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Killer-cell immunoglobulin-like receptors (KIRs) are a family of glycoproteins expressed 
primarily on natural killer cells that can regulate their function. Inhibitory KIRs recognize 
MHC class I molecules (KIR-ligands) as ligands. We have reported associations of KIRs and 
KIR-ligands for patients in two monoclonal antibody (mAb)-based trials: (1) A Children’s 
Oncology Group (COG) trial for children with high-risk neuroblastoma randomized to 
immunotherapy treatment with dinutuximab (anti-GD2 mAb) + GM-CSF + IL-2 + isotre-
tinion or to treatment with isotretinoin alone and (2) An Eastern Cooperative Oncology 
Group (ECOG) trial for adults with low-tumor burden follicular lymphoma responding 
to an induction course of rituximab (anti-CD20 mAb) and randomized to treatment 
with maintenance rituximab or no-maintenance rituximab. In each trial, certain KIR/
KIR-ligand genotypes were associated with clinical benefit for patients randomized 
to immunotherapy treatment (immunotherapy in COG; maintenance rituximab in 
ECOG) as compared to patients that did not receive the immunotherapy [isotretinoin 
alone (COG); no-maintenance (ECOG)]. Namely, patients with both KIR3DL1 and its 
HLA-Bw4 ligand (KIR3DL1+/HLA-Bw4+ genotype) had improved clinical outcomes if 
randomized to immunotherapy regimens, as compared to patients with the KIR3DL1+/
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HLA-Bw4+ genotype randomized to the non-immunotherapy regimen. Conversely, 
patients that did not have the KIR3DL1+/HLA-Bw4+ genotype showed no evidence of 
a difference in outcome if receiving the immunotherapy vs. no-immunotherapy. For each 
trial, HLA-Bw4 status was determined by assessing the genotypes of three separate 
isoforms of HLA-Bw4: (1) HLA-B-Bw4 with threonine at amino acid 80 (B-Bw4-T80); 
(2) HLA-B-Bw4 with isoleucine at amino acid 80 (HLA-B-Bw4-I80); and (3) HLA-A with 
a Bw4 epitope (HLA-A-Bw4). Here, we report on associations with clinical outcome 
for patients with KIR3DL1 and these separate isoforms of HLA-Bw4. Patients random-
ized to immunotherapy with KIR3DL1+/A-Bw4+ or with KIR3DL1+/B-Bw4-T80+ had 
better outcome vs. those randomized to no-immunotherapy, whereas for those with 
KIR3DL1+/B-Bw4-I80+ there was no evidence of a difference based on immunotherapy 
vs. no-immunotherapy. Additionally, we observed differences within treatment types 
(either within immunotherapy or no-immunotherapy) that were associated with the gen-
otype status for the different KIR3DL1/HLA-Bw4-isoforms. These studies suggest that 
specific HLA-Bw4 isoforms may differentially influence response to these mAb-based 
immunotherapy, further confirming the involvement of KIR-bearing cells in tumor-reactive 
mAb-based cancer immunotherapy.

Keywords: Kir, Kir-ligand, hla-Bw4, hla, Mhc class i, natural killer cells, cancer immunotherapy

inTrODUcTiOn

One modality of cancer immunotherapy utilizes tumor-reactive 
monoclonal antibodies (mAbs) to elicit a tumor-targeted immune 
response. Two recently completed clinical trials, in separate dis-
ease settings, utilized tumor-reactive mAbs to successfully target 
and treat the tumors: (1) the combination of dinutuximab with  
IL-2, GM-CSF, and isotretinoin for patients with high-risk neuro-
blastoma (1) and (2) rituximab for the treatment of patients with 
low-tumor burden follicular lymphoma (FL) (2).

Natural killer (NK) cells can contribute to the response to tumor-
reactive mAb-based immunotherapeutics through antibody- 
dependent cellular cytotoxicity (ADCC). The ability of NK cells 
to elicit ADCC is regulated by activating and inhibiting signaling. 
Killer-cell immunoglobulin-like receptors (KIRs) are a class of 
receptors expressed on NK cells that influence such signaling (3, 4).  
Most inhibitory KIRs interact with HLA class I molecules as their 
ligands (KIR-ligand) (5). Specifically, KIR2DL1 binds to HLA-
C2, KIR2DL2 and KIR2DL3 bind to HLA-C1, and KIR3DL1 
recognizes the Bw4 epitope of HLA-A and HLA-B (6, 7).  
The independent segregation and inheritance of KIRs and KIR-
ligands help to shape NK cell function and response to immu-
notherapeutic agents (8–11). When inhibitory KIRs interact 
with class I HLA molecules on target cells, NK cell-mediated 
lysis and ADCC are inhibited. During development, KIR/KIR-
ligand interactions lead to self tolerance and NK cells become 
“licensed NK cells” (12–14). Licensed NK cells have augmented 
cytotoxicity against class I negative tumors compared to unli-
censed NK cells (15, 16).

Killer-cell immunoglobulin-like receptors and KIR-ligands 
segregate independently: KIR genes are located on chromosome 
19; HLA genes (KIR-ligands) are located on chromosome 6. 
Several studies have shown that genotypic differences of KIR 

and KIR-ligands can influence clinical outcome of certain cancer 
immunotherapies (8, 11, 17–19). We recently showed in two clinical  
trials that KIR3DL1 and its KIR-ligand, HLA-Bw4, appear to 
influence clinical outcome.

In a phase III trial (ANBL0032) of high-risk neuroblastoma 
patients, conducted by the Children’s Oncology Group (COG) 
(1), patients who inherited the KIR3DL1 gene and the gene for 
its HLA-Bw4 ligand (KIR3DL1+/Bw4+ genotype) and were 
treated with an immunotherapy regimen [dinutuximab (anti-
GD2), IL-2, GM-CSF, and isotretinoin] had improved event-free 
survival (EFS) and overall survival as compared to those treated 
with isotretinoin alone (20, 21). In a separate Eastern Cooperative 
Oncology Group (ECOG) Phase III clinical trial of low-tumor 
burden FL (2), patients who were KIR3DL1+/HLA-Bw4+ and 
treated with a continuous regimen of maintenance rituximab had 
improved duration of response and % tumor shrinkage compared to  
KIR3DL1+/HLA-Bw4+ patients who were randomized to not 
receive maintenance rituximab (22, 23). Conversely, we did not 
observe improved outcome for patients that were not KIR3DL1+/
HLA-Bw4+ when randomized to immunotherapy, in either study 
(22, 23). Furthermore, in both the COG and ECOG studies, 
patients who were randomized to the immunotherapy regimen 
that were KIR3DL1+/HLA-Bw4+ had better outcome compared 
to patients who were not KIR3DL1+/HLA-Bw4+.

Given these similar associations with outcome for the 
KIR3DL1/HLA-Bw4 interaction in these two clinical trials, we 
chose to evaluate these more deeply by evaluating the potential 
influence of distinct HLA-Bw4 isoforms. Polymorphisms in the 
α1 helix (positions 77–83) of HLA class I correspond to the 
sequence site of the Bw4 epitope that is recognized by KIR3DL1 
(24). In KIR/KIR-ligand associations, we analyzed in these 
COG and ECOG trials, individuals were considered positive for 
HLA-Bw4 if they were found to have at least one of the three 
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isoforms of HLA-Bw4: (1) HLA-B allele with a threonine at 
amino acid position 80 (B-Bw4-T80), (2) HLA-B allele with 
an isoleucine at amino acid position 80 (B-Bw4-I80), or (3) 
HLA-A with a Bw4 epitope (A-Bw4). Patients were negative 
for HLA-Bw4 if they did not have any of these three isoforms. 
These polymorphisms of this Bw4 epitope can impact KIR3DL1 
recognition (25–29). As such, we describe the impact of the 
genotype status of B-Bw4-T80, B-Bw4-I80, and A-Bw4, together 
with the genotype status of KIR3DL1, on the clinical outcome, 
based on a clinical outcome parameter that measured the dura-
tion of response to the treatment regimen (EFS in COG; duration 
of response in ECOG).

MaTerials anD MeThODs

Patients
COG ANBL0032 Patients
The phase III neuroblastoma clinical trial (ANBL0032; 
Clinicaltrials.gov # NCT00026312) evaluated the efficacy of 
isotretinoin alone as compared to an immunotherapeutic regi-
men consisting of dinutuximab (anti-GD2), aldesleukin (IL-2),  
sargramostim (GM-CSF), and isotretinoin (1). Of the 226 
patients randomized, 174 patients (immunotherapy: n  =  88; 
isotretinoin: n = 86) had DNA available, allowing evaluation of 
KIR/KIR-ligand genotype association with updated clinical out-
come (>5-year follow-up if no event). All analyses in this study 
were conducted utilizing an intent-to-treat approach. All patients 
signed IRB approved consent forms enabling lab-based immune 
correlative analyses, and the genotyping done at UW-Madison 
was approved by the UW-IRB.

ECOG E4402 Patients
The Phase III ECOG clinical trial (E4402; ClinicalTrials.gov 
#NCT00075946) evaluated the efficacy of single agent, rituximab 
therapy for adults with low-tumor burden FL. Clinical results 
from this study have been reported elsewhere (2). A total of 408 
patients with FL were entered, with 289 patients responding and 
randomized to no-maintenance or maintenance rituximab regi-
mens. Disease measurements were obtained every 13 weeks (2). 
Of the 289 randomized patients from this trial, 213 patients had 
evaluable DNA and clinical data for this study, and 159 of them 
were randomized to no-maintenance (n = 80) or maintenance 
rituximab (n = 79) treatment. Of these 79 patients treated with 
maintenance rituximab, 75 patients had clinical data available 
for duration of response. All patients signed IRB approved 
consent forms enabling lab-based immune correlative analyses, 
and the genotyping done at UW-Madison was approved by the 
UW-IRB.

genotyping
KIR3DL1 gene status was determined by a SYBR green real-time 
PCR reaction (30, 31). The genotype for HLA-Bw4, which includes 
three known HLA-Bw4 epitopes (B-Bw4-T80, B-Bw4-I80, and 
A-Bw4) were determined by PCR-SSP reactions using the KIR 
HLA Ligand SSP typing kit (product number 104.201-12u from 

Olerup, West Chester, PA, USA) with GoTaq DNA polymerase 
(M8295, Promega, WI, USA). All genotyping was conducted in a 
blinded manner, whereby individuals who determined the geno-
type of the patients did not have access to the clinical outcome 
data.

statistical Methods
The goal of these analyses was to evaluate the association of 
KIR3DL1 in combination with each HLA-Bw4 isoform (B-Bw4- 
T80, B-Bw4-I80, and A-Bw4) on response to therapy (EFS or 
duration of response). For the COG trial, EFS time was defined 
as the time from study enrollment until the first occurrence of 
relapse, progressive disease, secondary cancer, or death or until 
the last contact with the patient if none of these events occurred 
(censored). For the ECOG trial, the duration of response was 
defined as the time from randomization (following an initial 
response to the induction rituximab treatment) to documented 
disease progression (2).

Cox proportional hazards regression models and log-rank tests 
were used to compare EFS/duration of response curves by treatment 
and genotype combinations. The proportional hazards assumption 
was tested, and when the assumption was not met, adjustments 
were made by incorporating time-dependent covariates into the 
model. For both trials, only randomized patients were included in 
the analyses. Statistical analyses were performed using SAS v9.4 
(SAS Institute, Cary, NC, USA).

resUlTs

hla-Bw4 isoforms, Together with 
Kir3Dl1, Differentially influence the 
impact of mab-Based immunotherapy  
on clinical Outcome of neuroblastoma 
Patients
In our analyses of associations of KIR/KIR-ligand genotypic 
influence on clinical response in the neuroblastoma study 
(ANBL0032), we reported on differences in clinical outcome for 
those KIR3DL1+/Bw4+ (immunotherapy n  =  58; isotretinoin 
n = 61) and those not KIR3DL1+/Bw4+ (immunotherapy n = 30; 
isotretinoin n = 25), and differences in response were observed 
dependent upon treatment type (20, 21). Since not all of the 
isoforms of HLA-Bw4 may interact with KIR3DL1 to the same 
degree, we further assessed patients with different HLA-Bw4 
isoforms in this setting.

To better understand the KIR/KIR-ligand genotypic influence 
on clinical outcome, we evaluated the effect of Bw4 epitope on 
either an HLA-A or HLA-B allele. In this study, patients who 
were KIR3DL1+/A-Bw4+ had a trend toward improved EFS if 
they were treated with immunotherapy as compared to those 
treated with isotretinoin alone (p = 0.06; Figure 1A) (Table S1 in 
Supplementary Material). In contrast, we did not find a significant 
difference in EFS for patients receiving the immunotherapy vs. 
those randomized to not receive the immunotherapy (i.e., isotreti-
noin alone) in the patients that were not KIR3DL1+/A-Bw4+ 
(p = 0.35; Figure 1A).
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We found that B-Bw4-T80 and B-Bw4-I80 differentially influenced 
EFS in these neuroblastoma patients (Table S1 in Supplementary 
Material). Similar to results in Figure  1A, patients who were 
KIR3DL1+/B-Bw4-T80+ showed significantly improved EFS if 
they received immunotherapy compared with isotretinoin alone 
(p = 0.04; Figure 1B), whereas those that were not KIR3DL1+/B-
Bw4-T80+ showed no difference in EFS for patients receiving the 
immunotherapy vs. those randomized to receive isotretinoin alone 
(p = 0.57; Figure 1B). However, for B-Bw4-I80+, the results were 
converse. Patients who were KIR3DL1+/B-Bw4-I80+ showed no 
sign of improved EFS if they received immunotherapy compared 
with isotretinoin alone (p = 0.60; Figure 1C). Furthermore, and 
in contrast to results in Figures  1A,B, while not significant, 
there appears to be improved EFS for patients receiving the 
immunotherapy vs. isotretinoin alone in the patients who were 
not KIR3DL1+/B-Bw4-I80+ (p = 0.10; Figure 1C).

These findings suggest that the different isoforms of HLA-Bw4 
differentially influence the impact of anti-GD2-based immuno-
therapy on EFS for high-risk neuroblastoma patients.

hla-Bw4 isoforms, Together with 
Kir3Dl1, Differentially influence the 
impact of mab-Based immunotherapy  
on clinical Outcome of Fl Patients
The ECOG E4402 Phase III clinical trial sought to optimize the 
rituximab treatment regimen for low-tumor burden FL patients 
(2). As such, different from the design of the neuroblastoma COG 
trial described above where one treatment arm was treated with 
immunotherapy and the other was not, in E4402 all patients 
were initially treated with rituximab. In E4402, all FL patients 
received induction rituximab, consisting of four weekly rituximab 

http://www.frontiersin.org/Immunology/
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treatments. After 13  weeks, those patients who achieved ≥50% 
tumor shrinkage were randomized to two separate treatment 
regimens: (1) “maintenance” rituximab was given every 13 weeks 
or (2) “no-maintenance” where rituximab was given only upon 
disease progression (2). Thus, for the parameter of disease 
progression, the no-maintenance group received no rituximab 
between randomization and disease progression. Similar to the 
COG findings regarding the genotype status of KIR3DL1/Bw4, 
in this ECOG study, we also found that those KIR3DL1+/Bw4+ 
(maintenance n  =  49; no-maintenance n  =  53) had different 
clinical outcome than those not KIR3DL1+/Bw4+ (maintenance 
n = 27; no-maintenance n = 26), which was also influenced by the 
treatment arm.

Analyses of the three separate HLA-Bw4 isoforms suggest that 
the isoforms of HLA-Bw4 differently influenced the impact of main-
tenance rituximab. FL patients who were KIR3DL1+/A-Bw4+ that 

were treated with maintenance rituximab had a longer duration of 
response (0 of 23 progressed, Figure 2A) as compared to patients 
who were not KIR3DL1+/A-Bw4+ [13 out of 53 progressed 
(p  =  0.008, Figure  2A) (Table S1 in Supplementary Material)]. 
Separately, patients who were KIR3DL1+/B-Bw4-T80+ also 
showed significantly prolonged duration of response if they 
received maintenance as compared with no-maintenance 
rituximab (p  =  0.007; Figure  2B). In addition, those patients 
whowere not KIR3DL1+/B-Bw4-T80+ had a trend toward 
improved duration of response if treated with maintenance as 
compared with no-maintenance rituximab (p = 0.07; Figure 2B) 
(Table S1 in Supplementary Material). However, patients who 
were KIR3DL1+/B-Bw4-I80+ did not show prolonged duration 
of response if they received maintenance as compared with no-
maintenance rituximab (p = 0.40; Figure 2C). Similar to the trends 
for improved EFS observed in neuroblastoma patients treated 
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with immunotherapy (Figure  1C), those FL patients who were 
not KIR3DL1+/B-Bw4-I80+ had improved duration of response 
if treated with maintenance rituximab as compared to no-
maintenance (p = 0.002; Figure 2C) (Table S1 in Supplementary 
Material).

These findings suggest that the different isoforms of HLA-Bw4 
differentially influence the impact of rituximab maintenance 
treatment for these low-tumor burden FL.

DiscUssiOn

In both of these clinical trials, in separate disease settings, tumor-
reactive mAbs were used to treat the tumors. In the analysis of 
KIR/KIR-ligand genotypes in each of these studies, we found 
similar associations with outcomes based upon the influence of 
KIR3DL1/HLA-Bw4. Specifically, those patients who had both 
KIR3DL1 and HLA-Bw4 had improved clinical outcomes if 
they were treated with either the COG immunotherapy regimen 
or the maintenance rituximab regimen in ECOG as compared 
to those who did not receive these same immunotherapeutic 
regimens (20, 21). Here, we report on the analyses of the 
specific HLA-Bw4 isoforms in both trials. In the ECOG trial 
of FL patients, patients with a KIR3DL1+/A-Bw4+ genotype 
or a KIR3DL1+/B-Bw4-T80+ genotype showed improved 
outcome when randomized to the maintenance regimen rather 
than to the no-maintenance regimen. In contrast, patients with 
a KIR3DL1+/B-Bw4-I80+ genotype showed no evidence of 
improved outcome when randomized to the maintenance treat-
ment vs. no-maintenance regimen. We also observed similar 
trends for these same analyses in the COG trial of neuroblas-
toma patients.

Although other mechanisms, such as antibody-dependent 
cellular phagocytosis and complement-dependent cellular cyto-
toxicity (32, 33), could also contribute to the anti-tumor efficacy 
of tumor antigen-specific monoclonal antibodies, we hypothesize 
that the anti-tumor effect of rituximab and dinutuximab in these  
FL and neuroblastoma patients, respectively, is primarily through 
ADCC. NK  cells are major contributors to ADCC, and their 
activity is regulated via the interactions between KIRs/KIR-
ligands (34). As such, we hypothesize that the KIR/KIR-ligand 
genotypes could influence the degree that patients respond to 
antibody-based immunotherapies. Besides NK  cells, KIRs are 
also expressed by a subset of T cells as well as NKT cells (35, 36). 
Therefore, it is possible that these other cell types may also be 
influenced by KIR/KIR-ligand genotypes.

Besides inherited genetic differences in KIR and KIR-ligand 
genotypes, other individual genetic differences, such as polymor-
phisms in Fc gamma receptors (FCGRs), may influence patient 
outcome to immunotherapy. FCGR polymorphisms can alter 
the affinity of FCGRs for the Fc portion of antibodies (mAbs or 
endogenous antibodies) (37). For example, in a separate study 
of patients with metastatic renal cell carcinoma treated with 
high-dose IL-2, we found that patients with a “higher affinity” 
FCGR genotype had improved clinical outcome as compared 
to those patients with a “lower affinity” FCGR genotype (38). 
In our analysis of those same metastatic renal cell carcinoma 
patients for KIR/KIR-ligand genotype influence on outcome, 

we did not observe differences in clinical outcome associated 
with KIR3DL1 and HLA-Bw4 genotype status (39). The influ-
ence of FCGR polymorphisms on clinical outcome to rituximab 
is variable (40–42). For the FL patients analyzed here from this 
ECOG study, Kenkre and colleagues reported no association of 
FCGR genotype polymorphisms with patient outcome (43). In 
addition, some groups have found associations of FCGR geno-
type with clinical outcome for patients treated with anti-GD2 
immunotherapy (8, 44, 45). For the neuroblastoma patients 
from this COG trial, FCGR genotype associations with clinical 
outcome are still under investigation. In addition, it has been 
reported that the influence from KIR/KIR-ligand interactions 
on NK  cells may be affected by the affinity of the Fc portion 
of different therapeutic mAb used (46), the rituximab used in 
this ECOG trial and the dinutuximab used in this COG trial 
have similar human IgG1 Fc components, which may also help 
account for why we observed similar influences from HLA-Bw4 
epitopes in these two separate studies where two different thera-
peutic mAbs were used.

These clinical data are consistent with the B-Bw4-I80 iso-
form functioning somewhat differently than the B-Bw4-T80 or 
A-Bw4 isoforms, and potentially making the tumor cells less 
responsive to the potential benefit of the anti-GD2 or anti-CD20 
mAb-based immunotherapy. In vitro analyses have shown that 
a subset of HLA-Bw4 alleles (those with an B-Bw4-I80 isoform) 
show relative protection from lysis by NK  cells (47, 48). The 
data presented here are consistent with these in vitro results; 
mAb-based immunotherapy may provide more benefit for 
patients with weaker NK  cell inhibition from B-Bw4-T80 or 
A-Bw4, than for patients with stronger NK inhibition from 
B-Bw4-I80.

Given that patients assessed in either trial could be positive 
for more than one of the HLA-Bw4 epitopes, we did consider 
whether the HLA-Bw4 epitopes were in linkage disequilibrium. 
We found that A-Bw4 was not in linkage disequilibrium with either 
B-Bw4-I80 or B-Bw4-T80 (Table S2 in Supplementary Material). 
Thus, the influence that each of these HLA-Bw4 epitopes had on 
the length of patient response in either trial is presumably not due 
to linkage disequilibrium with each other.

We also considered whether the interaction of KIR3DL1 with 
these three different HLA-Bw4 isoforms showed any association 
of outcome among patients randomized to receive the immuno-
therapy regimens. Within the COG study, we observed a trend 
for improved outcome for those KIR3DL1+/HLA-A-Bw4+ vs. 
those not KIR3DL1+/HLA-A-Bw4+ (Figure  1A), and we also 
observed a trend in the opposite direction for HLA-Bw4-I80, 
namely, there was a trend for improved outcome for those not 
KIR3DL1+/HLA-B-Bw4-I80+ vs. those who were KIR3DL1+/
HLA-B-Bw4-I80+ (Figure 1C). Although only a trend, this dif-
ference in Figure 1A and Figure 1C is consistent with differential 
function of HLA-A-Bw4 and HLA-B-Bw4-I80. No significant 
differences or trends were noted when we evaluated among the 
FL patients randomized to receive the maintenance rituximab 
regimen (Figures 2A–C).

The interaction of KIR3DL1 with the Bw4 epitope is depend-
ent not only on the architecture of Bw4 but also on the sequence 
of the bound peptide (25, 28, 49–51). Additionally, the differences 
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we observed between A-Bw4, B-Bw4-T80, and B-Bw4-I80 may 
be due to the different inhibition strength for KIR3DL1 from 
these isoforms. For instance, HLA-A*32:01, HLA-B*51:01, 
and HLA-B*58:01 strongly inhibit target cells from lysis by 
KIR3DL1+ NK cells, yet HLA-B*15:13 and HLA-B*27:05 have 
weaker inhibitory effects, despite all being HLA-Bw4 alleles (6, 
25, 26, 48, 52–54). In addition, depending on the KIR3DL1 allele, 
expression of KIR3DL1 can vary; different HLA-A-Bw4 alleles 
have differential affinity for KIR3DL1 that is attributed to high vs. 
low expression of KIR3DL1 (55). Furthermore, the specific Bw4 
allele, as well as the KIR3DL1 allele, the strength of KIR3DL1/
HLA-Bw4 interaction and the binding avidity can vary (29). For 
example, Saunders et al. recently showed that HLA-A*24:02 acts 
as a poor ligand for KIR3DL1, and the strength of its interaction 
with KIR3DL1 differed depending on the allele of KIR3DL1 (29). 
The genotyping methodology employed for analyzing the many 
patients in these two clinical trials reported here was not able 
to address these more subtle allele-specific or peptide-related 
issues.

Another possible cause of the differences observed in these 
HLA-Bw4 isoforms may be due to genetic polymorphisms of 
KIR3DL1 (26, 28, 29, 56–60). More than 100 alleles of KIR3DL1 
have been described. Phylogenetically, these alleles span three 
lineages based on the polymorphism of the three extracellular 
domains (D0–D1–D2) (53, 61). In both of these clinical studies 
analyzed, we did not determine the allelic differences of the KIR 
genes, but rather we determined their presence or absence. Thus, 
we cannot assess how different KIR3DL1 alleles may affect the 
interactions between different isoforms of HLA-Bw4. We did, 
however, assess if KIR3DL1 allelic status could influence the 
interactions of KIR3DL1 with HLA-Bw4 and with the separate 
HLA-Bw4 isoforms. KIR3DL1 and KIR3DS1 are alleles, thus 
individuals can have 2, 1, or 0 copies of KIR3DL1 (2 copies: 
KIR3DL1/KIR3DL1, 1 copy: KIR3DL1/KIR3DS1, or 0 copies: 
KIR3DS1/KIRDS1). Although KIR3DS1 has not been shown 
to utilize HLA-Bw4 as a ligand in vitro, whether KIR3DS1 may 
still interact with HLA-Bw4 in  vivo is controversial (62–65). 
We assessed whether the allelic status of KIR3DL1/KIR3DS1 
together with HLA-Bw4 (and HLA-Bw4 isoforms) influenced 
patient response. We found that there was no evidence of an 
association with outcome in either the COG or the ECOG study 
that could be linked to the allelic status of KIR3DL1/KIR3DLS1 
(data not shown), nor was there evidence of an association of 
clinical outcome linked to KIR3DL1/KIR3DS1 status together 
with the HLA-Bw4 ligand isoforms (data not shown). Rather, the 
mere presence of KIR3DL1 together with its ligand, HLA-Bw4, 
seemed to influence patients’ response to immunotherapy in 
both clinical trials. These observations will require validation in 
a separate study.

In conclusion, this work sheds further light on the role of KIR 
receptors on NK  cells in the antitumor response to immuno-
therapeutic mAbs. We demonstrate that the KIR3DL1/HLA-Bw4 
axis influences response to tumor-targeted mAbs in two separate 
clinical trials and that the presence of the B-Bw4-T80 isoform 
or the A-Bw4 isoform is associated with improved response to 
mAb-based immunotherapy, while the presence of the B-Bw4-I80 
isoform is not.
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