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Orexin neuropeptides influence multiple homeostatic functions and play an essential
role in the expression of normal sleep-wake behavior. While their two known receptors
(OX1 and OX2) are targets for novel pharmacotherapeutics, the actions mediated by each
receptor remain largely unexplored. Using brain slices from mice constitutively lacking
either receptor, we used whole-cell and Ca2+ imaging methods to delineate the cellular
actions of each receptor within cholinergic [laterodorsal tegmental nucleus (LDT)] and
monoaminergic [dorsal raphe (DR) and locus coeruleus (LC)] brainstem nuclei—where
orexins promote arousal and suppress REM sleep. In slices from OX−/

2
− mice, orexin-A

(300 nM) elicited wild-type responses in LDT, DR, and LC neurons consisting of a
depolarizing current and augmented voltage-dependent Ca2+ transients. In slices from
OX−/

1
− mice, the depolarizing current was absent in LDT and LC neurons and was

attenuated in DR neurons, although Ca2+-transients were still augmented. Since orexin-A
produced neither of these actions in slices lacking both receptors, our findings suggest
that orexin-mediated depolarization is mediated by both receptors in DR, but is exclusively
mediated by OX1 in LDT and LC neurons, even though OX2 is present and OX2 mRNA
appears elevated in brainstems from OX−/

1
− mice. Considering published behavioral data,

these findings support a model in which orexin-mediated excitation of mesopontine
cholinergic and monoaminergic neurons contributes little to stabilizing spontaneous
waking and sleep bouts, but functions in context-dependent arousal and helps restrict
muscle atonia to REM sleep. The augmented Ca2+ transients produced by both
receptors appeared mediated by influx via L-type Ca2+ channels, which is often linked to
transcriptional signaling. This could provide an adaptive signal to compensate for receptor
loss or prolonged antagonism and may contribute to the reduced severity of narcolepsy in
single receptor knockout mice.

Keywords: laterodorsal tegmental nucleus, dorsal raphe nucleus, locus coeruleus, whole-cell patch-clamp

recording, Ca2+ signaling

INTRODUCTION
Orexin-A and Orexin-B, also called hypocretin-1 and -2, are two
hypothalamic neuropeptides (De Lecea et al., 1998; Sakurai et al.,
1998) that influence feeding, metabolism, arousal, reward, and
stress substrates in the CNS (for review, see Tsujino and Sakurai,
2009). The orexin system plays a particularly important role in
the normal expression of waking and sleep since its disruption
underlies the sleep disorder narcolepsy with cataplexy in humans
(Peyron et al., 2000; Thannickal et al., 2000) and produces a nar-
colepsy phenotype with unstable behavioral states, sleep attacks
and cataplexy-like motor arrests in animals (Chemelli et al., 1999;
Lin et al., 1999; Hara et al., 2001; Willie et al., 2003; Beuckmann
et al., 2004; Mochizuki et al., 2004; Kalogiannis et al., 2011).

Orexin actions are mediated by two G-protein coupled recep-
tors (Sakurai et al., 1998), termed orexin-1 (OX1) and orexin-2
(OX2) receptors, which have partly overlapping and widespread
expression patterns in the CNS (Trivedi et al., 1998; Hervieu
et al., 2001; Marcus et al., 2001). These receptors are attrac-
tive targets for the development of a range of novel therapeutic
agents with potential for treating sleep disorders, obesity, stress-
related disorders, and addiction. The first orexin-related drugs
to appear will be the dual orexin receptor antagonists (DORAs)
for the treatment of insomnia (Uslaner et al., 2013; Winrow and
Renger, 2013), but there is significant interest in developing sin-
gle orexin receptor-specific antagonists (SORAs). However, much
remains unknown about the cellular actions of each receptor and
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the behavioral consequences of activation or inhibition of each
receptor at their many targets.

In this study, we focus on mesopontine cholinergic [laterodor-
sal tegmental nucleus (LDT)] and monoaminergic [dorsal raphe
(DR) and locus coeruleus (LC)] neurons, which participate in
a spectrum of functions that include the control of arousal and
sleep (Jones, 2005; Brown et al., 2012), the maintenance of motor
activity and muscle tone during arousal (Jacobs and Fornal, 1993;
Michelsen et al., 2007), the mediation of stress related actions
and adaptation (Lowry et al., 2005; Valentino and Van Bockstaele,
2008) and the stimulation of motivated behavior via projections
to midbrain dopamine systems (Maskos, 2008; Mena-Segovia
et al., 2008). These structures, and especially the LC, receive sub-
stantial orexinergic innervation (Peyron et al., 1998; Chemelli
et al., 1999; Nambu et al., 1999), and orexin terminals have been
shown to synapse upon tyrosine hydroxylase immunoreactive
neurons in LC (Horvath et al., 1999), cholinergic neurons in the
LDT (Cid-Pellitero and Garzón, 2011) and DR neurons (Del Cid-
Pellitero and Garzón, 2011). Evidence from in-situ hybridization
studies in rat (Marcus et al., 2001) indicate that moderate levels
of OX1 mRNA are expressed in LDT and DR while especially high
levels of OX1 mRNA are expressed in the LC. These studies also
found moderate levels of OX2 mRNA levels in the DR with lower
levels in the LDT and LC. Consistent with this innervation pattern
and receptor distribution, exogenously applied orexins directly
depolarize LDT (Burlet et al., 2002; Kohlmeier et al., 2008) and
related PPT (Kim et al., 2009) neurons, along with DR (Brown
et al., 2002; Liu et al., 2002; Kohlmeier et al., 2008) and LC neu-
rons (Horvath et al., 1999; Ivanov and Aston-Jones, 2000; Li et al.,
2002; Hoang et al., 2003; Murai and Akaike, 2005) partly, by
activating a cation current. Orexin-A has also been shown pre-
viously to have a distinct modulatory role in the LDT and DR
by augmenting the Ca2+ influx mediated by L-type Ca2+ chan-
nels (Kohlmeier et al., 2008). However, the roles played by each
receptor in these actions are unknown.

Early studies of orexin receptors using heterologous expression
found that both receptors stimulate Ca2+-release from intracel-
lular stores (Sakurai et al., 1998; Smart et al., 1999) and activate
phospholipase C (PLC) (Lund et al., 2000; Holmqvist et al., 2002),
suggesting they are Gq coupled receptors. More recent studies
indicate these receptors can couple to multiple G-proteins and
therefore may utilize more diverse signaling cascades, however,
much less is known about the signaling targets of native orexin
receptors (for review see Kukkonen and Leonard, 2013). Evidence
from studies of brain slices or freshly dissociated neurons indi-
cate that native orexin receptors mediate neuronal depolarization
from resting membrane potential by activating three classes of
effectors (for review see Leonard and Kukkonen, 2013): closure of
K+ channels (Ivanov and Aston-Jones, 2000; Hwang et al., 2001;
Bayer et al., 2002; Grabauskas and Moises, 2003; Hoang et al.,
2003, 2004; Ishibashi et al., 2005; Bisetti et al., 2006), forward acti-
vation of the electrogenic Na+/Ca2+ exchanger (Eriksson et al.,
2001; Wu et al., 2002, 2004; Burdakov et al., 2003), activation of
a cation current (Brown et al., 2002; Yang and Ferguson, 2002,
2003; Murai and Akaike, 2005; Kohlmeier et al., 2008) and can ele-
vate intracellular [Ca2+] (Van Den Pol et al., 1998; Van Den Pol,
1999; Uramura et al., 2001; Xu et al., 2002; Kohlmeier et al., 2004,

2008; Ishibashi et al., 2005). Only limited information is available
about the particular receptors mediating these actions, especially
since receptor overlap is common and subtype-specific antago-
nists are lacking. Conclusions about native receptor function has
often relied upon the relative potencies of orexin-A and -B, based
on the high potency of orexin-A for both receptors and the ∼10-
fold lower potency of orexin-B for OX1 expressed in CHO cells
(Sakurai et al., 1998). However, agonist-based receptor determi-
nations have numerous potential confounds (see Leonard and
Kukkonen, 2013) including differing stability of agonists, differ-
ing receptor levels and the possibility of biased agonism, as has
been proposed for expressed orexin receptors (Putula et al., 2011).

To avoid these potential limitations, we sought to determine
the actions of each receptor in LDT, DR, and LC neurons using
a genetic dissection approach: We examined the actions by each
receptor using whole-cell recording and Ca2+ imaging methods
in brain slices from knockout mice constitutively lacking either
receptor thereby allowing us to determine the functional capac-
ity of each receptor in isolation. This revealed that OX1 and OX2

have both convergent and unique functions in LDT, DR, and
LC neurons. These findings have implications for understanding
the cellular functions of orexin receptors, the behavioral conse-
quences of orexin signaling at these loci and some consequences
for using receptor specific antagonists as therapeutics.

MATERIALS AND METHODS
All procedures complied with National Institutes of Health (US)
and institutional guidelines (New York Medical College) for eth-
ical use of animals and were approved by the New York Medical
College Institutional Animal Care and Use Committee (IACUC).

ANIMALS AND GENOTYPING
Brain slices for whole cell recordings were prepared from 14 to 32
day old C57BL6, background control (orexin receptor wild-type;

OxrWT), OX−/−
2 , OX−/−

1 , and OX−/−
1 /OX−/−

2 double knockout
(DKO) mice. In those cases where calcium imaging was being per-
formed with the cell permeant fura-2AM, mice aged 9–15 days
old were utilized. Both male and female mice were used in this
study and receptor knockout mice were the offspring of breeders
that were both homozygous for the null alleles on mixed C57BL6
and 129SvEv genetic backgrounds. The OxrWT mice were bred

from the wild-type progeny of the OX+/−
2 parents used to make

the OX−/−
2 mice. The OxrWT, OX−/−

2 , OX−/−
1 , and DKO mice

have been described previously (Willie et al., 2003; Kalogiannis
et al., 2011; Mieda et al., 2011).

To confirm genotypes, tail biopsies were obtained during
slice preparation and subsequently analyzed by PCR. One set
of primers were used to determine if the mouse was either
a wild-type or knockout for each orexin receptor. The three
primers for OX1 consisted of a common primer (5′-CTCTTTC
TCCACAGAGCCCAGGACTC-3′), a knockout primer (5′-TGA
GCGAGTAACAACCCGTCGGATTC-3′) and a wild-type primer
(5′gCAAGAATGGGTATGAAGGGAAGGGC-3′). The expected
product sizes were ∼320 base pairs for the wild-type allele
and ∼500 base pairs for the knockout allele. The three primers for
OX2 consisted of a common primer (5′-CTGGTGCAAATCCCC
TGCAAA-3′), a knockout primer (5′-GGTTTTCCCAGTCAC
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GACGTTGTA-3′) and a wild-type primer (5′-AATCCTTCTAGA
GATCCCTCCTAG-3′). The expected product sizes were ∼620
base pairs for wild-type allele and ∼300 base pairs for the knock-
out allele. These two sets of primers for different orexin receptors
were processed separately. PCR amplification consisted of denatu-
ration at 95◦C for 8 min followed by 35 cycles of 94◦C (30 s), 62◦C
(30 s) and 72◦C (1 min), followed by one cycle at 72◦C for 10 min.
The result of each PCR reaction was then separated using a 2%
agarose gel, and the PCR product was visualized with ethidium
bromide.

BRAIN SLICES AND ELECTROPHYSIOLOGY
Brain slices (250 μm) were prepared using a Leica vibratome
(VT1000S) in ice-cold artificial cerebrospinal fluid (ACSF) which
contained (in mM): 121 NaCl, 5 KCl, 1.2 NaH2PO4, 2.7 CaCl2,
1.2 MgSO4, 26 NaHCO3, 20 dextrose, 4.2 lactic acid and was oxy-
genated by bubbling with carbogen (95% O2 and 5% CO2). Slices
containing the LDT, DR, or LC were incubated at 35◦C for 15 min
in oxygenated ACSF, and were then stored at room temperature
in continuously oxygenated ACSF, until they were utilized for
recordings.

For recording, slices were placed in a submersion chamber
on a fixed-stage microscope (Olympus BX50WI) and superfused
(1–2 ml/min) with ACSF (23 ± 2◦C). Regions for recording were
chosen from within the boundaries of the LDT, DR, or LC nuclei
determined using a 4X objective and brightfield illumination.
Neurons were then visualized with a video camera and DIC
optics using a 40X water immersion objective (Olympus; NA
0.8). Large to medium sized multipolar neurons were selected
for gigaseal recording in voltage clamp or current clamp mode
using an Axoclamp 2A or Axopatch 2A or 2B amplifier (Axon
Instruments). Borosilicate patch pipettes (2–5 MOhms; cat num-
ber 8050, AM systems) containing a solution of (in mM) 144
K-Gluconate, 0.2 EGTA, 3 MgCl2, 10 HEPES, 0.3 NaGTP, 4
Na2ATP. Biocytin (0.1%) with the Na-GTP added to the pipette
solution just before use.

DRUGS AND EXPERIMENTAL SOLUTIONS
Normal ACSF contained (in mM) 124 NaCl, 5 KCl, 1.2
NaH2PO4, 2.7 CaCl2, 1.2 MgSO4, 26 NaHCO3 and 10 dextrose
(295–305 mOsm). To block voltage-gated sodium channels and
fast synaptic potentials, the ACSF (DABST-containing) contained
the ionotropic receptor antagonists DNQX (15 μM, Sigma), APV
(50 μM, Sigma), bicuculline (10 μM, Sigma), and strychnine
(2.5 μM, Sigma) with TTX (500 nM, Alomone). To measure the
average orexin-A mediated post-synaptic current and its I-V rela-
tion in LDT and DR neurons, CsCl (2 or 3 mM) was added
to the DABST to block H-current and a low Ca2+ ACSF was
used to inhibit voltage-gated Ca2+ currents. [Ca2+] was buffered
to <20 μM by the addition of 2.7 mM EGTA (calculated with
Patcher’s Power Tools XOP for Igor Pro). Orexin-A (Sigma, USA;
Phoenix Pharmaceuticals, USA; American Peptides, USA; Peptide
international, USA) was dissolved in deionized water or physi-
ological saline in 1 mM aliquots and frozen (−80◦C). Aliquots
were dissolved in ACSF to a final concentration of 300 nM imme-
diately before use. The L-type Ca2+ channel antagonist nifedipine
and agonist, Bay-K-8644 (Bay-K; Sigma, USA) were dissolved

in DMSO to a stock concentration of 10 mM and delivered at
the final concentration of 10 μM in ACSF. Bisindolylmaleimide
I, HCl (Calbiochem, EMD Biosciences) was dissolved in DMSO
to a stock concentration of 5 mM. On the day of experiments
it was diluted in TTX-ACSF to a final concentration of 1 μM
and applied for 5 min prior to application of orexin. Final dilu-
tions of these drugs were made immediately before application
and light exposure was minimized throughout preparation and
application.

Ca2+ IMAGING
Fluorescence related to intracellular calcium concentration was
measured from neurons in slices that had been either individ-
ually filled with bis-fura-2 from patch pipettes or bulk-loaded
with fura-2AM. The patch solution for Ca2+ imaging contained
the potassium salt of bis-fura-2 (50 μM, Molecular Probes) dis-
solved in a solution containing (in mM) 144 K-gluconate, 3
MgCl2, 10 HEPES, 0.3 NaGTP, and 4 Na2ATP. Biocytin (0.1%)
or biotinylated Alexa-594 (25 μM; Invitrogen) was included in all
experiments for cell identification following slice fixation.

For bulk loading neurons with fura-2, slices from young mice
(P6-P17) were incubated in ACSF containing 15 μM fura-2AM
(Molecular Probes) prepared from a 3.3 mM stock of fura-2AM
in DMSO. Slices were incubated for 30 min at 36◦C in a small
volume equilibrated with Carbogen (5% CO2/95% O2). Slices
were then transferred to the recording chamber and rinsed for
at least 30 min to ensure de-esterification and temperature equili-
bration. After locating a recording region in the LDT, DR, or LC,
individual cells were imaged with the 40× water immersion lens.

Ca2+ transients were monitored by measuring the emission
at 515 nm resulting from excitation of fura-2 with 380 nm (F380;
71000 Chroma fura-2 filter set) from a shuttered 75W Xenon
light source. Optical recordings were made using a back illumi-
nated, frame-transfer, cooled CCD camera system (EEV 57 chip,
Micromax System, Roper Scientific) that was controlled with cus-
tom software (TI Workbench) running on a Mac OS computer.
Images were either acquired discontinuously (every 1–4 s) with
the shutter closed between images (600 ms exposure) or continu-
ously (∼50 ms/frame), with the shutter open for the entire epoch.
Changes in intracellular calcium concentration were inferred
from changes in delta F/F (dF/F) where F is the fluorescence at
rest within a ROI following subtraction of background fluores-
cence. dF is the change in fluorescence following subtraction of
the average F prior to stimulation. dF/F was usually corrected
for photobleaching. Since rises in [Ca2+] produce a decrease in
F380 with fura-2, all dF/F measures are inverted so positive-going
traces indicate elevation of [Ca2+]i.

IMMUNOCYTOCHEMISTRY
Recorded neurons were identified as cholinergic, serotonergic
or noradrenergic by using conventional immunocytochemistry
following slice fixation in 4% paraformaldehyde, cryoprotection
and re-sectioning at 40 μm on a freezing microtome. Filled neu-
rons were visualized with avidin-Texas Red or Alexa-594 biocytin.
Cholinergic neurons in the LDT selectively co-localize the enzyme
neuronal nitric oxide synthase (nNOS; Vincent et al., 1983)
and were identified by immunolabeling for nNOS (1:400 rabbit
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polyclonal, Sigma, Cat N7280). Serotonergic neurons in the DR
were identified by immunolabeling for tryptophan hydroxylase
(TpH; 1:400 sheep polyclonal, Abcam, 3907 and Covance, PSH-
327P). Catecholamine neurons in the LC were identified by
immunolabeling for tyrosine hydroxylase (TH; 1:1000, rabbit
polyclonal, Abcam, Cat 112). For immunofluorescence, primary
antibodies were visualized with FITC or Alexa 488-labeled sec-
ondary antibodies. Following washing and mounting, cleared sec-
tions were imaged using appropriate filter sets with a CCD camera
(Coolsnap, Roper Scientific or QICam, QImaging) mounted on
an epi-fluorescence microscope (BX60; Olympus). For immuno-
histochemistry primary antibodies were visualized with biotiny-
lated secondary antibodies and the tissue was processed with a
Vector ABC kit as per the manufacturer’s instructions and reacted
with Sigma’s FastDAB kit for 5 min (Sigma-Aldrich, St. Louis,
MO). The precipitation reaction was stopped with three rises of
PBS and the sections were mounted on slides and coverslipped.

RNA ISOLATION FROM WHOLE BRAINSTEM
To isolate RNA from whole brainstems, C57BL6, OX−/−

1 , OX−/−
2 ,

DKO, and 129SvEv mice were anesthetized and decapitated as for
brain slices. The brainstems were then rapidly dissected from the
whole brain starting ∼5 mm anterior to the superior colliculus to
the medulla, and the cerebellum was removed. The brainstems
were then flash-frozen in liquid nitrogen. Total RNA was iso-
lated from the frozen tissue using the RNeasy Lipid Tissue Mini
kit (Qiagen). RNA quality and quantity was determined by the
A260/A280 ratio from the spectrophotometer.

Standards were generated from cDNA isolated from the
C57BL6 brainstem. The cDNA was loaded with primers of the
gene of interest and amplified using a conventional PCR for 35
cycles. The product was then run on a gel to determine the
specificity of the amplification. If there was a single band of
the predicted size, the concentration of the PCR product was
determined through spectrophotometry and serially diluted. This
technique was utilized with all the primers to create scales unique
for each gene of interest. These scales were used to correlate target
mRNA fluorescence to sample starting concentration. Scales were
created for OX1 and for each of the two splice variants of OX2

identified in mouse: OX2α and OX2β (Chen and Randeva, 2004;
Chen et al., 2006). OX1 mRNA scales ranged from 1.8 × 10−2 to
1.8 × 10−5μg/ml. OX2α mRNA scales ranged from 7.7 × 10−2 to
7.7 × 10−5 μg/ml. OX2β mRNA scale ranged from 9.0 × 10−3

to 9.0 × 10−6 μg/ml.

LIGHT CYCLER REAL TIME PCR
A 20 μl volume of the RNA solution, with ∼1 μg of total RNA
from each sample was reverse transcribed using random primers
and the Improm II Reverse Transcription (RT) kit (Promega).
The samples were incubated with random primers for 5 min
at 70◦C, 5 min at 4◦C and 1 h at 37◦C followed by 70◦C for
15 min. The RT product was then aliquoted and stored at −20◦C.
Two microliters of the RT product were loaded with SYBR
green I reagent, 25 mM MgCl2 and primers to a final vol-
ume of 20 μl. Primers for OX1, OX2α, and OX2β were loaded
at a constant concentration (10 μM) for their respective runs
(Invitrogen). The following sequences were used to amplify
the genes of interest: OX1 forward: 5′-TGCCGCCAACCCTATC

ATCT-3′ reverse: 5′-GTGACGGTGGTCAGCACGAC-3′ (which
corresponds to pubmed genbank NM_198959, 1364-1547); OX2α

forward: 5′-GAGACAAGCTTGCAGCACTGAG-3′ reverse: 5′-
TGAGTCGGGTATCCTCATCATAG-3′; OX2β forward: 5′-GAG
ACAAGCTTGCAGCACTGAG-3′ reverse: 5′-GGTCGGTCAATG
TCCAATGTTC-3′ (Chen and Randeva, 2004; Chen et al., 2006).
Each sample was loaded in duplicate (Roche, Lightcycler RT-
PCR). Light cycler protocols for mRNA quantification consisted
of denaturation at 95◦C (485 s), cycling 40 times at 94◦C (5 s),
64◦C (10 s), and 76◦C (14 s). The same amount of total RNA was
loaded into each capillary tube for the lightcycler. The measured
starting amount of target mRNA was then normalized by the
amount of total RNA loaded. The mRNA/total RNA ratios were
subsequently compared between samples obtained from C57BL6,

OX−/−
1 , OX−/−

2 , DKO, and 129SvEv mice. Lightcycler products
were then visualized with ethidium bromide in 2% agarose gels to
confirm the presence of the RT-PCR target.

DATA ANALYSIS
Data analysis and figure preparation was done using Igor
Pro (Wavemetrics) software. Differences between means were
determined by paired or unpaired Student’s t-test or a One
Way ANOVA using MS excel or DataDesk 6 software (Data
Description, Inc). Non-parametric comparisons were conducted
utilizing Chi-Square analysis using excel or DataDesk 6 or the
Kolmogorov-Smirnov test using Igor Pro. Numerical results are
reported as mean ± SEM.

RESULTS
PRINCIPAL NEURONS IN THE LDT, DR, AND LC APPEAR NORMAL IN
OREXIN RECEPTOR NULL MICE
To determine if the absence of orexin receptors resulted in
gross anomalies in the development of brainstem cholinergic
and monoaminergic nuclei, we inspected immunohistochem-
ically stained tissue sections through the LDT, DR, and LC.
We examined nNOS, TpH, and TH staining in sections from
C57BL6 mice (n = 2) and from mice lacking one or both recep-
tors (n = 2 for each genotype). Figure 1 shows comparable tissue
sections through the LDT, DR, and LC from a C57BL6 mouse
(left column) and a DKO mouse (right column) stained for
nNOS (top row), TpH (middle row), and TH (bottom row).
Immunoreactivity appeared highly specific and the expected
pools of labeled neurons were observed in sections from each
genotype. No gross differences were observed in distribution of
stained neurons or in the range of cell shapes in any of the recep-
tor knockouts. This suggests that mesopontine cholinergic and
monoaminergic neurons will be found in their expected loca-
tions and will be encountered at about the same rate in brain slice
experiments from normal and receptor knockout mice. Of course,
this qualitative observation does not rule out quantitative differ-
ences that might be present between knockout and wild type mice
(see Kalogiannis et al., 2010; Valko et al., 2013).

OREXIN-A PRODUCES COMPARABLE NOISY INWARD CURRENT IN
SLICES FROM C57BL6 AND HYBRID BACKGROUND CONTROL MICE
In our previous studies of orexin actions on LDT and DR
neurons, we conducted whole-cell recordings and Ca2+ imaging
using slices made from C57BL6 mice (Burlet et al., 2002;
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FIGURE 1 | Double orexin receptor knockout (DKO) mice showed

grossly normal distributions of brainstem cholinergic and

monoaminergic neurons. (A) nNOS immunolabeled sections through the
caudal LDT stained with DAB from a C57BL6 mouse (left) and a DKO
mouse (right). (B) TpH immunolabeled sections through the caudal DR
stained with DAB from a C57BL6 mouse (left) and a DKO mouse (right). (C)

TH immunolabeled sections through the LC stained with DAB from a
C57BL6 mouse (left) and a DKO mouse (right). Abbreviations: Aq,
Aqueduct; scp, superior cerebellar peduncle.

Kohlmeier et al., 2004, 2008). Since receptor null mice were on
C57BL6/129SvEv hybrid background, we initially examined the
ability of a bath application of orexin-A (300 nM) to evoke an
inward current from a holding potential of −60 mV in LDT
and DR neurons in slices from C57BL6 and background con-
trol mice (OxrWT). As expected, orexin-A activated a noisy
inward current in both nuclei and this current appeared iden-
tical in both strains. In the LDT, we recorded 16 neurons from
13 C57BL6 mice and 7 neurons from 6 OxrWT mice. There
was no difference in the mean current (C57BL6: −19.1 ± 2.4
pA; OxrWT: −15.2 ± 3.1 pA; P = 0.38) and there was no dif-
ference in the distribution of current amplitudes, including the
three C57BL6 and two OxrWT neurons that didn’t respond
(Kolmogorov-Smirnov test, P = 0.24). In the DR, we recorded 31
neurons from 22 C57BL6 mice and 16 neurons from 8 OxrWT
mice. There was no difference in the mean current from cells that
responded to orexin (C57BL6: −36.3 ± 2.9 pA; OxrWT: −36.9 ±
3.2 pA; P = 0.89) and there was no difference in the distri-
butions, including the one C57BL6 and two OxrWT neurons
that didn’t respond (Kolmogorov-Smirnov test, P = 1). This sug-
gests that the differences in genetic background of C57BL6 and
hybrid mice has little influence on the expression of orexin
currents.

ACTIVATION OF OX1 PRODUCES INWARD CURRENT AND ENHANCED
Ca2+ TRANSIENTS IN LDT, DR, AND LC NEURONS
To test the ability of OX1 to sustain orexin signaling in the LDT,

DR, and LC, we recorded from slices made from OX−/−
2 mice and

compared the orexin responses obtained in these knockouts with
those in slices obtained from C57BL6 mice (Figure 2). In each
nucleus, we examined the ability of a bath application of orexin-
A (300 nM) to evoke an inward current from a holding potential
of −60 mV and to enhance the Ca2+ influx produced by a voltage-
step from −60 to −30 mV.

In LDT neurons recorded from OX−/−
2 mice, orexin-A evoked

a slowly developing inward current, often with an increase in fre-
quency and amplitude of sEPSPs (Figure 2A1; normal ACSF) that
appeared quite similar to the responses previously described in
nNOS+ LDT neurons (Burlet et al., 2002). We did not analyze
the increase in sEPSC frequency in detail, but we compared the
average magnitude of the slowly developing inward orexin current
recorded from a holding potential of −60 mV (low-Ca2+ DABST-
containing ACSF with Cs). This post-synaptic depolarizing cur-
rent was −40.7 ± 13.0 pA (n = 7) which was not statistically
different from the inward current measured from LDT neurons
in slices from C57BL6 mice recorded under identical condi-
tions (32.8 ± 10.6 pA; n = 8; P > 0.05; Figure 2D1). Orexin-A
(300 nM) also enhanced the Ca2+-transient evoked by a 5 s
voltage-jump from −60 to −30 mV by 30.4 ± 6.4% (n = 9/12)

in neurons from OX−/−
2 mice (Figure 2A2; DABST-containing

ACSF). The magnitude of this Ca2+ transient enhancement was
also not different from that measured in LDT neurons from
C57BL6 mice (31.1 ± 7.7%; n = 9/13; P > 0.05; Figure 2D2).

In DR neurons recorded in slices from OX−/−
2 mice, orexin A

(300 nM) also evoked a slow inward current (Figure 2B1; normal
ACSF) as observed previously (Brown et al., 2002; Liu et al., 2002;
Kohlmeier et al., 2008). These inward currents were not accom-
panied by increases in sEPSCs, as expected from a previous study
(Haj-Dahmane and Shen, 2005). The average amplitude of the
orexin-evoked slow inward current was −55.2 ± 14.4 pA (n =
8; low-Ca2+ DABST-containing ACSF with Cs). This was not
statistically different from the orexin-evoked current measured
from DR neurons in slices from C57BL6 mice under the same
conditions (88.0 ± 24.1 pA; n = 7; P > 0.05; Figure 2D1). In
the voltage-step paradigm, orexin-A (300 nM) also enhanced the
Ca2+-transient evoked by steps from −60 to −30 mV by 32.3 ±
8.7% (n = 13/18) in neurons from OX−/−

2 mice (Figure 2A2;
DABST-containing ACSF) as reported in wild-type DR neurons
(Kohlmeier et al., 2008). This enhancement in neurons from
OX−/−

2 mice was also not different from that measured in DR
neurons from C57BL6 mice (28.6 ± 3.5, n = 9/14; P > 0.05;
Figure 2D2) recorded under the same conditions.

In LC neurons from OX−/−
2 mice, orexin-A (300 nM) pro-

duced a small, slow inward current (Figure 2C1; normal ACSF).
The average current evoked by orexin-A was 11.4 ± 1.2 pA (n =
28; DABST-containing ACSF) and was not different from the
average current measured from LC neurons in slices from C57BL6
mice under the same conditions (12.4 ± 1.8 pA; n = 12; P >

0.05; Figure 2D1). Orexin-A (300 nM) also produced a strong
enhancement of the Ca2+ transient evoked by a voltage step

www.frontiersin.org December 2013 | Volume 7 | Article 246 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Neuropharmacology/archive


Kohlmeier et al. Differential functions of orexin receptors

FIGURE 2 | Recordings from OX
−/−
2

slices indicate that OX1 is sufficient

for orexin-mediated excitation and enhancement of voltage-dependent

Ca2+ transients in LDT, DR, and LC neurons. (A) Whole-cell voltage clamp
recording from LDT neurons in OX−/−

2 slices showed that 300 nM orexin-A
(Orx-A) still evoked an inward current with increased sEPSCs [holding
potential: −60 mV; (A1); normal ACSF] and also augmented the Ca2+
transients evoked by 5 s voltage-steps from −60 to −30 mV [(A2);
DABST-containing ACSF]. (B) Voltage clamp recordings from DR neurons in
OX−/−

2 slices showed that orexin-A evoked an inward [holding
potential: −60 mV; (B1); normal ACSF] and augmented Ca2+ transients [(B2);
DABST-containing ACSF]. (C) Voltage clamp recordings from LC neurons in
OX−/−

2 slices showed that orexin-A evoked an inward current [holding
potential: −60 mV; (C1); normal ACSF] and augmented Ca2+ transients [(C2);

DABST-containing ACSF]. In (A1,B1,C1), the horizontal bar indicates time of
300 nM orexin-A superfusion. In (A2,B2,C2), top traces show somatic
Ca2+-dependent fluorescence (dF/F); Middle traces show whole-cell current;
Bottom traces show membrane voltage. Calibration bars indicate 2% dF/F,
200 pA, 30 mV, and 2 s. (D) Neither the orexin-evoked inward current nor the
orexin-enhanced voltage-dependent Ca2+ transients was different in neurons
from OX−/−

2 slices compared to wild-type slices. Comparison by nuclei of the
mean ± SEM of the post-synaptic inward current [(D1); LDT and DR recorded
in low-Ca2+ DABST-containing ACSF with Cs; LC recorded in
DABST-containing ACSF] and mean ± SEM of the Ca2+ transient
enhancement [(D2); DABST-containing ACSF] produced by orexin-A in
neurons recorded from OX−/−

2 slices and C57BL6 slices under the same
conditions.

from −60 to −30 mV (Figure 2C2; DABST-containing ACSF)
in LC neurons. This enhancement was on average 27.2 ± 4.8%
(n = 11/17) and was not different from that obtained from LC
neurons from C57BL6 mice (50.19 ± 19.1%; n = 6/8; P > 0.05;
Figure 2D2) recorded under the same conditions. Collectively,
these data indicate that OX1 is sufficient to mediate two normal
actions of orexin on LDT, DR, and LC neurons: (1) post-synaptic
activation of a slowly developing inward current and (2) the
enhancement of voltage-dependent Ca2+ influx.

To determine if OX1 mediated these actions in principal neu-

rons from each nucleus, we processed brain slices from OX−/−
2

mice for immunocytochemistry to identify the transmitter phe-
notype of recorded neurons. In the LDT, we confirmed that
OX1 activation produced an inward current in six nNOS+
neurons and that OX1 activation enhanced the voltage-step

evoked Ca2+ transient in four nNOS+ neurons. In the DR,
we confirmed that OX1 activation produced an inward current
in nine TpH+ neurons and enhanced the voltage-step evoked
Ca2+ transient in four TpH+ neurons. Similarly, in the LC,
we confirmed that OX1 activation produced an inward cur-
rent in 24 TH+ neurons and enhanced the voltage-step evoked
Ca2+ transient in 2/4 TH+ neurons. Figure 3 illustrates exam-
ples of an nNOS+ neuron recorded in the LDT (Figure 3A),
a TPH+ neuron recorded in the DR (Figure 3B) and a TH+
neuron recorded in the LC. Each of these neurons showed
an OX1-mediated inward current and an enhancement of the
Ca2+ transient evoked by voltage steps from −60 to −30 mV.
From these data we conclude that OX1 is sufficient to medi-
ate major direct orexin actions on principal cells of these
nuclei.
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FIGURE 3 | Stimulation of OX1 alone is sufficient to produce inward

currents and augmented voltage-dependent Ca2+ transients in

nNOS+ LDT neurons (A), TpH+ DR neurons (B), and TH+ LC

neurons (C). Left column illustrates low-power fluorescent micrographs
of the recorded slices immunostained and visualized with an
Alexa-488-label (green) for nNOS in LDT (A), TpH in DR (B), and TH in

the LC (C). The second column illustrates a higher-power image of the
recorded and red fluorescently labeled neuron (arrow; Alexa 594) in
each nucleus. The third column shows the same field with Alexa 488
visualized. The right column merges the Alexa 488 and 594 images and
indicates that each recorded neuron was immunopositive for nNOS,
TpH, and TH, respectively.

OX1 ACTIVATES A NOISY CATION CURRENT IN LDT AND DR NEURONS
AND ENHANCES Ca2+ TRANSIENTS MEDIATED BY L-TYPE Ca2+
CHANNELS IN LDT, DR, AND LC NEURONS
As noted above, previous studies of LDT and DR neurons indi-
cate that a noisy non-selective cation current is an important
effector mediating the slow membrane depolarization produced
by orexin-A. We therefore examined the change in membrane
noise and the current-voltage relation of the current evoked

in LDT and DR neurons from OX−/−
2 mice to determine if

OX1 is competent to activate a similar current. Since current
evoked by orexin-A in LC neurons was quite small in our record-
ings, and since they did not show a similar increase in noise,
we did not further characterize their orexin currents. In both
LDT (Figure 4A1) and DR (Figure 4B1) neurons from OX−/−

2
mice, orexin-A (300 nM) produced an inward current that was
accompanied by a large increase in membrane current noise,
similar to that reported in wild-type mice (Kohlmeier et al.,
2008). The membrane current noise increased by 118.4 ± 59.3%
in LDT neurons (n = 8) and by 307 ± 87.0% in DR neurons
(n = 7) which was not different from values in LDT (86.8 ±
31.3%, n = 8; P > 0.05) and DR (380.5 ± 85.2%; n = 7; P >

0.05) from C57BL6 mice. Similarly, the I-V relation for the
orexin mediated current in LDT (Figure 4A2) and DR neu-

rons (Figure 4B2) from OX−/−
2 mice was computed from voltage

ramps between −100 and −35 mV. It appeared roughly lin-
ear over this range as previously described for C57BL6 neurons
in these nuclei (Kohlmeier et al., 2008) suggesting that OX1

activates the same channel or channels that are activated in
C57BL6 mice.

In LDT and DR neurons from C57BL6 mice, the orexin
mediated enhancement of voltage-dependent Ca2+ transients
produced by voltage-steps from −60 to −30 mV is produced
almost entirely by the enhancement of Ca2+ transients generated
by L-type Ca2+ channels (Kohlmeier et al., 2008). We there-
fore tested whether the L-channel antagonist nifedipine (10 μM),
also occludes this enhancement in LDT, DR, and LC neurons
in slices from OX2 mice. Nifedipine alone, attenuated the Ca2+
transient produced by a voltage-step from −30 to −60 mV in
LDT (Figure 4C), DR (Figure 4D), and LC (Figure 4E) neurons
indicating that activation of L-type channels contribute to these
transients. In the presence of nifedipine, orexin failed to sig-
nificantly enhance the calcium transient in all cells examined
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FIGURE 4 | Stimulation of OX1 alone activates a noisy cation current in

LDT and DR neurons and enhance voltage-dependent Ca2+ transients

mediated by L-type Ca2+ channels in LDT, DR, and LC neurons. (A1)

Holding current (at −60 mV; Ibase; bottom trace) and membrane current
noise (Irms; top trace) were measured every 30 s starting before bath
application of 300 nM orexin-A (horizontal bar) from LDT neurons in OX−/−

2
slices. Orexin produced an inward shift in holding current that was
accompanied by an increase in current noise. (A2). The I-V curve of the
orexin-evoked inward current (IOrx) was obtained by subtracting the
membrane current produced by a voltage ramp between −100 and −35 mV
prior to orexin-A application from that obtained during the peak of the
orexin-A-evoked inward current. These currents were similar to those

obtained from LDT neurons in C57BL6 slices. (B1) Orexin-A (300 nM) has a
similar, but larger effect on the holding current (Ibase, bottom) and membrane
current noise (Irms, top) in DR neurons recorded in OX−/−

2 slices. (B2) The I-V
relation for the orexin-evoked inward current (IOrx) in a DR neuron from an
OX−/−

2 slice was similar that that observed in DR neurons from C57BL6
slices. (C,D,E). The L-channel antagonist, nifedipine (Nif, 10 μM) attenuated
the Ca2+-transients evoked by voltage-steps from −60 to −30 mV in LDT (C),
DR (D), and LC (E) neurons from OX−/−

2 slices and completely blocked the
enhancement of these transients by orexin-A (300 nM). Top traces show
somatic Ca2+-dependent fluorescence (dF/F); Middle traces show whole-cell
current; Bottom traces show membrane voltage. Calibration bar labels in (E),
also apply to (C) and (D).

within the LDT, DR, or LC (LDT: 9% reduction in the transient,
P > 0.05. n = 4; DR: 5.2% reduction in the transient, P > 0.05,
n = 4; LC: 1.8% increase in the transient, P > 0.05, n = 4). These
data suggest that the Ca2+ transients augmented by OX1 signaling
are mediated by enhanced influx via L-type Ca2+ channels. Thus,
activation of OX1 alone is sufficient to activate a noisy cation cur-
rent in LDT and DR neurons and to enhance Ca2+ transients
which appear generated by L-type Ca2+ channels in the LDT, DR,
and LC.

ACTIVATION OF OX2 EXCITES DR NEURONS AND ENHANCES Ca2+
TRANSIENTS IN LDT, DR, AND LC NEURONS
To determine whether activation of OX2 alone can influence
membrane currents and Ca2+ transients in LDT, DR, and LC
neurons, we examined the action of orexin-A in slices pre-
pared from mice lacking OX1. Whole-cell recordings from LDT
(n = 14) and LC (n = 45) neurons revealed that in that absence
of OX1, 300 nM orexin-A failed to induce a detectable inward
current at a holding potential of −60 mV (Figures 5A1,C1).
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FIGURE 5 | Stimulation of OX2 alone is sufficient to produce an inward

current in DR neurons and to enhance voltage-dependent Ca2+
transients in LDT, DR, and LC neurons. (A) Whole-cell voltage clamp
recordings obtained from LDT neurons in OX−/−

1 slices showed that 300 nM
orexin-A (Orx-A) failed to evoke a current at −60 mV (A1) but augmented
voltage-dependent Ca2+ transients evoked by 5 s voltage-steps from −60
to −30 mV (A2). (B) Voltage clamp recordings obtained from DR neurons in
OX−/−

1 slices showed that orexin-A evoked both a noisy inward current
(holding potential: −60 mV; B1) and augmented voltage-dependent Ca2+
transients (B2). (C) Voltage clamp recordings obtained from LC neurons in
OX−/−

1 slices showed that orexin-A failed to evoke an inward current (holding

potential: −60 mV; C1) but augmented voltage-dependent Ca2+ transients
(C2). In (A1,B1,C1), the horizontal bar indicates time of 300 nM orexin-A
superfusion. In (A2,B2,C2), Top traces show somatic Ca2+-dependent
fluorescence (dF/F); Middle traces show whole-cell current; Bottom traces
show membrane voltage. Calibration bars indicate 2% dF/F, 200 pA, 30 mV
and 2 s. (D) The orexin-A evoked inward current was absent in LDT and LC
neurons and was significantly smaller in DR neurons from OX−/−

1 slices than
in DR neurons from C57BL6 slices (D1; ∗P < 0.05). In contrast, the
magnitude of the Ca2+ transient enhancement produced by orexin-A was the
same in LDT, DR, and LC neurons from OX−/−

1 slices compared to those
recorded in C57BL6 slices.

In contrast, orexin-A application to DR neurons resulted in
significant inward current with a large increase in membrane
noise (Figure 5B1). Nevertheless, the average peak inward cur-
rent elicited by orexin-A in DR neurons (32.2 ± 6.3 pA; n = 8)
was significantly lower than observed in control recordings from
DR neurons in slices from C57BL6 mice (88.0 ± 24.1 pA; n = 7;
P < 0.05; Figure 5D1).

Despite being unable to stimulate inward currents in LDT

and LC neurons from OX−/−
1 mice, orexin-A was effective at

enhancing Ca2+ transients evoked by voltage-jumps from −60
to −30 mV in LDT, DR and LC neurons (Figures 5A2,B2,C2).
In fact, on average the magnitude of the enhancement in the
absence of OX1 (LDT: 50.6 ± 9.0%, n = 7/17; DR: 36.5 ± 10.4,
n = 11/18; LC: 37.3 ± 5.5, n = 8/13) was as large as observed
in control neurons from C57BL6 mice (Figure 5D2; P > 0.05

for each cell type). In a some recordings, we were able to ver-
ify that the recorded neurons were nNOS+ in the LDT (n =
6), TpH+ in the DR (n = 9), and TH+ in the LC (n = 13;
Figure 6). This confirmed that OX2 alone is insufficient to excite
neurons in the LDT and LC at subthreshold membrane poten-
tials but is sufficient to do so in TpH+ DR neurons. In spite
of this, OX2 activation is able to augment the step-activated
Ca2+ transients in principal neurons of each of these nuclei.
This implies that released orexin would enhance Ca2+ influx
during persistent activity in each nucleus, even in OX1 null
mice.

We also examined the I–V relation between −100 and −30 mV
in LDT and DR neurons. This confirmed that no observable sub-
threshold currents were activated by orexin-A in LDT neurons
(Figures 7A1,A2) and that the noisy inward current activated in
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FIGURE 6 | Orexin augments voltage-dependent Ca2+ transients in

nNOS+ LDT neurons, TpH+ DR neurons, and TH+ LC neurons in

slices from OX
−/−
1

mice. Orexin-A augmented the voltage-dependent
Ca2+ transient in identified neurons. Left column illustrates low-power
fluorescent micrographs of the recorded slices immunostained with
Alexa-488 (green) for nNOS in LDT (A), TpH in DR (B), and TH in the

LC (C arrows). The second column illustrates a higher-power image of
the recorded and fluorescently labeled neurons (Alexa-594) from each
nucleus. The third column shows the same field with Alexa-488
visualized. The right column shows the images merged, revealing that
each recorded neuron was immunopositive for nNOS, TpH, and TH,
respectively.

DR neurons was approximately linear over this voltage range,
having similar characteristics to the non-selective cation current
observed in C57BL6 DR neurons (Figures 7B1,B2). Similarly, we
determined whether L-type Ca2+ channels are a target of OX2

by testing whether nifedipine occluded the orexin-A enhance-
ment of Ca2+ transients (Figures 7C,D,E). In LDT, DR, and LC
neurons obtained from mice lacking OX1, nifedipine blocked
the enhancement produced by orexin-A (300 nM) application.
In the presence of nifedipine, orexin-A application produced a
0.6 ± 0.4% increase in LDT (n = 4), a 4.0 ± 2.1% increase in DR
(n = 5) and a 3.6 ± 3.3% increase in LC neurons (n = 6). These
changes were not significantly different from zero (P > 0.05) and
all of these differences were significantly less than changes pro-
duced in neurons from C57BL6 mice (P < 0.05). Thus, activation
of OX2 alone is sufficient to activate a noisy cation current in DR
neurons but not in LDT or LC neurons. Despite this, OX2 activa-
tion is sufficient to enhance Ca2+ transients in the LDT, DR, and
LC. Moreover, the magnitude of this enhancement was compara-
ble to the enhancement measured in LDT, DR, and LC neurons
from C57BL6 mice and also appear mediated by L-type Ca2+
channels.

OX1 SIGNALING IS DOMINANT IN THE LDT AND LC BUT IS MORE
EVENLY SHARED BY BOTH RECEPTORS IN THE DR
To obtain a better estimate of the fraction of neurons acti-
vated by each orexin receptor, we utilized fura-2AM loading
of slices obtained from mice lacking each receptor (Figure 8).
Under these conditions, orexin-A (300 nM) evokes Ca2+ tran-
sients by both depolarization and subsequent activation of a
voltage-dependent Ca2+ influx and by specific enhancement of
the Ca2+ transient evoked by L-type Ca2+ channel activation
(Kohlmeier et al., 2004, 2008). As expected from whole-cell Ca2+
transient measurements, 300 nM orexin-A evoked Ca2+ tran-
sients in slices obtained from mice lacking OX2 (Figure 8A) and
mice lacking OX1 (Figure 8B). We found that in each genotype
and nucleus, these transients recapitulated the range of tempo-
ral profiles we observed in DR and LDT slices from C57BL6 mice
(Kohlmeier et al., 2004). Moreover, when the magnitude of the
“plateau” type Ca2+ responses, which we could confidently mea-
sure, were compared, the transients from knockout slices were
not smaller than the transients from C57BL6 slices. In OX2 null
tissue, the average plateau responses were 11.9 ± 1.8% in LDT
(n = 13); 9.9 ± 1.9% in DR (n = 18); and 12.1 ± 2.4% in LC
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FIGURE 7 | Stimulation of OX2 alone activate a noisy cation current

in DR neurons and enhance Ca2+ transients mediated by L-type

Ca2+ channels in LDT, DR, and LC neurons. (A1) Whole-cell voltage
clamp currents (upper traces) from an LDT neuron in an OX−/−

1 slice
recorded before and after bath superfusion with orexin-A (Orx-A,
300 nM). These currents were produced by the voltage-ramp in the
bottom trace (−100 to −35 mV). Orexin failed to produce an inward
shift in holding current in LDT neurons from OX−/−

1 mice. (A2) The
difference between the currents in (A1) plotted as a function of
membrane voltage (Vm) shows the I-V relation. No orexin current was
detectable throughout the voltage range studied. (B1) Orexin-A (300 nM)

produced an inward shift in holding current and a large increase in
membrane current noise in DR neurons recorded in OX−/−

1 slices. (B2)

The I-V relation for the difference current from (B1) appeared nearly
linear and was characteristic of the cation current observed in DR
neurons from C57BL6 slices. (C,D,E) The L-channel antagonist, nifedipine
(Nif, 10 μM) attenuated the Ca2+-transients evoked by voltage-steps from
−60 to −30 mV in LDT (C), DR (D), and LC (E) neurons from OX−/−

1
slices and prevented the enhancement of these transients by orexin-A
(300 nM). Top traces show somatic Ca2+-dependent fluorescence (dF/F);
Middle traces show whole-cell current; Bottom traces show membrane
voltage. Calibration bar labels in (E), also apply to (C,D).

(n = 12), which were not different (P > 0.05) from responses
measured in slices from C57BL6 mice (11.0 ± 2.2% in LDT,
n = 29; 13.8 ± 2.6% in DR, n = 49; and 12.7 ± 2.3% in LC,
n = 24). Similarly, in OX1 null slices, the average plateau response
were not different (P > 0.05) from those in C57BL6 slices (OX1

null responses: 12.0 ± 4.3% in LDT, n = 12; 16.1 ± 2.5% in DR,
n = 15; and 15.1 ± 5.1% in LC, n = 5). However, the likeli-
hood of encountering orexin-A responsive cells (Figure 8C) was
much lower in slices from OX1 null mice in both the LDT
and LC. The proportion of fura-2AM labeled cells respond-
ing to orexin was only 20% in LDT (n = 113) and 10% in
LC (n = 82) compared to estimates of 60–70% responding in

slices from C57BL6 mice. Interestingly, in the DR from OX1

null mice, the fraction of responders was only reduced to 47.1%
from about 70% in the C57BL6 mice. Presumably this high
percent responding in the DR reflects the ability of OX2 to
drive depolarizations in DR neurons unlike in LDT and LC
neurons.

OX1 AND OX2 SIGNALING IS ATTENUATED BY PKC INHIBITION
In the next series of experiments we examined whether the
PKC inhibitor Bis I attenuates the Ca2+ transients evoked by
activity of one or both receptors. In these experiments, we first
obtained control responses with bath application of orexin-A
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FIGURE 8 | Orexin-A stimulates a larger fraction of LDT, DR, and LC

cells via OX1 than via OX2. (A) Orexin-A (Orx-A, 300 nM) evoked Ca2+
transients in LDT, DR, and LC neurons in slices from OX−/−

2 mice that were
bulk-loaded with fura-2AM. (B) Orexin-A (300 nM) also evoked Ca2+
transients in LDT, DR, and LC neurons in slices from OX−/−

1 mice that were
bulk-loaded with fura-2AM. The magnitude of the transients evoked by
either receptor was not different from that evoked in slices from C57BL6
mice (see text). (C) In slices from C57BL6 mice, 60–70% of fura-2AM
labeled cells in LDT (n = 173), DR (n = 113), and LC (n = 98) were activated
by orexin. The percentage of cells imaged that responded to orexin-A in
slices from OX−/−

2 mice (LDT: n = 60; DR: n = 96; LC: n = 43) was not
statistically different from that in C57BL6 slices. A significantly smaller
percentage of cells imaged in each nucleus was activated by orexin in
slices from OX−/−

1 mice (LDT: n = 113; DR:n = 87; LC: n = 82). Horizontal
bars above the traces indicate application of orexin-A (300 nM). Calibration
bars indicate 10% dF/F and 2 min in each panel. ∗P < 0.05.

(300 nM) from OX−/−
2 or OX−/−

1 slices containing LDT, DR,
or LC (Figures 9, left column in A,B). The slices were then
superfused with ACSF containing bis I (1 μM; Bis) for 20 min,
to inhibit PKC. This completely attenuated the orexin-mediated
enhancement of L-type Ca2+ transients but did not block the
orexin mediated depolarization in all LDT and DR neurons
(Kohlmeier et al., 2008). Here, we found that the Ca2+ transients
evoked in each nucleus were strongly attenuated by Bis in slices
from both OX2 and OX1 null mice (Figures 9, right column in
A,B). The average amplitude of plateau responses was reduced
by 62.0 ± 7.7% in slices from OX2 null mice (n = 34) and by

59.3 ± 8.3 in slices from OX−/−
1 mice (n = 25). Thus, Ca2+ tran-

sients evoked by activation of either orexin receptor involves PKC
signaling.

OREXIN ACTIONS IN THE LDT, DR, AND LC REQUIRE THE TWO KNOWN
OREXIN RECEPTORS
Interpretation of our data from single receptor knockouts pre-
supposes that there are only two orexin receptors responsible
for orexin actions and that our test concentration of orexin-A
is specific for these receptors. We directly tested this by exam-
ining the action of orexin-A on slices made from mice lacking
both orexin receptors. As can be seen in Figure 10A, orexin-
A (300 nM) did not evoke Ca2+ transients in slices from DKO
mice. To verify that each of the cells recorded under these con-
ditions remained viable, we followed orexin application with a
bolus application of glutamate (5 mM), which rapidly and effec-
tively evoked Ca2+ transients in these same cells (Figure 10B). We
also examined extracellular recordings using cell-attached patch
recordings, whole-cell currents and the ability of orexin to aug-
ment the Ca2+ transients produced by step depolarizations to
−30 mV. In each of these tests, orexin-A failed to produce a
response. Collectively these data strongly indicate that 300 nM
orexin-A is specific for native orexin receptors and that OX1 and
OX2 are the only functional orexin receptors expressed in the
LDT, DR and LC.

WHOLE BRAINSTEM OX2 mRNA LEVELS ARE HIGHER IN MICE
LACKING OX1

A potential complication to the interpretation of data from con-
stitutive knockouts is the possibility that the loss of one receptor
alters the expression of the other. Indeed, like any lesion study,
knockouts can’t reveal the function of the missing component
but can only reveal the capacity remaining in the absence of that
component. We therefore compared OX1 and OX2 mRNA levels
isolated from whole brainstems of C57BL6 and receptor knockout
mice using quantitative RT-PCR to (Figure 11). Since two splice
variants of the OX2 were identified in mice (Chen and Randeva,
2004; Chen et al., 2006), we designed primers for OX1 and both
OX2 receptors. The primers used for each receptor were spe-
cific since PCR produced single amplicons of the predicted sizes.
These amplicons were undetectable in samples from the corre-
sponding single receptor knockout or double receptor knockouts
(Figure 11, see gel insets). Results from ANOVAs comparing tar-
get mRNA levels by genotype were highly significant for each
transcript (P < 0.001). Post-hoc testing revealed that the fraction
of OX1 mRNA per total mRNA in brainstems from C57BL6 mice
(9.75E-6 ± 2.00E-6, n = 28 samples from 14 mice) was not dif-

ferent from that measured from OX−/−
2 brainstems (1.07E-5 ±

1.39E-6, n = 28 samples from 14 mice; P = 0.62; Figure 11A). In

contrast, we found that in OX−/−
1 mice, levels of both the OX2α

(9.48E-5 ± 2.52E-5, n = 20 samples from 10 mice) and OX2β

(1.88E-4 ± 3.97E-5, n = 26 samples from 13 mice) splice vari-
ants were significantly higher compared to those from C57BL6
mice (OX2α: 7.16E-6 ± 2.27E-6, n = 14 samples from 7 mice,
P < 0.0001; OX2β: 1.94E-5 ±3.78E-6, n = 14 samples from 7
mice, P < 0.0005; Figures 11B,C).

Since these differences could indicate upregulation of OX2

expression resulting from the absence of OX1 and since the sin-
gle receptor knockouts were on a mixed C57BL6 and 129SvEv
background, we also measured receptor levels in 129SvEv mice.
This comparison indicated that levels of OX1 are higher in
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FIGURE 9 | Inhibition of PKC by Bis I attenuated Ca2+-transients

evoked by activation OX1 or OX2. (A) Ca2+ transients in LDT, DR,
and LC neurons in slices from OX−/−

2 mice were attenuated by prior
application of Bis I. (B) Similarly, Ca2+ transients in LDT, DR, and LC

neurons in slices from OX−/−
1 mice were attenuated by prior application

of Bis I. Horizontal bars above the traces indicate application of
orexin-A (300 nM). Calibration bars indicate 20% dF/F and 2 min in each
panel.

129SvEv brainstems than in either C57BL6 or OX−/−
2 brainstems

(2.89E-5 ± 2.04-06, n = 16 samples from 8 mice, P < 0.0001
for both; Figure 9A). Interestingly, levels of OX2α (4.08E-5 ±
1.46E-5, n = 16 samples from 8 mice) and OX2β (7.21E-5 ±
3.22E-5, n = 15 samples from 8 mice) from 129SvEv brainstems
were not statistically different from those in C57BL6 brainstems
(OX2α: P = 0.18; OX2β: P = 0.17) but were significantly lower

than those from OX−/−
1 brainstems (OX2α : P < 0.02; OX2β: P <

0.02; Figures 11B,C). These findings suggest that background
alone is not the reason that OX2 mRNA levels are higher in

brainstems from OX−/−
1 mice and therefore imply some level of

compensation.

DISCUSSION
A major finding of this study is that OX1 exclusively mediates
direct depolarization of nNOS+ LDT and TH+ LC neurons,
while both receptors mediate direct depolarization of TpH+ DR
neurons. In contrast, augmentation of depolarization-induced
Ca2+ transients was mediated by OX1 and OX2 in each nucleus
and likely involved L-type Ca2+ channels and PKC signaling.
Finally, we found whole-brainstem OX2 mRNA levels were ele-

vated in OX−/−
1 mice. These findings have implications for

understanding the cellular function of native orexin receptors, for
understanding the roles played by orexin signaling at these loci in
the control of behavioral state and for understanding the conse-
quences of using receptor specific antagonists as therapeutics.

Interpretation of our results are predicated on the idea that
the different observed actions of orexin in OX1 null and OX2 null
slices result from the absence of orexin receptors rather than from
differences in genetic background between each mouse. Since
genetic drift occurs and there is allelic variation in each parent
strain, possibly in modifier genes, there is some uncertainty to

this interpretation (Doetschman, 2009). We found that orexin
currents had the same variation of responses and mean ampli-
tude in both C57BL6 mice and in OxrWT, which have the same
mixed genetic background as our knockout mice. In both strains,
slices from each mouse showed responses to orexin and nei-
ther strain showed symptoms of narcolepsy (Kalogiannis et al.,
2011) indicating that despite genetic drift and the allelic variations
present, orexin signaling at our targets was equivalent in both
backgrounds. Moreover, in DKO mice there were no response in
any of the cells recorded in any mouse tested, and these mice show
severe signs of narcolepsy (Kalogiannis et al., 2011). These consid-
erations, and the recent evidence that the distribution of orexin
receptor mRNA is not altered in LDT, DR, or LC in orexin recep-
tor knockouts (Mieda et al., 2011) suggest it is unlikely that the
absence of orexin responses result from background effects rather
than the loss of the receptor. We therefore interpret our data in
terms of receptor loss, mindful of the possibility that responses
might also be modulated by background effects.

BOTH NATIVE OREXIN RECEPTORS CAN COUPLE TO A NOISY CATION
CURRENT AND L-TYPE Ca2+ CHANNELS
Recordings from DR neurons in slices from mice lacking either
OX2 or OX1 revealed that activation of either receptor evoked
a noisy inward current appearing identical to the cation cur-
rent evoked in wild-type slices (Brown et al., 2002; Liu et al.,
2002; Kohlmeier et al., 2008). Since orexin-A did not activate
this current in slices lacking both receptors, we conclude that
signaling by either receptor converges onto this current and
that there are no additional orexin-binding receptors sufficient
to mediate this action. The ability of both receptors to aug-
ment depolarization-induced Ca2+ transients mediated by L-type
Ca2+ channels via a PKC-sensitive pathway further supports
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FIGURE 10 | Orexin fails to produce Ca2+ transients in slices from DKO

mice. (A) Somatic dF/F signals recorded from fura-2AM loaded LDT, DR,
and LC cells in slices from DKO mice. Orexin-A application did not produce
detectable changes in dF/F for any recorded cell. (B) Bolus application of
glutamate (5 mM; delivered at arrow) produced strong Ca2+ transients in
the same cells indicating that they remained viable. Horizontal bars above
the traces indicate application of orexin-A (Orx-A; 300 nM). Calibration bars
indicate 50% dF/F and 2 min in (A) and 50% dF/F and 1 min in (B).

convergent or redundant functions of native OX1 and OX2 in
DR neurons. Immunofluorescence identification demonstrated
that this convergence includes serotonergic DR neurons (TpH+).
These findings fit well with double in-situ hybridization evidence
indicating both receptors are co-localized within a large fraction
of TpH-expressing neurons in mouse DR (Mieda et al., 2011), and
with single-cell RT-PCR evidence indicating both OX1 and OX2

mRNA is typically recovered from TpH neurons in rat (Brown
et al., 2002). Together, these data suggest that both orexin recep-
tors normally excite TpH neurons and augment their intracellular
Ca2+-levels during periods of prolonged depolarization.

Since the average OX1–evoked inward current was somewhat
larger than the OX2–evoked current, and since OX1 activation
produced Ca2+ transients in a greater fraction of DR neurons
than did OX2 activation, it is plausible that OX1 normally medi-
ates the larger part of the orexin-mediated depolarization of
DR neurons. A previous pharmacological study of rat DR slices
concluded that OX2 is primarily responsible for orexin-evoked
spiking (Soffin et al., 2004). However, that conclusion was based
on data that was acknowledged to be difficult to interpret and
suffered from limitations related to the use of selective ago-
nists for receptor subtype identification (see also Leonard and
Kukkonen, 2013). Co-expression and convergent action of these
receptors also likely contributed to interpretive difficulties (e.g.,
the relatively weak effect of the OX1-selective antagonist SB
334867). Use of conditional receptor knockouts and development

of subtype-specific receptor antagonists should help to further
clarify the natural role of each receptor.

In contrast to the DR, OX1 was necessary for orexin to elicit
depolarizing currents in principal LDT and LC neurons, which
fits well with the high levels of OX1 mRNA in these structures
from adult rodents (Marcus et al., 2001; Mieda et al., 2011). Since
OX2 is competent to activate a similar depolarizing current in DR
neurons, it is possible that OX2 is either not expressed, or is inca-
pable of activating available depolarizing channels in LDT and LC
neurons. Isotopic in-situ hybridization indicates OX2 message is
much less abundant than OX1 but is above background in both
the LDT and LC (Marcus et al., 2001), suggesting that low levels of
OX2 are present. Recent double, non-isotopic, in-situ hybridiza-
tion studies detected OX2 only in non-cholinergic LDT neurons
and non-TH+ LC neurons (Mieda et al., 2011). Nevertheless,
we found clear examples of LDT and LC neurons where orexin-
A enhanced depolarization-induced Ca2+ transients in OX1 null
slices, albeit fewer LDT and LC neurons were activated com-
pared to slices from wild-type or OX2 null mice (Figure 8).
Moreover, we recovered nNOS+ and TH+ neurons showing
orexin-augmented Ca2+-transients, indicating that OX2 signaling
influences at least a sub-population of these neurons (Figure 6).
These latter findings are consistent with the possibility that OX2

expression in LDT and LC neurons might be developmentally reg-
ulated and could be lower in adult mice compared to the 2–4
week-old-mice used here, or simply that functional OX2 receptors
are present, but that mRNA levels are too low to be detected with
double in-situ hybridization methods, which are generally less
sensitive than isotopic methods. If this is the case, how then does
OX2 augment the depolarization-induced Ca2+ influx without
also producing a depolarization? One possibility is that there is
spatial segregation of OX1 and OX2 and their respective effectors
such that OX2 signaling can’t activate the depolarization channels.
Another possibility is that each receptor activates different second
messenger cascades and the depolarizing channels in LDT and
LC are only activated by the cascade(s) from OX1. Neither sce-
nario has been demonstrated for native orexin receptors and both
deserve further investigation. In general, the messenger cascades
underlying native orexin receptor actions are poorly understood,
although they appear more diverse that originally thought (for
review see Kukkonen and Leonard, 2013). Moreover, the cas-
cades mediating depolarization in these neurons have not been
identified, although since PKC is involved with augmenting Ca2+-
transients, both receptors may activate PLC, as has been often
found elsewhere (for review see Kukkonen and Leonard, 2013).
While the cation currents activated in LDT and DR appear quite
similar, we did find previously that low-Ca2+ ACSF augments the
DR current, but not the LDT current (Kohlmeier et al., 2008),
suggesting the possibility that different channels may mediate the
orexin-activated cation current in these neurons. Future experi-
ments are needed to clarify the signaling pathways and effectors
utilized by each receptor in these neurons.

Finally, it is also possible that the orexin-enhanced Ca2+ tran-
sients were produced indirectly by an unknown mediator released
from OX2-expressing nNOS- and TH- neurons in response to
orexin-A. This seems unlikely since blocking action potentials
with TTX, did not attenuate the orexin effects. However, this is
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FIGURE 11 | Levels of whole brainstem OX2 mRNA are higher in

OX
−/−
1

mice compared to wild-type mice. (A–C) Top Gel images
of the amplicons resulting from probes for OX1 (A), OX2α (B), and
OX2β (C). Samples for each lane were 1: blank, 2–5: scales for
corresponding receptor, 6: C57 sample, 7: OX−/−

1 sample, 8: OX−/−
2

sample, 9: DKO sample. (A) Bottom RNA for OX1 (OX1 per total)
was quantified from whole brainstems of C57BL6(C57; 28 samples
from 14 mice), OX−/−

1 (9 samples from 5 mice), OX−/−
2 (28

samples from 14 mice), double orexin receptor knockouts (DKO; 8
samples from 4 mice) and 129SvEv (129s; 16 samples from 8 mice)
mice by RT-PCR. OX1 mRNA was undetectable in tissue from
OX1−/− and DKO mice. Despite significantly higher levels of OX1

mRNA in brainstems from 129s mice compared to C57 and OX−/−
2

brainstems (∗P < 0.0001), there was no significant difference between

mRNA levels measured in brainstems from C57 and OX−/−
2 mice. (B)

Bottom mRNA levels for OX2α (OX2α per total) were measured from
isolates obtained from the same mice used in (A). OX2α mRNA
was undetectable in tissue from OX−/−

2 (7 samples from 4 mice)
and DKOs (20 samples from 10 mice). OX2α mRNA levels were
higher in OX−/−

1 samples (20 samples from 10 mice) than in either
C57 (14 samples from 7 mice) or 129s (16 samples from 8 mice)
samples (∗P < 0.02). (C) Bottom Similarly, mRNA levels for OX2β

(OX2β per total) were measured from mRNA isolates from the same
mice in A. OX2β mRNA was undetectable in tissue from OX−/−

2 (14
samples from 7 mice) and DKOs (20 samples from 10 mice). OX2β

mRNA levels were higher in tissue from OX−/−
1 mice (26 samples

from 13 mice) than in tissue from either C57 (14 samples from 7
mice) or 129s mice (15 samples from 8 mice, ∗P < 0.02).

difficult to rule out since conventional procedures to block Ca2+-
dependent release, like lowering extracellular Ca2+ or adding
Co2+ or Cd2+, also block the Ca2+ influx we monitored. Future
studies using acutely isolated neurons could help address this
issue.

ROLES OF OREXIN SIGNALING IN RETICULAR ACTIVATING SYSTEM
NEURONS
Our main finding demonstrates that OX1 is required for orexin-
mediated excitation of LC and LDT neurons but that either
receptor is sufficient to mediate excitation of DR neurons. While
subtle developmental changes in orexin receptor distribution can-
not be ruled out, this main finding, obtained from young mice,
agrees very well with orexin receptor mRNA levels in these neu-
rons from adult mice (Mieda et al., 2011). It is therefore possible
to compare the impairment of excitation observed here to the
degree of behavioral impairment reported for each knockout, in
order to gain insight into the functional consequences of orexin
receptor signaling at these loci. Deletion of both receptors pro-
duces a narcolepsy phenotype (Hondo et al., 2010; Kalogiannis
et al., 2011) similar to that seen in the prepro-orexin knockouts
(Chemelli et al., 1999; Mochizuki et al., 2004), with fragmented
waking states, spontaneous sleep attacks and frequent cataplexy.
Since orexin-A normally stimulates a large fraction of LDT, DR,
and LC neurons, the loss of orexin action at these sites in the
DKOs is consistent with a role for orexin signaling at these loci
in promoting wake and sleep consolidation, suppressing REM
sleep, preventing sleep attacks and suppressing cataplexy. Indeed,
optogenetic excitation of orexin neurons promotes sleep-to-wake

transitions (Adamantidis et al., 2007) and optogenetic inhibition
of orexin neurons promotes slow-wave sleep and reduced firing of
DR neurons (Tsunematsu et al., 2011), while focal orexin injec-
tion into the LDT (Xi et al., 2001) or LC (Bourgin et al., 2000)
prolongs waking bouts and suppresses REM sleep. Moreover,
optogenetic inhibition of TH+ LC neurons blocks the ability
of orexin neuron stimulation to promote sleep-to-wake tran-
sitions (Carter et al., 2012), while ontogenetic stimulation of
TH+ LC neurons both prolongs waking (Carter et al., 2010) and
enhances the wake-promoting effect of orexin neuron stimula-
tion (Carter et al., 2012). This indicates orexin–excitation of TH+
LC neurons is necessary for orexin neuron activity to promote
sleep-to-wake transitions. Nevertheless, it is the OX2 knockouts
that show fragmented spontaneous waking and sleep states and
have sleep attacks at the same frequency as prepro-orexin knock-
outs (Willie et al., 2003), even though orexin-mediated excitation
of LDT, DR, and LC neurons is preserved (Figure 2). This might
indicate that orexin neuron firing and orexin release is impaired
through the loss of OX2-mediated positive feedback (Yamanaka
et al., 2010) and/or that residual OX1-excitation of LDT, DR, and
LC neurons is insufficient to maintain normal duration bouts
of spontaneous waking and sleep in the absence of OX2, even
though ICV orexin still prolongs waking and suppresses REM

sleep in OX−/−
2 mice (Mieda et al., 2011). Conversely, OX−/−

1
mice appear to have normal sleep-wake states without fragmen-
tation or sleep attacks (Hondo et al., 2010; Mieda et al., 2011),
even though orexin excitation is abolished in LDT and LC neu-
rons and is reduced in DR neurons (Figure 5), in spite of possible
upregulation of OX2 (Figure 11). Thus, it appears intact orexin
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excitation in the LDT, DR, and LC is neither necessary nor
sufficient for the expression of normally consolidated bouts of
spontaneous sleep and waking. Since, OX1 signaling in LDT,
DR, and LC promotes arousal, but is not necessary for consol-
idated spontaneous waking, orexin signaling at these loci may
promote context-dependent arousal associated with, for exam-
ple, stress, anxiety, panic, and/or food and drug seeking behavior
(Winskey-Sommerer et al., 2004; Boutrel et al., 2005; Harris et al.,
2005; Nair et al., 2008; Johnson et al., 2012; Piccoli et al., 2012;
Steiner et al., 2012; Heydendael et al., 2013). Orexin signaling
at these loci may also support other functions. For example,

OX−/−
1 mice show impaired acquisition and expression of cued

and contextual fear conditioning and the re-expression of OX1

in TH+ LC neurons rescues the expression of cued fear (Soya
et al., 2013). Future studies using receptor rescue approaches
(Mochizuki et al., 2011) or the local application of OX1-specific
antagonists will be needed to further explore OX1 functions at
these loci.

Our findings are also consistent with a cataplexy-suppressing

role for orexin excitation in the LDT, DR and LC. OX−/−
2 mice

have cataplexy but it occurs rarely compared with prepro-orexin
null mice (Willie et al., 2003). Since DKO mice show frequent
cataplexy-like arrests (Kalogiannis et al., 2011), the less severe

cataplexy in OX−/−
2 mice is likely related to residual OX1 sig-

naling. Since orexin injections into the LDT and LC suppress
REM sleep, and knockdown of OX1 in LC increases REM during
the dark phase (Chen et al., 2010) it is plausible that remaining
OX1-excitation in LDT, LC, and perhaps DR, reduces cataplexy in

OX−/−
2 mice. Nevertheless, OX−/−

1 mice do not have cataplexy,
indicating that the loss of orexin-excitation in LDT and LC and
reduced orexin excitation in the DR is not sufficient to produce
cataplexy, at least in these knockouts, where OX2 may also be up
regulated.

IMPLICATIONS FOR SINGLE OREXIN RECEPTOR
PHARMACOTHERAPEUTICS
DORAs show significant promise for improved treatment of
insomnia (Uslaner et al., 2013; Winrow and Renger, 2013) and
are currently being considered for FDA approval. Given that orex-
ins regulate numerous functions beyond normal waking and sleep
and that their receptors are differentially distributed, it seems
likely that subtype-specific orexin receptor antagonists (SORAs)
will have even greater therapeutic potential. The development
of sub-type specific drugs will accelerate preclinical investiga-
tions of receptor function and, may allow better targeting of
different orexin-dependent behaviors and a fine-tuning of their
sleep-promoting effects. For example, OX2 antagonists appear
more effective at sleep promotion than DORAs (Dugovic et al.,
2009), perhaps by targeting hypothalamic circuits promoting his-
tamine release and consolidated waking (Dugovic et al., 2009;
Mochizuki et al., 2011). Conversely, OX1 antagonists may provide
better relief for hyperarousal and other maladaptive behaviors
associated with stress, as noted above, perhaps by dampening OX1

excitation of noradrenergic, serotonergic and cholinergic reticu-
lar neurons and midbrain dopamine systems. Nevertheless, much
more needs to be learned about how each orexin receptor impacts

their cellular targets and how these targets influence behavior.
These interactions are likely to be complex: as demonstrated here
for key elements of the reticular activating system, each recep-
tor can have common effectors (i.e., both receptors activating
depolarizing channels and enhancing voltage-dependent Ca2+
transients in TpH DR neurons) or act differentially with respect
to one effector while having a common action on another effec-
tor (i.e., OX1 is necessary for depolarization while both receptors
enhance voltage-dependent Ca2+ transients in LDT and LC neu-
rons). It will also be important in future experiments to evaluate
the degree to which persistent alteration of signaling by either
orexin receptor impacts synaptic plasticity (Borgland et al., 2006;
Selbach et al., 2010), neurotransmitter phenotypes (Kalogiannis
et al., 2010; Valko et al., 2013) and orexin receptor expression
(i.e., elevated brainstem OX2 message levels in OX1 null mice), as
each of these could lead to deleterious side-effects and diminished
therapeutic potential.
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