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RESEARCH ARTICLE Open Access

Deep phylogenomics of a tandem-repeat
galectin regulating appendicular skeletal
pattern formation
Ramray Bhat1,7*, Mahul Chakraborty2, Tilmann Glimm3, Thomas A. Stewart4,5 and Stuart A. Newman6*

Abstract

Background: A multiscale network of two galectins Galectin-1 (Gal-1) and Galectin-8 (Gal-8) patterns the avian limb
skeleton. Among vertebrates with paired appendages, chondrichthyan fins typically have one or more cartilage plates
and many repeating parallel endoskeletal elements, actinopterygian fins have more varied patterns of nodules, bars
and plates, while tetrapod limbs exhibit tandem arrays of few, proximodistally increasing numbers of elements. We
applied a comparative genomic and protein evolution approach to understand the origin of the galectin patterning
network. Having previously observed a phylogenetic constraint on Gal-1 structure across vertebrates, we asked
whether evolutionary changes of Gal-8 could have critically contributed to the origin of the tetrapod pattern.

Results: Translocations, duplications, and losses of Gal-8 genes in Actinopterygii established them in different genomic
locations from those that the Sarcopterygii (including the tetrapods) share with chondrichthyans. The sarcopterygian
Gal-8 genes acquired a potentially regulatory non-coding motif and underwent purifying selection. The
actinopterygian Gal-8 genes, in contrast, did not acquire the non-coding motif and underwent positive selection.

Conclusion: These observations interpreted through the lens of a reaction-diffusion-adhesion model based on avian
experimental findings can account for the distinct endoskeletal patterns of cartilaginous, ray-finned, and lobe-finned
fishes, and the stereotypical limb skeletons of tetrapods.

Keywords: Galectin-8, Limb skeleton, Pattern formation, Mathematical modeling, Homology, Phylogeny

Background
Galectin-8 (Gal-8), encoded by the gene lgals8, belongs
to the family of β-galactoside-binding proteins [1–3].
Alternative splicing of lgals8 results in two protein
isoforms [4, 5]: prototype galectins, which contain a single
carbohydrate recognition domain, and tandem-repeat
galectins, which contain two carbohydrate recognition
domains (CRDs) with distinct binding affinities [6–8] and
different evolutionary origins [9]. Gal-8 is an important
regulator of cell adhesion in adult tissues [10, 11] and is
differentially expressed in normal and cancer tissues [12].
During avian embryogenesis, Gal-8 is expressed in the
limb bud and mediates the patterning of the precartilage

mesenchymal condensations that constitute the primordia
of the appendicular skeleton [13, 14]. Specifically, Gal-8
upregulates expression of Gal-1A, the cell adhesive homo-
log of Gal-1, through a mutually reinforcing feedback loop
while also inhibiting cell adhesion by competing with the
binding of Gal-1A to its cognate ligand/receptor [13].
Represented in the form of a mathematical model [15],

these findings suggest that the two galectins participate in
a reaction-diffusion-type mechanism [16, 17] of the kind
that best integrates the patterning and morphogenesis of
skeletal elements during limb skeletal pattern formation
[18–20]. Such empirically based models allow for testable
hypotheses about the mechanisms that underlie the
evolution of endoskeletal diversity in tetrapod appendages.
Specifically, they can be used to explore how the modula-
tion of parameters of these patterning networks may have
been responsible for differences observed in limb skeletal
anatomy between major gnathostome clades [18, 20].
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The paired fins and limbs of gnathostomes are charac-
terized by endoskeletal elements (cartilages and the en-
dochondral bones that arise from them) [21]. Gal-1A is
the Gal-1 homolog that mediates precartilage condensa-
tion formation in the chicken. The Gal-1 s of actinopter-
ygians (ray-finned fishes) resemble Gal-1A more closely
in sequence and fold than they do the non-skeletogenic
homolog of Gal-1 (Gal-1B), which evolved in the saurop-
sid lineage (which comprises birds and reptiles) [22].
Furthermore, genes encoding some of the Gal-1 homo-
logs in amphibians and the single gene encoding Gal-1
in mouse specify proteins with the Gal-1A-type fold
structure seen in the ray-finned fish and sauropsids.
Therefore, a potentially cartilage-inducing Gal-1 homo-
log is likely to have evolved before the origin of digits
and thus was not the key factor responsible for innovat-
ing the tetrapod limb skeletal patterning network.
To trace the origin of the tetrapod skeletal patterning

network we therefore turned our attention to Gal-8,
which in the chicken limb regulates the number and
spacing of condensations, not their initiation and mor-
phogenesis [13, 14]. Here we used a combination of
phylogenetic methods to compare the evolution of sar-
copterygian and actinopterygian Gal-8s relative to their
chondrichthyan ortholog. With respect to synteny, se-
lected sequence signatures at the gene level, and residue
conservation at the protein level, actinopterygian Gal-8s
differ more extensively from their chondrichthyan ortho-
logs than do sarcopterygian Gal-8s. Employing a previ-
ously described mathematical model of the galectin-
based patterning network for avian limb skeletogenesis
[15], we show how changes in both the regulation of
gene expression and in the coding sequence of Gal-8
could have enabled the transformation of a precartilage
condensation pattern like that of chondrichthyan fins to
one characteristic of tetrapod limbs.

Results
Phylogenetic analysis of Gal-8 protein sequence shows a
deep split between Actinopterygii and Sarcopterygii
We used peptide sequences of the homologs of Gal-8
protein from representatives of the vertebrate classes:
Actinopterygii, the sarcopterygian classes Amphibia,
Reptilia, Aves, Mammalia, and Actinistia (the subclass
represented by the finned coelacanth), to construct a
maximum-likelihood phylogenetic tree using Callor-
hinchus milii (elephant shark, a chondrichthyan or car-
tilaginous fish) as an outgroup (Fig. 1). Rooting the ML
tree using C. milii as the outgroup reveals that Actinop-
terygii and Sarcopterygii each form a monophyletic clade
with strong branch support. The examined actinoptery-
gian genomes encoded at least two Gal-8 homologs that
segregated into two distinct clusters. There were two ex-
ceptions to this pattern. Lepisosteus oculatus: the spotted

gar, a non-teleost had only one ortholog. Danio rerio,
(zebrafish) a teleost had two Gal-1 homologs, both of
which were part of the same cluster. Our tree topology
suggests that a duplication of genes encoding actinopter-
ygian Gal-8 took place before the divergence between
spotted gar and the teleosts. It also suggests that several
species, including the spotted gar lost orthologs of Gal-8
at different times during their evolutionary history.

Actinopterygian and sarcopterygian lgals8s show distinct
synteny
The divergence between actinopterygian and sarcoptery-
gian Gal-8s at the level of protein sequence led us to in-
vestigate whether additional genomic changes pertaining
to lgals8 coincided with the split of the two clades. We
observed that the genes surrounding lgals8 in all sarcop-
terygian genomes we examined were distinct from those
surrounding its homologs in actinopterygian genomes,
suggesting that lgals8 synteny is conserved within, and
distinct between, these clades (Fig. 2).
To determine whether one of the lgals8 syntenies was

ancestral to the other, we mapped the synteny of the
lgals8 homolog in elephant shark. Orthologs of two
genes actn2b and heatr1 were observed to flank the
lgals8 ortholog of elephant shark. Both these genes are
also proximal to lgals8 of every sarcopterygian species
examined (along with edaradd) but not part of actinop-
terygian lgals8 syntenies. We then searched for heatr1 in
the spotted gar genome and found its ortholog proximal
to those for actin2b and edaradd. The proximity in posi-
tions of these three genes was absent in teleost genomes.
In spotted gar, we observed lgals8 in a new location
flanked by kif11, rrm2, tmem242 and arid1b. In teleosts,
all of which were observed to have two lgals8 paralogs,
the flanking genes for each overlapped partially with
their spotted gar paralogs but not with each other. In
sarcopterygian genomes, the orthologs of actin2b and
heatr1 were found to flank lgals8. Our findings suggest
that a single genome transposition of lgals8 took place
very early in the actinopterygian lineage, before the di-
vergence of gar and teleosts. This transposition was
followed by the teleost genome duplication. Post-
duplication genome evolutionary dynamics is probably
responsible for the largely non-overlapping syntenies of
the actinopterygian lgals8 paralogs. The synteny of lgals8
in the elephant shark was therefore retained in the sar-
copterygian lineage.

Sarcopterygian Gal-8 evolved more slowly than actinop-
terygian Gal-8
To test whether the translocation of lgals8 to a new
chromosomal site in Actinopterygii was accompanied by
an altered rate of evolution [23], we used the branch site
test (PAML package) to compare the ratios of non-
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synonymous to synonymous substitutions of lgals8 in
the sarcopterygian and actinopterygian lineages. We
considered the phylogenetic tree consisting of nucleotide
sequences of lgals8 belonging to the sarcopterygian
lineage and the outgroup elephant shark and focused on
the basal branch leading up to the actinopterygian lgals8
as the foreground branch. Here, the PAML4 branch site
test revealed that 4 % of Gal-8 amino acids that have
evolved neutrally (dN/dS = 1) or under purifying selec-
tion (dN/dS <1) in the background branches have accu-
mulated non-synonymous substitutions under historical
positive selection in the actinopterygian lineage (Table 1).
Of the residues identified as having potentially been sub-
ject to positive selection, Gln51, which is conserved
across Gal-8 homologs of sarcopterygians and in the ele-
phant shark is replaced by Ser/Thr/Met in the actinop-
terygians. The residue Gln51 is part of subsite C of the
Gal-8 N CRD which accommodates the long sialylated
oligosaccharides known to bind the domain [24]. Lys85,

which flanks Trp86 (a residue that facilitates lactose
binding in all vertebrate Gal-8s), and is conserved in
sarcopterygians, is replaced in actinopterygians with Cys,
Arg or Leu. Other residues under potential positive
selection within Actinopterygii are Arg69 and Thr92.
In the Gal-8 C-CRD, we identified one potential

residue under possible positive selection in Actinoptery-
gii: Glu251, which is conserved in sarcopterygians but
substituted with Pro, His, Ser or Gln in actinopterygians.
We next sought to determine whether sarcopterygian
Gal-8s were more similar to shark Gal-8 or to their acti-
nopterygian counterparts. We aligned actinopterygian
and sarcopterygian sequences, taking into account the
crystallographically elucidated secondary structure of the
human Gal-8 CRD [25] and quantified shared invariant
and variant residues specific to each class. We then over-
laid both sets with the shark Gal-8 sequence and per-
formed a similar analysis (Additional file 1: Figure S1).
We found that sarcopterygian Gal-8s shared a higher

Fig. 1 Tree-based phylogeny of vertebrate Gal-8 homologs. A maximum-likelihood phylogenetic tree constructed using protein sequences of
vertebrate Gal-8s shows a deep split between Actinopterygii and Sarcopterygii with strong bootstrap support. Actinopterygian Gal-8s segregate
into two distinct clusters that is likely the result of genome duplication. Gal-8 sequence of the elephant shark C. milii was used as an outgroup
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percentage of strongly and weakly conserved residues
with shark Gal-8 than the latter did with actinopterygian
Gal-8s (Additional file 2: Figure S2). Both CRDs of sar-
copterygian Gal-8 show higher residue conservation
than their actinopterygian counterparts, with N-CRD
showing relatively greater conservation. We also
found greater conservation of residues in the short
sequence that precedes the sarcopterygian Gal-8 N-
CRD sequence relative to those of actinopterygians
(Additional file 2: Figure S2).

A broad range of Gal-8 structural and expression parameters
is consistent with endoskeletal patterning by the Gal-1-Gal-8
network
We had previously used a mathematical representation
of the Gal-1-Gal-8 network to identify Gal-8-related pa-
rameters whose variations modulate condensation pat-
terning [15]. Patterns capable of being produced by the
described mechanism include repeated cartilage ele-
ments with regular spacing comparable to the element
widths [15]. For the purposes of the present paper, we

define a system as “patterned” when it exhibits two or
more such elements. One such modulatory network par-
ameter is β: a function of the binding affinity of this
galectin to its receptors. This parameter has an obvious
relationship to the 3D fold structure, and hence the se-
quence, of Gal-8. The evidence described above for puri-
fying selection and sequence conservation of
sarcopterygian Gal-8s, including regions known to be
involved in binding to its carbohydrate ligands, suggests
a phylogenetic constraint on β values during tetrapod
evolution. This assumes, as suggested by previous evi-
dence [22], that the relevant folds of Gal-1 have been
subject to purifying selection since their origination.
In the present work we ran simulations to explore the

range of β values that are consistent or inconsistent with
condensation pattern formation (see Additional file 3 for
details of mathematical modeling and simulation).
Another parameter with predicted effect on condensation
patterning is μ: a function determining the rate of expres-
sion of Gal-8. We found that, as with β, there are sets of
values of μ that are consistent with, and others inconsist-
ent with, condensation formation. We were therefore able
to identify a bounded region in β-μ bi-parameter space
permissive for condensation patterning outside of which
no condensation patterns form (Fig. 3). The model dis-
cussed here [15] differs from other reaction-diffusion type
models that have been used to represent digit patterning
[18–20, 26] in that cell adhesion is explicitly simulated
and regarded as crucial for pattern formation.

Table 1 dN/dS for different site classes in Gal-8 using branch
site test (Zhang et al. 2005)

Site class 0 1 2a 2b

Proportion 0.58591 0.37306 0.02507 0.01596

Background w 0.13252 1.00000 0.13252 1.00000

Foreground w 0.13252 1.00000 42.01276 42.01276

Fig. 2 Syntenic comparison of vertebrate lgals8 homologs in chordates. Syntenies of lgals8 in chondrichthyan elephant shark (above), of both
lgals8 paralogs in Actinopterygii (middle), and of lgals8 in Sarcopterygii (below)
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The model further predicts that a fine regulation of
Gal-8 can potentially mediate condensation patterning
that corresponds to a stereotypical tetrapod-type limb
skeleton, i.e., small numbers of region-specific elements,
usually increasing in number along the proximodistal
axis (Fig. 4). Gal-8 can participate in skeletogenic inter-
actions with Gal-1 only if it is capable of reversibly com-
peting with the condensation-promoting role of Gal-1.
This competition thus corresponds to range of β from
about 0.0 to 2.10 in the relative units used to
characterize the parameter space for the simulations
mapped in Fig. 3. Consistently generating small numbers
of elements would involve a constraint on β to a range
of values between 1.75 and 2.1 for 0.5 < μ < 2 and
between 0.25 and 0.7 for 2 < μ < 4.5.
A comparison of the structure of human Gal-8 with

those of chicken Gal-1A and Gal-1B (the -1B paralog
being a non-skeletogenic protein that arose from the
ancestral Gal-1 after its duplication in the sauropsids
and divergence from its skeletogenic paralog Gal-1A
[22]), shows a greater similarity between the folds of
each of the CRDs of human Gal-8 (the only Gal-8 CRD
structures to be experimentally elucidated) and the fold
of chicken Gal-1A, than with the fold of chicken Gal-1B
(Additional file 4: Figure S3). Gal-8 in Sarcopterygii
therefore appears to have evolved under pressure to
remain similar in fold to the basal (skeletogenic) isoform
of Gal-1. Such purifying selection could have ensured
that Gal-8 binding to its shared ligand with Gal-1 was in
a range that made it neither negligible nor too avid. The

crystallographic elucidation of the tertiary folds of sar-
copterygian Gal-8 CRDs in addition to those of human
Gal-8 would provide a better understanding of how the
structure of Gal-8 evolved in the context of the split be-
tween Actinopterygii and Sarcopterygii. As a corollary,
our model predicts that a progressive decrease in elem-
ent number in the face of a phylogenetic constraint on β
could take place through a monotonic increase in values
of μ (i.e., expression levels of Gal-8). Consistent with
this, knocking down the expression of chicken Gal-8
using RNAi in developing chicken limbs led to ectopic
digit formation (data not shown).

A conserved non-coding motif upstream of lgals8 is
present exclusively in sarcopterygians
In addition to requiring a Gal-8 with the capacity to
interfere with cell-cell adhesion mediated by Gal-1, our
model predicts that a change in the regulatory regime of
the lgals8 that would permit its regulated elevated
expression may have been instrumental in the emer-
gence of a tetrapod-type patterning network from an
ancestral gnathostome one. We therefore analyzed the
non-coding regions upstream of a broad selection of
lgals8 orthologs to identify potential evolutionary
changes in determinants of Gal-8 expression.
We searched for possible sarcopterygian-specific

sequence signatures in the non-coding regions adjacent to
lgals8 and identified a 21 bp non-coding motif in the
2000 bp regions upstream of the promoter for lgals8 of
Gallus gallus (chicken), Mus musculus (mouse)

Fig. 3 Exploration of condensation-permissive parameter space of a mathematical model of limb patterning. Two-parameter bifurcation diagram
showing the dependence of condensation patterns on μ, the expression rate of Gal-8, shown on the vertical axis and binding affinity β shown on the
horizontal axis. Computations are based on the mathematical model in [15]. Approximate contours demarcating condensation numbers (the number
of distinct condensations) are shown via a heat map within the condensation region
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Taeniopygia guttata (zebra finch), Pelodiscus sinensis (tur-
tle), Xenopus tropicalis (frog) and Latimeria chalumnae
(coelacanth) (Fig. 5). This conserved non-coding motif
(CNM) aligned with binding-site motifs for the transcrip-
tion factors Meis1 and Tcfcp2I1 (complete overlap), and
Runx1 and Runx2 (partial overlap). All four of these
transcription factors are expressed in precartilage mesen-
chyme during limb development (Additional file 5: Figure
S4) with two of them, Meis1 and Runx2, regulating the
proximodistal patterning of embryonic limb buds [27, 28].
We searched for this CNM in the near-promoter regions
upstream of both lgals8 paralogs of the elephant shark
and the following actinopterygians: zebrafish, medaka,
tetraodon, stickleback, fugu and spotted gar. The motif
was statistically below detection within these non-
sarcopterygian lgals8-proximal sequences (Fig. 5) and was
therefore most likely a sarcopterygian innovation. Further-
more, we were unable to detect any non-coding motifs
that were conserved upstream of lgals8 belonging to both
or either of the two actinopterygian groups that consti-
tuted separate branches of the phylogenetic tree in Fig. 1.

Discussion
We have provided evidence for significant differences
between major gnathostome clades in the evolution of
galectin Gal-8 and its specifying gene lgals8. These dif-
ferences include conservation within Sarcopterygii of the
synteny of lgals8 in its shared ancestor with cartilaginous
fish, and retention of key residues in sarcopterygian Gal-
8s, presumably by purifying selection, after their diver-
gence from the actinopterygians. Furthermore, we also

detected the presence of a conserved non-coding motif
(CNM) containing binding sites for transcription factors
preferentially expressed in embryonic tetrapod limb buds
upstream of the sarcopterygian Gal-8 encoding genes.
In light of the skeletogenic two-galectin network we

have inferred from investigations of an avian system, we
suggest that the new findings presented here on Gal-8,
in conjunction with earlier work on the phylogenetics
and fold-structure of Gal-1 [22] can provide insight into
the evolution and developmental regulation of a sarcop-
terygian appendicular patterning network in which there
is regulated elaboration of small numbers of elements
(generally increasing proximodistally). The elaboration is
ultimately refined to the stylopod, zeugopod and
autopod of tetrapod vertebrates. In contrast, the endo-
skeletons of the paired fins of cartilaginous and ray-
finned fishes exhibit a wide variety of plates, nodules,
and multiple parallel bars of cartilage or endochondral
bone (Fig. 4). If, as suggested by our analysis, the fins of
actinopterygians (for example) evolved unconstrained by
a tetrapod-type patterning network (incorporating Gal-8
with certain structural refinements and a CNM up-
stream of its gene), their adaptive radiation could have
followed less stereotypical pathways, reflected in both
their divergent fin endoskeletal patterns and positive se-
lection on Gal-8. In contrast, the stereotypical tetrapod
pattern persisted in the fins of vertebrates that became
secondarily aquatic.
The constraint on the range of protein conformations

of Gal-8 that appears to have accompanied the galectin-
mediated transformation of the appendicular skeletal

Fig. 4 Endoskeletal morphologies of selected gnathostome species. For each taxa, anterior is up. (First column) top, catshark - Scyliorhinus canicula;
middle, shark Hemiscyllium ocellatum, bottom, shark Centroscymnus owstoni; (second column) top, lobe-finned fish fossil Sauripteryus, middle,
lobe-finned fish fossil Panderichthys, bottom, coelacanth, Latimeria; (third column) top, ray-finned paddlefish Polyodon, middle, ray-finned zebrafish
Danio rerio, bottom, ray-finned fish Polypterus, top, pantropical spotted dolphin Stenella attenuate, middle, mouse Mus musculus, bottom, chicken
Gallus gallus. Not to scale. Shaded region represents animals with limb skeletons putatively containing incipient or definitive forms of the
Gal1-Gal-8 patterning network. Catshark, mouse, paddlefish and zebrafish redrawn from [53]; Hemiscyllium and Centroscymnus redrawn from [54];
Sauripteryus, Panderichthys and chicken from [18]; coelacanth redrawn from [55]; dolphin redrawn from [56]; Polypterus based on [57]
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pattern was based on purifying selection which, accord-
ing to our residue conservation analysis, was already un-
derway in crown gnathostomes. In terms of our
mathematical model, this evolutionary process corre-
sponds to centering the value of the parameter β in the
skeletogenic galectin network around 0.30 in the relative
units of the parameter space (Fig. 3). According to the
experiments that motivated the model [13], these values
of β should correspond to a Gal-8 conformation that al-
lows it to bind to its common receptor with Gal-1, but
not so strongly that it completely displaces the latter. By
the geometry of the parameter space these β values are
well within the range permissive for pattern formation,
but represent the locus within this space in which the
number of elements can be precisely controlled develop-
mentally by changes in the expression level of Gal-8.
While the model predicts that a wide range of expres-

sion levels of lgals8 will be consistent with pattern
formation, only elevated levels of the protein lead to the
consistently small numbers of elements characteristic of
sarcopterygian fin endoskeletons and tetrapod limbs.
This is particularly true for values of β around 0.30 units
(Fig. 3), although there is nothing in our analysis that
precludes individual chondrichthyan and actinopterygian
species from having acquired β and μ values that are
compatible with small numbers of elements, as is some-
times seen in the skeletal anatomies of these groups [29,
30]. If our interpretation is correct that the purifying

selection on Gal-8 in the sarcopterygian lineage (Table 1)
preserved a value of β in the patterning network for which
the expression levels of the protein can directly calibrate
the number of condensations, then the appearance of a
conserved non-coding motif (CNM) with multiple poten-
tial transcription factor binding sites immediately up-
stream the promoter of the sarcopterygian lgals8 gene
becomes of great interest. While it is not presently known
which factors (apart from Gal-1A [13]) in the developing
tetrapod limb regulate the production of Gal-8, evidence
that this protein came under a novel regulatory regime in
sarcopterygians supports the general outline of our model.
In addition to having a small number of discrete

skeletal elements, the paired appendages of the vast
majority of tetrapods (and some lobe-finned fish) exhibit
a stereotypical proximodistal increase in the number of
parallel skeletal elements. This arrangement, as well as
the proximodistal order of their generation, are predict-
able consequences (based on reaction-diffusion schemes
like the two-galectin one discussed here) of the distal
suppression of precartilage condensation by the fibro-
blast growth factor-8 (FGF8) produced by the ectoderm
at the limb bud tip [18, 31, 32]. Indeed, we have ob-
served the in vitro patterning function of this network to
be markedly inhibited by FGF8 [33].
In a recent publication, Hoxa and Hoxd enhancers that

specify digit and wrist identity in murine limbs were found
to be utilized in the distal radial regions of pectoral fins of

Fig. 5 A search for conserved non-coding motifs in the regions immediately upstream of the promoter of vertebrate lgals8 homologs. A 21-bp
conserved motif (CNM) that shows very high probabilities of alignment (P value) within near-promoter upstream regions of lgals8 of Sarcopterygii
but extremely low probabilities of alignment with both paralogous genes of Actinopterygii as well as the lgals8 homolog of C. milii
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an actinopterygian fish [34]. Rather than taking this, as
suggested, as evidence of homology of these elements
across these distant groups [35], we are led by our results
to consider the associated Hox proteins as modulators of
an ancestral skeletogenic system that only took on a
specific digit-related role after the sarcopterygian two-
galectin network was in place [18–20].

Conclusion
Evolutionary changes in the gnathostome genes specify-
ing the animal lectin Gal-8 at the protein and noncoding
DNA levels, when analyzed in terms of an experimen-
tally based mathematical model, suggest a phylogenetic
route of emergence of a reaction-diffusion network cap-
able of generating sarcopterygian-type limb skeletal pat-
terns. In the context of the structural conservation of
Gal-1, the skeletogenic component of the network,
across the vertebrates, the structural and implied func-
tional differences in Gal-8, the pattern regulatory com-
ponent, among the cartilaginous, ray-finned and lobe-
finned fishes/tetrapods, support a galectin-based
evolutionary-developmental hypothesis for the fin-limb
transition.

Methods
Protein and nucleic acid sequence search
Peptide sequences of Gal-8 and its homologs were retrieved
from Ensembl (http://www.ensembl.org; Release 78), NCBI
(http://www.ncbi.nlm.nih.gov/protein/) and Xenbase (http://
www.xenbase.org; Version 3.0; Xenopus tropicalis v7.1 and
Xenopus laevis v7.1). We used Basic Local Alignment
Search Tool (BLAST)/BLAT (BLAST-like Alignment Tool)
algorithm to identify vertebrate Gal-8 sequences using
chicken Gal-8 (ENSGALT00000006738) peptide sequence
as input. Nucleotide sequences of lgals8 genes were accessed
from Ensembl (http://www.ensembl.org; Release 78) and
verified by translating them using ExPASY Translate tool
[36]. Gene and protein sequences used in the study have
been deposited in the Dryad repository [37].

Sequence alignment and phylogenetic tree construction
A rapid inference of peptide sequence phylogeny was
carried out by aligning them using MUSCLE (MUltiple
Sequence Comparison by Log-Expectation) [38] followed
by tree construction using neighborhood joining method
(BIONJ; Poisson distribution) [39] (with bootstrap ana-
lysis: 100000 replicates) using SeaView (V4.5.2) phylo-
genetic analysis software [40]. This was followed by a
tree construction using maximum likelihood method
with PhyML [41]. We used LG, a model of amino acid
replacement matrix with improved performance over
other models such as JTT and Whelan and Goldman,
and optimized for both invariant sites and across-the-
tree variation in rate of evolution. Posterior branch

support was computed using both approximate Likeli-
hood Ratio test (aLRT) [42] and bootstrap analysis (with
100 replicates). The tree searching operation was set to
Nearest-Neighbor Interchange.

Synteny analysis
The location of lgals8 genes were ascertained using
Ensembl and the Genomicus Browser [43] (http://
www.genomicus.biologie.ens.fr/genomicus-78.01/cgi-bin/
search.pl; version 78.01) was used to obtain a simple vis-
ual representation of gene syntenies. For the
chromosome-level analysis, we used the dotplots option
from the Synteny Database [44] to compare the spatial
maps of chromosome 17 and 20 of Danio rerio with all
chromosomes of Mus musculus (http://teleost.cs.uorego-
n.edu/dotplots/; Ensembl version 70).

Analysis of conservation of residues
Primary structures (amino acid sequences) of sarcoptery-
gian Gal-8s, and actinopterygian Gal-8s were aligned in
separate subsets using MUSCLE and overlaid with sec-
ondary structure of Gal-8 (locations of β-strands [S1–
S6b, F1–F5]). The pre N terminal CRD (pre-N-CRD) N-
terminal CRD (N-CRD) and C-terminal CRD (C-CRD)
domains were demarcated. The percentage of conserved
(identical amino acids and amino acids with strong or
weak similar properties) and the percentage of strongly
conserved (identical amino acids) were ascertained for
the whole sequence as well as for individual domains.

Fold prediction and comparative analysis
The PDB files for H. sapiens Gal-8 C-CRD (3OJB,
2YRO), H. sapiens Gal-8 N-CRD (2YV8, 3BMB, 3VKN),
G. gallus Gal-1A (1QMJ) and Gal-1B (3DUI) were re-
trieved from the RCSB Protein Data Bank [45] (http://
www.rcsb.org/pdb/home/home.do, last accessed Febru-
ary 5, 2015). Each Gal-8 CRD PDB was compared with
the tertiary folds of chicken Gal-1A and chicken Gal-1B,
using PDBeFold (http://www.ebi.ac.uk/msd-srv/ssm/,
last accessed on February 5, 2015) [46], which uses the
Secondary Structure Matching algorithm to achieve the
best Cα alignment of amino acids. The metric used for
comparing topological similarity was Q score, which
takes into account Nalign (the maximum number of
aligned residues) as well as a measure of the distance be-
tween the Cα atoms of the matched residues (RMSD)
when the target and query sequences are superposed in
3D. Q scores from alignment comparisons between two
crystal structures were computed using “A” chain identi-
fiers of both PDB files.

Test for rate of protein evolution
The PAML4 package was used to assess the of clade-
specific Gal-8 evolution by quantifying the rate of non-
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synonymous substitutions of lgals8 [47]. Guided by the
amino acid alignment, the codons of the genes were
aligned in TranslatorX [48]. The free ratios model was
used to calculate the maximum likelihood estimate of
non-synonymous substitution (dN) for each branch of
the given tree. The null model assumes that all sites are
evolving under stochastic forces or under purifying se-
lection. If there is an increase in the substitution rate for
reasons other than selection, the likelihood ratio test will
not reject the null hypothesis.

Non-coding DNA motif search
The near-promoter regions (2000 bp upstream of start
codon) of sarcopterygian lgals8 were searched for con-
served non-coding motifs (CNMs) (sequences deposited
in Dryad repository [37]). The list of near-promoter re-
gions were used as input for MEME Suite [49] (http://
meme.nbcr.net/meme/; Version 4.9.0), which represents
motifs as position-dependent probability matrices and
uses an Expectation Maximization algorithm to fit a
two-component finite mixture model to the set, search-
ing for motifs of given length and number of occur-
rences (minimum width = 2, maximum width = 300, any
number of occurrences). The P-value (statistical signifi-
cance for the presence of the motif ) was measured for
each sarcopterygian. We then used MAST [50] (http://
meme.nbcr.net/meme/cgi-bin/mast.cgi) to search for
candidate motifs within sarcopterygian lgals8 near-
promoter regions. TOMTOM [51] (http://meme.nbcr.-
net/meme/cgi-bin/tomtom.cgi), was used to search the
CNM against the JASPAR Core Vertebrate database [52]
(http://jaspar.genereg.net/) which contains motifs that
are known binding sites of transcription factors (TFBSs).
Possible limb-tissue expression of selected transcription
factors was searched using the now dysfunct EMBRYS
database (http://embrys.jp/embrys/html/MainMenu.html
and have been since been confirmed to show similar re-
sults using the Mouse Genome informatics databa-
sehttp://www.informatics.jax.org/

Additional files

Additional file 1: Figure S1. Peptide sequences of Gal-8 from Actinop-
terygii (left) and Sarcopterygii (right) aligned by themselves and overlaid
with their alignment with Gal-8 of Callorhinchus milii using MUSCLE with
delineation of pre-N-CRD region and the N-CRD and C-CRD domains. An
“*” (asterisk) denotes positions that have a single, fully conserved residue,
“:” (colon) denotes conservation between residues of strongly similar
biochemical properties, and “.” (period) indicates conservation between
residues of weakly similar biochemical properties. The row with unshaded
symbols represents alignment within actinopterygian (or sarcopterygian)
clades, and the gray-shaded row represents alignment of the individual
clades with C.milii Gal-8. Yellow and blue highlight positions denoting
some degree of conservation within clade-specific alignments that are
lost, and attenuated in alignment with C.milii Gal-8, respectively: green
denotes gain in some degree of conservation upon alignment with C.milii
Gal-8. (TIF 1136 kb)

Additional file 2: Figure S2. Figure showing greater overall amino acid
residue conservation (in comparison with the primary structure of C. milii
Gal-8) within sarcopterygian Gal-8 relative to actinopterygian Gal-8. Resi-
dues within pre-N-CRD region, N- and C-CRDs of Gal-8 are conserved to
a greater extent within Sarcopterygii (digits within brackets represent
highly conserved residues, whereas digits without brackets represent resi-
dues with strong as well as weak conservation: see Materials and
Methods for definitions for the criteria of strong and weak conservation).
(PDF 64 kb)

Additional file 3: Mathematical model and parametric analysis
(DOC 1 mb)

Additional file 4: Figure S3. Scatter plot showing of alignment
(Q scores) of elucidated folds of human Gal-8 N-CRD and Gal-8C-CRD
compared with the experimentally determined fold of G. gallus Gal-1A
(x axis) and G. gallus Gal-1B (y axis). (TIF 151 kb)

Additional file 5: Figure S4. The expression within developing mouse
limb tissue of four transcription factors whose binding sites are predicted
to be within the CNM cognate with sarcopterygian lgals8. (TIF 147 kb)

Abbreviations
aLRT, approximate likelihood ratio test; CNM, conserved non-coding motif;
CRD, carbohydrate recognition domain; Gal-1, Galectin-1; Gal-8, Galectin-8;
MUSCLE, Multiple sequence comparison by log-expectation; PAML, phylo-
genetic analysis by maximum likelihood; RMSD, root mean square deviation;
TFBS, transcription factor binding sites.
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