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Euphoria is an affective state and a form of pleasure that goes back to 
biblical times. It makes a person experience intense forms of well-being, 
happiness, and often ecstasy. It has often been suggested that euphoria 
induced by alcohol and other drugs/compounds (e.g., psychoactive 
drugs, designer drugs, stimulants, nicotine, gamma-hydroxybutyric 
acid, ketamine, etc.) occurs via a stimulation of all hedonic hotspots 
within the brain’s reward system [1]. Interestingly, asphyxiation 
initially produces an intense feeling of euphoria, often leading people 
to intentionally induce asphyxiation and erotic sensations (i.e., brief 
episodes of hypoxia such as choking).

More than 35 years ago, three of us, using a TV-image-
intensification recording system, at magnifications up to 3,200 times 
(pioneered by our lab) [2] and using in-vivo examination of the living 
brain microcirculation in different anesthetized rodents (i.e., rats, mice, 
guinea-pigs) reported that very small amounts of alcohol (equivalent to 
one-two drinks) reversibly constricted arterioles (20-40 µm in diameter) 
and muscular venules (40-75 um in diameter) [3]. These initial findings 
suggested to us that the amount of alcohol in only two cocktail drinks 
may be enough to curtail blood flow in the brain to the point that 
some key neurons, glial cells, and astrocytes do not get enough oxygen 
to function properly. We suggested, like that seen in pilots at high 
altitude (> 15,000 feet) in non-pressurized cabins, in World War II, 
who experienced a euphoric sense of well-being, drinking of alcohol 
and the taking of diverse psychoactive/designer drugs can reversibly 
induce vasoconstriction of the cerebral microscopic blood vessels, thus 
producing oxygen-lack and temporary light-headedness and euphoria. 
The neurons, glial cells, and astrocytes in select areas of the brain would 
thus be starved for oxygen like unprotected pilots at high-altitude. Until 
the advent of pressurized cabins, many pilots in World War II became 
very euphoric, blacked out, lost control of their aircraft and perished.

Using isolated arteries from brains of anesthetized, sacrificed rats, 
guinea-pigs, dogs, and subhuman primates, bathed in physiological salt 
solutions, our laboratories found that various alcohols (i.e., ethanol, 
methanol, and butanol) caused concentration-dependent contractions, 
similar to the in-vivo studies on the living brains of rodents [3-15]. The 
greater the dose of alcohol, the greater the vasoconstrictor-contractile 
effects and the longer the contractions remain unabated [3-16]. Such 

effects clearly could be the cause of the sequelae of effects noted 
with increased consumption of cocktails, beers, and various liquors, 
i.e., the failure to be able to walk a straight line, the failure to drive 
a vehicle safely, unconsciousness, coma and in rare cases strokes and 
death [3,7-16]. Drinking of alcohol thus can be, and often is, lethal. 
In fact, drinking of alcohol is the most abused type of drug/behavior 
[1,17,18]. Other experiments from our group have shown that 
hallucinogenic drugs such as LSD, phencyclidine (PCP, “angel dust”), 
pysilocybin, mescaline, heroin, pyote, cocaine, excitatory amino acids 
and derivatves (i.e., designer drugs) also promote vasoconstriction of 
brain blood vessels [19-27]. The concentrations of PCP, mescaline, 
LSD and cocaine that produced near maximum and intense euphoria, 
often leading to death, were similar to the concentrations in the blood 
and brains of humans who had died from overdoses of PCP, LSD, and 
mescaline.

Using rats addicted to ethanol, we found that the in-situ cerebral 
micro vessels as well as cerebral and peripheral arteries (removed 
from the addicted animals) gradually , with the passage of time (and 
increased blood alcohol levels), became tolerant to the alcohol [8,10,14, 
unpublished findings]. In other words, it takes higher and higher 
concentrations of alcohol to induce microvascular contractions, which 
would thus produce a need for increased blood alcohol levels in order 
to induce euphoric states, exactly as occurs in humans with increased 
drinking. Breathing is controlled by the brain. Cutting off the blood 
supply to the neurons, etc., that regulate breathing may produce 
euphoria at very low concentrations of alcohol and hallucinations at 
higher blood levels of alcohol.

What, however, is the exact mechanism(s) which induce euphoria 
and hallucinations via a reduced cerebral vascular blood and oxygen 
supply? Until now, speculation resided in a release of endorphins, 
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gamma-hydroxybutryic acid-like substances, and a variety of putative 
neurotransmitters [14,15,17,18]. However, none of these substances 
and multiple transmitters (e.g., norepinephrine, dopamine, serotonin, 
histamine, prostanoids, neuropeptides, glutamic acid, etc.) that we [13-
17, 28-31; unpublished studies on microvasculatures of rodent brains] 
and others have tested [32] produce ischemic actions in the brain 
microvasculature at blood levels found to be released with imbibing 
of alcohol. 

We now believe that a rapid, reversible release of free magnesium 
ions ([Mg2+]) coupled to the release of ceramides and platelet-activating 
factor(PAF) may account for most of the alcohol-induced euphoria. 
Below, we discuss why this hypothesis looks tenable to us.

Many drugs including alcohol are now known to induce reversible 
Mg2+ deficiency in organs, tissues, and cells in both animals and 
humans. Flink and his co-workers in 1954 were the first to demonstrate 
severe hypomagnesemia in alcoholic patients [33]. Over the succeeding 
years these findings have been confirmed and extended by others [34]. 
In fact, infusions of magnesium sulfate have been standard treatment 
of delirium tremens for a good number of years. Approximately 25 
years ago, our group, for the first time, employing 31P-nuclear magnetic 
resonance (31P-NMR) spectroscopy and optical spectroscopy on the 
living intact brains of animals as well as utilization of digital-imaging 
microscopy on a variety of isolated cerebral vascular smooth muscle 
(VSM) cells, and use of highly- specific Mg2+ electrodes, found that 
alcohol rapidly (i.e., within seconds) lowered intracellular free Mg2+ 

[12-15]. Using these techniques coupled with 31P- NMR spectroscopy 
and measurements of lumen sizes (and microvascular blood flows) 
in the intact brains of rodents, as well as use of a variety of isolated 
cerebral arteries, we found profound concentration-dependent 
vasoconstriction of the blood vessels and increasing ischemia, as 
evidenced by rising cellular concentrations of inorganic phosphate 
coupled to acidic intracellular pH, rises in deoxyhemoglobin , reduced 
mitochondrial levels of cytochrome oxidase and considerable loss of 
high-energy phosphate compounds [12-15 ].

Mg2+ is a co-factor for more than 500 enzymes, and is the second 
most abundant intracellular cation after potassium [35]. It is vital in 
numerous physiological, cellular and biochemical reactions including 
carbohydrate, lipid, protein, DNA and RNA metabolism, among other 
pathways [35,36]. Several epidemiologic studies in North America and 
Europe have shown that people consuming Western-type diets are low 
in Mg content (i.e., 30-65% of the RDA for Mg) [37-40]; most such 
diets show that 60-80% of Americans are consuming 185-235 mg/day 
of Mg [39,40]. In 1900, in contrast, most Americans were consuming 
450-550 mg/day of Mg [41]. Mg deficiency amongst the American and 
European populations could help to explain why, often, very low levels 
of alcohol can produce euphoric and hallucinatory events. This might 
also help to explain why many individuals do not experience euphoria 
or hallucinations after drinking more than two standard cocktail drinks 
containing alcohol, as their blood and tissue levels of Mg2+ are most 
likely elevated due to diets containing elevated levels of Mg.

But, does low Mg2+-induced cerebral vasoconstriction and 
temporary ischemia in key areas of the brain account, in large measure 
for the euphoria, and if so, what is the molecular mechanism(s)? 
Approximately 40 years ago, two of us demonstrated using isolated 
cerebral, coronary, and peripheral arteries that a lowering of 
extracellular Mg2+([Mg2+]0) levels resulted in a rapid rise in intracellular 
free calcium ions just prior to contractile events [42-44]. More recently, 
our group found that lowering of [Mg2+]0 led to rapid activation of 

several isoforms of protein kinase C, P-I-3 kinases, mitogen-activated 
kinases, tyrosine-activated kinases [45-51], and at least five major 
enzymes in the sphingolipid biosynthetic pathway [52-61]. Prior to 
these findings, we [41,52,62,63] and others [64,65] reported that a 
variety of sphingolipid bi-products, namely ceramides, sphingosine, 
sphingosine-phosphates, etc., can induce contraction of VSM cells in 
the brain and elsewhere in the body. We have reported that inhibition 
of the activation of the major synthetic pathways for ceramides in 
cerebral VSM cells, using specific inhibitors for each enzyme, resulted in 
marked attenuation of the contractions of cerebral blood vessels upon 
the lowering of [Mg2+]0 concomitant with reductions in the cellular 
rises of intracellular free Ca2+ [41,52,55-61, unpublished experiments]. 
Until very recently we believed that alcohol-induced cellular loss 
of [Mg2+] coupled to cellular entry and release of Ca2+ with rapid 
synthesis of ceramides might explain a great deal of alcohol-induced 
cerebral vasoconstriction and brain ischemic events. However, we now 
believe at least one more cellular compound, namely PAF and PAF-like 
molecules, probably plays an important role in alcohol-induced brain 
ischemic events, euphoria, and hallucinations.

Why focus on PAF? PAF and PAF-like molecules are known 
to affect multiple physiologic aspects of neuronal and cardiac 
functions [66-68]. For example, PAF can produce coronary arterial 
vasoconstriction, lower arterial blood pressure, increase coronary 
vascular resistance, release several lipid-like molecules from the heart, 
reduce cardiac output, decrease cardiac contractility, alter atrial and 
papillary muscle chronotropicity and membrane action potentials, 
as well as alter potassium currents in isolated cardiomycytes [66-68]. 
All of these actions could lead one to believe that a rapid synthesis of 
PAF and PAF-like substances might play fundamental roles in alcohol-
induced ischemia, euphoria, and hallucinations set into motion by a 
rapid lowering of [Mg2+]. As a first step in testing this hypothesis, we 
determined whether a rapid reduction in [Mg2+]0 would result in the 
synthesis and release of PAF. Using isolated cerebral VSM cells in primary 
cell cultures, we recently reported that lowering [Mg2+]0, as predicted, 
does indeed rapidly lead to the cellular synthesis and release of PAF and 
PAF-like substances [69]. We and others have clearly demonstrated 
that PAF and PAF-like substances induce vasoconstriction of cerebral 
arterioles and venules in the intact brains of rodents using TV-image 
-intensification microscopy [69]. Whether or not use of inhibitors of 
PAF and ceramide synthesis coupled to increased dietary intake of 
Mg will attenuate the euphoric and hallucinatory actions of ethanol 
imbibed in cocktails, beers, etc., remains to be tested, but in our opinion 
seems like a worthwhile undertaking.
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