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Introduction
There is a growing incidence of lethal cardiac events around 

Christmas, New Year’s and in the morning hours from 4:00 to 10:00 a.m. 
which is well-established in the USA and in The Southern Hemisphere 
[1-7]. In addition, many cardiac deaths often occur on Mondays with 
no satisfactory explanation [2,3]. Many of these deaths are, for the most 
part, unexplained and listed as “death from “natural causes”. Although 
in the USA, the deaths which occur around Christmas and New Years 
happen in the cold –winter months, this does not account for many 
cardiac incidences which occur throughout the year in the early a.m. 
hours or on Mondays.

A number of explanations have been offered to explain the higher 
morbidities and mortalities at these special times of the year, morning 
hours and on Mondays, such as emotional stresses, too much ingestion 
of alcoholic beverages, improper medical facilities, diet, and/or changes 
in the physical environments [1-7]. 

Role of Magnesium in Cardiac Morbidity and Mortality

Ever since our laboratories first reported that magnesium (Mg) 
deficiency results in vasospasms of small and large coronary arteries, 
and that these events could be responsible for a great deal of sudden 
death ischemic heart disease (SDIHD) [8,9], a number of clinical studies 
have appeared which have confirmed and extended these findings [10-
15]. We originally speculated that low dietary Mg intake and /or errors 
in Mg metabolism could be responsible for a large number of sudden 
cardiac deaths (SCD) and heart attacks in the Western world [8, 9,16]. 

In the early 1980’s, some clinical studies appeared which suggested 
that of all electrolytes measured in the blood of hospitalized patients, 
total serum magnesium (Mg) levels often showed lowered levels, e.g., 
from 80-50% of normal [17-21]. However, in general, patients admitted 
to the intensive or coronary care units often demonstrated 60-30% of 
normal total blood levels of Mg [21-27]. When the blood/sera/plasma 
from these patients are examined for ionized Mg levels, in addition to 
the latter measured total Mg levels, these numbers rise to 80-70% in 
the patients admitted to intensive and coronary care units [26,27]. In 
addition, the red blood cells obtained from these patients are severely 
deficient in ionized Mg (e.g., 60-40% of normal; Resnick, Altura, and 
Altura, unpublished studies). Why is it so important to measure ionized 
Mg levels, not only total blood Mg levels?

Mg is a co-factor for more than 500 enzyme systems, and is the 
second most abundant intracellular cation after potassium [28]. It is 
critical in numerous physiological, cellular and biochemical functions 
and systems, running the gamut from hormone-receptor binding, 
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transmembrane fluxes of cations and anions, cellular energy generation, 
muscle contraction, regulation of DNA and RNA structure, regulation 
of lipid and carbohydrate metabolism, regulation of plasma lipid levels 
(i.e., cholesterol, triglycerides, and LDL-cholesterol), regulation of 
cell and tissue growth, nerve conduction, diverse cardiac functions 
and cardiac stability, control of vasomotor tone and distribution of 
blood flows to all organ systems, and cell death (i.e., apoptosis and 
necroptosis), among many others [28-38]. Mg is depleted in normal 
methods of food preparation (e.g., boiling, frying, etc.) and processing 
[39]. 

The daily intake of Mg has been declining since 1900, from where 
it was about 500-600 mg/day to about 150-225 mg/day, in many USA 
and European geographic regions, at the present time [40-42]. Mg is 
known to exist in three forms; free or ionized, complexed, and protein –
bound [26]. These three fractions constitute the total serum and cell Mg 
[26]. In addition, up until our studies, there were no reliable methods 
to measure ionized Mg on whole blood, serum , and plasma rapidly 
(within 1-2 min) in the OR and critical-coronary care units [27]. 

Of almost 100 patients who were admitted for emergency coronary 
artery bypass surgery (CABS), at our hospitals (e.g., University Hospital 
and Kings County Hospitals ), 88% of them exhibited significantly 
lowered levels of serum ionized Mg2+, but not necessarily total serum 
Mg levels [27,43-46]. Of those who were admitted on Holidays, such as 
Christmas or Thanksgiving, or in the morning hours (i.e., from 2:00 – 
7:00 AM), we observed the lowest serum levels of Mg2+ (i.e., from 0.40 
– 0.52 mM vs. 0.57-0.70 mM-controls, p<0.001). Patients admitted on
Monday mornings (i.e., from 2:00 – 9:00 AM) for CABS exhibited, on
average 0.48 ± 0.06 mM vs 0.67 ± 0.03 mM (p<0.01). For the most part, 
many (about 55%) of these CABS patients exhibited near, normal total
serum Mg levels.

When we mimicked these, lowered serum Mg2+, in vitro, using 
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isolated, normal canine, baboon, monkey, human or piglet coronary/
cerebral arteries, they went into different degrees of vasospasm which 
could only be relaxed with increased levels of Mg2+, not with calcium 
channel blockers or a variety of commonly-used vasodilator drugs 
[8,9,16,47-57]. The artificially-lowered levels of Mg2+ also resulted 
in potentiation of the contractile actions of all types of circulating 
neurohormonal vasoconstrictor agents (e.g., catecholamines, 
angiotensin II, serotonin, and a variety of peptides including 
vasopressin, etc.) [8,9,16,47-58].

From our studies, we believe the data are consistent with the 
hypothesis that human subjects admitted for emergency CABS on 
major holidays, in the morning hours , or on Monday mornings not 
only demonstrate abnormally low Mg2+ levels but most likely are 
predisposed to vasospasm of the coronary and cerebral arterial vessels 
which would result in increased morbidity and mortality. So, it makes 
eminent sense that human subjects, worldwide, would be predisposed 
to increased morbidity and mortality on holidays such as Christmas, 
New Year’s Day and Monday mornings. An important factor involved 
in these predilections, at these various times of the year, are also 
most likely due to the excess drinking of alcoholic beverages, coffee 
and sodas (with caffeine), which have been shown to rapidly deplete 
vascular smooth muscle, cardiac muscle and endothelial cells of 
intracellular levels of Mg2+[59-74]. In addition, since many people get 
heart – burn after heavy meals, they have a tendency to ingest proton-
pump inhibitors which also can reduce Mg levels [46]. One must 
also consider the possibility that a number of the subjects dying from 
SDIHD and SCD may have been on long-term treatment with cardiac 
glycosides and/or thiazides, certain antifungal agents (i.e., amphotericn 
B), aminoglycosides (e.g., gentamicin, tobramycin), loop diuretics 
(e.g., furosemide), immunosuppresents(e.g., cyclosporine, sirolimus), 
or even certain chemotherapeutic agents (cisplatin, amsacrine), all of 
which deplete the body of Mg; potential interactions with drinking of 
alcoholic beverages and/or caffeine –beverages would tend to reinforce 
(and potentiate) the tendency for considerable, rapid Mg depletion [20-
22,30-33,36,74]. Unfortunately, such interactions have not been a focus 
of any epidemiological studies to our knowledge.

The cellular, biochemical, and molecular mechanisms of how 
lowered cellular levels of Mg2+ cause vasospasm and decreased 
peripheral, coronary, and cerebral blood flows, inflammation, ischemic 
events , atherogenesis, and diverse forms of cell death have been a 
long-time focus of our laboratories which are presented and discussed 
elsewhere [16,29,31,32,34,35,37,38,47-64,75-98]. In this context, 
using proton –nuclear magnetic spectroscopy (NMR), P31 –NMR, and 
brand-new ELISA assays, we have found that low levels of extracellular 
Mg2+ ([Mg2+]0 ) rapidly generated ceramides and other sphingolipids 
[32,34,82-89,91-93,96-98] which, heretofore, were totally unknown 
as potential causal factors in SDIHD, sudden cardiac death (SCD), 
congestive heart failure (CHF) and coronary artery disease (CAD) . 
This work led us to hypothesize that dietary deficiency and/or inborn 
metabolic-induced deficiency of Mg could result in increased morbidity 
and mortality from coronary and cerebral arterial vasospasms. But, 
how would generation of ceramides and/or other sphingolipids(e.g., 
sphingosine; sphingosine-1-phosphate) result in susceptibility to 
SDIHD, SCD, CHF, and CAD?

Ceramides are sphingolipids known to be released as a 
consequence of sphingomyelinases (SMase) acting on sphingomyelin 
(SM), a component of all cell membranes, or as a consequence of the 
activation of serine palmitoyl transferase 1 and 2 (SPT 1 and SPT 2) (a 
de novo synthetic pathway ) [99-101]. Ceramides are now thought to 

play important roles in fundamental processes such as inflammation, 
angiogenesis, membrane-receptor functions, cell proliferation, 
microcirculatory functions, cell adhesion, immunologic responses, 
excitation-coupling events in smooth muscles, and cell death (i.e., 
apoptosis) [99-110]. SPT 1 and SPT 2 are the rate-limiting enzymes in 
the biosynthesis of de novo sphingolipids [99,100]. More than 25 years 
ago, it was first demonstrated that SPT activity was increased in aortas 
of rabbits fed a high cholesterol diet [111]. A short time (i.e., 1990) 
after these latter studies were published, two of us showed that dietary 
deficiency of Mg, in levels found in Western diets, vastly increased 
atherosclerotic plaque formations in rabbits fed high-cholesterol diets, 
whereas high dietary levels of Mg inhibited plaque formations [78]. 
We also noted that early intervention with oral Mg administration 
reversed the growth and intensity of the plaque formations. SPT is a 
heterodimer of 53-kDa SPT-1 and SPT-2 subunits [112,113], both of 
which are bound to the endoplasmic reticulum [114]. An upregulation 
of SPT activity has been hypothesized to play a role in apoptosis [115]; 
cell death events which take place in atherogenesis [116-118]. 

Recently, several of us have reported that Mg deficient (MgD) diets 
given to rats for only 21 days results in an upregulation of SMases, 
sphingomyelin synthase, ceramide synthase, SPT -1 and SPT-2 in a 
variety of cardiovascular tissues and cells as well as decreased levels of 
SM and phosphatidylcholine (PC) [34,37,85,86,88,91,93,94,119]. We 
also noted that MgD diets resulted in fragmentation of DNA [37,94], a 
release of mitochondrial cytochrome C (a result of leaky membranes) 
[88], an increased expression of apoptotic protease factor-1, an 
activation of caspase-3 (needed for apoptosis) [87], and upregulation 
of p53 [119], release of cytokines [91,120], activation of three different 
nitric oxide isozymes [89], activation of multiple protein kinase C 
isozymes [120], activation of mitogen-activated kinases (MAPKs) 
[63,121], activation of tyrosine kinases [121], activation of P-I-3 kinases 
[63,64] and upregulation of receptor -interacting kinases (e.g., RIPK1 
and RIPK3) [38], all hallmarks of various stages of atherogenesis. 
When specific inhibitors of SMases and SPT (1 and 2) were utilized 
in primary cultures of vascular smooth muscle (VSM) cells, exposed 
to low [Mg2+]0 environments, we noted an inhibition of formation and 
release of ceramides, inhibition of release of cytochrome C, reduced 
expression of apoptotic protease factor-1, reduced expression of various 
PKCs, MAPKs, and NO as well as inhibition of release of cytokines, 
and inhibition of activation of caspase-3 and p53 [34,37,38, 87-89,91-
98,119,120]. We believe, collectively, these new studies lend support to 
our hypothesis that generation and release of ceramides in MgD are 
pivotal molecules in the initiation of cellular and molecular events 
leading to inflammatory events and atherogenesis. The fact that we 
have found elevated ceramide levels in the sera of CABS patients who 
presented with CHF and CAD strengthens our hypothesis, particularly 
as the subjects that died of SDIHD and SCD on the holidays and on 
Monday mornings had the lowest serum levels of ionized Mg coupled 
to the highest serum levels of the ceramides.

Since we have demonstrated in both rats and rabbits, fed low 
Mg diets, that increased levels of ceramides are found in situ, in all 
chambers of the heart, aortae and coronary arterial blood vessels, and 
these manifestations were associated with increased plaque formations, 
elevated serum cholesterol, elevated LDL-cholesterol, and elevated 
trigycerides [35,37,78,96, 97,106], it is highly unlikely that these in-vivo 
manifestations are merely epiphenomena. Only time will -tell whether 
our hypothesis is correct. But, how could the risk of susceptibility, on 
holidays, morning hours, and Monday mornings, to SDIHD, SCD, and 
CAD be avoided or reduced?
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Over the past 20 years, our laboratories have been investigating 
the utility of Mg-supplemented or naturally-occurring spring waters 
to avoid the potential pitfalls of dietary –induced MgD-states, thus 
reducing the risks of morbidities and mortality from SDIHD, SCD, and 
CHF . Our results, so far, bolster the idea that water intake (e.g., from 
tap waters, well waters, beverages using tap/well/spring , or desalinated 
waters) in humans should contain at least 25-40 mg/liter/day of 
Mg2+[87-89,91-98, 119,120,122]. A number of studies, done in our labs, 
indicate that most, if not all the cardiovascular manifestations observed 
in experimental animals (discussed above) found to be MgD can be 
avoided by supplementing drinking waters with appropriate amounts 
of Mg2+. Supplementation of diets with adequate amounts of Mg, in 
our youth, should help to prevent the beginning of atherosclerotic 
plaques seen in growing children. The inclusion of adequate amounts 
of Mg in our diets , drinking waters, and beverages should cut-down, 
tremendously, the risks of SDIHD, SCD, CHF, and CADs, ,and, in the 
process, should greatly reduce the current 350 billion dollars/ year 
spent in the USA, alone, to treat cardiovascular diseases.
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