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Impaired Fast-Spiking, Suppressed Cortical Inhibition, and
Increased Susceptibility to Seizures in Mice Lacking Kv3.2 K1

Channel Proteins

David Lau,1 Eleazar Vega-Saenz de Miera,1 Diego Contreras,2 Ander Ozaita,1 Michael Harvey,1 Alan Chow,1
Jeffrey L. Noebels,3 Richard Paylor,4 James I. Morgan,5 Christopher S. Leonard 6 and Bernardo Rudy1

1Departments of Physiology and Neuroscience, and Biochemistry, New York University School of Medicine, New York,
New York 10016, 2Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
19106, Departments of 3Neurology and 4Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas,
77030, 5Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105,
and 6Department of Physiology, New York Medical College, Valhalla, New York 10595

Voltage-gated K1 channels of the Kv3 subfamily have unusual
electrophysiological properties, including activation at very de-
polarized voltages (positive to 210 mV) and very fast deactiva-
tion rates, suggesting special roles in neuronal excitability. In the
brain, Kv3 channels are prominently expressed in select neuronal
populations, which include fast-spiking (FS) GABAergic interneu-
rons of the neocortex, hippocampus, and caudate, as well as
other high-frequency firing neurons. Although evidence points to
a key role in high-frequency firing, a definitive understanding of
the function of these channels has been hampered by a lack of
selective pharmacological tools. We therefore generated mouse
lines in which one of the Kv3 genes, Kv3.2, was disrupted by
gene-targeting methods. Whole-cell electrophysiological record-
ing showed that the ability to fire spikes at high frequencies was
impaired in immunocytochemically identified FS interneurons of
deep cortical layers (5-6) in which Kv3.2 proteins are normally

prominent. No such impairment was found for FS neurons of
superficial layers (2-4) in which Kv3.2 proteins are normally only
weakly expressed. These data directly support the hypothesis
that Kv3 channels are necessary for high-frequency firing. More-
over, we found that Kv3.2 2/2 mice showed specific alterations
in their cortical EEG patterns and an increased susceptibility to
epileptic seizures consistent with an impairment of cortical inhib-
itory mechanisms. This implies that, rather than producing hy-
perexcitability of the inhibitory interneurons, Kv3.2 channel elim-
ination suppresses their activity. These data suggest that normal
cortical operations depend on the ability of inhibitory interneu-
rons to generate high-frequency firing.

Key words: K1 channels; neocortex; fast spiking; knock-out
inhibitory interneurons; high-frequency firing; seizure susceptibil-
ity; GABA; epilepsy

Approximately 10–20% of the neurons in the cerebral cortex are
inhibitory GABAergic interneurons. These cells play a critical role
in a number of important functions, including the gating and
processing of sensory information, the establishment and plasticity
of sensory receptive fields, the synchronization of cortical circuits,
the generation of rhythms, and the limiting of seizure activity
(Fairen et al., 1984; Gilbert, 1993; Jones, 1993; Amitai and Con-
nors, 1995; Keller, 1995; Singer and Gray, 1995; Freund and
Buzsaki, 1996; Jefferys et al., 1996; Steriade, 1997).

Cortical GABAergic interneurons represent a heterogenous
population of cells with subtypes differing in morphological ap-
pearance, expression of specific markers such as calcium-binding
proteins or neuropeptides, firing patterns, synaptic properties, and
axonal connectivity (Jones, 1975; Somogyi et al., 1984; Hendry et
al., 1989; Freund and Buzsaki, 1996; Cauli et al., 1997; Gonchar
and Burkhalter, 1997; Kawaguchi and Kubota, 1997; Gupta et al.,
2000).

The largest group of neocortical inhibitory interneurons (;50%)
consists of cells that contain the calcium-binding protein parvalbu-
min (PV). These neurons are characterized by a “fast-spiking”
firing pattern, i.e., the ability to fire long trains of very brief action
potentials at high frequency with little firing frequency adaptation

(McCormick et al., 1985; Celio, 1986; Cauli et al., 1997; Kawaguchi
and Kubota, 1997). These neurons are interconnected by electrical
synapses and form a network of fast-spiking cells, suggesting a role
in the generation of synchronized cortical activity (Galarreta and
Hestrin, 1999; Gibson et al., 1999).

Several lines of evidence have led to the hypothesis that specific
voltage-gated, delayed rectifier-type K1 channels composed of K1

channel pore-forming subunits of the Kv3 subfamily (Kv3.1–Kv3.3)
are critical for the ability of neurons to fire at high frequencies in a
sustained or repetitive fashion. First, the properties of these chan-
nels, which include activation at voltages positive to 210 mV and
very fast deactivation rates on membrane repolarization, naturally
lend themselves to a specific role in spike repolarization. Second,
there is a strong correlation between the specific expression of Kv3
RNA transcripts and Kv3 proteins in neuronal populations that fire
at high frequencies. Third, pharmacological experiments show that
blockade of native Kv3-like currents with low concentrations of
tetraethylammonium (TEA) or 4-aminopyridine (4-AP) impairs
the ability of these neurons to fire sustained and/or repetitive-
action potentials at high frequency. Fourth, computer modeling
indicates that selective blockade of Kv3 currents impairs high-
frequency firing (Perney et al., 1992; Lenz et al., 1994; Weiser et al.,
1994, 1995; Du et al., 1996; Massengill et al., 1997; Sekirnjak et al.,
1997; Martina et al., 1998; Wang et al., 1998; Chow et al., 1999;
Erisir et al., 1999; Atzori et al., 2000) (for review, see Coetzee et
al., 1999; Rudy et al., 1999).

To further test the hypothesis, and given the absence of selective
channel blockers, we used gene-targeting methods to produce mice
lines that do not express Kv3.2 K1 channel subunits (McCormack
et al., 1990; Rudy et al., 1992), which are prominently expressed in
PV-containing interneurons in deep cortical layers (Chow et al.,
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1999), and compared the properties of fast-spiking neurons in the
neocortex from these mice with those from normal wild-type lit-
termates. Results from these experiments provide direct evidence
that Kv3 channels are critical for both sustained and repetitive
high-frequency firing. Moreover, the Kv3.2 2/2 mice show both an
enhanced susceptibility to seizures and disturbed cortical rhythmic
activity. The availability of mice in which fast-spiking is compro-
mised in specific neuronal populations provides a model to inves-
tigate the consequences of this impairment on the behavior of
cortical circuits, which in turn can help in the understanding of the
function of fast-spiking, the roles of the interneurons in cortical
function, and the mechanisms by which they achieve these functions.

MATERIALS AND METHODS
Generation of mice lacking Kv3.2 proteins
Isolation of a mouse 129 genomic clone containing exon I of Kv3.2. A mouse
129 genomic library (;1 3 10 6 pfu) in lDashII (kind gift from Drs. J.
Rossant and A. G. Reaume, Mount Sinai Hospital, Toronto, Canada) was
screened at high stringency with a 380 bp fragment containing the first 301
bp of the coding region of Kv3.2 and 79 bp of the 59 untranslated region,
derived from a rat Kv3.2 cDNA (McCormack et al., 1990).

Bacteriophage DNA from positive clones was isolated with the Midi l
Phage DNA Prep (Qiagen, Hilden, Germany) from fresh liquid lysates.
Genomic clone inserts were excised from the bacteriophage arms by
restriction digest with NotI and subcloned into the NotI site of the bacterial
vector pBluescript (Stratagene, La Jolla, CA). One of the isolated clones,
E2, shown by hybridization to contain sequence from the first coding exon
(exon I) of Kv3.2, was used for these studies. The restriction recognition
sites of the following enzymes were mapped on the E2 clone: BamHI, ClaI,
EcoRI, HindIII, SacI, and XbaI. Each of the EcoRI fragments was sub-
cloned individually into pBluescript (Stratagene) to facilitate mapping and

the generation of the targeting construct. The 39 half of the clone E2,
consisting of two contiguous EcoRI fragments of 3.6 and 8.5 kb, was used for
the construction of the targeting construct and is illustrated in Figure 1A.

Generation of the targeting construct. Regions within the 3.6 and 8.5 kb
EcoRI fragments of the clone E2 were selected to be the short and long
arms of homology (Fig. 1 A). The 1.9 kb short arm of homology was
isolated from the 3.6 kb EcoRI fragment by digestion with SacI and EcoRI.
The 5.0 kb long arm of homology was isolated from the 8.5 kb EcoRI
fragment by restriction digestion with XbaI and NotI (in the polylinker of
pBluescript). The neomycin resistance gene flanked by EcoRI and XbaI
sticky ends was ligated between the two arms. The thymidine kinase gene
was placed 59 of the short arm of homology, and the entire construct was
cloned into pBluescript. The final construct was mapped by restriction
digest and subsequent Southern hybridization, as well as by sequencing of
key junctions to confirm its integrity.

Homologous recombination in embryonic stem cells. W9.5 embryonic stem
(ES) cells (28 3 10 6) were harvested (Robertson, 1987) and resuspended
in 1 ml of culture medium in a sterile electroporation cuvette (Bio-Rad,
Hercules, CA). We mixed 40 mg of the NotI linearized targeting construct
(in sterile PBS) with the suspended cells and electroporated it with a
Gene-Pulser electroporator (Bio-Rad) at 0.23 kV, 500 mF. The pulsed ES
cells were cultured onto 60 mm feeder plates at 37°C in an atmosphere of
5% CO2. The basic culture medium consisted of DMEM plus 15% serum.
Leukemia inhibitory factor (10 6 U/ml), used to retard ES cell differenti-
ation, was added to all culture media except replica plates (see below).
After a day in culture, G418 (350 mg/ml Geneticin; Life Technologies,
Gaithersburg, MD) and 1-(2-deoxy-2-fluoro-1-b-D-arabino-furanosyl)-5-
iodouracil (2 mg/ml; a gift from Eli Lilly, Indianapolis, IN) were added to
the culture medium. The medium was changed 2 d after drug introduction
and then daily afterward. Five days after drug introduction, surviving
undifferentiated ES cell colonies were transferred individually to multiwell
cell culture plates (Falcon).

A total of 380 ES cell colonies were harvested. The medium was changed
2 d after harvesting and then daily. Four days later, the ES cell cultures
were trypsinized and passaged into two sterile 48-well multiwell cell

Figure 1. Generation of the Kv3.2 2/2
mouse. A, Targeting the Kv3.2 gene via
homologous recombination. Top, Restric-
tion map of the mouse genome in the area
around exon I (the first coding exon) of the
Kv3.2 gene. Exon I is indicated as the solid
box and introns as lines. Arrows under ge-
netic elements indicate transcriptional ori-
entation. Middle, Kv3.2 gene-targeting vec-
tor. The neomycin resistance gene replaced
the portion of exon I downstream of the
EcoRI site and ;4 kb of intron I. PGK-Neo,
Neomycin resistance gene driven by the
phosphoglycerate kinase promoter; PGK-
TK, thymidine kinase gene driven by the
phosphoglycerate kinase promoter; pBlue-
script, bacterial vector backbone. Crosses
indicate crossover regions in homologous
recombination. Bottom, Null Kv3.2 allele
generated after proper targeting. The 59
probe is the XbaI–SacI fragment used as a
template to synthesize the probe for geno-
typing. As indicated, the 59 probe should
identify a 3.0 kb fragment in the wild-type
allele and a 5.0 kb band in the null allele
when genomic DNA is digested with XbaI.
Restriction enzymes are as follows: E,
EcoRI; H, HindIII; S, SacI; X, XbaI. B–D,
Molecular characterization of Kv3.2
knock-out mice. B, Genotyping by South-
ern blot analysis. Genomic DNA was iso-
lated from tail biopsies of juvenile mice and
digested with XbaI. Kv3.2 knock-out (2/2)
mice possess two copies of the engineered
null allele and consequently only show the
5.0 kb fragment after hybridization with
the 32P-labeled 59 probe. Heterozygotes
(1/2) show both wild-type and mutant al-
leles, and the wild-type (1/1) littermates
only possess wild-type alleles. C, Northern
analysis of Kv3.1 and Kv3.2 mRNA expres-
sion in Kv3.2 null mice. Ten micrograms of
total brain RNA was loaded into each lane
from a wild-type, a heterozygote, and a Kv3.2 knock-out mouse. The Northern blots were probed with Kv3.2 (right) or Kv3.1 (lef t) 32P-labeled cDNA
probes. Notice that the Kv3.2 knock-out does not express mature Kv3.2 RNA species and the heterozygote has lower expression levels than the wild type.
In all three Kv3.2 genotypes, Kv3.1 mRNA levels are constant. The blots were then hybridized with b-actin cDNA probe to quantitate the amount of RNA
per lane. The sizes of the RNA standard marker for both blots are located on the left. D, Immunoblots of Kv3.1b and Kv3.2 proteins in the Kv3.2 mutant.
Solubilized brain membrane proteins from mice of all three genotypes were electrophoresed in SDS-PAGE gels and incubated with primary antibody
against Kv3.1b (lef t) or Kv3.2 (right). Kv3.2 proteins were not detectable in the Kv3.2 null mutant, and lower levels of protein were present in the
heterozygote animal. The concentration of Kv3.1b protein was consistent between all three genotypes. Sizes of the protein size markers are indicated at
the lef t of each blot.
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culture plates (one colony per well), a master plate that was frozen and
stored at 270°C, and a replica plate that was further expanded. The replica
plates were fed every 2 d. After 1 week in culture, the cell culture medium
was discarded, and the replica plates were washed with PBS. To each well,
250 ml of lysis buffer (1.0 M NaCl, 10 mM EDTA, 50 mM Tris, pH 8, 0.5%
SDS, and 0.2 mg/ml proteinase K) was added, and the plate was incubated
overnight at 55°C. We added 250 ml of isopropanol to each well and the
genomic DNA pellets were transferred individually to microcentrifuge
tubes. The DNA was washed with 70% ethanol and resuspended in 50 ml
of Tris-EDTA (TE). The DNA was used to genotype the colonies by
Southern blot analysis (as described below) to identify ES cells that had
undergone homologous recombination.

Chimera generation. From the master plate, identified, targeted ES cell
colonies were expanded in culture. C57BL6 blastocysts that were 2.5 d old
were harvested from the uterine tubes of timed pregnant females, and
8–10 targeted ES cells were introduced to the blastocoel with a beveled
glass micropipette. The injected blastocysts were implanted into pseudo-
pregnant mothers (Joyner, 2000). Chimeric character was estimated by
coat color, and males with .95% chimerism were selected and bred with
C57BL6 females. Offspring heterozygotes were identified by Southern blot
genotyping using genomic DNA obtained from tail biopsies (see below)
and were bred against C57BL6 mice for backcrossing or bred against other
heterozygotes to generate knock-out mice. All knock-out mice used in our
experiments had been backcrossed at least seven generations onto the
C57BL6 genetic background.

Genotyping by genomic Southern blot analysis
Genomic DNA from cultured ES cells or tail biopsies was digested over-
night with XbaI (Promega, Madison, WI). The digested samples were
electrophoresed on 0.7% agarose–Tris-borate–EDTA gels at 7.5–9.0 V/cm
until DNA fragment sizes from 2 to 6 kb were clearly separated. The gels
were stained with ethidium bromide and photographed on a UV light table
with a fluorescent ruler for orientation. The agarose gels were incubated in
5 gel volumes of denaturing solution (1.0 M NaOH and 1.5 M NaCl) with
gentle agitation for 30 min and a change to a fresh solution after 15 min.
After denaturing, the gels were incubated in 5 gel volumes of neutralizing
solution (1.0 M Tris-HCl, pH 7.5, and 1.5 M NaCl) with gentle agitation for
30 min and a change to a fresh solution after 15 min. The DNA in the gels
was transferred onto nylon membranes (Stratagene) overnight via capillary
action. The blotted membranes were marked, and the DNA was UV-
crosslinked to the nylon membrane in a Stratalinker (Stratagene). The
membranes were stored dry at room temperature until hybridization.

The probe used for genotyping was a 1.0 kb band between the XbaI and
SacI sites in the 3.6 kb EcoRI fragment of the E2 clone (Fig. 1 A, bottom
diagram). The probe corresponds to sequences in the intron preceding
exon I of the Kv3.2 gene. Probes were labeled with [ 32P]dCTP with the
Redi-Prime random primer labeling kit (Amersham Pharmacia Biotech,
Arlington Heights, IL). With XbaI-digested genomic DNA, the probe
hybridized to a 3.0 kb band derived from the wild-type allele and a 5.0 kb
band from the targeted null allele (Fig. 1 B).

The Southern blots were prehybridized in QuikHyb (Stratagene) for 15
min at 68°C. The denatured probe was added at a final concentration of
1.5 3 10 6 TCA precipitable counts per milliliter, and the blots were
hybridized in a Hybaid oven (Labline) at 68°C for 1 hr with gentle rotation.
The hybridized Southern membranes were washed (three times) at room
temperature with 23 saline-sodium phosphate-EDTA buffer (SSPE) and
0.1% SDS, followed by a 60°C hot wash (in 0.13 SSPE and 0.1% SDS) for
30 min. The blots were then exposed to x-ray film between two intensifying
screens at 270°C for 2 hr to 1 week, depending on the intensity of the
signal.

Isolation of genomic DNA from tail biopsies
We harvested 0.5–1.0 cm of tail from ;3-week-old mice. Tails were
digested overnight at 60°C in tail lysis buffer (100 mM NaCl, 50 mM Tris,
pH 7.4, 1 mM EDTA, 0.1% SDS, and 0.75 mg/ml proteinase K). Tail lysates
were extracted with 1 vol of chloroform, and genomic DNA was precipi-
tated with 2 vol of ethanol. DNA pellets were washed with 70% ethanol
and briefly air-dried to remove residual ethanol. The genomic DNA was
resuspended in TE and used for restriction enzyme digestion.

Northern blot analysis
Total RNA was obtained with the guanidine–isothiocynate method and
quantified by optical density measurements (Chomczynski and Sacchi,
1987). Total RNA (10 mg) from knock-out and wild-type mice was elec-
trophoresed in denaturing formaldehyde gels and transferred to Dura-
lon–UV membranes (Stratagene) as previously described (Rudy et al.,
1988). The Northern blots were hybridized as described for Southern
genotyping. The probe for Kv3.2 was the 380 bp probe described previ-
ously. A full-length cDNA clone of Kv3.1b was used as a probe template
for Kv3.1 mRNA detection.

Western blot analysis
Brain membrane extracts were prepared from a P3 fraction of tissue
homogenate from adult knock-out and wild-type mice (Hartshorne and
Catterall, 1984) and solubilized in Triton X-100 as previously described

(Chow et al., 1999). To prepare the Western blots, membrane protein (25
mg/ lane for detection with Kv3.1b-Ab and 50 mg/ lane for Kv3.2-Ab) were
electrophoresed in a 9% SDS polyacrylamide gel and then transferred onto
nitrocellulose membranes (Bio-Rad) as previously described (Chow et al.,
1999). The blots were incubated with either Kv3.1b-Ab (Weiser et al.,
1995) at 1:1000–1:2000 dilution or Kv3.2-Ab (Chow et al., 1999) at 1:50–
1:100 dilution. This was followed by incubation with horseradish
peroxidase-linked anti-rabbit secondary antibodies (Promega). Detection
of the secondary antibody was performed using chemiluminescence
(Pierce, Rockford, IL). The Kv3.2-rAb was derived from immunizing
rabbits to a peptide corresponding to a sequence present in the region of
the Kv3.2 protein that is before the first membrane-spanning domain in the
N-terminal area and recognizes all Kv3.2 isoforms (Chow et al., 1999). The
Kv3.1-rAb is directed against the C terminal of the predominant isoform of
the Kv3.1 gene, Kv3.1b (Weiser et al., 1995).

Immunohistochemistry of mouse brain
Adult mice were anesthetized with intraperitoneal injections of sodium
pentobarbital (;80–100 mg/kg) and transcardially perfused with parafor-
maldehyde after the loss of pain reflexes as previously described (Chow et
al., 1999). The brains were removed from the animals and processed for
immunohistochemistry as described previously (Chow et al., 1999). The
Vectastain Elite ABC kit was used to immunolabel via the horseradish
peroxidase method. Kv3.1-rAb was used at 1:1000 dilution, Kv3.2-rAb was
used at 1:300 dilution, and mouse monoclonal antibodies to parvalbumin
(Sigma, St. Louis, MO) were used at 1:300.

In vivo physiology
Behavioral analysis. The following behavioral tests were all done in the
laboratory of Richard Paylor (Department of Molecular and Human Ge-
netics, Baylor College of Medicine) with a battery commonly used in this
laboratory (Kimber et al., 1999; Peier et al., 2000). The tests were done
blindly in a group of mice that included 13 mutant (four female, nine male)
and nine wild-type (three female, six male) littermates. The mice had been
backcrossed seven times to C57BL6. The tests were performed essentially
as described by Paylor et al. (1998) and included the following: (1) general
neurological screen for severe sensory and motor abnormalities, (2) open-
field test for exploratory activity and anxiety-related responses, (3) light–
dark test for anxiety-related responses, (4) rotarod test for motor coordi-
nation and skill learning, (5) acoustic startle and prepulse inhibition of the
acoustic startle response for sensorimotor gating, (6) habituation of the
acoustic startle response for sensorimotor adaptation, (7) contextual and
auditory-cued freezing to assess conditioned fear, and (8) the hotplate test
for analgesia-related responses. Data were analyzed using two- or three-
way ANOVA.

Chronic EEG. Adult mice were anesthetized with Avertin (1.25% tri-
bromoethanol–amyl alcohol) by intraperitoneal injection (0.02 ml/gm).
Silver wire electrodes (0.005 inches in diameter) soldered to a micromin-
iature connector were implanted into the subdural space over the left and
right cortical hemispheres. After several days of recovery, EEG activity
was recorded daily during random 2 hr samples for 7–10 d using a TECA
digital electroencephalograph. All recordings were performed on mice
moving freely in the test cage in the laboratory of Jeffrey L. Noebels at
Baylor College of Medicine.

EEG recording in anesthetized mice. Knock-out and wild-type mice were
anesthetized with intraperitoneal injections of a mixture of ketamine (15
mg/kg) and xylazine (3 mg/kg). Depth of anesthesia was ascertained by
recording EEG with monopolar electrodes placed in frontal cortex. Sup-
plemental doses of ketamine–xylazine were given at the slightest sign of
EEG desynchronization. After the loss of tail pinch reflexes, the mice were
placed in a rodent stereotaxic apparatus (David Kopf Instruments, Tu-
junga, CA) equipped with mouse head holders. A midline sagittal incision
was made along the scalp, and the skin was reflected. Petroleum jelly was
applied over the eyes to prevent ulcers. Burr holes were drilled over the
right somatosensory cortex and the right dorsal thalamus according to the
stereotaxic coordinates (Franklin and Paxinos, 1997). Mineral oil was
applied over the exposed brain to prevent desiccation. Bipolar tungsten
electrodes were fashioned from two monopolar tungsten electrodes with
resistance of 1 MV that were affixed with dental cement. The bipolar
electrode pairs were lowered into the neocortex and thalamus with fine
micromanipulators (Narishige, Tokyo, Japan) through the burr holes, and
signals were amplified with a homemade DC amplifier with head stage and
capacity compensation. In cortex, the electrodes were located in the pial
surface and in layer 6 (;0.7 mm apart); in the thalamus, the electrodes
were side by side, separated by 0.4 mm. Electrical stimulation was also
delivered through the recording electrodes with an isolated pulse stimu-
lator (AM Systems). Data were sampled at 1 kHz with an InstruNet (GW
Systems) analog-to-digital card and analyzed in Igor (WaveMetrics Inc.,
Lake Oswego, OR) with customized routines.

Seizure induction with pentylenetetrazole. Pentylenetetrazole (PTZ) (Re-
search Biochemicals, Natick, MA) was dissolved in PBS and injected
intraperitoneally at the indicated dose. After injection, the animal was
placed in a transparent Plexiglas cage (30 3 20 3 25 cm) and observed for
up to 30 min. Latencies to focal (partial clonic), generalized (generalized
clonic), and maximal (tonic-clonic) behavioral seizures were recorded. The
bottom of the cage was covered with clean paper towels that were replaced
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for each animal. Each cage was cleaned with water after each experiment,
before introducing a new mouse. All the animals used in this study were
housed in a facility with light (12 hr light /dark cycle) and temperature
control, and all the experiments were performed in the laboratory between
12:00 P.M. and 2 P.M. in mice of similar age (10–14 weeks).

We defined several stages in the behavioral response to PTZ injection.
Stage 1, designated as hypoactivity, was characterized by a progressive
decrease in activity until the mice stood in a crouched or prone position
with their abdomens in full contact with the bottom of the cage. Stage 2
was isolated jerks or twitches. Stage 3 was partial or focal clonic seizures
affecting the face, head, and/or forelimbs. These seizures were usually very
brief, typically 1–2 sec. Stage 4 was generalized clonic seizures. These
usually occurred suddenly, could last 30 sec or more, and involved gener-
alized whole-body clonus. Autonomic signs were frequently seen. The
seizure was usually followed by a quiescent period. Stage 5 was tonic-clonic
(maximal) seizures. Mice reaching this stage displayed wild running and
jumping behavior and then had generalized seizures characterized by tonic
hindlimb extension. Tonic-clonic maximal seizures were usually associated
with death.

In vitro physiology
Slice preparation. Knock-out and wild-type mice of ages postnatal day 15
(P15) to P21 were used for acute brain-slice preparation (Agmon and
Connors, 1991). Mice were anesthetized with an overdose injection of
sodium pentobarbital and decapitated after the loss of pain reflexes. The
brain was rapidly removed from the skull in a bath of ice-cold artificial CSF
(ACSF) (in mM): 124 NaCl, 5 KCl, 1.25 NaH2PO4, 26 NaHCO3, 2 MgSO4,
2 CaCl2, and 10 dextrose, pH 7.4, bubble-saturated with 95% O2, 5% CO2.
Slices 250-mm-thick from the somatosensory cortex were prepared on a
vibratome (World Precision Instruments, Sarasota, FL) and placed in a
holding chamber with continuous bubbling ACSF at room temperature.
Slices were allowed to rest in the holding chamber for at least 1 hr before
transfer to the recording chamber. The submersion-type recording cham-
ber was perfused at a rate of 2–3 ml/min with ACSF saturated with 95%
O2, 5% CO2, and all recordings were done at a temperature of 24°C
controlled by an in-line solution heater (Warner Instruments, Hamden,
CT).

Whole-cell recordings. Neocortical neurons were visualized with near-
infrared light (.775 nm) at 4003 magnification with a nuvicon tube
camera (Dage-MTI, Michigan City, IN) and differential interference optic
(DIC) on a fixed-stage microscope (Olympus Optical, Tokyo, Japan)
(Stuart et al., 1993; Erisir et al., 1999). Nonpyramidal cells were visually
selected for current-clamp experiments. Recording microelectrodes of 6–9
MV resistance were made from standard wall borosilicate glass (Sutter
Instruments, Novato, CA) with a Flaming/Brown type micropipette puller
(Sutter Instruments). The micropipette filling solution consisted of (in
mM): 144 K-gluconate, 0.2 EGTA, 3 MgCl2, 10 HEPES, 4 ATP-Mg, and
0.5 GTP-Tris. For subsequent histochemistry, biocytin (0.2% w/v; Sigma)
was added to the internal solution just before recording. In the current-
clamp mode of an electronic bridge amplifier (Axon Instruments, Foster
City, CA), repetitive firing, single spikes, and hyperpolarization responses
were recorded in the whole-cell configuration. Protocols were delivered
under the control of pClamp 7 software (Axon Instruments). Responses
were sampled at 10 kHz. Neurons were held at 270 mV with small
injections of direct current, except during protocols for spike doublets and
rebound responses when they were held at 260 mV. Action potential shape
parameters were measured from action potentials evoked by 150 msec
current steps that were just above threshold. Spike amplitude was mea-
sured as the difference between the peak and the threshold of the action
potential. Spike threshold was determined by finding the potential at which
the second derivative of the voltage waveform exceeded three times its SD
in the period preceding spike onset. The fast afterhyperpolarization
(AHP) was measured as the difference between the spike threshold and
voltage minimum after the action potential peak. Maximum rates of rise
and decay of the action potential were computed from the maximum and
minimum of the first derivative of the voltage waveform. Spike width was
measured at half the spike amplitude. Spike times were measured by
determining the time at which the rising phase of the action potential
crossed a fixed-threshold potential. Instantaneous frequency (one per
interspike interval) was computed from trains of action potentials evoked
by 600 msec duration pulses. Steady-state firing rate was the average of
instantaneous frequency for the last five intervals of a train. Current
strength was increased until spike failure occurred within the 600 msec
duration pulse. The maximum steady-state firing rate was the steady-state
firing rate from the train evoked by the current strengths (at increments of
100 pA) before that which produced spike failure. Firing frequency adap-
tation was calculated by dividing the steady-state firing rate by the first
instantaneous frequency of the train. All analysis was performed in cus-
tomized routines in Igor and Sigma Plot. Results are reported as mean 6
SEM. TEA (Research Biochemicals) was bath-applied. Only one fast-
spiking neuron was recorded per brain slice.

Histochemistry and immunolabeling of recorded neurons
After electrophysiological characterization, brain slices were fixed for 1–2
hr at room temperature in 4% paraformaldehyde in PBS. The slices were
transferred into 30% sucrose with 0.02% sodium azide and stored at 4°C.

Slices were washed three times in PBS to remove sucrose and incubated in
a blocking–permeablization solution [1% (w/v) BSA, 0.4% (v/v) Triton
X-100, and 10% (v/v) normal goat serum] for 1 hr. For primary labeling,
streptavidin conjugated to Cy2 (1:250 dilution; Jackson ImmunoResearch,
West Grove, PA) and mouse monoclonal parvalbumin IgG (1:400) (Sigma)
were incubated with the brain slices in 10% blocking solution in PBS for
7 d at 4°C. The slices were washed twice in PBS and incubated with the
secondary antibody, Cy3-conjugated anti-mouse IgG, for 5 d at 4°C. After
three washes in PBS, the slices were mounted onto glass slides in 0.001 M
phosphate buffer and allowed to air dry. The sections were coverslipped
with a polyvinyl alcohol–glycerol medium with 2% 1,4-
diazabicyclo[2,2,2]octane (Goslin and Banker, 1991). The sections were
examined and scored on a Zeiss (Oberkochen, Germany) Axiophot epi-
fluorescence microscope. Sections containing biocytin-labeled neurons
were examined for PV immunoreactivity without knowledge of the phys-
iological characteristics of the recorded neuron. Only sections with distinct
PV immunoreactivity present at the depth of the biocytin-labeled somata,
as determined using a 403 objective, were considered for scoring. This
precaution was taken to reduce the possibility of falsely scoring double-
labeled cells as PV-negative because of incomplete antibody or chro-
mophore penetration. Digital images were acquired on an Zeiss Axiovert
35 M confocal microscope with a 403 objective lens, a scanning laser
attachment, and a krypton–argon mixed-gas laser, and transferred into a
graphics program (Photoshop 5.0).

RESULTS
Generation of mice lacking Kv3.2 proteins
Gene targeting by homologous recombination in ES cells (Thomas
and Capecchi, 1987) was used to generate mouse lines in which the
Kv3.2 gene has been disrupted. The targeting construct used to
modify the mouse Kv3.2 gene was derived from a mouse 129
genomic clone and is shown diagrammatically in Figure 1A, which
also illustrates the structure of the gene in the mutated area before
and after the targeting. The 39 end portion of the first coding exon
(exon I) of Kv3.2 was deleted and replaced by a neomycin gene.
The portion of exon I that was deleted encodes the subunit (or
tetramerization) domain (T domain) that is critical for the oli-
gomerization of Kv channel subunits (Li et al., 1992; Shen and
Pfaffinger, 1995; Xu et al., 1995). Therefore, if a truncated protein
were to be made at the normal starting methionine of Kv3.2, it
would lack the T domain and would not oligomerize with products
of other Kv3 genes and produce dominant negative effects (Mc-
Cormack et al., 1991; Babila et al., 1994; Ribera et al., 1996). ES
cells with a targeted allele were selected and implanted in foster
mothers. Several chimeras were obtained, from which two indepen-
dent lines of Kv3.2 2/2 mice were established. Both have been
backcrossed (7 and 10 times so far) to C57BL6 mice and are being
maintained in this genetic background. Kv3.2 2/2 mice lack Kv3.2
mRNA and protein products (Figs. 1C,D, 2), whereas heterozygous
mice have reduced mRNA and protein levels (Fig. 1C,D). In
contrast, the levels of products of the closely related Kv3.1 gene
were not affected (Fig. 1C,D). We also determined whether the
distribution of Kv3.1 protein was altered in the Kv3.2 2/2 mice by
immunohistochemistry (Fig. 2). Kv3.1 proteins have a wider ex-
pression pattern than Kv3.2 proteins (Weiser et al., 1995; Rudy et
al., 1999) and overlap in several neuronal populations, including
PV-containing neurons in the neocortex, globus pallidus, and hip-
pocampus, in which Kv3.1 and Kv3.2 proteins may form hetero-
meric Kv3 channels (Chow et al., 1999; Hernandez-Pineda et al.,
1999). In the Kv3.2 2/2 mice, Kv3.1 proteins were detected in both
these regions of overlap and the other structures in which they are
normally found (Fig. 2). The overall brain histology (Fig. 2; see also
Fig. 4) and the barrel structure (data not shown) of somatosensory
cortex also appeared normal in these mice.

Phenotypic characterization of Kv3.2 2/2 mice:
increased susceptibility to epileptic seizures
Kv3.2 2/2 mice in the mixed 129-C57BL6 or in the C57BL6
background have a healthy appearance and grow normally. Both
male and female, homozygote (2/2) and heterozygote (1/2) mice
are fertile. All the behavioral and functional analysis of the mice
has been done in the nearly pure C57BL6 background. The mice
show no evidence of severe sensory or motor abnormalities during
neurological screens. Moreover, there were no significant differ-
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ences ( p . 0.05) detected in overall total distance traveled in the
open-field test, light–dark test, rotarod test, prepulse inhibition,
startle habituation, conditioned fear, spatial learning, or hotplate
test (see Materials and Methods). There was one significant differ-
ence in the open-field test. Knock-out mice had a significantly
lower ( p , 0.04) center-to-total distance ratio, which is an indica-
tor of anxiety in the open field. However, there were no statistically
significant differences in the light–dark exploration box (an inde-
pendent test of anxiety), so one must be cautious about making too
much of the anxiety phenotype in the open field. Future experi-
ments will be needed to determine whether there is a possible
anxiety phenotype by evaluating the mice in other assays of anxiety
such as the elevated plus-maze.

Spontaneous, epileptic episodes lasting 5–40 sec and character-
ized by tonic-clonic convulsions have been observed in behaving
Kv3.2 2/2 mice (n 5 14 out of several hundred Kv3.2-deficient
mice under similar manipulations) but never in wild-type litter-
mates. These always occurred while the animals were being manip-
ulated but could not be reliably provoked by routine handling or
auditory or photic stimuli. The electrographic record during one of
these spontaneous episodes is shown in Figure 3. Spontaneous
epileptic episodes in the Kv3.2 2/2 mice are rare, and usually there
are none during typical studies with the mice. The waking back-
ground EEG activity in these mutants is unremarkable, and no
abnormal patterns of spike-wave discharge were observed in par-
ticular. However, the seizures suggest cortical excitability increases
in the Kv3.2 2/2 mouse, a hypothesis that was supported by a
series of experiments described later in this paper.

Impaired fast spiking in cortical interneurons from Kv3.2
2/2 mice
We used the Kv3.2 2/2 mice to directly test the hypothesis that
K1 channels containing Kv3 proteins are required for sustained
high-frequency firing in fast-spiking cortical interneurons. Because
PV-containing cortical interneurons in the deep layers prominently
express both Kv3.2 and Kv3.1 proteins (probably in heteromeric
channels), whereas PV-containing neurons in superficial layers
express mainly Kv3.1 subunits (Chow et al., 1999), we predicted
that PV-containing neurons in the deep layers would be more
affected in Kv3.2 2/2 mice than neurons in superficial layers. We
confirmed that the levels (data not shown) and distribution (Fig. 4)
of PV immunoreactivity in the cortex were not affected in the Kv3.2
2/2 mouse.

The shape of action potentials and the repetitive firing properties
of cells from knock-out and wild-type littermate mice in both
superficial and deep cortical layers were compared using whole-cell
recording methods from nonpyramidal neurons visualized by IR-
DIC optics in slices of somatosensory cortex. Nonpyramidal neu-
rons in both knock-out and wild-type mice had different firing
patterns that could be classified into three types, similar to those
previously reported in rat and mouse neocortex: regular spiking
(RS), low-threshold spiking (LTS), and fast spiking (FS) (Kawagu-
chi and Kubota, 1993, 1997; Cauli et al., 1997; Erisir et al., 1999;
Gibson et al., 1999). Under our recording conditions, FS neurons
were characterized by having short-duration action potentials and
large, brief AHPs. In response to sustained current injection, they

Figure 2. Normal distribution of Kv3.1 protein and lack of Kv3.2 protein in the Kv3.2 2/2 mouse. Immunoperoxidase detection of Kv3.2 and Kv3.1
proteins in brain sections from: Top row Kv3.2 wild-type (1/1); bottom row, Kv3.2 knock-out (2/2) littermates. Sections were overexposed to emphasize
the lack of Kv3.2 staining in knock-out mice. Kv3.2 products have a highly specific pattern of expression in brain and have not been detected outside the
CNS (Rudy et al., 1999). In the brain, Kv3.2 proteins are prominently expressed in thalamocortical projections, the axons of the thalamic relay neurons
in the dorsal thalamus (Moreno et al., 1995). The immunostaining of the collaterals of these axons in the reticular thalamic (RT ) nucleus produces the
labeling seen in this structure, and the staining of the thalamocortical terminals produces the labeled barrel structure seen in layer IV of the neocortex
(Ctx). The staining of the hippocampus (Hip) and deep neocortical layers is produced by the prominent immunolabeling of the somas and axons of all
PV-containing and a subset of somatostatin-containing GABAergic interneurons (Chow et al., 1999; Atzori et al., 2000). Kv3.2 proteins are also present
in GABAergic neurons in other forebrain structures, including the caudate, basal forebrain, and globus pallidus (GP). Kv3.2 proteins are found as well
in yet to be identified neurons in the inferior colliculus, the nucleus of the lateral lemniscus, and dorsal cochlear (DCh), trigeminal, deep-cerebellar (Den),
and vestibular nuclei (Weiser et al., 1994; Moreno et al., 1995; Chow et al., 1999; Hernandez-Pineda et al., 1999; Atzori et al., 2000). Note the absence
of Kv3.2 proteins and the normal distribution of Kv3.1 proteins in the knock-out mice. Cer, Cerebellum; Gr, granule cell layer of the cerebellar cortex;
Mol, molecular layer of the cerebellar cortex; VB, ventrobasal nucleus of the thalamus; VCh, ventral cochlear nucleus.
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fired high-frequency spike trains with abrupt onset and little spike
frequency adaptation. These neurons were easily distinguished
from regular spiking neurons that sustained much lower maximum
frequencies (#50 vs .100 spikes/sec) and adapted much more
(mean rates at the end of a 600 msec pulse were #40% of initial
rates in RS neurons compared with $70% in FS cells). FS neurons
could also be distinguished from LTS cells, which showed pro-
nounced spike frequency adaptation (steady-state rates were, on
average, ,40% of initial rates) and generated low-threshold spikes
or spike bursts in response to depolarization from hyperpolarized
potentials [as previously described in rat by Kawaguchi and Kubota
(1993) and Gibson et al. (1999)]. FS neurons had firing thresholds
10–15 mV more positive than RS and LTS cells and had signifi-

cantly lower input resistance than the other two types of cells
(133 6 6.2 MV, n 5 22 for FS, compared with 222.1 6 22 MV, n 5
52 for RS, and 349.7 6 30.2 MV, n 5 21 for LTS cells) [similar to
observations in rat by Kawaguchi and Kubota (1993)].

The action potential and repetitive firing characteristics of a
typical multipolar, PV-positive, layer 5 neuron from a wild-type
mouse are compared with those of a multipolar, PV-positive, layer
5 neuron from a knock-out littermate in Figures 5 and 6. The action
potential from the knock-out mouse was broader (width at half
maximum of 1.1 vs 0.72 msec) (Fig. 5A1) and had a slower maxi-
mum rate of repolarization (66 vs 110 mV/msec) (Fig. 5A2, dashed
line) than the neuron from the wild-type littermate. In addition,
the deceleration of the membrane potential as it entered into the

Figure 3. Electrographic pattern of a
spontaneous seizure in a Kv3.2 2/2
mouse. Continuous EEG recording of a
generalized tonic-clonic behavioral con-
vulsive episode shows bilateral seizure
activity arising shortly after a single in-
terictal discharge. Abnormal synchro-
nous activity increases in frequency for
;40 sec and ends abruptly with no pos-
tictal depression of the EEG.

Figure 4. Normal distribution of cortical
PV immunoreactivity in Kv3.2-deficient
mice. Immunoperoxidase detection of
PV in Kv3.2 wild-type ( A–C) and knock-
out (D–F) littermates. PV is localized in
a subpopulation of neurons in the neocor-
tex and hippocampus (A, D). In the neo-
cortex (B, E), PV-positive neurons are
scattered throughout all cortical layers. In
neocortical interneurons in wild-type and
knock-out animals (C, F ), PV is present
in multipolar neurons (also known as bas-
ket cells) and is expressed throughout the
cell, including dendrites and axons. Pyra-
midal cells (some indicated by arrows) are
not stained for PV but are surrounded by
immunopositive puncta (the baskets), the
terminal boutons from the GABAergic
interneurons. Scale bar: A, D, 1 mm; B, E,
250 mm; C, F, 50 mm.
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AHP was smaller in the Kv3.2 2/2 neuron, suggesting that the
repolarization current decays more slowly (Fig. 5A3, dashed line).
These and other differences in action potential shape are summa-
rized in Table 1 and indicate that spike repolarization was im-
paired in the deep-layer FS neurons from knock-out animals.
Despite these differences, the maximum rate of rise of the spike
(for single spikes or the initial spike in a train) was similar in the
neurons from the two genotypes (Table 1), indicating that the
mechanisms responsible for initiating the action potential were
unimpaired. To verify that recordings were made from PV-
containing neurons, slices were fixed and processed for PV immu-
nohistochemistry after the recording and filling of neurons with
biocytin (Du et al., 1996; Erisir et al., 1999). An example from a
Kv3.2 2/2 mouse is shown in Figure 5B. All of the FS cells that
were scored for PV immunoreactivity (see details in Materials and
Methods) were PV-positive (n 5 14 from wild-type mice and 16
from knock-outs), and the inverse was also true; all of the neurons

that were scored positive for PV had been classified as fast-spiking
electrophysiologically.

Fast-spiking neurons from wild-type and knock-out mice also
differed in their repetitive firing characteristics. Records from a
typical PV-positive neuron in deep cortical layers of each genotype
are shown in Figure 6. Both cells fired repetitively during steady
depolarizations, and in both cases the steady-state firing rate in-
creased as a function of injected current reaching near-saturation
values before spike failure took place (Fig. 6D). However, the
wild-type neuron was able to sustain higher steady-state firing
frequencies (133 vs 66 spikes/sec) and showed significantly less
firing frequency adaptation (mean firing rate at the end of a 600
msec pulse was 75% of initial rates for the wild-type cell and 46%
for the cell from the Kv3.2 2/2 mouse) than the neuron from the
knock-out (Fig. 6A–C). Spike failure also occurred at much lower
current strengths in the knock-out neuron than in the wild type
(Fig. 6B,D).

These differences between wild-type and knock-out deep-layer
neurons were reproducible and statistically different when neurons
from a large number of mice of each genotype were compared (Fig.
7, Table 1). In scatter plots comparing steady-state firing frequency
and firing frequency adaptation (Fig. 7A) or steady-state firing
frequency and action potential width at half maximum (Fig. 7B),
the cells from each genotype showed a different, although overlap-
ping, distribution ( p , 0.01 for the firing rate; p , 0.02 for the
degree of adaptation; p , 0.001 for the spike width; one-way
ANOVA). Most of the neurons from the knock-out were in a
cluster of cells with lower steady-state frequencies, higher spike
frequency adaptation, and wider spikes. Yet, even in the knock-out
mice, fast-spiking cells fired faster and adapted less than regular
spiking (Fig. 7A) or LTS (data not shown) neurons. However, some
of the fastest firing neurons from the Kv3.2 2/2 animals fired
nearly as fast as the fastest firing neurons from the wild-type
animals. This may be related to the different relative levels of Kv3.1
and Kv3.2 proteins in individual neurons, given that the expression
of Kv3.1 remained unaffected in the Kv3.2 2/2 animals. Support
for this idea was obtained from experiments with low TEA con-
centrations described below.

Several parameters that help distinguish fast-spiking neurons
from other interneurons in wild-type animals remain unchanged in
the mutant mice (Fig. 7C, Table 1) and were therefore also useful
to distinguish the neurons electrophysiologically. As in the case of
neurons from wild-type mice (see above), FS neurons in knock-out
animals had lower input resistance than RS and LTS cells (142 6
8.6 MV, n 5 29; 231.8 6 16.4 MV, n 5 52; and 329.5 6 19.7 MV,
n 5 21, respectively), as well as higher firing thresholds (10–15
mV). There usually was more spontaneous synaptic activity ob-
served in records from FS neurons than from the other cell types.
LTS cells could also be distinguished from RS and FS neurons in
normal and knock-out animals by the presence of low-threshold
spikes when depolarized from hyperpolarized potentials, as in
normal animals (Kawaguchi and Kubota, 1993, 1997; Gibson et al.,
1999).

There were no differences between knock-out and wild-type
littermates in the firing properties of regular spiking neurons (Fig.
7A). Furthermore, in contrast to the large differences in action
potential shape and repetitive firing properties of deep-layer FS
neurons from wild-type and knock-out mice, no significant differ-
ences were observed when FS neurons in superficial layers were
compared (Fig. 7D, Table 1).

Low TEA concentrations eliminate the differences
between wild-type and Kv3.2 2/2 fast-spiking neurons
The differences in the action potential and repetitive firing prop-
erties of fast-spiking neurons from wild-type and knock-out mice
resemble the effects produced by application of low concentrations
of TEA (,1 mM) to neurons from normal mice (Erisir et al., 1999).
However, although low TEA concentrations also nearly completely
blocked the AHP (Erisir et al., 1999), the AHPs in knock-out mice
were on the average only ;25% smaller than in wild-type mice

Figure 5. FS neurons from Kv3.2-deficient mice have broader action po-
tentials with slower rates of repolarization. A, Representative action po-
tentials from a PV-immunoreactive deep-layer neuron from a Kv3.2 wild-
type (WT ) mouse are compared with the action potentials from a
representative PV-immunoreactive deep-layer neuron from a Kv3.2 2/2
(KO) mouse. Shown for each neuron are two action potentials (A1) and
their first (A2) and second (A3) derivatives. The action potentials were
wider (1.1 vs 0.72 msec at half maximum), and their maximum rates of
repolarization were smaller in the knock-outs (second peak in first deriva-
tive; dashed line in A2). In addition, the peak deceleration of the membrane
potential as it enters into the AHP (third peak in the second derivative;
dashed line in A3) was much smaller in the knock-out. B, The knock-out
neuron whose data are shown in A was biocytin-labeled (B2) and was
immunoreactive for parvalbumin (B1; see also B3, in which the superimpo-
sition of the images with the two chromophores is shown), indicating that
it was an FS neuron. Data from this cell are also shown in Figure 6.
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(Table 1). Moreover, although submillimolar concentrations of
TEA affect the magnitude but not significantly the kinetics of the
AHP (Erisir et al., 1999), we found that the kinetics of the AHP
was different in Kv3.2-deficient and wild-type animals (Fig.
5A1,A3). The fast AHP characteristic of fast-spiking neurons from
wild-type mice was replaced by a slower AHP in fast-spiking
neurons from Kv3.2 2/2 mice (Fig. 5A) (Fig. 6, compare A,B). We
hypothesize that the slow AHP in FS neurons from Kv3.2 2/2
mice is generated by the increased activation of an unidentified K1

conductance (perhaps mediated by Ca21-activated K1 channels),
which deactivates at rates slower than those of Kv3 channels. There

is increased activation of this conductance in Kv3.2-deficient mice
because of the increase in the duration of the action potential. We
would further like to suggest that this is not seen when TEA is used
to block Kv3 channels because the drug also blocks this unidentified
K1 conductance. Consistent with this idea, low TEA concentrations
blocked the slow AHP in neurons from knock-out mice (Fig. 8).

Other than these differential effects on the AHP, all of the effects
of the Kv3.2 2/2 mutation on the spike and repetitive firing
properties of deep-layer fast-spiking neurons resembled the effects
of a partial block of Kv3 channels with TEA (;0.2 mM) on wild-
type FS neurons (Erisir et al., 1999). We expected the mutation to

Table 1. Comparison of firing properties between wild-type and mutant FS cells in the neocortex

Layer V–VI Layer I–IV

p
Wild-type
n 5 20

Knock-out
n 5 20 p

Wild-type
n 5 10

Knock-out
n 5 10

Resting Vm (mV) --- 264.45 6 0.54 263.60 6 0.57 --- 264.22 6 0.75 264.10 6 0.60
Rinput (MV) --- 133.37 6 6.19 142.42 6 8.61 --- 153.50 6 17.92 116.10 6 8.60
Threshold (mV) --- 238.35 6 0.59 238.81 6 1.02 --- 237.04 6 1.13 238.27 6 0.67
Maximum rising slope

(mV/msec) --- 155.54 6 2.90 149.65 6 8.04 --- 151.65 6 6.33 165.36 6 7.53
Maximum falling

slope (mV/msec) *** 284.07 6 1.84 261.11 6 5.07 --- 279.37 6 5.75 286.08 6 4.75
Spike width at half

amplitude (msec) *** 0.74 6 0.018 0.94 6 0.038 --- 0.78 6 0.031 0.75 6 0.036
AHP Amp (mV) ** 16.14 6 0.68 12.34 6 0.79 --- 17.64 6 1.06 15.86 6 0.69
AHP deceleration

(mV/msec2) *** 133.88 6 5.71 84.11 6 7.34 --- 130.00 6 8.63 135.96 6 12.49
SS firing rate (Hz) * 152.11 6 7.04 116.63 6 10.21 --- 134.47 6 7.52 155.21 6 13.35
SS firing rate/initial

frequency ** 0.85 6 0.018 0.71 6 0.031 --- 0.80 6 0.023 0.83 6 0.035

FS cells are organized by the cortical layer in which they were found. Spike width, AHP, and slope measurements are from single action potentials. Vm, Membrane potential;
Rinput, input resistance of the cell; Amp, amplitude; SS, steady state. p values determined by Student’s t test. *p , 0.01; **p , 0.001; ***p , 0.0001; dashed lines indicate non-
significance (p . 0.05).

Figure 6. Impaired high-frequency firing
in Kv3.2 2/2 mice. A, Repetitive firing of
an FS PV-positive deep-layer neuron from
a wild-type mouse in response to two cur-
rent steps (375 and 975 pA). Firing fre-
quency increases with increased depolariz-
ing current, and there is very little firing
frequency adaptation throughout the pulse.
B, Repetitive firing of an FS PV-positive
deep-layer neuron from a Kv3.2 2/2
mouse (same cell as in Fig. 5) in response
to same current steps as in A. Firing fre-
quency is much less than in the neuron
from the wild-type mouse, and there is
more firing frequency adaptation. There is
spike failure during the largest current
step. Also notice that the AHPs are faster
in the neuron from the wild-type mouse. C,
Instantaneous firing frequency plotted as a
function of time from onset of the current
pulse of 875 pA for the knock-out and 975
for the wild-type mice. Notice that there is
much more adaptation of the firing fre-
quency in the knock-out than in the wild
type. D, Steady-state firing frequency ver-
sus injected current. Firing frequency in-
creases with current injection much more
in the neuron from the wild-type than the
neuron from the knock-out mouse, and
spike failure occurs with lower current
strengths (indicated by the last point
shown). In both cases the steady-state firing
frequency reaches a saturating (steady-
state) value before failure.
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be equivalent to a partial block of Kv3 channels because FS neu-
rons in the Kv3.2 2/2 mice still express normal levels of Kv3.1
proteins (Figs. 1, 2), and Kv3.1 and Kv3.2 proteins express similar
currents in heterologous expression systems (Hernandez-Pineda et
al., 1999; Rudy et al., 1999). To test this hypothesis, we compared
the effects of TEA on the spike width, steady-state firing rate, and

degree of adaptation of fast-spiking neurons from wild-type and
knock-out mice. The values of these parameters in FS neurons
from knock-out animals in the absence of the channel blocker were
close to those in wild-type animals in the presence of submillimolar
concentrations of TEA. For example, the spike width of deep-layer
FS neurons from Kv3.2-deficient mice (0.94 6 0.04 msec, n 5 20)
was comparable with the spike width of wild-type mice in 0.2 mM

TEA (0.95 6 0.03 msec, n 5 17). Similarly, the steady-state firing
frequency and firing frequency adaptation of deep-layer FS neu-
rons from Kv3.2 2/2 mice (116.6 6 10.2 spikes per second, n 5 20;
and 0.68 6 0.03, n 5 20, respectively) were close to those for
wild-type neurons in #0.2 mM TEA (92.9 6 2.9, n 5 16; and 0.62 6
0.04, n 5 15, in 0.2 mM TEA) (Fig. 9). Furthermore, although TEA
still had effects on spike width and repetitive firing properties of FS
neurons from knock-out animals, the effects were smaller than
those observed in neurons from wild-type animals (Fig. 9). In 1.0
mM TEA, a drug concentration expected to block $80% of the
total Kv3 channels, knock-out and wild-type neurons had similar
properties (e.g., 63 6 6 spikes/sec, n 5 15; and 55 6 3 spikes/sec,
n 5 18, for the steady-state firing rate of wild-type and knock-out
FS neurons, respectively, in 1 mM TEA) (Fig. 9C). This would be
expected if the mutation and the drug (at concentrations of #1 mM)
are acting, for the most part, on the same conductance. These data
are also consistent with the notion that we are recording from
similar neurons in the two types of animals and that, other than the

Figure 7. Disruption of the Kv3.2 gene affects the action potential duration and fast-spiking properties (but not the input resistance) of FS interneurons
from deep cortical layers but not from superficial layers. The fraction of the initial firing frequency remaining at the end of a 600 msec depolarization (A),
the width at half amplitude (B), and the input resistance (C) of FS layer V–VI neurons from wild-type (open symbols) and knock-out ( filled symbols) mice
are plotted against the maximum steady-state firing rate of each cell. Parameters from deep-layer regular spiking nonpyramidal (RSNP) neurons of both
genotypes are included in A for comparison. Mean values for each parameter are indicated by the symbol with the error bars that indicate the SEM. The
values from knock-out neurons clustered at lower maximum firing rates (A, B), increased firing frequency adaptation (A), and longer action potential
duration (B). However, there was no difference in the input resistance of FS neurons from wild-type and knock-out animals (C). Also notice the
quasi-linear relationship between steady-state firing rate and firing frequency adaptation (A) or spike width (B) in both wild-type and knock-out mice,
indicating that these parameters depend on common underlying factors. D, Same as A for layer II–III neurons from knock-out and wild-type mice, illustrating
the lack of effect of the mutation on superficial layer FS neurons. Similarly, no differences were detected in action potential duration (Table 1).

Figure 8. Low TEA concentrations block the AHP in FS neurons from
wild-type (WT ) and knock-out (KO) mice. The AHP is slower in the FS
neuron from the Kv3.2 2/2 mouse. However, low TEA concentrations
block the AHP nearly completely in both cases.
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lack of the mutated channel proteins, the cells have not changed
significantly in active conductances or other membrane properties.
Moreover, these results also suggest that the dispersion in steady-
state firing frequency values between different FS neurons might be
the result of differences in the number of active Kv3 channels.
Because Kv3 channel activity can be modulated by neurotransmit-
ters and second messengers (Moreno et al., 1995; Atzori et al., 2000),
different cortical neurons could have different proportions of active
channels depending on having been recent targets of these
modulators.

FS neurons can repetitively fire spike doublets at 40 Hz,
an ability that requires Kv3 channels
Under certain physiological conditions, fast-spiking neurons may
not undergo long, steady depolarizations such as those used in the
previous experiments. For example, it has been shown in both the

neocortex and the hippocampus (Traub et al., 1996, 1999; Steriade
et al., 1998) that, when stimulated, fast-spiking neurons generate
fast rhythmic (;40 Hz) spike bursts. The bursts consist of two
(spike doublets) to three spikes with intraburst frequencies that are
similar to the steady-state frequencies observed during long, steady
depolarizations (100–200 Hz at room temperature; 300–400 Hz at
37°C). We asked whether the ability to generate such rhythmic
bursts repetitively is impaired in FS neurons from the Kv3.2 2/2
mice. Cortical neurons were stimulated repetitively with brief de-
polarizations that generated one or more spikes per stimulus,
repeated at various frequencies. We focus on the results at 40 Hz,
the characteristic frequency observed in the EEG during periods of
brain activation (Bouyer et al., 1981; Llinas and Ribary, 1993;
Murthy and Fetz, 1996a,b; Steriade et al., 1996). In wild-type mice,
both regular-spiking and fast-spiking GABAergic interneurons in
both superficial and deep cortical layers could follow 40 Hz stimuli
that generated a single spike per stimulus for periods up to 1 min
(the longest tested; data not shown). However, only fast-spiking
neurons could follow larger stimuli that generated a spike doublet
without failing (Fig. 10). In contrast, deep-layer, fast-spiking neu-
rons from knock-out mice failed in their ability to fire spike
doublets repetitively much more rapidly than did neurons from
wild-type animals (Fig. 10A,B). In fact, in Kv3.2 2/2 mice, during
the first stimulus, the second spike was already smaller than the first
spike, and it got smaller, slower, and more delayed with subsequent
depolarizations (Fig. 10A), suggesting a reduction in the available
Na1 current. This is consistent with the hypothesis that Kv3
channels facilitate fast spiking by increasing Na1 channel recovery
from inactivation (Erisir et al., 1999). This behavior was similar to
that observed after application of low concentrations of TEA on
deep-layer FS neurons from wild-type mice (data not shown).

Increased cortical excitability in the Kv3.2 2/2 mouse
The cellular analysis showed that the ability of fast-spiking inter-
neurons to fire at high frequencies for long durations or repetitively
is impaired in Kv3.2 2/2 mice. The knock-out mice are thus useful
to test hypotheses of the function of these neurons and the signif-
icance of fast spiking in their performance. The presence of spo-
radic epileptic seizures in Kv3.2-deficient mice suggests that the
mice have an increased susceptibility to seizures. Here we present
a series of observations that provide further evidence of increased
cortical excitability and susceptibility to seizures in the Kv3.2 2/2
mouse.

The first experiment consisted of recording spontaneous EEG
from cortex and thalamus in ketamine–xylazine anesthetized Kv3.2
2/2 and wild-type mice. Results were obtained with multisite
extracellular and field potential recordings using arrays of high-
impedance tungsten electrodes. As shown in Figure 11A, wild-type
mice (n 5 21) showed the characteristic slow rhythm observed
during natural slow-wave sleep and during ketamine–xylazine an-
esthesia in other species (Steriade et al., 1993a; Contreras and
Steriade, 1995). In wild-type mice, the slow rhythm was character-
ized by recurring sequences at ,1 Hz of depth-negative followed
by depth-positive waves in the EEG, which occurred in synchrony
with the corresponding thalamic territory. Such sequences corre-
spond intracellularly to neuronal depolarization and hyperpolar-
ization, respectively (Steriade et al., 1993a; Contreras and Steriade,
1995). The EEG of the Kv3.2 2/2 mice (n 5 18) showed, super-
imposed on the underlying slow rhythm, spontaneous high-
amplitude sharp potentials, lasting from 30 to 100 msec and with
the same polarity as the slow oscillation (depth-negative and
surface-positive). Such sharp potentials pervaded throughout all
phases of the slow oscillation and produced a very irregular slow
rhythm (Fig. 11B). Nevertheless, the slow rhythm is clearly present,
suggesting that the cortical synchronization responsible for this
rhythm still occurs in the knock-out. The “spikiness” of the slow
rhythm in Kv3.2-deficient mice, illustrated with the example in
Figure 11B, is the most characteristic effect of the mutation that we
have observed until now. All Kv3.2 2/2 mice tested showed similar
irregularities on the EEG, which we have never seen in wild-type

Figure 9. Low TEA concentrations affect the firing properties of FS
neurons from wild-type mice more than those from knock-out mice. The
steady-state firing frequency and the preservation of the initial firing fre-
quency during a 600 msec pulse are plotted for a number of deep-layer FS
neurons in Kv3.2 2/2 mice ( filled symbols) and wild-type littermates (open
symbols) in the absence of TEA (A), and in the presence of 0.2 (B) and 1
mM (C) TEA. An amplified view of the data in C is shown in the insert at
the right. These neurons are a subset of the population of neurons shown in
Figure 7A–C. Different symbols (as indicated in A) have been used for the
FS neurons for which we were able to establish the PV immunoreactivity.
Note that 0.2 mM TEA shifts more the values of the neurons from wild-type
than knock-out mice and that, in the presence of 1 mM TEA, FS neurons
from wild-type and Kv3.2-deficient mice have similar properties. Similar
results were obtained in plots of action potential duration (half width) and
steady-state firing frequency (data not shown).
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littermates or in mice from commercial sources. The high degree of
spatiotemporal synchrony of the slow rhythm is achieved by mas-
sive reentrant corticocortical circuits, as shown by the absence of
effects of massive ipsilateral thalamectomy followed by sectioning
of the callosum (Steriade et al., 1993b). We propose that the sharp
potentials in the Kv3.2 2/2 mouse reflect a poor local control of
the strong synchronized corticocortical inputs that reach the cortex
during the slow oscillations.

In the course of the previous experiments, we found that seizures
were prevalent in Kv3.2 2/2 mice under ketamine–xylazine anes-
thesia. Under these conditions, most (12 of 18) Kv3.2 2/2 mice,
but not their wild-type littermates (0 of 21), showed electrographic
seizures that occurred spontaneously (typically every 10–20 min)
(Fig. 12A). Similar seizures were easily induced in Kv3.2 2/2mice
(12 of 12 mice tested) by electrical stimulation of the thalamus (Fig.
12B). In contrast, we were never able to evoke seizures in wild-type
animals (n 5 19), even with stimuli that were 10 times stronger or
longer in duration (and in a variety of patterns) than those required
to evoke seizures in knock-out mice. Both spontaneous and evoked
seizures were often associated with motor manifestations that var-
ied from small jerks of the limbs and movements of the whiskers to
full convulsions. In principle, these seizures could result from
increased thalamic input into the cortex or from reduced cortical
control in Kv3.2-deficient mice. This is an important consideration,
given the prominent expression of Kv3.2 in thalamic relay neurons
and thalamocortical projections (Fig. 2) (Rudy et al., 1992; Weiser
et al., 1994; Moreno et al., 1995). However, the failure to induce
seizures when large doses of bicuculline are injected into the
thalamus (Steriade and Contreras, 1998) shows that the feedfor-
ward and feedback inhibitory mechanisms of the cortex are capable
of handling the entrance into the cortex of thalamic stimuli of
increased magnitude. Therefore, the presence of thalamic-induced
seizures in the Kv3.2 2/2 mouse is likely to result from increased
cortical excitability.

The last set of experiments consisted of testing seizure suscep-
tibility to chemical convulsants in vivo. Kv3.2 2/2 mice were more
sensitive to the convulsant PTZ, a GABAA receptor antagonist.
When challenged with a single dose of PTZ (50 mg/kg), Kv3.2 2/2
mice showed more severe responses than wild-type littermates
(Fig. 13A). For example, at this dose, 52% of Kv3.2 2/2 mice (n 5
23) compared with 16% of wild types (n 5 19) developed severe
stage 4 tonic-clonic convulsions associated with death. Similarly, the
delay between drug application and the first evidence of epileptic
activity was significantly shorter in the knock-out mice (Fig. 13B).

Together, the data provide strong evidence that mice deficient in
Kv3.2 subunits have susceptibility to seizures probably reflecting an
increase in cortical excitability. Because Kv3.2 proteins are ex-
pressed in inhibitory but not in excitatory neurons in the cortex
(Chow et al., 1999), and assuming that compensatory changes in
other cortical elements have not taken place, the inferred increase
in cortical excitability most likely arises from impaired cortical
inhibition. Deficits in cortical inhibition may occur in the Kv3.2
2/2 mouse if the fast-spiking ability of GABAergic interneurons is
necessary to achieve proper levels of inhibition (see Discussion).
This increased cortical excitability is likely to contribute to the
spontaneous seizures observed in awake animals.

DISCUSSION
Kv3 channels and high frequency firing
Three (Kv3.1–Kv3.3) of the four Kv3 genes are prominently ex-
pressed in brain tissue and show different but overlapping patterns
of expression (Perney et al., 1992; Rudy et al., 1992; Vega-Saenz de
Miera et al., 1994; Weiser et al., 1994). Many, if not most, of the
neuronal populations expressing these genes fire spikes at high
frequency. This correlation led to the suggestion that Kv3 channels
may play an important role in high-frequency firing (see introduc-

Figure 10. Deep-layer FS neurons from
wild-type, but not from Kv3.2-deficient,
mice can repetitively fire action potential
doublets for long periods. A, FS neurons
from wild-type (WT ) and Kv3.2 2/2 (KO)
mice were stimulated repetitively at 40 Hz
with brief depolarizing current pulses that
generated a spike doublet (for a total du-
ration of 1 min). Shown are the pulses and
voltage responses for the first two stimuli
and the first two after 1, 5, and 20 sec of
continuous stimulation. The wild-type
neuron never failed to respond with a
spike doublet. In contrast, the knock-out
neuron failed to generate a spike doublet
rapidly after the onset of the stimulation.
Note that, in the knock-out, the second
spike is smaller than the first spike from
the first current pulse, and it becomes
smaller, slower, and more delayed with
subsequent depolarizations until the cell
fails to generate a second spike. B, Sum-
mary of the results of this test applied to 11
knock-out neurons and 10 wild-type neu-
rons. The plot indicates the maximum fir-
ing rate versus the time at which the cell
failed to produce a second spike for FS
neurons from wild-type (open symbols) and
Kv3.2-deficient mice ( filled symbols). In ap-
proximately half of the wild-type neurons,
the cell continued to fire spike doublets for
the duration of the experiment (1 min).
The other half failed at times considerably
longer (40 6 6.9 sec) than those that pro-
duced failure in neurons from the Kv3.2-
deficient mice (10 6 2.4 sec).
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tory remarks). Experiments using the K1 channel blockers TEA
and 4-AP, at concentrations that block Kv3 channels in heterolo-
gous expression systems (Grissmer et al., 1994; Coetzee et al.,
1999; Rudy et al., 1999), and Kv3-like currents in native neurons
(Du et al., 1996; Wang et al., 1998; Erisir et al., 1999; Hernandez-
Pineda et al., 1999) support the idea that Kv3 channels play a

dominant role in repolarizing the action potential of expressing
neurons and are necessary to maintain high-frequency firing (Du et
al., 1996; Massengill et al., 1997; Martina et al., 1998; Wang et al.,
1998; Erisir et al., 1999). However, the possibility that these drugs
are also blocking other types of K1 channels has been difficult to
eliminate.

In this study, we used the genetic elimination of the Kv3.2 gene,
which is prominently expressed in deep-layer FS neurons in the
neocortex, to test directly the role of Kv3 genes in fast spiking. The
results show that fast spiking is impaired in neocortical deep-layer
FS neurons but not in superficial layer FS neurons in which Kv3.2
is weakly expressed. These results provide strong, independent
evidence that Kv3 channels play a critical role in enabling high-
frequency firing in FS neurons. Together with data showing that
the PKA-dependent modulation of the firing frequency of FS
interneurons in the hippocampus is absent in Kv3.2 2/2 mice
(Atzori et al., 2000), the experiments described here provide the
most direct evidence for a critical role of Kv3 channels in sustained
or repetitive high-frequency firing.

The ability of Kv3 channels to facilitate sustained or repetitive
high-frequency firing is a direct consequence of the special prop-
erties of these channels that distinguish them from other voltage-
gated K1 channels. (1) By activating at very depolarized potentials,
the cell can use large numbers of Kv3 channels to produce fast-
spike repolarization and a large AHP with minimum effects on
input resistance, threshold, or rise time, thus keeping action po-
tentials brief without compromising action potential generation.
(2) By keeping action potentials brief, Kv3 channels minimize the
inactivation of the Na1 conductance during the spike. (3) By
generating a large AHP, Kv3 channels accelerate recovery from the
Na1 channel inactivation that did take place during the spike. (4)
The brief duration of the AHP (produced by the fast deactivation
of Kv3 channels) restores high-input resistance quickly. The in-
crease in the number of Na1 channels that have recovered from
inactivation and the fast termination of the AHP minimize the
duration of the refractory period, allowing the cell to reach firing
threshold sooner than in the absence of Kv3 channels (Sekirnjak et
al., 1997; Erisir et al., 1999).

The effects of blocking Kv3 channels become stronger during
long trains or repetitive activity because there is accumulation of
Na1 channel inactivation resulting from the repeated activation of
the channels. The larger increase in spike rise time during repeti-
tive activity in Kv3.2-deficient mice (Figs. 5A1,A2, 10) supports this
view. The results with Kv3.2-deficient mice also suggest that the
increased activation of slower K1 conductances active during the
AHP, produced by the increase in action potential duration, may

Figure 12. Seizures in the ketamine–xy-
lazine anesthetized Kv3.2 2/2 mouse. A
and B represent data from two different
animals. EEG was recorded from the
depth of the primary somatosensory cortex
(S1). The seizure in A occurred spontane-
ously. The seizure in B was triggered by
high-frequency stimulation (7 short trains
of 100 Hz repeated at ;10 Hz) delivered
to the ventrobasal nucleus of the thalamus
(VB stim). Both spontaneous and evoked
seizures were initiated abruptly by a par-
oxysmal depolarizing shift (PDS) and con-
sisted of runs of 5–7 Hz low-amplitude
waves followed by higher amplitude waves
usually at ,1 Hz. Seizures also terminated
abruptly and were followed by a variable
period (10–30 sec) of postictal depression
with flat EEG. The background activity
preceding seizures was like that seen in
Figure 11B. Note the change in gain dur-
ing the record shown in B. The gain in A
had been changed earlier and was 10 times
smaller before the seizure.

Figure 11. Distortions in the cortical EEG in the Kv3.2 2/2 mouse.
Bipolar EEG from the S1 cortex and the ventrobasal nucleus of the
thalamus (VB) in a wild-type (A) and a knock-out (B) mouse. Both EEGs
show a predominant slow rhythm (,1 Hz) typical of ketamine–xylazine
anesthesia. Whereas the EEG of the normal mouse shows a regular pattern
in synchrony with the thalamus, the EEG of the knock-out mouse is
pervaded by high-amplitude, short-lasting waves in all phases of the slow
oscillation. Such sharp waves occur in synchrony with burst firing in the
thalamic recording. Because we observed no significant electrophysiological
differences in the thalamus of wild-type and Kv3.2 2/2 mice (data not
shown), we ascribed the generation of burst firing in thalamus to an
increased corticothalamic drive probably caused by increased firing of
cortical cells during the sharp potentials.
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also contribute to reducing firing frequency and increasing firing
frequency adaptation after Kv3 channel removal.

Evidence that Kv3 channels are necessary for sustained or re-
petitive high-frequency firing has now been obtained for FS neu-
rons in the neocortex and hippocampus (Martina et al., 1998; Erisir
et al., 1999; Atzori et al., 2000; this study), for neurons in the
medial vestibular nucleus (MVN) (S. du Lac and C. Sekirnjak,
unpublished observations) and the medial nucleus of the trapezoid
body (MNTB) in the auditory brainstem (Wang et al., 1998). Kv3
gene products are found in many other neurons capable of high-
frequency firing (Weiser et al., 1994), suggesting a similar role in
these neurons. Although it appears that Kv3 channels are necessary
for sustained or repetitive high-frequency firing in many (if not all)
high-frequency firing neurons, their presence is clearly not suffi-
cient. The effects on excitability of the Kv3 channels will depend on
the other conductances active on the cell and their precise local-
ization in the neuron. In fact, the three cell types (FS interneurons
in the neocortex and hippocampus, neurons in the MNTB, and
neurons in the MVN) for which a role of Kv3 channels in high-
frequency firing has been suggested have different firing properties.
Both FS interneurons and MVN neurons (du Lac and Lisberger,
1995; du Lac, 1996) fire long, high-frequency spike trains in re-
sponse to steady depolarizations. However, FS interneurons pro-
duce long, high-frequency spike trains abruptly, and the steady-
state firing frequency saturates as a function of injected current (as
in the examples shown here). In contrast, MVN neurons are
spontaneously active, and the relationship between injected current
and firing frequency is nearly linear (du Lac and Lisberger, 1995;
du Lac, 1996). The presence of low voltage-activating or persistent
Na1 channels and differences in other conductances probably
account for these differences in firing properties.

On the other hand, the MNTB neurons produce one or, at most,
two action potentials independently of the duration or strength of
the depolarization, probably because depolarization activates
large, low voltage-activating “D”-type K1 currents that limit re-
petitive activity (Brew and Forsythe, 1995). However, these neu-
rons can fire action potentials entrained to very high-frequency
inputs (.600 Hz), the property which appears to depend on Kv3
(probably Kv3.1 and Kv3.3) channels (Wang et al., 1998).

Kv3 channels are an excellent example of how the specialized
properties of certain channels contribute to functional specificity.
This helps to explain the biological significance of K1 channel
diversity as a key factor contributing to the diversity of the elec-
trophysiological properties of neurons and to the specificity of
neuromodulator actions (Adams and Galvan, 1986; Llinas, 1988;
Rudy, 1988; Baxter and Byrne, 1991; Hille, 1992).

Increased cortical excitability in the Kv3.2 2/2 mouse
Several observations indicate that Kv3.2-deficient mice have in-
creased cortical excitability. Increased excitability, resulting in in-
creased susceptibility to seizures, if not a full epileptic behavior,
has also been observed in two other K1 channel knock-out mice
lines: Kv1.1 (Smart et al., 1998) and one of the G-protein-gated
inward rectifier K1 channel genes (GIRK2) (Signorini et al., 1997).
Moreover, mutations in the K1 channel genes KCNQ2 and
KCNQ3, subunits of M-type K1 channels, have been found in
humans with benign familial neonatal convulsions (Charlier et al.,
1998; Singh et al., 1998). A strong association between increased
excitability and K1 channel dysfunction may not seem surprising.
K1 channels typically suppress and limit cell excitability by com-
peting with depolarizing currents, and thus, reduced K1 channel
expression is expected to generate hyperexcitability. Indeed, 4-AP
and other K1 channel blockers are often used as convulsants in
experimental animals (Rutecki et al., 1987; Velluti et al., 1987).

However, it is very likely that the underlying mechanism respon-
sible for the increased cortical excitability of Kv3.2-deficient mice is
different from that producing the hyperexcitability phenotypes in
the other examples. K1 channels containing Kv1.1, GIRK2, and
KCNQ2 and KCNQ3 subunits operate close to the resting poten-
tial and act as breaks dampening the effects of depolarizing inputs.
Moreover, these channels are prominently expressed in excitatory
neurons in neocortex, hippocampus, and many other brain areas.
Hyperexcitability of these cells, resulting from suppressing these
channels, is likely to underlie the hyperexcitability behavior (Si-
gnorini et al., 1997; Smart et al., 1998). However, in the neocortex
and hippocampus, Kv3.2 is only expressed by inhibitory neurons
(Chow et al., 1999; Atzori et al., 2000). The defects in the function
of these cells are likely to be key contributors to the observed
increases in cortical excitability, although this remains to be con-
clusively demonstrated.

Hyperexcitability of these interneurons should produce in-
creased cortical inhibition and therefore suppression of hyperexcit-
able phenotypes, contrary to what we see in the Kv3.2 2/2 mouse.
The solution to this apparent paradox lies in the unique role of Kv3
channels in neuronal excitability as illustrated by the results ob-
tained with the Kv3.2-deficient mouse, which suggest that suppres-
sion of this K1 channel results in impaired cellular firing instead of
hyperexcitability. Kv3 channels are not active anywhere near
threshold potentials, and therefore their removal is not expected to
affect much the responsiveness to synaptic inputs. As shown here
and in previous pharmacological studies (Du et al., 1996; Massen-
gill et al., 1997; Erisir et al., 1999), suppression of Kv3 channels
produces broadening of the action potential. This could increase
GABA release from these cells, which should result in increased
cortical inhibition. On the other hand, cortical inhibition might be
reduced if the ability to sustain repetitive firing at high frequencies
is even more important in determining inhibitory levels. Our data
suggest that this is the case and that impaired fast spiking decreases
the performance of the inhibitory circuits in the cortex. This view
is consistent with observations that FS neurons fire long, high-
frequency trains or repetitive high-frequency bursts of action po-
tentials in response to physiological stimuli (Kawaguchi and Kub-
ota, 1993; Benardo, 1994; Zhu and Connors, 1999). Future studies
on the performance of inhibitory synaptic transmission in knock-
out and wild-type animals should provide further tests of this view.

The fact that a single type of K1 channel plays a dominant role
in enabling high-frequency firing has allowed us to generate mice
lines in which this property is impaired in selective neuronal
populations. Preliminary experiments show cellular changes similar
to those described here on FS neurons in superficial cortical layers
in Kv3.1-deficient mice (Ho et al., 1997), and larger effects resem-
bling those produced by complete Kv3 channel block (and through-
out all layers of the cortex) are expected on mice deficient in both
genes. GABAergic interneurons are thought to play important
roles in many cortical functions. These mice lines will be interest-
ing models to test hypotheses on the role of GABAergic interneu-
rons in these functions. For example, preliminary observations in

Figure 13. Susceptibility of Kv3.2-deficient mice to PTZ-induced seizures.
A, The maximum response of wild-type (WT; n 5 19) and knock-out (KO;
n 5 23) mice after a single injection of 50 mg/kg PTZ intraperitoneally was
scored as follows: 1, only isolated twitches; 2, only partial or focal seizures
(stage 3, see Materials and Methods); 3, generalized clonic seizures; and 4,
large tonic-clonic epileptic seizures. Knock-out mice tend to progress to
more severe stages than wild-type littermates. p , 0.01 (Mann–Whitney
rank sum test). B, Latency to first seizure. Plotted is the time from the PTZ
injection to the first sign of seizure. The latency was shorter for the
knock-out mice. p , 0.02, Student’s t test.
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the hippocampus revealed a decrease in high-frequency oscillations
in Kv3.2 2/2 mice, suggesting impaired synchronization (Atzori et
al., 2000), one of the key roles attributed to cortical GABAergic
interneurons.
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