Touro Scholar

NYMC Faculty Posters

Faculty

Spring 3-23-2017

ROCK2 Gene Single Nucleotide Polymorphisms and Association with Bronchopulmonary Dysplasia in Extremely Low Birth Weight Infants

Sharina Rajbhandari New York Medical College

Asma Amin New York Medical College

Shaili Amatya New York Medical College

Leewen Hsu New York Medical College

Anna Zylak New York Medical College

See next page for additional authors

Follow this and additional works at: https://touroscholar.touro.edu/nymc_fac_posters

Part of the Enzymes and Coenzymes Commons, and the Respiratory Tract Diseases Commons

Recommended Citation

Rajbhandari, S., Amin, A., Amatya, S., Hsu, L., Zylak, A., Paudel, U., & Parton, L. A. (2017). ROCK2 Gene Single Nucleotide Polymorphisms and Association with Bronchopulmonary Dysplasia in Extremely Low Birth Weight Infants. Retrieved from https://touroscholar.touro.edu/nymc_fac_posters/26

This Poster is brought to you for free and open access by the Faculty at Touro Scholar. It has been accepted for inclusion in NYMC Faculty Posters by an authorized administrator of Touro Scholar.For more information, please contact touro.scholar@touro.edu.

Authors

Sharina Rajbhandari, Asma Amin, Shaili Amatya, Leewen Hsu, Anna Zylak, Umesh Paudel, and Lance A. Parton

Background

Bronchopulmonary dysplasia (BPD) leads to significant morbidity in ELBW infants.

Rho associated coiled-coil containing protein kinase 2 (ROCK-2) gene

- On chromosome 2p24
- ROCK: Serine/threonine protein kinase

*ROCK inhibitor decreases pulmonary edema, microvascular permeability and lung injury Fig 3. ROCK pathways (eNOS, endothelial Nitric Oxide Synthase; ERM, ezrin/radixin/moesin; MLCPh, Myosin Light Chain Phosphatase)

ROCK2 Gene Single Nucleotide Polymorphisms and Association with **Bronchopulmonary Dysplasia in Extremely Low Birth Weight Infants**

Sharina Rajbhandari, Asma Amin, Shaili Amatya, Leewen Hsu, Anna Zylak, Umesh Paudel, Lance A. Parton Neonatology, Maria Fareri Children's Hospital at Westchester Medical Center and New York Medical College, Valhalla, NY, United States

ROCK-2 SNP rs2290156

- In intron; MAF (Minor Allele Frequency), C= 0.30
- G allele and GC genotype more in RDS

ROCK-2 SNP rs726843

- In intron; MAF, A = 0.35
- •TC genotype more in RDS compared to controls

ROCK-2 SNP rs978906

- In 3' UTR; MAF, C = 0.39
- Affects ROCK2 expression by interfering with microRNA-1183 binding
- Association with stiffer arteries and with high altitude essential hypertension

Hypothesis

We hypothesize that ROCK2 gene SNP variants rs2290156, rs726843 and rs978906 are associated with development of BPD in ELBW infants.

Methods

Inclusion criteria

- ELBW infants (birth weight < 1kg)
- Informed parental consent

SNP Analysis

DNA was isolated from buccal swabs of 137 ELBW infants and analyzed via real-time PCR using Taqman probes for ROCK2 gene SNP variants rs2290156, rs726843 and rs978906.

BPD was defined by the need for Oxygen supplementation at 36 weeks postmenstrual age.

Statistics

Chi-square test, Fisher's exact test, Mann-Whitney Rank Sum test and t-test were performed for statistical analysis; p <0.05 was considered significant.

Results

Demographic Characteristics

		No BPD (n = 57)	BPD (n = 80)	p value	
Gestational age, wks, median (IQR)		26 (24, 27)	25 (24, 26)	0.22	
Birth weight, g, mean (SD)		792.9 (123.8)	752.0 (147.3)	0.09	
Female Gender, n (%)		32 (56)	48 (60)	0.78	
Race, n (%)	Non Hispanic White	18 (33)	29 (38)		
	Non Hispanic Black	16 (29)	20 (26)	0.00	
	Hispanic	16 (29)	23 (30)	0.89	
	Other	5 (9)	5 (6)		
Antenatal steroids, n (%)		43 (81)	68 (91)	0.18	

Genotype		No BPD n (%)	BPD n (%)	P value	
	Wild allele	25 (64)	32 (71)	0.13	
	Heterozygous	7 (18)	11 (24)		
rs2290156	Minor allele	7 (18)	2 (4)		
	GG	25 (64)	32 (71)	0.64	
	Any c	14 (36)	13 (28)		
	Wild allele	21 (55)	24 (42)		
	Heterozygous	12 (32)	25 (44)	0.42	
rs726843	Minor allele	5 (13)	8 (14)		
	GG	21 (55)	24 (42)	0.22	
	Any a	17 (45)	33 (58)		
	Wild allele	22 (52)	20 (33)		
	Heterozygous	11 (26)	28 (47)	0.09	
rs978906	Minor allele	9 (21)	12 (20)		
	TT	22 (52)	20 (33)	0.04*	
	Any c	20 (47)	40 (67)		

• ROCK2 gene SNP rs978906 shows association with BPD

• We speculate that this variant may play a role in the development of BPD by influencing smooth muscle tone in the pulmonary vasculature

•	Liao YC, et al. Two functional poly activity and expression. Journal of Noma K, Kihara Y, Higashi Y. Stri Cardiology. 2012; 60:1–6 Kaya G, et al. Association of Rho Preterm Neonates. Pediatrics and Pandey P, et al. Polymorphisms a hypertension in native high altitud 2016:38(2):238-44

Genotype Distributions

Conclusions

References

lymorphisms of ROCK2 enhance arterial stiffening through inhibiting its of Molecular and Cellular Cardiology. 2015; 79: 180–186 iking crosstalk of ROCK signaling with endothelial function. Journal of

b-kinase Gene Polymorphisms with Respiratory Distress Syndrome in d Neonatology. 2017; 58: 36-42 and haplotype of ROCK2 associated with high altitude essential de Ladakhi Indian population: a preliminary study. Clin Exp Hypertens.