behavior on the FST and SPT (Experiment 1) or euthanized and appropriate tissues collected (Experiment 2).

sucrose solution for 2 days followed by 2 days of testing. On the
day of testing, two pre-weighted bottles of 5% sucrose solution
and tap water were presented. To prevent possible effects of
side preference in drinking behavior, the position of the bottles
was switched after 24 h of training or testing. No food or
water deprivation was applied before or during the test. Liquid
consumption from each bottle corrected by body weight was
used to calculate sucrose solution intake, water intake and total
consumption by the end of the 48-h period. Sucrose preference
was calculated using the following equation: sucrose preference
(%)= sucrose intake/(sucrose intake+ water intake)× 100.

Gene Expression in Mediobasal Hypothalamus
A week after the SPS stressors, the rats were sacrificed and the
mediobasal hypothalamus containing paraventricular nucleus
(PVN) without the arcuate nucleus was isolated and immediately
frozen in liquid nitrogen at kept at −80◦C. Total RNA
was isolated with RNeasy Plus Mini Kit (Qiagen, Valencia,
ML). This kit has been designed to isolate total RNA from
animal tissues and obtain optimal RNA yield and purity. It
also allows eliminating contamination by genomic DNA using
gDNA eliminator columns. Briefly, the frozen samples were
homogenized in lysate buffer containing β-mercaptoethanol
with Polytron PT 1200E (Kinematica AG, Switzerland). After
centrifugation the supernatant was transfered and centrifuged
through gDNA eliminator spin columns. After addition of 70%
ethanol, RNA was precipitated on the RNeasy spin columns,
washed and eluted with RNase-free water. RNA concentration
was evaluated by sepectrophotometry (NanoDrop 2000, Thermo
Fisher Scientific, Pittsburgh, PA). The ratio of absorbance at 260
to 280 nm was about 2.0. Overall average yield of isolated total
RNA was 5–8 µg per 10mg of brain tissue which is within in the
best range provided by Qiagen’s protocol.

The relative levels of CRF, GR, and FKBP5 mRNAs were
determined by RT-qPCR. Reverse transcription of 1,000 ng of
RNA was performed with the RevertAid First Strand cDNA
Synthesis kit (Thermo Fisher Scientific, Hanover Park, IL)
using an oligo dT primer at 42◦C for 60 min in MyCycler
(BioRad, Hercules, CA). For qPCR, the cDNA (33.2 ng in
2µl) was mixed with 12.5µl of FastStart Universal SYBR
Green Master Rox (Roche Diagnostics, Indianapolis, IN) and

1µl of the following primer sets: CRF (Crh, NM_031019.1,
cat. no. PPR44803B, Qiagen); glucocorticoid receptor (GR)
(Nt3c1, NM_012576.2, cat no. PRR52805B, Qiagen); FKBP5
(Fkbp5, NM_001012174.1, cat. no. PPR51629B, Qiagen) and
glyceraldehyde-3-phosphate dehydrogenase (GAPDH; Gapdh,
NM_017008.4, forward 5′-TGGACCACCCAGCCCAGCAAG-
3′, reverse 5′-GGCCCCTCCTGTTGTTATGGGGT-3′), to a final
volume 25µl in PCR-96-Microplate (Axygen Scientific, Union
City, CA). The primers for CRF, GR and FKBP5 were validated
experimentally by Qiagen to amplify a single amplicon (125, 81,
96 bp respectively) with uniform PCR efficiency. The amplicon
for GAPDH (140 bp) was shown to be proportional to RNA
input. PCR was performed on ABI7900HT Real-Time PCR
instrument (Applied Biosystems, Carlsbad, CA). The data were
analyzed with SDS Software 2.4 (Applied Biosystems). The
melting curves were examined to verify a single amplicon
at the expected melting temperature. Ct values were in the
range of 27–29 for CRF, 25–28 for GR and FKBP5, and 16–
17 for GAPDH. Data were normalized to GAPDH mRNA (not
altered by experimental conditions) and expressed as the relative
fold changes calculated using the 11Ct method (Livak and
Schmittgen, 2001).

Statistical Analysis
Data were analyzed using Prizm 4 (GraphPad) software.
Following confirming normality with D’agatino and Pearson
Omnibus Normality Test, and data were analyzed by one way
ANOVA followed by Tukey’s Multiple Comparison Test for
differences among the groups. Values of p≤ 0.05 were considered
significant.

RESULTS

Intranasal Administration of
[Leu31Pro34]NPY Prevented the SPS
Elicited Depressive-Like Behavior
Initially, we examined the ability of two doses of the Y1R
preferring agonist [Leu31Pro34]NPY to change despair or
depressive-like behavior in forced swim test (FST) of rats
subjected to SPS stressors (Figure 2). Animals were given
intranasal infusion of either: NPY (150µg/rat), low (68µg/rat)
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FIGURE 2 | Depressive-like behavior. Immediately after the last SPS stressor rats were infused with vehicle (SPS/V), 150µg NPY (SPS/NPY), 132µg

[Leu31Pro34]NPY (SPS/LeuPro H), or 64µg [Leu31Pro34]NPY (SPS/LeuPro L) or unstressed (Controls). Testing for depressive-like behavior began 7 days later. (A)

Immobility time on FST. (B) Sucrose preference. Data are presented as mean ± SEM. n = 8–10 per group. *p < 0.05, **p < 0.01 compared to Controls; #p < 0.05,
##p < 0.01 compared to SPS/V; &&p < 0.01 compared to SPS/NPY; $$p < 0.01 compared to SPS/LeuPro H.

or high (132µg/rat) dose of [Leu31Pro34]NPY, or vehicle
immediately following the last stressor (ether) of the SPS
protocol. They were left undisturbed for 1 week and then tested
on the FST (Figure 2A) together with naïve unstressed controls.
One way ANOVA showed a significant impact of treatment
on time immobile (F = 9.5, p < 0.0001). Rats that received
vehicle (SPS/V) spent longer time immobile compared to the
unstressed controls (p < 0.01). Administration of NPY, as
previously observed (Serova et al., 2013), prevented development
of this despair behavior. Despite similar body weight in all
the SPS treated groups, the SPS/NPY group of rats spent less
time immobile compared to the SPS/V group (p < 0.05) and
did not differ from the unstressed controls. The results with
[Leu31Pro34]NPY depended on the dose used. The low dose
was not effective to change SPS-induced immobility time in FST
(p > 0.05, SPS/LeuPro L vs. SPS/V). However, the immobility
time with the higher dose was different than with the low dose
(p < 0.01) and significantly reduced compared to the vehicle
treated group (p < 0.05, SPS/LeuPro H vs. SPS/V). Similarly,
treatment with NPY as well as the higher, but not the lower, dose
of [Leu31Pro34]NPY prevented the reduction in sucrose reference
observed in the vehicle treated group (Figure 2B). Therefore,
only the higher dose was used in the further experiments.

Effects of NPY and [Leu31Pro34]NPY on
Single Prolonged Stress (SPS) Elicited
Molecular Changes in the Mediobasal
Hypothalamus
In the next experiment, we examined the effect of early
intervention with intranasal NPY, or [Leu31Pro34]NPY on SPS-
elicited changes in expression of several genes in the mediobasal
hypothalamus, an integrative center in the regulation of HPA axis

(Figure 3). One way ANOVA revealed significant differences in
CRF mRNA levels among animals with different treatments (F =

10.0, p < 0.0001, Figure 3A). Tukey’s multiple comparison test
showed that [Leu31Pro34]NPY was similar to NPY in preventing
the elevation of CRF mRNA. An induction of CRF mRNA was
observed only in the vehicle treated group (p < 0.01 compared to
controls, SPS/NPY or SPS/LeuPro).

Since the GR plays a crucial role in the negative feedback
regulation of HPA axis we examined GR mRNA levels. ANOVA
showed significant impact of treatment (F = 15.0, p < 0.0001,
Figure 3B). While, significantly increased by SPS in vehicle
infused animals compared to controls (p < 0.01) this did not
occur in rats given NPY infusion. They had GR mRNA levels
similar to the controls and decreased compared to the SPS/V
group (p< 0.01). Surprisingly, in animals with [Leu31Pro34]NPY
infusion, GR mRNA levels were significantly higher than in
controls, SPS/V or SPS/NPY groups (p < 0.001).

The levels of FKBP5 mRNA were also affected by treatment
(F = 10.0, p < 0.0001, Figure 3C). In agreement with our
previous published results (Laukova et al., 2014), similar to CRF
and GR, mRNA levels of FKBP5 are also elevated by SPS in the
mediobasal hypothalamus. The pattern of changes in FKBP5 gene
expression was analogous to those of GRmRNA levels. There was
elevation of gene expression of FKBP5 by SPS as shown in vehicle
treated group but not in animals given NPY (p> 0.01 vs. controls
or SPS/NPY). However, rats administered [Leu31Pro34]NPY had
a greater induction of FKBP5 mRNA levels, which was higher
than in any of the other groups.

DISCUSSION

The results of this study suggest an important role for the
Y1R in protection from development of the depression-like
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FIGURE 3 | Changes in mRNA levels for several genes in the mediobasal hypothalamus. Data are presented as mean ± SEM. n = 8–10 per group. (A) CRF

mRNA levels. ***p < 0.001 compared to controls; ##p < 0.01 compared to SPS/V. (B) GR mRNA levels. **p < 0.01, ***p < 0.001 compared to controls; #p <

0.05, ###p < 0.001 compared to SPS/V; &&&p < 0.001 compared to SPS/LeuPro. (C) FKBP5 mRNA levels. ***p < 0.001 compared to Controls; #p < 0.05
###p < 0.001 compared to SPS/V; &&&p < 0.001 compared to SPS/LeuPro.

symptoms following the exposure to severe stress. Infused
immediately after the application of SPS stressors, the higher dose
of [Leu31Pro34]NPY was able to prevent development of SPS-
induced increase in immobility time in FST. This dose was also
protective against long lasting elevation of CRF mRNA levels
in the mediobasal hypothalamus. However, the Y1R preferring
agonist did not prevent the SPS elicited effects on gene expression
of GR and FKBP5 in this brain region, which were even higher
than in SPS group treated with vehicle.

The findings demonstrated that [Leu31Pro34]NPY, when given
at a similar dose as NPY, is equally effective to ameliorate the
development of SPS-elicited depressive-like behavior as shown
by both the FST and sucrose preference test. The importance of
the Y1R on basal activity on FST has previously been observed.
Intracerebral infusion of the Y1R agonist [Leu31Pro34]PYY, or
NPY, 30 min before the test significantly increased time mice
spent swimming compared to controls (Redrobe et al., 2002).
Administration of [Leu31Pro34]NPY in olfactory bulbectomized
rat model of depression reduced depressive related features in
open field test (Goyal et al., 2009). Moreover, Y1R deficient
mice (−/−) displayed greater immobility time in FST than the

+/+ wild type controls (Karlsson et al., 2008) confirming the
importance of the Y1R. Our data revealed for the first time
that stimulation of Y1R immediately after exposure rats to SPS
stressors provides a long-lasting anti-depressive-like effect. It
remains to be determined whether Y1R agonists are sufficient to
also produce the reduction in SPS triggered symptoms of anxiety
obtained with intranasal NPY.

The results also suggest that beneficial effects of intranasally
infused NPY in SPS-induced despair or depressive-like behavior
is mediated by its activation of Y1 receptors. Although
[Leu31Pro34]NPY is assumed to be specific for the Y1 receptor
we cannot rule out a contribution of the Y5 receptor subtype.
It has been shown that [Leu31Pro34]NPY also has efficacy
at the Y5R (Gerald et al., 1996). The rat hypothalamus also
expresses Y5R to some extent. In rat hypothalamic homogenates
approximately 20% of specific binding fit the pharmacological
profile of Y5 receptors (Widdowson et al., 1997). It is also
have been found that endogenous NPY acts via PVN Y1 and
Y5 receptors to change sympathetic nerve activation and heart
rate (Cassaglia et al., 2014). Thus the Y1R preferring agonist,
[Leu31Pro34]NPY given in relatively high dose could also interact
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with Y5 receptors. Therefore, our data with [Leu31Pro34]NPY
may represent additive activation of both receptors. Further
studies with more doses of [Leu31Pro34]NPY and different
agonists will help determine the lowest effective dose and
distinguish their selective roles.

[Leu31Pro34]NPY was sufficient to prevent the SPS elicited
rise of CRF gene expression. CRF plays a key role in
integrating neural, endocrine, and behavioral responses to
stressful stimuli. During stress, CRF initiates the activation of
the HPA axis. Released from the hypothalamus, CRF stimulates
ACTH synthesis and release from the anterior pituitary. This
evokes glucocorticoid secretion from the adrenal cortex into
circulation. Glucocorticoids, via GR, mediate many of their
physiological responses to stress. Within the hypothalamus, GR
plays a crucial role in direct glucocorticoid feedback by repressing
CRF biosynthesis and release and thus enabling appropriate
termination of the stress response.

Elevated expression of CRF in the mediobasal hypothalamus
has been linked to a depressive-like state. Many antidepressant
drugs have delayed onset of clinical efficacy and in rats,
long-term administration of clinically effective antidepressant
drugs resulted in reduction in CRF mRNA expression levels
in the hypothalamic PVN (Brady et al., 1991). The over-
expression of CRF in the PVN appears to be a common
neuroendocrine abnormality for depressive states in animals
(Mironova et al., 2013). Depression and PTSD are frequently
is co-morbid. Patients with PTSD and animal models of PTSD
display dysregulations of the HPA axis on several levels, such as
blood glucocorticoid and ACTH concentration, expression of GR
receptors inmany brain regions as well as GR receptormodulator
glucocorticoid sensitive co-chaperone FK506-binding protein 5
(FKBP5) (Yehuda, 2009; Mehta et al., 2011; Knox et al., 2012;
Laukova et al., 2014). We previously observed that SPS has a long
lasting effect on activation of the HPA axis. A week after exposure
to SPS stressors, corticosterone and ACTH in plasma and CRF,
GR, and FKBP5 mRNAs in the mediobasal hypothalamus were
still significantly above levels in unstressed animals (Laukova
et al., 2014; Sabban et al., 2015b).

The results of experiments presented here revealed than
activation of Y1 receptors with [Leu31Pro34]NPY immediately
after exposure to SPS stressors can prevent development of
abnormal expression of CRF in the PVNwhichmight also related
to physiologically normal immobility time in the FST in these
rats. In contrast to rats treated with NPY, rats infused with
[Leu31Pro34]NPY still had robustly elevated mRNA levels for GR
and FKBP5. Moreover the levels of these two mRNAs were even

higher than in the rats administered with vehicle. A dissociation
of the effects on CRF gene expression from those on GR and
FKBP5 in the mediobasal hypothalamus was also observed with
the melocortin 4 receptor antagonist, HS014 (Serova et al., 2014).

Although hypothalamic GR plays a major role in
glucocorticoid-dependent feedback mechanism regulating
CRF gene expression, our results suggest that normalization of
CRF gene expression with [Leu31Pro34]NPY may be mediated
by other pathways. The PVN receives inputs from the medial
amygdala indirectly via the bed nucleus of the stria terminalis
and from the ventral hippocampus via interneurons (López

et al., 1999; Ulrich-Lai and Herman, 2009) which indirectly
control CRF expression. In this regard, disruption of GR in the
PVN led to HPA hyperactivity but did not affect anxiety and
despair-like behavior (Laryea et al., 2013). In contrast to CRF,
GR synthesis in the mediobasal hypothalamus is not restricted
to the PVN (Aronsson et al., 1988). Thus, our findings with GR
may reflect stimulation of Y1 receptors on different mediobasal
hypothalamic cell types other than the PVN.

Overall the results indicate that while [Leu31Pro34]NPY can
be similarly effective as NPY with therapeutic potential in PTSD
for preventing development of depressive-like behaviors and
dysregulation of CRF/HPA system at the level of the PVN.
However, issues relating to its effect on GR and FKBP5 gene
expression indicate that it might not be as useful therapeutically
as NPY.
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