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Abstract

Epidemiologic studies in North America and Europe have shown that people consuming Western-type diets are
low in magnesium (Mg) content (i.e., < 30 - 65% of the RDA for Mg); most such diets in the USA show that 60 - 80%
of Americans are consuming only 185 - 235 mg/day of Mg. Low Mg content in areas of soft-water, and Mg-poor soil,
is associated with high incidences of ischemic heart disease (IHD), coronary artery disease, hypertension, and
sudden cardiac death (SCD). It is clear that the leading underlying cause of death worldwide is atherosclerosis.
Importantly, both animal and human studies have shown an inverse relationship between dietary intake of Mg and
atherosclerosis. The myocardial level of Mg has consistently been observed to be lower in subjects dying from IHD
and SCD in soft-water areas than those in hard-water areas. Over the past 20 years, our laboratories, using several
types of primary cultured vascular smooth muscle (VSM) cells, and myocardial cells, demonstrated that declining
levels of extracellular Mg ([Mg2+]0) activated several enzymatic pathways to produce increases in cellular
sphingolipids, particularly ceramides which are known to exert numerous types of cardiovascular manifestations
including inflammatory effects ; the latter play important roles in atherogenesis and cardiovascular diseases.
Approximately 20 years ago, we reported that low [Mg2+]0 caused formation of platelet-activating factor (PAF) as well
as other types of PAF-like molecules and suggested that these molecules might be causative agents in low Mg2+-
induced IHD and SCD. Herein, we review results and data from our labs which strongly support roles for ceramides,
PAF and PAF-like lipids in low [Mg2+]0-induced IHD and SCD.

Keywords: Sphingolipids; Ceramides; Ischemic heart disease;
Sudden cardiac death; PAF; Vascular smooth muscle

Introduction
Several epidemiologic studies in North America and Europe have

shown that people consuming Western-type diets are low in
magnesium (Mg) content (i.e., < 30 - 60% of the RDA for Mg [1-3].
Most such diets in the U.S.A. show that 60 - 80% of Americans are
consuming only 185-235 mg Mg/day [4-6]. Low Mg content in
drinking water found in areas of soft water and Mg-poor soil, is
associated with high incidences of ischemic heart disease, severe
atherosclerosis, coronary vasospasm, hypertension, hyperlipidemia,
diabetes, and sudden cardiac death [4,7-14]. Both animal and human
studies have shown an inverse relationship between dietary intake of
Mg and atherosclerosis [4,13,15-19]. The myocardial level of Mg has
consistently been observed to be lower in subjects dying from ischemic
heart disease and sudden cardiac death in soft water areas
[4,7,9,11,20,21]. Mg plays an essential role in more than 500 enzymatic
reactions and is required for all energy-generating reactions and
oxidative phosphorylation. Mg is a natural calcium (Ca) channel
blocker on myocardial and vascular smooth muscle cells
[4,16,17,22,23], which was first demonstrated by The Alturas [22,23],

and is a natural statin in that it lowers blood cholesterol, LDL, and
triglycerides, and lowers arterial blood pressure [4-6,15-18,24,25].

Using sensitive, specific Mg2+-ion-selective electrodes, it has been
shown that patients with hypertension, ischemic heart disease, cardiac
failure, strokes, diabetes (types 1 and 2), gestational diabetes, renal
disease-induced vascular changes (i.e., atherosclerosis and
inflammation) exhibit significant depletion of serum/plasma and tissue
levels of ionized, but not total, Mg [4,16,17,26-35]. Moreover, dietary
deficiency of Mg, under very-controlled laboratory conditions, in rats
and rabbits has been shown to cause vascular remodeling concomitant
with hypertension and atherogenesis (i.e., arteriolar wall hypertrophy
and alterations in arterial wall matrices) of unknown origin
[4,6,15-17,36-39].

Approximately 40 years ago, Russell Ross and colleagues advanced
the hypothesis that atherosclerosis is an inflammatory disease brought
about by injury to the endothelial surfaces of blood vessels in the
macro- and microcirculations [40]. Briefly, the hypothesis stated that
different forms of injury will result in numerous dysfunctions in the
homeostatic properties of the endothelium, e.g., increase in
adhesiveness of leukocytes and/or platelets, alteration in the pro
coagulant properties, formation/release of cytokines/ chemokine’s and
growth factors.
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Usually, inflammation is defined as a response of microcirculatory
blood vessels, and the tissues they perfuse, to infections and damaged
tissues which bring cells and host-defense molecules to all the diverse
sites where they are required, in order to eliminate/degrade the
offending agents [41,42]. The mediators of the defense mechanisms
include white blood cells, phagocytic leukocytes, antibodies,
chemokines, adhesion molecules and complement proteins [40-42].
Most of these cells and molecules are recruited, when needed, from the
blood itself. The inflammatory process brings these cells and molecules
to the damaged or necrotic tissues. The absence of the normal
inflammatory process would allow infections to continue unchecked,
prevent wounds from healing, and result in festering sores/wounds. A
typical inflammatory response develops in a sequential manner:
recognition of the offending agent (s) by host cells and molecules;
recruitment of leukocytes and plasma proteins; activation of leukocytes
and certain plasma proteins to destroy and eliminate all offending
substances; control and termination of the reaction (s); and finally
repair of the damaged tissue (s).

During the normal inflammatory process, leukocytes migrate across
the venous postcapillary walls through the endothelium due to
increases in vascular permeability, low shear -rates, and move to the
site (s) of injury via adhesion molecules and chemotaxis. The normal
mediators for these processes to take place are: adhesion molecules;
cytokines; and chemokines. Interestingly, all of these same mediators
are needed for atherogenesis [40-42], and have been demonstrated
recently to be formed, rapidly, in magnesium-deficient states [43-45].

What happens if the inflammatory process is not curtailed or
neutralized?-It starts the atherogenic process

If, however, the inflammatory response is not curtailed, or
effectively neutralized, the inflammatory response will go-on and
stimulate migration and proliferation of VSM cells which will become
intermixed with the inflammatory cells and protein components to
initiate and form an intermediate lesion (i.e., beginning of an
atherosclerotic process). If these processes go-on unabated, the arterial
walls will thicken and initially dilate to compensate, to a point. It is
important to keep in mind, here, that release of various dilators, locally,
including free Mg2+ ions are powerful, direct dilators of all types of
microcirculatory blood vessels [4,17,31,36,46-50]. After these events
the arterial and arteriolar vessels undergo a remodeling process in
which the normal contractile VSM cells are transformed into a new
non-contractile phenotype (s) [40-42]. At every stage of this process,
macrophages, monocytes, and T-lymphocytes are attracted to the
endothelium lining the blood vessel walls [41,42]. Activation of these
cells then would be expected to result in release of hydrolytic enzymes,
cytokines, and growth factors, which have been shown to be released
in states of magnesium deficiency [43-45]. These factors will sustain
and perpetuate the atherogenic process forming, eventually, fibrous
tissue and further enlargement of the lesion, which will overlie a core
of lipid resulting in plaques and necrotic tissue. Using rabbits and rats,
we have demonstrated that feeding the animals diets low in Mg
(similar to the levels found in American diets) results in all of the
hallmarks of atherosclerosis, i.e., inflammation followed by release of
hydrolytic enzymes, release of cytokines, release of chemokines and
growth factors involved in the early stages of the atherogenic process
demonstrating lesions and plaques on the inner surfaces of the
endothelial walls followed by invasion of VSM cells which become
transformed phenotypes [4,16,17,43,45].

Developing plaques in diets promoted by high cholesterol
intakes or promoted by low Mg diets are virtually similar in
experimental animals

In developing atherosclerosis, each plaque has a cap that retains
cholesterol and exhibits inflammatory conditions inside the plaques
which can dissolve the fibers, but, then, suddenly, the caps rupture,
spilling cholesterol into the insides of the arteries which can promptly
cause clots that could, eventually, completely block the flow of blood
into the microcirculation of the surrounding tissues [40-42]. Using
experimental rabbits, we have observed that these events clearly are
similar in both the normal animal fed high cholesterol diets and those
rabbits fed low Mg diets [15,17, unpublished findings]. Overall, we
believe that such experimental findings lend considerable impetus to
our hypothesis that diets low in Mg should be considered important
risk factors in events resulting in inflammatory conditions leading to
atherogenesis.

Causative events and pathways leading to inflammation-
atherogenesis in MgD

What, however, are the cellular and molecular events leading to
inflammatory events, release of hydrolytic enzymes, release of
cytokines, chemokine’s and growth factors, and transformation of
contractile VSM cells to non-contractile VSM cells which behave as
machines to synthesize and release these pro-atherogenic molecules? It
has been shown by our group [4,25,43,51] and others [52-54] that
ceramides, in increased levels, found in the atherogenic process[mixed
in plaques; unpublished findings ], at least in rabbits, and stimulated in
MgD states could be important causal and initiating agents [16,17].

Ceramides are sphingolipids known to be released as a consequence
of sphingomyelinase (SMase) acting on sphingomyelin (SM), a
component of all cell membranes, or as a consequence of the activation
of serine palmitoyl transferase 1 and 2 (SPT 1 and SPT 2) (a de novo
synthetic pathway) [55]. Ceramides are now thought to play important
roles in fundamental processes such as inflammation, angiogenesis,
membrane-receptor functions, cell proliferation, microcirculatory
functions, cell adhesion, immunogenic responses, excitation-coupling
events in smooth muscles, and cell death(i.e., apoptosis) [52-57]. SPT 1
and SPT 2 are the rate-limiting enzymes in the biosynthesis of
sphingolipids [58]. More than 25 years ago, it was first demonstrated
that SPT activity was increased in aortas of rabbits fed a high-
cholesterol diet [59]. A short time after these latter studies were
published , two of us showed that dietary deficiency of Mg , in levels
found in Western diets, vastly increased atherosclerotic plaques in
rabbits fed high-cholesterol diets, whereas high dietary levels of Mg
inhibited plaque formations [15]. SPT is a heterodimer of 53-kDa
SPT-1 and 63-kDa SPT 2 subunits [60,61], both of which are bound to
the endoplasmic reticulum [62]. An upregulation of SPT activity has
been hypothesized to play a role in apoptosis [63], cell death events
taking place in atherogenesis [41,42,64 ].

Recently, we have reported that magnesium deficient diets given to
rats for only 21 days results in an upregulation of SMase, SPT-1, and
SPT-2 in a variety of cardiovascular tissues and cells as well as
decreased levels of SM and phosphatidylcholine (PC) [65]. We also
noted that MgD diets resulted in fragmentation of DNA [24], a release
of cytochrome C [65], an increased expression of apoptotic protease
factor-1 [65], and an activation of caspase-3 (needed for apoptosis)
[24], hallmarks of atherogenesis [42]. When specific inhibitors of
SMase and SPT (1 and 2) were utilized, in primary cell cultures of VSM

Citation: Altura BM, Gebrewold A, Shah NC, Shah GJ, Altura BT (2016) Potential Roles of Magnesium Deficiency in Inflammation and
Atherogenesis: Importance and Cross-talk of Platelet-Activating Factor and Ceramide. J Clin Exp Cardiolog 7: 427. doi:
10.4172/2155-9880.1000427

Page 2 of 5

J Clin Exp Cardiolog
ISSN:2155-9880 JCEC, an open access journal

Volume 7 • Issue 3 • 1000427

http://dx.doi.org/10.4172/2155-9880.1000427


cells, exposed to low Mg2+ environments, we noted an inhibition of
formation and release of ceramides, inhibition of DNA fragmentation,
inhibition of release of mitochondrial cytochrome C, reduced
expression of apoptotic protease factor-1, and inhibition of activation
of caspase-3 [65]. We believe, collectively, these new studies lend
support to our hypothesis that generation and release of ceramides are
pivotal molecules in the initiation of cellular and molecular events
leading to inflammatory events and atherogenesis, at least in MgD
states. Whether this hypothesis is causative in overall atherogenic
events remains to be tested rigorously. Is there any direct evidence to
implicate any of these events in the living microcirculation?

Direct in-vivo evidence on the microcirculation to implicate
ceramides

Using open - and closed- window chambers [66-69], implanted in
the cerebral cortex of rats and mice, and in-situ studies on omental
tissue of rabbits [69], given MgD diets for 21 days, as well direct
microcirculatory studies in the skin and skeletal muscles of MgD rats
and mice, we found increased numbers of white blood cells (including
monocytes, phagocytic leukocytes and lymphocytes) on the
endothelial surfaces of microcirculatory blood vessels using high-
resolution TV microscopy [69]. This was followed by increased
permeability’s of venular post capillaries to where, in some animals,
white blood cells traversed the walls into the surrounding tissues, true
signs of inflammation [69]. Although we have demonstrated that low
Mg diets increase cellular free Ca2+ in all types of cardiovascular
muscle and endothelial cells, we believed some other fundamental
molecule (s) in addition to changes in ceramides and Ca2+ must
perforce be operative in the low MgD -induced atherogenesis. We felt
some lipid-like fast-reacting molecule which could be generated,
rapidly, and easily penetrate cell membranes is probably also involved
in these inflammatory-atherogenic events.

Is the mysterious intermediary molecule possibly related to
platelet-activating factor?

Platelet-activating factor (PAF) is known to play major roles in both
inflammatory responses and atherogenesis [70-72]. A variety of the
circulating blood -formed elements (e.g., polymorph nuclear
leukocytes, platelets, basophils, and macrophages) and endothelial cells
can elaborate PAF [71,72]. We have recently demonstrated that
cerebral, aortic and coronary VSM cells can also elaborate and release
PAF [69]. There are some reports that both PAF and ceramides may
result in transformation of VSM cells from one phenotype to another,
as is typical in the atherosclerotic process [53,54,72,73]. In addition,
like we see in MgD, PAF produces vasoconstriction of blood vessels
and a variety of VSM types [for recent review, see 69], as do several of
the ceramides [69,74,75]. A number of investigators employing
intravital microscopy techniques, similar to those used by our
laboratories [76-80], have demonstrated that PAF increased the
number of white blood cells in the microvessels concomitant with
intense vasoconstriction-spasms with increasing concentrations of the
putative lipid mediator (i.e., PAF), less leukocyte rolling, and increased
adherence of the leukocytes to the endothelial surfaces with increases
in vascular-capillary permeability [78-80]. Using open and closed
chambers implanted in rodent cerebral cortex and skeletal muscles, as
mentioned above, we have observed similar phenomena [69]. Further,
we have reported that a variety of ceramides produce similar
microcirculatory actions in rodent cerebral, cutaneous and skeletal
microvascular tissues, including increased permeability of the

postcapillary venular walls, the major sites of inflammatory reactions
[75]. Collectively, these in-vivo microcirculatory findings strongly
support the hypothesis that both PAF and ceramides induce similar,
true inflammatory responses in diverse vascular beds in diverse
mammalian species.

Using the above reports and experimental findings, in a large
number of in-vivo studies, from our laboratories , and others
mentioned above, we hypothesize that since MgD results in most of the
attributes of early inflammatory responses- atherogenesis, including
the synthesis/ release of PAF and ceramides, PAF and ceramides most
likely are important , if not critical , contributing mediators released/
synthesized early in cardiovascular tissues , and blood formed
elements, to initiate inflammation and the atherogenic process.

Future Considerations
Since we have demonstrated in both rats and rabbits fed low Mg

diets that increased levels of both ceramides and PAF are found, in
situ , in all chambers of the heart , aortae and coronary blood vessels,
and these manifestations were associated with increased plaques,
elevated serum cholesterol , elevated trigycerides , elevated ceramides,
and increased generation of PAF [4,15-17,24,25,43,45,51,65,69,81], it is
highly unlikely that these in-vivo manifestations are merely
epiphenomena. However, in order to solidify our hypothesis, regarding
inflammation and atherogenesis (induced by low dietary Mg), one
could utilize PAF knock-out or knock-down rats and mice subjected to
low dietary Mg. Such PAF knock-out animals should result in
reductions in expression of many of the downstream molecules and
their pathways, e.g., decreased levels of the ceramide -generating
enzymes, decreased ceramide levels, reduction in DNA fragmentation,
reduced expression of apoptotic protease factor-1, reduction in levels
of caspase-3, reduction in elevated levels of cholesterol and
triglycerides, and reduced levels of plaques on carotid and coronary
arteries, etc. Only time will tell whether these suggested experiments
will prove to validate our hypothesis.
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