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Human glia can both induce and rescue aspects
of disease phenotype in Huntington disease

Abdellatif Benraiss', Su Wang', Stephanie Herrlinger!, Xiaojie Li', Devin Chandler-Militello!, Joseph Mauceri',

Hayley B. Burm', Michael Toner!, Mikhail Osipovitch?, Qiwu Jim Xu', Fengfei Ding!, Fushun Wang', Ning Kang',
Jian Kang3, Paul C. Curtin?, Daniela Brunner?, Martha S. Windrem', lgnacio l\/\unoz-SanjuanS, Maiken
Nedergaard'? & Steven A. Goldman'2©

The causal contribution of glial pathology to Huntington disease (HD) has not been heavily
explored. To define the contribution of glia to HD, we established human HD glial chimeras by
neonatally engrafting immunodeficient mice with mutant huntingtin (mHTT)-expressing
human glial progenitor cells (hGPCs), derived from either human embryonic stem cells or
mHTT-transduced fetal hGPCs. Here we show that mHTT glia can impart disease phenotype
to normal mice, since mice engrafted intrastriatally with mHTT hGPCs exhibit worse motor
performance than controls, and striatal neurons in mHTT glial chimeras are hyperexcitable.
Conversely, normal glia can ameliorate disease phenotype in transgenic HD mice, as striatal
transplantation of normal glia rescues aspects of electrophysiological and behavioural
phenotype, restores interstitial potassium homeostasis, slows disease progression and
extends survival in R6/2 HD mice. These observations suggest a causal role for glia in HD,
and further suggest a cell-based strategy for disease amelioration in this disorder.
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lial pathology may contribute to a broad set of

neurodegenerative  and  neuropsychiatric  diseases

traditionally considered disorders of solely neuronal
dysfunction!™. Huntington’s disease (HD) is a prototypic
neurodegenerative disorder, characterized by abnormally long
CAG repeat expansions in the first exon of the Huntingtin gene.
The encoded polyglutamine expansions of mutant huntingtin
(mHTT) protein disrupt its normal functions and
protein-protein interactions, ultimately vyielding widespread
neuropathology, most rapidly evident in the neostriatum. Yet,
despite the pronounced loss of neostriatal medium s;)iny neurons
(MSNs) in HD, and evidence of glial dysfunction®’, few studies
have investigated the specific contribution of glial pathology
either to striatal neuronal dysfunction in HD, or more broadly, to
disease phenotype. Our lack of understanding of the role of glial
pathology in HD has reflected the lack of in vivo models that
permit the separate interrogation of glial and neuronal functions
in HD, particularly so in humans. Indeed, this gap in our
knowledge is especially concerning in light of the marked
differences between human and rodent glia; human astrocytes
are larger and more structurally complex than rodent glia, and
influence the actions of vastly more synapses within their
geographic domains®®. Accordingly, mice neonatally engrafted
with human glial progenitor cells (hGPCs), which develop brains
chimeric for human astroglia and their progenitors'?, exhibit
substantially enhanced activity-dependent plasticity —and
learning'!.  Yet the relatively greater role of human
astrocytes in neural processing suggests the potential for glial
pathology to wreck especial havoc within human neural circuits,
with attendant implications for the human neurodegenerative
disorders.

In this study, we identified a specific role for human striatal glia
in the pathogenesis of HD, by comparing the behaviour and
MSN physiology of human glial chimeric mice xenografted at birth
with mutant HD-expressing human hGPCs to their normal HTT
hGPC-engrafted controls. In particular, we first compared the
motor behaviour of immunodeficient mice neonatally xenografted
with hGPCs produced from mutant HD (48 CAG) human
embryonic stem cells (hESCs), to that of controls engrafted with
hGPCs derived from a sibling line of unaffected hESCs (18 CAG).
We found that the HD hESC GPC-engrafted mice manifested
impaired motor learning relative to control hGPC-engrafted mice.
On that basis, we then used lentiviral transduction of astrocyte-
biased hGPCs derived from second trimester human forebrain, to
generate lines of hGPCs carrying either normal (23 CAG) or HD
(73 CAG) repeats. To that end, we sorted the fetal tissue samples
for CD44, a hyaluronic acid receptor ectodomain expressed by
astrocyte-biased glial progenitor cells'?, and infected the
CD44-immunoselected cells with the lentiviral mHTT vectors.
We then assessed the effects of mouse striatal implantation of these
human mHTT glia on local neuronal physiology, and found that
the striatal neurons of mHTT (73 CAG) glial-engrafted mice
exhibited increased neuronal input resistance and excitability,
relative to those of mice engrafted with normal HTT (23 CAG)-
transduced striatal glia.

On that basis, we then asked if neonatal chimerization with
normal glia might delay disease progression in R6/2 transgenic
HD mice!>. We found that the substantial replacement of
diseased striatal glia with wild-type (WT) CD44 " human glia
indeed resulted in a slowing of disease progression, and a
corresponding increment in survival in transplanted R6/2 mice.
This was associated with a transplant-associated fall in neuronal
input resistance, and a corresponding drop in interstitial K+ in
the R6/2 striatum. Together, these studies suggest both a critical
role for glial pathology in the progression of HD, and the
potential for glial cell replacement as a strategy for its treatment.

2

Results

Glia were generated from hESCs expressing mHtt. We pre-
viously developed a high-efficiency protocol for generating GPCs
and their derived astroglia and oligodendrocytes from both hESCs
and induced pluripotential cells'®. Neonatal engraftment of these
cells into immunodeficient mice yields human glial chimeric mice,
in which substantially all GPCs and a large proportion of astrocytes
are of patient-specific, human donor origin. Using this approach,
we first sought to generate GPCs from huntingtin mutant
pluripotential cells, and to then establish human glial chimeras
with those cells, as a means of assessing the specific effects of
human huntingtin mutant glia on striatal function.

To that end, we used huntingtin mutant hESCs, the GENEA 20
line bearing a 48 CAG repeat expansion in the first exon of the
HTT gene along with a normal 17 CAG allele, as well as its
matched sibling control, GENEA 19, which has normal 18 and 15
CAG repeat lengths in exon 1 (ref. 15). These lines were derived
from blastocysts produced from the same parents, and were thus
fraternal twins. We then induced GPCs from these hESC lines,
using our described protocol'*. When collected after an average
in vitro propagation of 200 days of glial induction (range of
160-240), an average of 56.0 £ 4.6% of normal (GENEA 19) and
45.8 £ 7.0% of huntingtin mutant (GENEA 20) cells expressed the
bipotential ~ astrocyte-oligodendrocyte  progenitor  marker
PDGFoR/CD140a (ref. 16). The remainder were almost entirely
CD441/CD140a~ cells, which typify astroglia and their
progenitors'2. Immunostaining revealed that <1% of cells
expressed either the neuronal antigens HuC/D or MAP2, and
pluripotency-associated gene expression was undetectable by either
immunocytochemistry or quantitative PCR. Thus, the grafted cells
were comprised almost entirely of CD44-defined astroglial
progenitors and bipotential oligodendrocyte-astrocyte GPCs. The
GENEA 20- and GENEA 19-derived glia were neonatally engrafted
bilaterally into the neostriata of ragl ~/~ immunodeficient mice
(n=38 and 35, respectively), to establish mHtt human glial
chimeras and their normal human glial controls.

Chimerization yielded host colonization by mHtt ™ human glia.
On weaning, the human glial chimeric mice were then randomly
assigned to matched groups for either serial analysis of their motor
performance by rotarod, or for serial sacrifice for histological
analysis as a function of age. Histological analysis revealed that the
striata of these mice rapidly and efficiently engrafted with donor
hESC-derived hGPCs (Fig. 1a,b and Table 1). The donor cells first
expanded to pervade the host striata as persistent hGPCs, in part
replacing the resident murine GPCs in the process (Fig. 1c-f).
A fraction of the donor cells then differentiated as astroglia,
especially so in striatal white matter tracts. Fibrous astrocytes
appeared early, and were arrayed densely within striatal white
matter tracts by 6-8 weeks after neonatal graft, whereas striatal
protoplasmic astrocytes appeared later, and were first apparent in
significant numbers only by 12 weeks (Fig. 1gh). Over the weeks
thereafter, the host striatal hGPCs were substantially replaced by
human donor cells, whether by HD hESC-derived hGPCs or their
normal sibling-derived hGPCs; in each case, hGPCs were typically
the dominant population by 20 weeks, and few if any murine GPCs
remained in any of the engrafted striata after 40 weeks (Fig. 1¢,d).
Transplanted cells did not differentiate into neurons, as evidenced
by their lack of expression of either MAP2 or NeuN, two distinct
markers of mature neuronal phenotype. No evidence of tumour
formation or aberrant differentiation of these hESC-derived GPCs
was noted in any of the mice in this study.

Motor performance was impaired in mHtt glial chimeras.
Among the 109 mice assigned to rotarod assessment of motor
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Figure 1| Mice may be generated with striata chimeric for human HD
ESC-derived glia. The striata of neonatally engrafted ragl null mice were
efficiently colonized with donor hESC hGPCs, a proportion of which
differentiated as astroglia in both striatal grey and white matter. (@) Mice
engrafted with hESC GPCs expressing either normal Htt (GENEA19; 18Q) or
mHtt (GENEA20, 48Q; a sibling to GENEA19) manifested striatal
chimerization by 20 weeks of age, which was denser at 40 weeks. Mice
engrafted with GENEA20-derived glia (48Q) manifested striatal
chimerization analogous to that of GENEA19-derived normal HTT (18Q)
glia. (b) GENEA19-derived glia identified by their expression of the human-
specific nuclear antigen (hNA; red) interspersed with host cells (DAPI,
blue), revealing extent of striatal and cortical human glial chimerization at
40 weeks. (c,d) GENEAT9 hGPC-engrafted striatal sections at 20 (c¢) and
40 (d) weeks post graft, stained for human and mouse NG2, showing the
progressive domination of the striata by human NG2-defined GPCs. (e f)
20 (e) and 40 (f) week post-graft striata, stained for hNA (red) and human
PDGFRA (green) similarly showing the progressive domination of the
striata by hGPCs. (g,h) GENEA19 hGPC-engrafted striata at 20 (g) or 40
(h) weeks, stained for hNA (red) human GFAP (green), showing the
maturation and age-dependent increase in fibre complexity of human
astroglia in the host striatum. Arrows indicate graft-derived OPCs (e, f) and
astrocytes (g h). Scale bars, Tmm (a,b); 50 um (c-g); 25 um (h). DAPI,
4,6-diamidino-2-phenylindole.

performance, those chimeric for HD mHTT hESC (GENEA20)-
derived glia manifested significantly slowed motor learning
compared with littermates chimerized with normal HTT GPCs
(GENEA19). In particular, the GENEA20-derived mHtt
glial chimeras manifested significant decrements in motor

coordination relative to three independent control groups that
included: (1) GENEA19 GPC-derived chimeric controls; (2)
uninjected controls; and (3) saline-injected controls (Fig. 2).
The difference between mHTT and all control glial chimeras was
evident by 12 weeks of age, and persisted through 36 weeks of
observation, with no significant improvement in the performance
of the mHTT GPC-engrafted mice during that 24-week period
(Supplementary Table 2). The relative lack of improvement in
rotarod performance by the mHTT hGPC-engrafted mice
suggested an mHTT glial-mediated deficit in motor learning, as
well as in motor performance, that became increasingly manifest
with age and maturation.

MSNs were hyperexcitable in the presence of mHtt glia. To
better understand the physiological basis for the relatively
impaired motor performance of mHtt glial-engrafted mice, we
next asked whether chimerization with mHtt-expressing glia
influenced the physiology of MSNs. To that end, we established
striatal glial chimeras in otherwise WT immunodeficient mice, via
neonatal intrastriatal injection of mHtt-expressing human fetal
glia. For this purpose, we used mHTT-transduced fetal
tissue-derived hGPCs rather than HD hESC-derived GPCs, so as
to assess the effects of mHtt bearing longer CAG repeats than the
48Q mHtt expressed by GENEA 20-derived hGPCs. We
postulated that longer CAG repeat expansions would accelerate
glial pathology, and thus potentiate detection of paracrine
neuronal dysfunction at the relatively young ages and compressed
experimental time frames used in this study. To that end, we
isolated hGPCs from 18- to 20-week human fetal forebrain, using
immunomagnetic sorting directed against CD44, which as noted
is highly expressed by astrocyte-biased glial progenitor cells'2. We
then transduced these cells with a lentiviral vector encoding the
first exon of the HTT gene bearing either mutant (73Q) or
normal (23Q) huntingtin, each upstream to an enhanced
green fluorescent protein (EGFP) reporter, and then injected
the transduced cells into the striata of neonatal ragl —/—
immune-deficient mice. The mice were killed 12 weeks later
and striatal slices were prepared; human GFP* glial-rich regions
were imaged by two-photon microscopy, and their resident
striatal neurons patch clamped using previously described
methods!”.  Subsequent histology and immunolabelling
confirmed the dense engraftment of the recorded striata with
human donor cells, in both the Q23 and Q73 mHtt hGPC-
engrafted striata, whose extents of donor cell engraftment were
indistinguishable at the 12-week time point at which recordings
were obtained (Supplementary Fig. 1). Of note, whereas the
distributions of Q23 and Q73 mHtt-transduced glia did not differ
in engrafted chimeras (Supplementary Fig. 1D), and their relative
densities similarly did not significantly differ (Supplementary
Fig. 1E), the Q73 mHtt glia could be recognized by cytoplasmic
Htt aggregates, in vivo as well as in culture (Supplementary
Fig. 1A-CH); the Q23-transduced controls manifested no such
aggregate formation.

Physiologically, neurons in striata engrafted with 73Q mHtt
glia manifested significantly higher input resistance relative to
those engrafted with either 23Q HTT- or EGFP-only transduced
control glia, and required significantly fewer current injections to
fire action potentials relative to control glia-engrafted mice
(Fig. 3a,b; also Supplementary Fig. 2). The higher input resistance
of these neurons was manifest in their current-voltage (I-V)
curves as well (Fig. 3c), and suggested the significant relative
hyperexcitability of striatal neurons in an mHtt-glial environment
(Fig. 3d). This was also reflected by the less-negative resting
membrane potentials of striatal neurons recorded in 73Q
hGPC-engrafted ~striata (—75.310.53mV, meanzts.em.),
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Table 1 | Engraftment of hESC-derived GPCs in normal Htt immunodeficients.

Cell type Sacrifice % GFAP % Olig2 ™ Total donor cells humanNA T /mm3 striatum
GENEAT19 (18Q) 20 weeks (n=3) 21+0.6 71.8+19.4 74,173 £14,305 21,000 + 3,608

40 weeks (n=4) 1.7+£05 825186 42,807 £ 6,991 9,335+1,341
GENEA20 (48Q) 20 weeks (n=3) 23104 56.4t75 42,520 £ 8,792 10,843 +£3,323

40 weeks (n=4) 22107 727163 80,798 £ 7,131 16,126 £ 380

hNA, human nuclear antigen.
Data presented as means £ s.e.m.’s.
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Figure 2 | HD ESC-derived glial chimeras exhibit impaired motor
coordination. Mice engrafted with GENEA20-derived glia expressing mHtt
demonstrated significantly impaired motor coordination compared with
littermates chimerized with either GENEA19-derived normal HTT GPCs or
control mice (both sham-treated and untreated). In particular, the mHTT
glial chimeras (GENEA20, with 48Q; n=231) manifested significant age-
dependent decrements in motor coordination relative to their normal HTT
(GENEAT19, 18Q; n=28) hESC GPC-derived chimeric controls, as well as
relative to sham-treated (n=11) and untreated controls (n=21). Two-way
ANOVA revealed both a significant treatment effect (F(3, 593) =39.6,
***P<0.0001) and time effect (F(7, 593) =5.47, P<0.0001);

mean ts.e.m.

relative to the 23Q hGPC-engrafted (—79.410.93mV),
untransduced hGPC-engrafted (—80.5%0.51mV) and unen-
grafted (—81.1+0.94mV) controls (F[3,35] =17.0; P<0.0001
(Fig. 3e); sample sizes and post hoc test results noted in 3E,
statistical summary in Supplementary Table 3A). The I-V curves
of the recorded MSNs showed typical inwardly rectifying
currents, which were also seen in the input resistance at
hyperpolarization and depolarization currents (Fig. 3f; statistical
summary in Supplementary Table 3B). Interestingly, despite their
higher V,,, and hyperexcitability in response to current injection,
neither the frequency (Fig. 3f,g) nor amplitude (Fig. 3f,h) of either
the spontaneous excitatory postsynaptic currents (sEPSCs) or
miniature EPSCs of striatal neurons within 73Q glial chimeric
striata differed significantly from those of striatal neurons in 23Q-
engrafted or unengrafted controls (Fig. 3g,h).

Colonization by normal glia slowed disease course in HD mice.
Since engraftment of normal striata with mHtt-expressing GPCs
impaired striatal neuronal function and physiology, we next asked
whether the reverse might be true, that is, if neonatal engraftment
of the HD striata with normal glia might rescue aspects of HD
phenotype. To this end, we engrafted normal human GPCs
into the striata of newborn R6/2 (120 CAG) mice!3, which
transgenically express a mutant exon 1 of the HTT gene, and

4

typically die by 20 weeks of age. For this experiment, astrocyte-
biased GPCs were isolated from 18- to 22-week-gestational age
fetal human brain using magnetic activated cell sorting targeting
CD44, as noted above (Supplementary Fig. 3A)!2. The
CD44-sorted cells were then transplanted into the striata of
newborn R6/2 x ragl =/~ mice, using an injection protocol
previously described for use in neonatal callosal injection'®
(Supplementary Fig. 3B-E), but instead targeting the striata.
Striatal engraftment of the R6/2 mice by CD44-sorted hGPCs was
robust (Fig. 4a,b), and achieved densities of > 15,000 human cells
per mm> by 16 weeks of age (Fig. 4c and Table 2), with
substantial replacement of resident mouse HD astroglia with
normal HTT-expressing human counterparts, as we have
previously reported in WT murine hosts'’. The human CD44-
sorted glia integrated as both astrocytes (Fig. 4d and Table 2) and
as persistent GPCs (Fig. 4e,f and Table 2), but not as neurons
(Fig. 4g). Importantly, the integrated human cells did not
manifest detectable HTT aggregates; the staining patterns of
HTT and human nuclear antigen were always entirely non-
overlapping (Fig. 4h). As such, we saw no evidence of HTT
protein transmission from host to donor cells over the time frame
studied. While there was a net weight loss in diseased mice as
function of time (8- and 16-week-old mice), no change of weight
as function of engraftment was noticed (age effect: F
[1,36] =8.40; P<0.01; treatment effect: F [1,36]=0.12;
P>0.05; two-way analysis of variance (ANOVA), statistical
summary in Supplementary Table 4).

The hGPC-engrafted chimeric R6/2 mice displayed
significantly delayed motor deterioration relative to their
untreated controls, as assessed by their performance on a
constantly accelerating rotarod. Linear regression revealed that
the rate of motor deterioration was significantly slowed in the
hGPC  engrafted mice, relative to untreated and
sham-treated controls (F=4.8 [2, 124 d.f]; P<0.001) (Fig. 5a
and Supplementary Table 5).

On that basis, we next asked if the performance enhancement
associated with engraftment by normal glia might be sufficient to
influence the survival of R6/2 (120 CAG) mice. We found that
R6/2 (120Q) x ragl_/ ~ mice whose striata were neonatally
transplanted with normal human glia survived significantly
longer than unengrafted mice, with a mean increase in lifespan
of 12 days (hGPC-engrafted, n = 29; untreated, n=28; P<0.01,
Mantel-Cox Log-rank test; Fig. 5b). This survival effect was no
different between males and females among the in hGPC-
engrafted R6/2 mice (statistical summary in Supplementary
Table 6).

The functional benefits of R6/2 striatal chimerization with
normal glia were accompanied by preservation of striatal structure
as well. Stereological assessment of gross striatal volume revealed
that CD44 ™ hGPC-engrafted mice manifested significantly less
striatal involution than their unengrafted controls (Fig. 5c). This
decreased rate of striatal atrophy suggested a relative preservation
of striatal neuropil, which was both substantial and statistically
significant by 20 weeks of age (F (2, 25)=12.84, P=0.0001 by
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Figure 3 | Striatal neurons are hyperexcitable in mice chimerized with mHTT-transduced hGPCs. Human glial chimeric striata were established with
fetal human glia transduced to overexpress mHTT. (a) Example of a host striatal neuron, filled with Alexa-594 after recording, surrounded by EGFP-tagged
donor-derived glia. (b) Representative action potentials recorded in response to current injection in host neurons in striata chimerized with 73Q

mHTT (n=28)- and 23Q HTT (n=12)- expressing hGPCs. Striatal neurons of mice engrafted with 73Q mHTT human glia required significantly fewer
current injections to achieve voltage thresholds for firing, than did those engrafted with 23Q HTT-transduced or either EGFP-only (n=8) transduced or
untreated (n = 8) control glia. (¢) Current-voltage curves (I-V curves) of neurons in 23Q HTT- and 73Q mHTT-expressing hGPC-engrafted mice, reflect the
typical inwardly rectifying currents of MSNs. (d) Representative traces of injected current (20-pA steps)-induced voltage changes are shown for the
four treatment groups. The waveforms of stimulus injection are shown below the tracings. (e) The relative hyperexcitability of striatal neurons in the
mHtt glial environment was also reflected by the higher resting membrane potential of those neurons, relative to both Q23 hGPC-engrafted and
unengrafted controls. (f) The input resistances at negative current injection (Rneg, — 40 pA hyperpolarization currents) were compared with those with
positive current injection (Rpes, 40 pA depolarization currents), and confirmed the higher input resistance of striatal neurons in 73Q glial chimeras, relative
to both 23Q and GFP control glia-engrafted mice. (g, h) Comparison of frequency (g) and amplitude (h) of sEPSCs and miniature EPSCs (mEPSCs). Despite
their relative hyperexcitability, striatal neurons within 73Q glial chimeric striata manifested sEPSC frequencies and amplitudes that did not differ
significantly from those of either 23Q glial-engrafted or unengrafted striatal neurons. Scale bar, 50 um (a); (e,f) **P<0.01; **** P<0.0001 by ANOVA with

post hoc t tests; means +s.e.m.

two-way ANOVA). By that point, the mean striatal volume of
hGPC-engrafted R6/2 mice was significantly larger than that of
unengrafted R6/2 mice (P= 0,007 with Tukey’s multiple compar-
ison tests; Supplementary Table 7), and only marginally less than
that of WT mice (WT mice: 7.5+0.1 mm> R6/2 untreated:
4.7 + 0.4 mm3; R6/2-hGPC: 6.3+ 0.6 mm> (mean * s.e.m.)). Thus,
neonatal hGPC transplantation was associated with significantly
increased striatal volumes in R6/2 mice, which was substantial and
significant by 20 weeks of age (Fig. 5¢).

Normal glia improved the behaviour and cognition of R6/2 mice.
We next asked whether striatal engraftment with CD44-defined
hGPCs was sufficient to improve cognitive and motor function by
HD mice. To this end, we neonatally transplanted a large cohort
of R6/2 mice with bilateral intrastriatal injections of 50 x 10%
CD44-sorted hGPCs (Supplementary Table 1). Both the
transplanted and control mice were then sent to an independent
contract research organization, Psychogenics, Inc., which used a
multimodal behavioural platform to compare the behavioural

repertoires of the hGPC-engrafted and control mice, the identities
to which Psychogenics staff were blinded. This platform included
two proprietary batteries, called Smartcube, a battery of cognitive
end points'®, and Neurocube, a battery of motor functional end
points'®. A third separate test, the procedural water T-maze,
was also included. The individual functional elements of these
testing paradigms were represented in the aggregate by a single
interpolated value, which permitted group comparisons across all
endpoints with a form of principal component analysis (PCA).

PCA revealed that across test modalities, the R6/2 mice could
be readily distinguished from both their WT uninjected
and sham-injected controls (Fig. 6a—-d). PCA further revealed
that hGPC transplants were associated with at least a partial
restoration of normal behavioural end points in multiple domains
(Supplementary Figs 4 and 5). While the component composition
of the overall PCA is proprietary, single-behavioural end points
could be identified and extracted post hoc; these are reported
separately in Supplementary Figs 4 and 5, which show
behavioural tests in which hGPC-engrafted R6/2 mice are notably
less impaired than their unengrafted controls.
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Figure 4 | CD44-sorted hGPCs colonized and replaced endogenous glia within the R6/2 x rag1~/ ~ striatum. Striatal engraftment of the R6/2 mice by
CD44-sorted hGPCs was robust and dense. (a,b) Fetal derived cells expanded to colonize the striata and ventral forebrain of engrafted mice by 20 weeks.
(c) Donor-derived cells in the striata of transplanted mice increased as a function of time (means *s.e.m.). (d-g) By 20 weeks after neonatal graft,
the donor hGPCs (human nuclear antigen, red) integrated as astrocytes (d; GFAP, green) or persisted as GPCs (e f; PDGFaR and olig2, green), but did not
give rise to neurons; no overlap was ever seen of hNA and NeuN expression (g; NeuN, green). (h) Resident human glia did not manifest detectable nuclear
Htt aggregates, as assessed by EM48 immunostaining; the staining patterns of host Htt and donor human nuclear antigen were always entirely

non-overlapping (h). Scale bars, 1Tmm (a,b); 25 um (d-h).

Table 2 | Engraftment of CD44 © GPCs in R6/2 x ragl—/~
mice.

Survival % % Total cells hNA* per mm?3
time GFAP" Olig2™ striatum
20 weeks 1703 45217.8 77,756+£21,000 16,651+ 3,694

(n=4)

hNA, human nuclear antigen.
Data presented as means £ s.e.m.’s.

This analysis first revealed that disease-associated hyperactivity
in R6/2 mice was moderated by neonatal hGPC graft. SmartCube
showed a significant difference between sham-treated WT and
R6/2 mice at 8 (91%, P<0.0002) and 11 weeks (92%, P<0.00001)
of age (Supplementary Fig. 4). At both ages, relative improvement
was noted as a result of hGPC treatment, although this effect
failed to achieve significance in the older of the two R6/2

6

groups (36%, P<0.02; and 19%, P = 0.068, respectively). Analysis
of the top features that contributed to the disease signatures
showed that at 8 weeks of age, sham-treated R6/2 mice were
somewhat hyperactive compared with sham-treated WT mice,
showing increased sniffing/scanning (P =0.0003), locomotion
(P=10.0083) and rearing (P=0.0022). Some of these changes
were attenuated in hGPC-treated R6/2 mice, which exhibited less
locomotion (P<0.0001) and rearing (P=0.0003) relative to
sham-treated R6/2 mice. At 11 weeks of age disease-associated
hyperactivity subsided, with no significant differences between
sham-treated WT and R6/2 in locomotion, rearing or scanning/
sniffing. At both 8 and 11 weeks, R6/2 mice groomed less than
WT mice (P=0.0003), a phenotype not rescued by hGPC.
Overall, these results are consistent with a prodromal hyperactive
phase described in studies of young R6/2 and R6/1 mice?*-22,
which we found here to be tempered by hGPC treatment.

Our analysis next revealed that age-dependent gait deficits in
R6/2 were partially rescued by hGPC treatment. NeuroCube
analysis revealed that by 11 weeks of age, R6/2 mice manifested a
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Figure 5 | Chimerization with normal glia slows motor loss and extends
survival of R6/2 mice. (a) Linear regression revealed that the rate of
rotarod-assessed motor deterioration of R6/2 mice was significantly
slower in mice engrafted with hGPCs (n=15) than in untreated mice
(sham-treated, n=11; untreated, n=10) (F(3,608) =41.87; P<0.001).
(b) R6/2 (120Q) x ragl =/~ mice whose striata were engrafted with
human GPCs survived significantly longer than unengrafted mice (n=29
hGPC-engrafted; n =28 untreated; P<0.01 by Mantel-Cox Log-rank test).
(¢) Striatal volumes were estimated stereologically (Stereo Investigator,
MicroBrightfield). hGPC-engrafted R6/2 mice manifested larger striatal
volumes than unengrafted R6/2 mice by 16 weeks of age, which were
restored to levels no different than those of WT controls. Means +s.e.m.;
**P<0.01 and ***P<0.0001 by one-way ANOVA with post hoc t-tests.

significant deficit in motor performance relative to untreated
controls (80%, P<0.0001), and that neonatal chimerization with
normal hGPCs was associated with significant phenotypic rescue
(60%, P=0.038; Supplementary Fig. 5). Analysis of top
features showed no significant differences at 8 weeks between
sham-treated WT and R6/2 mice in speed, stride length or
duration of stride or swing. Yet by 11 weeks, while average speed
remained constant across groups, the sham-treated R6/2 mice
showed significant deficits in stride length (P<0.0001) and
duration (P=0.037), as well as in the duration of swing phase
(P=0.001), which were significantly, though incompletely,
corrected by hGPC treatment (P<0.0001, <0.01 and <0.0001,

respectively). Interestingly, hGPC treatment reduced body
movement variability in both WT and R6/2 groups, an
HD-independent effect (P =0.003).

In addition to the SmartCube and NeuroCube analyses of these
mice, we also assessed their performance in the water T-maze,
and found that the performance of R6/2 mice in this test was
improved markedly by hGPC transplant. In this procedural water
T-maze test, mice need to learn to swim to a side platform. We
found that untreated 9-week-old R6/2 mice chose the correct side
less frequently (P<0.0001) and reached the platform more
slowly (P<0.0001) than WT mice (either sham-injected or
hGPC-injected) Fig. 6e-g. In contrast, neonatal intrastriatal
hGPC engraftment partially rescued this deficit, in that chimeric
R6/2 mice performed better than their sham-operated R6/2
counterparts, making more correct choices in the initial session
(P=0.007), and with more mice reaching criterion during initial
training (P=0.016; Fig. 6e,f). At 13 weeks of age, deficits in
choice accuracy were again apparent in sham-treated R6/2 mice
relative to WT mice (P<0.0001), and in the percentage of mice
reaching criterion (P <0.0001). Choice accuracy was improved in
hGPC-treated R6/2 (relative to sham-treated R6/2) by the third
and forth sessions (P<0.02). The latency to reach the escape
platform was also significantly improved by hGPC treatment in
the last three sessions, suggesting not only a cognitive but also a
motor improvement (Fig. 6g).

R6/2 MSN physiology was altered by normal glia. To assess the
physiological basis of the improved function and survival of R6/2
mice engrafted with human glia, we next asked whether
chimerization with normal glia influenced the physiology of
resident R6/2 striatal neurons. This experiment, examining the
effects of a normalized glial environment on HD MSNs, provided
a corollary to our prior experiment, in which normal MSNs
were evaluated in an HD glial environment. To this end, 19
immunodeficient ragl_/ ~ x R6/2 (120 CAG) newborns were
either engrafted (n = 8) or not (n = 11) with CD44-sorted hGPCs;
12 weeks later, they were killed and slice preparations taken,
and MSNs patch-clamped. In addition, 18 WT x ragl ~/~ mice
were assessed, 7 of which had been neonatally engrafted with
CD44-sorted hGPCs and 11 of which were unengrafted controls.
Successful engraftment of the recorded striata by human donor
cells was verified histologically after recording. Mice that
displayed poor engraftment, defined as <1,000 human nuclear
antigen * cells per mm?, were removed from the study (versus an
average of >10,000 cells per mm> in successful grafts; see
Tables 1 and 2).

Whole-cell voltage-clamp recording from both WT and R6/2
striatal neurons showed inward rectifier currents as the
membrane potential was between —115 and —45mV, and
more rectification was found in R6/2 neurons (Fig. 7a). Similarly,
with the current-clamp configuration, we found that the input
resistance Ryypye of R6/2 striatal neurons was significantly higher
than that of their WT controls, as has been previously
reported?®?4, Significantly though, we found that the R6/2
neuron Ri,,y: in the range of positive membrane potentials was
lower in the presence of engrafted normal human CD44-derived
glia (Fig. 7b,c and Supplementary Table 8A). These results
indicate that the intrinsic excitability of striatal neurons in R6/2
mice was increased relative to that of WT neurons, and could be
moderated by the engraftment of human CD44-derived glia. In
addition, whereas the frequency of SEPSCs was significantly lower
in R6/2 x ragl =/~ striatal neurons than in ragl =/~ WT
controls, the sEPSC frequency of CD44-engrafted R6/2s was
restored to levels not significantly different from those WT
controls (Fig. 7d,e and Supplementary Table 8B). The apparent
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change in presynaptic inputs to R6/2 neurons likely reflected
decreased release probability, since the frequency of miniature
EPSCs also exhibited a trend towards disease-associated
reduction and graft-associated recovery (Fig. 7d,e). While the
EPSC amplitude of R6/2 striatal neurons was unaffected by
chimerization (Fig. 7f and Supplementary Table 8C), the lower
frequency of sEPSCs in the R6/2 MSNs, and their partial
restoration by engrafted normal glia, was consistent across the
spectrum of EPSC amplitudes (Fig. 7g). Of note, engraftment
with normal CD44-defined glia had no effect on any
electrophyswloglcal measure in otherwise normal ragl =/~ WT
mice; only in R6/2 mice did glial engraftment affect input
resistance and sEPSC frequency.

Normal glia reduced interstitial K* in the HD striatum. A
number of studies have implicated dysfunction of neuronal
potassium channels in the HD striatum?>24, and the contribution
of defective glial potassium uptake to HD pathogenesis®.
Astrocytes play an important role in buffering KT released
during synaptic transmission?®~2”. If astrocytic K uptake is
impaired, then interstitial K™ rises, and the transmembrane
gradient for KT is decreased, resulting in the relative
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depolarization, and hence increased excitability, of local
neurons®>?8, The increased membrane resistance of WT MSNs
in mHtt (73Q) glial chimeras suggested precisely such a defect in
potassium handling by mHtt-expressing human glia (Fig. 3d-f).
On that basis, we next used potassium microelectrodes to ask
whether the hyperexcitability and increased membrane resistance
of R6/2 striatal neurons was associated with elevated interstitial
K™ in vivo. We found that the levels of interstitial K™ were
indeed significantly higher in R6/2 mice than in WT littermates,
when assessed at 16 weeks of age (Fig. 8): Whereas WT
mice maintained extracellular striatal Kt at a level of
3.13+0.08 mM (mean +s.em.; n="7 mice), R6/2 striatal K+
levels were significantly higher, averaging 3.77 £ 0.04 mM (n=3§;
P<0.0001, ANOVA with post hoc Tukey’s tests; Supplementary
Table 9).

We next asked whether the disease-associated elevation in
extracellular K™ might then be attenuated by colonization with
engrafted normal glial cells, and whether that might account for
the partial restoration of normal membrane resistance and firing
thresholds observed in R6/2 mice transplanted with normal glia.
This indeed proved to be the case, in that the R6/2 striata
neonatally engrafted with normal CD44% hGPCs manifested
significantly and substantially lower levels of interstitial K™
(3.31£0.10mM; n=7 mice) than their unengrafted R6/2
littermates (3.77 £ 0.04 mM, n=_8; as noted above) (P=0.0007;
Supplementary Table 9). The reduction in K™ afforded by
glial chimerization occurred only in R6/2 striata; WT mice
transplanted with CD44" GPCs manifested extracellular K™
levels no different than their untransplanted littermates
(3.32+0.06 versus 3.13 + 0.08 mM, respectively) (Fig. 8).

Figure 6 | Treatment with hGPCs partially rescues disease signatures in
SmartCube and NeuroCube and improved cognitive deficit in T-maze. To
build a two-dimensional representation of the multidimensional space in
which the groups are best separated, we first find statistically independent
combinations of the original features, pick the two new composite features
(axes 1and 2) that best discriminate between the groups, and used them as
x and y axes. Each dot represents a mouse. The centre, small and large
ellipses are the mean, s.e. and s.d. of the composite features for each group.
The distance and overlap between the groups are used to calculate the
discrimination index, which indicates how reliably a classifier can be trained
to discriminate between the two groups. (@) SmartCube showed a
significant difference between sham-treated WT and R6/2 mice (91%) at 8
weeks of age. There was a significant functional preservation (36%) in
hGPC-treated versus untreated R6,/2 mice. (b) At 11 weeks of age there was
also a significant R6/2-associated deficit (92%), with a marginally
significant recovery (19%) in response to hGPC treatment. (c) In
NeuroCube, R6/2 mice had a marginally significant deficit (66%) and
therefore no significant recovery by hGPC treatment could be measured.
(d) However, at 11 weeks of age, a significant deficit (88%) and recovery
(46%) by hGPC treatment was noted. The improvement of motor and
cognitive behaviour of hGPC-engrafted R6,/2 mice was also manifest in the
T-maze test. (e) R6/2 mice chose the correct arm fewer times than WT
mice over training at 8 weeks of age and again when retrained at 13 weeks
of age (as compared with the sham-treated WT mice). GPC-treated R6/2
mice showed better performance than sham-treated R6/2 mice in specific
sessions at both ages. (f) Fewer R6/2 than WT mice reached criterion

(6 out of 8 correct trials per day for 3 consecutive days) during training and
again during retraining at the older age. hGPC treatment improved
acquisition in R6/2 mice during the initial training phase. (g) R6/2 mice
were slower than WT mice to reach the platform during training and
retraining. hGPC treatment improved performance during retraining.
Asterisks denote significant main effects or post hocs and (means £ s.e.m.;
*P<0.05; **P<0.01; ***P<0.001.)
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Figure 7 | Chimerization with normal glia partially normalizes MSN physiological function. (a) The current-voltage relationship (/-V) derived from
whole-cell V-clamp recordings in WT and R6/2 x ragl ~/= (R6/2) mice. (b) Representative whole-cell I-clamp recordings from ragl =/~ WT, CD44
hGPC-engrafted rag1 =/~ WT's, R6/2 x ragl =/~ mice and CD44-engrafted ragl =/ ~ mice. Lines below each group of traces indicate the current
injection steps. (€) The input resistance Ri,pu Was significantly higher in R6/2 x ragl —/ = striatal neurons than in WT xragl =/~ controls, but was
partially restored to normal in R6/2 mice chimerized with normal CD44-sorted hGPCs. (d) Representative traces of sEPSCs from striatal neurons
recorded in ragl =/~ control (black), CD44-engrafted ragl =/~ (yellow), R6/2 x rag1 =/~ (purple) and CD44-engrafted R6/2 x ragl 7/ ~ (green)
mice. (e,f) The frequency (e) and amplitude (f) of sEPSCs and miniature EPSCs (mEPSCs). (e) The sEPSC frequency was significantly lower in

R6/2 striatal neurons than in WT ragl =/~ controls, but was restored in CD44-engrafted R6/2s to levels not significantly different from control.

(f) In contrast, the EPSP amplitude of R/2 striatal neurons was unaffected by chimerization. (g) Cumulative distribution of sEPSCs. The lower frequency
of sEPSCs in the R6/2 MSNs, and partial restoration by hGPC engraftment, was consistent across EPSC amplitudes. WT-untreated, n =11, WT-hGPC,

n=8; R6/2-untreated, n=11; R6/2-hGPC, n=8. Means + s.e.m.; *, **
with post hoc t-tests.

4.5
P<0.0001
P=0.0008
404 _NS R
A
s = v
€ N v
) 3.5 4 u
T
- F O F
3.0 v
2.5 T T T T

WT  WT-hGPC R6/2 R6/2-hGPC
(n=7)  (n=5)  (n=8)  (n=7)

Figure 8 | Normal glial engraftment reduces interstitial K levels in the
R6/2 striatum. Potassium electrodes were used to measure the
interstitial levels of striatal K in both WT mice and their R6/2
littermates at 16 weeks of age (£ 4 days), with and without

neonatal intrastriatal transplants of CD44-sorted hGPCs. Untreated

R6/2 mice manifested significantly higher levels of interstitial K, which
were restored to normal in R6/2 mice neonatally engrafted with hGPCs
(P<0.01 by one-way ANOVA). In contrast, hGPC engraftment did not
influence the interstitial K levels of WT mice. All values graphed as
means £ s.em.
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and *** indicates P<0.05, 0.01 and 0.001, respectively, by one-way ANOVA

Discussion

A number of recent reports have highlighted the contribution of
glial cells to the pathogenesis of neurodegenerative disorders,
most particularly in the spinal cord, in which glial pathology
has been implicated in the course of amyotrophic lateral
sclerosis’>®>. In this study, we asked whether glia might
contribute to the genesis and progression of HD, a protoypic
neurodegeneterative disorder of the brain. We found that mice
whose striata were engrafted with GPCs derived from
mHtt-expressing hES cells (48Q) manifested significantly
slowed motor learning than littermates chimerized with normal
(18Q) GPCs derived from an unaffected sibling (Fig. 2). Using
mice chimerized with human fetal striatal tissue-derived glia
(73Q), we then found that MSNs resident in that HD glial
environment were more excitable than those engrafted
with control glia (23Q), and manifested neurophysiological
abnormalities previously noted in HD MSNs, both in vitro” and
within the striata of R6/2 HD mice?* (Fig. 3). On the basis of this
glial-mediated  recapitulation of HD-associated  striatal
dysfunction, we then asked whether the introduction of normal,
healthy glia into the HD environment might slow disease
progression. We found this to be the case, in that striatal
chimerization of R6/2 mice (120Q) with normal fetal human glial
cells was associated with significantly increased survival (Fig. 5), a
slower rate of motor deterioration, partial rescue of behavioural
abnormalities (Fig. 6 and Supplementary Figs 4 and 5), partial
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normalization of MSN physiology (Fig. 7) and significant
restoration of local K+ homeostasis (Fig. 8). Together, these
observations implicate glial pathology in the pathogenesis and
progression of HD, and strongly suggest that colonization of
diseased striata with healthy glia may be a viable strategy for
slowing disease progression in HD.

Previous studies have highlighted the abnormal physiology of
R6/2 mouse MSNs, which are characterized by a relatively
depolarized resting membrane potential, increased input
resistance and an increased threshold for excitatory postsynaptic
potentials (EPSPs)?4, We found that the MSNs of mice neonatally
chimerized with mHtt-transduced human glia (73Q) exhibited
features of these same abnormalities, and had response
characteristics remarkably similar to those previously reported
for R6/2 MSNs?%. As a corollary then to these toxic effects of
mHtt glia on normal MSNs, we postulated that WT glia might be
capable of rescuing pathology in R6/2 neurons. This prediction
that was borne out with the increased survival of R6/2 mice
engrafted with WT hGPCs, as well as by the improved physiology
of R6/2 neurons in the WT glial striatal environment.
In particular, while striatal neurons in R6/2 x ragl ~/~
immunodeficient mice manifested the expected high input
resistances and low sEPSP frequencies of R6/2 mice, those
engrafted with normal CD44-sorted glia exhibited a significant
reduction in input resistance and a significant increase in EPSP
frequency, to levels not significantly different from WT controls
(Fig. 7a,b). Notably though, whether the restoration of these
physiological parameters, and more broadly the improved motor
performance and survival increments associated with WT glial
engraftment, is due to donor-derived astroglia or persistent glial
progenitor cells remains unclear, since CD44 isolates both
phenotypes, and the resultant glial chimeras are heavily
colonized with each. That said, the support of striatal function
afforded by CD44 7" astroglia and their progenitors was
consistent and substantial.

A number of previous studies have reported the hyper-
excitability of MSNs in HD, and several have pointed to defects in
potassium conductance and potassium channel expression as
contributing to both the hyperexcitability and increased input
resistance of HD striatal neurons®»?*, Among other functions,
astroglia are tasked with the uptake of KT from the brain’s
interstitial and synaptic spaces, into which K* flows in the
setting of neuronal depolarization®®?®, If KT uptake is impaired,
then the transmembrane gradient for K™ is decreased, resulting
in the increased excitability of local striatal neurons. Khakh and
colleagues ascribed these findings to defects in astrocytic Kir 4.1
channel expression in HD mice®, while Levine and colleagues
have highlighted the contribution of neuronal downregulation of
Kir2.1, Kir2.3 and Kv2.1 to the hyperexcitability of MSNs?3, It
seems unlikely that the loss of any one of these channels would be
sufficient to produce HD pathology, as they manifest considerable
functional redundancy, but the concurrent downregulation of a
number of inwardly rectifying K channels across both neurons
and glia might be expected to exert significant pressure on striatal
K™ homeostasis. As such, our observation of hyperexcitability by
normal MSNs resident in an HD glial chimeric environment
suggests that the pathological activation patterns of R6/2 MSNs
might be substantially non-cell autonomous, and elicitable in
otherwise normal neurons when those neurons are faced with
defective local glial potassium uptake. Indeed, it was the apparent
dependence of MSN hyperexcitability on glial K+ dysregulation®,
as well as the coincident observation that HD-related muscle
hyperexcitability similarly reflects poor K+ conductance®?, which
suggested that local K1 gradients, and thus MSN firing
thresholds, might be restored by colonization with WT glia.

Together, these data suggest a significant role for glial
dysfunction in HD pathogenesis, and hence the potential value
of glial replacement in HD therapeutics. The mHtt human glial
chimeric mouse model established here permitted us to evaluate
the mechanisms of neurotoxicity of mHtt-expressing glia on
normal neostriatal neurons. Furthermore, our model allowed us
to isolate and investigate the non-cell autonomous component of
HD neuropathology, and to do so in a humanized glial context, as
opposed to the transgenic rodent context in which artefactually
longer polyglutamine expansions are expressed by neurons
and glia alike. Using this strategy, we established that a
significant degree of protection may be offered to vulnerable
mHtt-expressing neurons by an improved striatal glial
environment, strongly suggesting the therapeutic potential of a
glial replacement strategy in HD. Our finding that interstitial
potassium levels are higher in the R6/2 striatum than in its
WT counterpart, and may be substantially normalized by
chimerization with normal glia (Fig. 8), further highlights the
potential of glial cell replacement as a means of ameliorating
HD-related pathology. As such, our data lend strong support to
the possibility of transplanting normal glial progenitor cells into
the HD striatum, both as for the treatment of manifest HD, and
as a means to delay disease appearance in premanifest cases.
Indeed, given the success in animal models of strategies
developed to trigger the production of new striatal neurons from
resident neural stem cells®!, which have substantially extended
the survival of R6/2 mice!”?>33, we may postulate that the
combination of induced neuronal replacement with WT glial
engraftment may act synergistically to preserve function in the
diseased HD striatum. In concert with complementary strategies,
such as genetic correction of mHTT alleles in patient-derived
induced pluripotential cells before their induction as glial
progenitors®4, which might then permit the delivery of
autologous glial progenitors®®, these advances may enable
clinically meaningful therapeutic options for this hitherto
underserved and untreatable patient population.

Methods

Isolation of fetal human astroglial progenitor cells. Human fetal brain tissue
was obtained from aborted fetuses (18-22 weeks gestational age), with maternal
consent and under protocols approved by the University of Rochester-Strong
Memorial Hospital Research Subjects Review Board. Briefly, forebrain tissue was
minced and dissociated using papain and DNase as previously described3¢-38,
always within 2h of extraction. The dissociated cells were maintained overnight in
DMEM/F12/N1-based medium supplemented with 10 ngml ~! FGF2.
Astrocyte-biased glial progenitor cells were isolated from the tissue dissociates
using magnetic activated cell sorting targeting the astroglial hyaluronate receptor
CD44 (ref. 12) using conjugated microbeads (Miltenyi) according to the
manufacturer’s instructions. Cytometry confirmed that >95% of cells expressed
CD44 immediately after sorting. At that point, the cells were resuspended in
DMEM/F12/N1 supplemented with 10 ng ml ~ ! bFGF and 2% PD-FBS at 2.5 x 10°
cells per ml in six-well suspension plates, in preparation for either transduction and
further expansion, or for direct transplantation.

Production of mHtt-transduced glial progenitor cells. To express mutant versus
control Htt in human GPCs, we used a self-inactivating lentiviral system>” to
over-express either mutant (73Q) or normal (23Q) Htt. To this end, we
constructed a plasmid (pTANK-CMVie-Htt-IRES-LckEGFP-WPRE) to carry, in
the 5'-3' direction, the cPPT element*’; the cytomegalovirus immediate early
promoter; the expression cassette of the first exon of the huntingtin gene and
membrane-bounded EGFP, expressed in tandem under the Internal Ribosome
Entry Site (IRES)*!, and the Woodchuck Hepatitis Virus Posttranscriptional
Regulatory Element (WPRE)*2. The control virus expressed only LckEGEP.
Virus particles pseudotyp