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a b s t r a c t

Stochastic Data Envelopment Analysis (DEA) models have been introduced in the literature to assess the
performance of operating entities with random input and output data. A stochastic DEA model with a
reliability constraint is proposed in this study that maximizes the lower bound of an entity's efficiency
score with some pre-selected probability. We define the concept of stochastic efficiency and develop a
solution procedure. The economic interpretations of the stochastic efficiency index are presented when
the inputs and outputs of each entity follow a multivariate joint normal distribution.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Data Envelopment Analysis (DEA) is a non-parametric method
used to evaluate the performance of a set of operating entities called
decision making units (DMUs) that consume similar inputs and
create similar outputs. It has been widely applied in areas such as
healthcare, agriculture and banking as well as assessing low carbon
supply chains. Cooper et al. [10] provided an introduction of the
various DEA models. Cook et al. [6] discussed the selection of a DEA
model. The reader is referred to Cook and Seiford [5] and Liu et al.
[17,18] for extensive reviews of DEA's development and applications.

Traditionally, the efficiency score of a DMU is defined as the ratio
of the multiplier-weighted sum of its outputs to the multiplier-
weighted sum of its inputs. The constant returns-to-scale DEA
model, namely, the CCR DEA model [4], computes the efficiency
index of a DMU, which is the maximum efficiency score in terms of
the input and output multipliers. Any DMU with an efficiency index
of one is rated as CCR efficient in the sense that it is not dominated
by any observations or their linear combinations. The efficiency
index of an inefficient DMU is less than one and reveals the
proportional decrease necessary in its inputs to reach the estimated
efficiency frontier, which is spanned by the efficient units.

It is widely acknowledged that variability and uncertainty are
associated with the input and output data of a production process
due to its inherent stochastic nature or specification errors [1]. Land
et al. [14] gave convincing examples in agriculture, manufacturing,
product development, education, health care and military for which
it is necessary to incorporate stochastic variation of data in the

concept of “efficiency”. As a consequence, both multiplier and
envelopment DEA models have been generalized to deal with
stochastic inputs and outputs. The concepts of dominance and
efficiency are extended to the stochastic domain in these models,
where chance-constrained programming is applied to model the
production frontier defined with stochastic inputs and outputs.

Land et al. [14] proposed a stochastic efficiency analysis formula-
tion in envelopment form where a chance constraint is placed on
every output category. In this study we focus on stochastic DEA
models in multiplier form as they explicitly take into account the
correlations among input and output data within every DMU, which
are generally considered more important than dependencies among
the observed DMUs but are ignored in envelopment models.

Cooper et al. [8,9], Huang and Li [12,13] and Li [16] developed
joint stochastic efficiency analysis models where probabilistic
efficiency dominance is established via a joint chance constraint.
No computational results have been reported in the literature
possibly due to the strong intractability of these models.

We next examine two multiplier form stochastic DEA models
with a marginal chance constraint on every DMU. The following
“satisficing” DEA model was presented in Cooper et al. [7]:

πn

o ¼max
u;v

P
uT ~yo

vT ~xo
Z1

� �
s:t:

P
uT ~y j

vT ~x j
r1

( )
Zαj; jAN;

uZ0; vZ0: ð1Þ

In the model, it is assumed that every unit in the set of DMUs,
N¼ f1;2;…;ng, consumes resources in m categories and creates
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products or services in s categories. P means “Probability”, ~y j ¼
ð ~y1j; ~y2j;…; ~ysjÞT and ~x j ¼ ð ~x1j; ~x2j;…; ~xmjÞT represent, respectively,
the vectors of stochastic output and input values of DMU jAN,
while uARs and vARm are non-negative virtual multipliers to be
determined by solving the above model for DMU o, which is the
DMU under evaluation. Throughout this paper, it is assumed that
~yrj and ~xij are continuous random variables for any r¼ 1;2;…; s
and any i¼ 1;2;…;m. αjAð0;1Þ is pre-selected and is the mini-
mum probability required to fulfill the corresponding chance
constraint.

We note that model (1) is adapted from the traditional CCR DEA
model [4] and falls in the class that Charnes and Cooper [3] refer to
as “P-models”. As Charnes and Cooper suggested, the objective of a
“P-model” can be linked to the concept of “satisficing” defined by
Simon [21]. Along this perspective, the unity in the objective
function of model (1) can be interpreted as an aspiration level,
while model (1) maximizes the likelihood for the efficiency score
of DMU o to achieve this aspiration level.

Assuming that the random outputs and inputs of each DMU j
follow a multivariate normal distribution with a mean vector

ðyT
j ; x

T
j ÞT and a variance–covariance matrix Λj, Olesen and Petersen

[20] developed a model that optimizes the rate at which the mean
input vector for the DMU under evaluation has to decrease in
order to achieve efficiency. The original formulation presented by
Olesen and Petersen [20] has a typo. The model after the necessary
correction is presented as follows:

θn

o ¼max
u;v

uTyoþΦ�1ðαoÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuT ; �vT ÞΛoðuT ; �vT ÞT

q
s:t:

vTxo ¼ 1;

uTy j�vTx jþΦ�1ðαjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuT ; �vT ÞΛjðuT ; �vT ÞT

q
r0; jAN;

uZ0; vZ0: ð2Þ
In the model, ΦðÞ is the standard normal distribution function and

Φ�1ðÞ its inverse.
As will be illuminated in the next section, the stochastic

efficiency index πn
o given by model (1) is not a radial measure.

In contrast, model (2) returns a radial measure θn

o and reduces to
the CCR DEA model when there is no variability in input and
output data. Consequently, (2) is a general model with CCR DEA
model as a special case. However, our subsequent analysis will
show that model (2) does not necessarily return a correct
stochastic efficiency index. In this study, we propose a stochastic
efficiency analysis model that corrects this shortcoming of model
(2) using the concept of aspiration level introduced in model (1).
We next analyze an example to motivate the study.

2. A motivating example

Under the assumption of joint normality model (1) can be
rewritten as follows:

ϑn

o ¼max
u;v;ϑ

ϑ

s:t:

uTyo�vTxo�ϑ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuT ; �vT ÞΛoðuT ; �vT ÞT

q
Z0;

uTy j�vTx jþΦ�1ðαjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuT ; �vT ÞΛjðuT ; �vT ÞT

q
r0; jAN;

uZ0; vZ0: ð3Þ
where πn

o ¼Φðϑn

oÞ.
Models (2) and (3) are interpreted in this section using an

example of three DMUs with a single output and a single input
that follow a joint normal probability distribution. As shown in
Olesen and Petersen [20], each chance constraint uTy j�vTx jþ

Φ�1ðαjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuT ; �vT ÞΛjðuT ; �vT ÞT

q
r0 in these two models gener-

ates a supporting hyperplane to a confidence region of DMU j at
some confidence level related to the chance constraint probability
level αj. Olesen and Petersen [20] further noted that the produc-
tion possibility set (PPS) is spanned by these confidence regions in
the input-output space. We present the motivating example in
Figs. 1 and 2 without discussing the mathematical details. The
confidence region of DMU j in both figures is an ellipsoid denoted
by DjðαjÞ j¼1, 2, 3, αj450%, with the mean input and output
ðxj; yjÞ of DMU j at the center, where the size of the region is
derived from the probability level αj used in the jþ1 th chance
constraint in model (3). The straight line in the two figures
spanned by ellipsoid D1ðα1Þ is the production frontier.

The other ellipsoids in the figures are adjusted confidence
regions for DMU 2, the DMU under evaluation. These adjusted
regions are denoted by D0

2ðq;βÞ with the mean output y2 and the
contracted mean input qx2 from DMU 2 at the center, where
qAð0;1� is a radial contraction rate of the mean input vector x2

Fig. 1. Confidence regions used in models (2) and (3).

Fig. 2. Confidence regions used in the proposed model.

G. Wei et al. / Omega 48 (2014) 1–92
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and β is a reliability level to be explained in detail in Section 3.
As shown in that section, if q¼1, i.e., no radial contraction is
performed, then we have D0

2ð1;1�α2Þ ¼D2ðα2Þ, the confidence
region of inputs and outputs derived from a chance constraint at
the probability level α2. However, if qAð0;1Þ, then the shape of the
region is changed accordingly, as illustrated in Fig. 2.

In Fig. 1 we illustrate the confidence regions used inmodels (2) and
(3). The three concentric ellipsoids in Fig. 1 are denoted by D2ðα2Þ ¼
D0
2ð1;1�α2Þ, D0

2ð1;π0Þ ¼D2ð1�π0Þ and D0
2ð1;πn

2Þ ¼D2ð1�πn

2Þ, where
πn

2oπ0o1�α2. Note that D0
2ð1;πn

2Þ is the largest adjusted confidence
region obtained by decreasing the reliability level β (with q¼1) that is
still a subset of the reference technology spanned by D1ðα1Þ. This
implies that πn

2 is the highest reliability level β such that the adjusted
region D0

2ð1;βÞ overlaps with the production frontier. It is evident that
the stochastic efficiency index πn

o is not a radial measure.
On the contrary, the stochastic efficiency index θn

o in model (2)
is a radial measure. Olesen and Petersen [20] interpreted θn

o as the
minimum proportional decrease in the random inputs of DMU o
subject to a requirement that every input output combination
within the confidence region DoðαoÞ after the transformation stays
inside the estimated PPS. By this interpretation, θn

2 in our motivat-
ing example would be the minimum latent displacement neces-
sary to move ellipsoid D2ðα2Þ in Fig. 1 to overlap with the
production frontier line. It is easy to infer from Fig. 1 that using
model (2) and letting each confidence region DjðαjÞ shrink toward
a point estimate will in the limit converge to the tradition CCR
efficiency analysis model based on the mean values of inputs and
outputs from each DMU.

However, we note that the adjusted confidence region
D0
2ðq;1�α2Þ presented in Fig. 2 is in fact contracted when the

mean input contraction rate q decreases. Unfortunately, Olesen
and Petersen [20] ignored the fact that a contraction of the mean
input vector of an evaluated DMU will affect the shape of an
adjusted confidence region. As a result, model (2) does not return
the correct stochastic efficiency index for an inefficient DMU
unless the inputs of that DMU are deterministic.

The model we are going to develop in this paper corrects this
error by applying the concept of an aspiration level. In model (1),
the aspiration level is fixed and set by the decision maker. But in
our proposed model the aspiration level itself is a decision
variable. In addition, a reliability chance constraint is introduced.
The chance constraints and the variable aspiration level in the new
model generate hyperplanes to support two types of confidence
regions as shown in Fig. 2. Take β¼ 1�α2 as an example. The
ellipsoids DjðαjÞ j¼1, 2, 3 define the PPS, while decreasing the
aspiration level q reduces the deviation between the production
frontier and the input output combinations inside the ellipsoid
D0
2ðq;1�α2Þ. qn

2 is thus the contraction rate of the mean input of
DMU 2 for which the ellipsoid D0

2ðqn

2;1�α2Þ has one and only one
intersection point with the production frontier line.

In Fig. 2 we illustrate the confidence regions used in model (4)
proposed in this paper. The three ellipsoids with centers lined up
at the same output level are denoted by D2ðα2Þ ¼D0

2ð1;1�α2Þ,
D0
2ðq0;1�α2Þ and D0

2ðqn

2;1�α2Þ, where qn

2oq02o1 and qn

2 is the
smallest radial contraction rate q of the mean input from DMU
2 that keeps the confidence region D0

2ðq;1�α2Þ as a subset of the
reference technology spanned by D1ðα1Þ. Each of these adjusted
confidence regions D0

2ðq;1�α2Þ will be shown in Section 3 to be
generated by a chance constraint of DMU 2 with some probability
level β¼ 1�α2, referred to as a reliability level below.

As illustrated in Fig. 2, combining the use of the concept of an
aspiration level from model (1) with the use of confidence regions in
model (2) allows us to propose a model in this paper that explores two
different types of confidence regions. Firstly, all DMUs contribute with
the confidence regions at selected probability levels based on the non-
contracted mean input output vectors. As in model (2), the PPS is the

convex cone spanned by these confidence regions and enlarged by
adding a certain orthant to comply with strong input and output
disposability. Hence, each of these confidence regions may potentially
play an active role in spanning the PPS. Secondly, we introduce a
reliability confidence region, which reflects the shape and size of a
confidence region for the evaluated DMU after contraction of the
mean input vector with a factor q. Based on these two different sets of
confidence regions we define the stochastic CCR efficiency index qn

o , a
radial measure, as the maximum contraction rate q of the mean input
vector for the evaluated DMU that is necessary to move and transform
the reliability confidence region D0

oðq;βÞ until it either is not a proper
subset of the PPS (if βo0:5) or is entirely outside the PPS (if β40:5).

The contributions of our study are twofold. First, the model
proposed in this paper bridges the existing models (1) and (2). Cooper
et al. [7] did not interpret the stochastic efficiency index πn

o they
proposed. The motivating example in this section has illustrated that
under the joint normality assumption πn

o is the highest reliability level
β necessary for an adjusted confidence region D0

oð1;βÞ to overlap with
the production frontier of the PPS spanned by non-adjusted con-
fidence regions of all DMUs in consideration. Hence using the two
types of confidence regions discussed above we establish a uniform
framework to interpret the stochastic efficiency indices given by the
three models under the multivariate joint normality assumption.
Second, this proposed model complements a model in Cooper et al.
[7] for characterizing behaviors of satisficing. Using a non-unity
aspiration level, Cooper et al. [7] developed a variant of model (1)
that can be applied to perform a trade-off analysis between optimizing
and satisficing by setting the aspiration level for a stochastically
inefficient entity to reach. As will be illustrated in Section 5, the model
proposed in the current study can be employed to do a similar trade-
off analysis by selecting the minimum probability level to achieve
some aspiration level.

The remainder of the paper is organized as follows. In the next
section, we introduce the model and provide an economic inter-
pretation of the stochastic efficiency index. This development is
followed by a solution procedure proposed in Section 4 for
arbitrary probability distributions of input and output levels. An
illustrative example is analyzed in Section 5. Concluding remarks
are made in the last section.

3. Stochastic efficiency analysis

We present the stochastic DEA model in this section. The
production possibility set underlying the model and the stochastic
efficiency index for multivariate normally distributed inputs and
outputs are also interpreted.

3.1. Model

We start with model (1). As remarked in Cooper et al. [7], the
model is always feasible. Let vector A¼ ðα1;α2;…;αnÞ. The optimal
objective function value πn

o is the probability for the efficiency
score of DMU o to exceed unity with the optimal virtual multi-
pliers. Note πn

or1�αo. Cooper et al. [7] thus defined DMU o to be
stochastically efficient (which we call CHL efficientbelow) if and
only if πn

o ¼ 1�αo. It is easy to see that there exists at least one
DMU jAN with πn

j ¼ 1�αj for a given vector A.
In model (1), unity is chosen as the aspiration level. Specifying

the aspiration level as a decision variable, we develop a stochastic
DEA model below:

qn

o ¼ max
qAR;u;v

q

s:t:

P
uT ~yo

vT ~xo
Zq

� �
Zβo;

G. Wei et al. / Omega 48 (2014) 1–9 3
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P
uT ~y j

vT ~x j
r1

( )
Zαj; jAN;

uZ0; vZ0: ð4Þ
Here βo is given and q is a decision variable. For any set of

virtual multipliers, q is the maximum value that bounds the
multiplier weighted output–input ratio of DMU o from below
with a probability of at least βo. The model seeks virtual multi-
pliers to maximize q, which is equivalent to maximizing the
aspiration level to be achieved with a probability of βo or above.
We hence call the first chance constraint in the model a reliability
constraint and βo the reliability level.

Since all constraints in model (4) are satisfied by q¼0, u¼ 0
and v40, the model is always feasible with qn

oZ0. Evidently, if the
input and output values are constant for any DMU j, model (4)
reduces to the deterministic DEA model, namely the CCR DEA
model. We therefore call (4) the stochastic CCR DEA model.

Note that the reliability constraint can be rewritten as
PfvT ~xo=uT ~yor1=qgZβo and vT ~xo=uT ~yo is a loss function. We
can therefore interpret 1=q as the Value-at-Risk (VaR) at the
confidence level of βo and thus treat model (4) as a VaR
minimization problem [15].

It is evident that the stochastic efficiency index qn
o may be

sensitive to the threshold probability levels βo and αj. Increasing βo
or αj tightens the corresponding chance constraint. Therefore, qn

o is
non-increasing in the parameters βo and αj, 8 j. We note that qn

o
may exceed unity if βoo1�αo. To render the definition of the
stochastic efficiency index consistent with that of its deterministic
counterpart, we require βoZ1�αo.

Definition 1. Given A and βo, DMU o at the reliability level of βo is
(i) stochastically CCR efficient if and only if qn

o ¼ 1; (ii) stochasti-
cally CCR inefficient if qn

oo1; (iii) stochastically pseudo-efficient if
qn
o ¼max

jAN
fqn

j go1.

By the above definition, a DMU is stochastically pseudo-
efficient if it has the highest stochastic efficiency index and none
of the DMUs is stochastically efficient.

Cooper et al. [7] noted that chance constrained programming
makes it possible to interpret an inefficient DMU as a satisficing
efficient unit with some probability of occurrence. The reader is
referred to [7] for insightful discussions of “satisficing” and
“inefficiency”. We note that the results of model (4) could be
interpreted in a similar way. For instance, suppose that DMU o is
stochastically efficient, i.e., qn

o ¼ 1, with a very low reliability level
βo, which implies a high risk of failing to achieve the aspiration
level. A higher reliability level βo is preferred in a less risky
efficiency evaluation. But it would render qn

oo1. DMU o could be
deemed as satisficing efficient (acceptably inefficient) if qn

o is not
far below 1. In Section 5 an example illustrates that a trade-off
analysis between optimizing (inefficiency) and satisficing can be
made by changing the reliability level in model (4).

Unlike model (2), model (4) does not require any specific
probability distributions. The proposition below shows that model
(2) is a special case of model (4) under joint normality.

Proposition 1. Given A and βo ¼ 1�αo, qn
o ¼ θn

o is true if ð ~yT
j ; ~x

T
j ÞT

follows a multivariate normal distribution for any jAN, and (i)
qn
o ¼ 1, or (ii) qn

oo1 but the input vector of DMU o is deterministic.

Proof. Under the joint normality assumption, each chance con-
straint on DMU j in model (2) is equivalent to PfuT ~y j=vT ~x jr1g
Zαj. Let qn

o , un and vn be an optimal solution to model (4).

If qn
o ¼ 1, then we have ðunÞTyo�ðvnÞTxoþΦ�1ðαoÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðunÞT ; ð�vnÞT �Λj½ðunÞT ; ð�vnÞT �T
q

¼ 0. It is easy to verify that

un=½ðvnÞTxo� and vn=½ðvnÞTxo� is feasible to model (2) with the

objective function value of 1, which is the maximum value
possible. qn

o ¼ θn

o ¼ 1 hence follows. Now we consider the case
where ~xo ¼ xo is deterministic. Let Λ0

o be the variance–covariance

matrix of the output vector ~yo. ðunÞTyo�qn
oðvnÞTxoþΦ�1ðαoÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðunÞTΛ0
oun

q
¼ 0 implies that un=½ðvnÞTxo� and vn=½ðvnÞTxo� is fea-

sible to model (2)with the objective function value θ¼ qn
o. Assume

that there exists a feasible solution u0 and v0 to model (2) with an
objective function value θ04θ. It follows that θ0, u0 and v0 is
feasible to model (4), which contradicts the knowledge that qn

o is
optimal. □

3.2. Stochastic CCR efficiency index

We now interpret the stochastic CCR efficiency index qn
o. Similar

to Olesen and Petersen [20], we assume in this sub-section that
the outputs and inputs of each DMU j follow a known sþm
dimensional multivariate normal distribution with a mean vector
ðyT

j ; x
T
j ÞT and a variance–covariance matrix Λj of full rank. This

assumption is adopted because close form expressions of the
chance constraints in model (4) may not exist or may make it
hard to interpret the stochastic efficiency index if inputs and
outputs follow probability distributions other than normality.
As noted by Cooper et al. [7], the selection of the normal distribution
is not so restrictive since normal approximation is readily acceptable
in many situations. We further require αjZ50% for DMU j.

3.2.1. Production possibility set
Note that model (4) and model (2) have identical chance

constraints on DMUs under the joint normality assumption. The
study in Olesen and Petersen [20] suggested that the production
possibility set (PPS) defined by these chance constraints is
spanned by the confidence regions for the DMUs in consideration.
We next briefly summarize the relevant results. The reader is
advised to consult Olesen and Petersen [19,20] for details.

Let cj ¼Φ�1ðαjÞ for any jAN. Denote by χ2
ðsþmÞ a random

variable following the chi-square distribution with sþm degrees
of freedom. The confidence region at the confidence level
φj ¼ Pðχ2

ðsþmÞrc2j Þ is supported by the chance constraint on DMU
jAN:

DjðαjÞ ¼ fðyT ; xT ÞT ARsþm
þ j½ðy�y jÞT ; ðx�x jÞT �Λ�1

j ½ðy�y jÞT ;

ðx�x jÞT �T rc2j g; ð5Þ

where Λ�1
j is the inverse of the variance–covariance matrix Λj.

Note that a random realization of ð ~yT
j ; ~x

T
j ÞT is located inside the

region DjðαjÞ with a probability of φj.
As Olesen and Petersen [19] demonstrated, random realizations

of DMU j that fall within the confidence region DjðαjÞ are
positioned inside the PPS if cjZ0, or equivalently, αjZ0:5. There-
fore, the PPS for model (4), denoted by QðAÞ, is the envelopment
of n confidence regions DjðαjÞ, 8 jAN. It follows that QðAÞ ¼
fðyT ; xT ÞT ARsþm

þ j(ðbyT
j ; bxT

j ÞT ADjðαjÞ and λjZ0, jAN such that

∑jANλjbx jrx and ∑jANλjby jZyg.
Denote by PðAÞ the set of feasible virtual multipliers under

vector A. It can be formulated as

PðAÞ ¼ fðuT ; �vT ÞT ARsþmjuZ0;vZ0 and

PðuT ~y j�vT ~x jr0ÞZαj 8 jANg: ð6Þ

Transforming the chance constraints in Eq. (6) into determi-
nistic equivalent constraints, we have

PðAÞ ¼ fðuT ; �vT ÞT ARsþmjuZ0;vZ0
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and

uTy j�vTx jþΦ�1ðαjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuT ; �vT ÞΛjðuT ; �vT ÞT

q
r0; 8 jANg:

Since αjZ50%, uTy j�vTx jþΦ�1ðαjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuT ; �vT ÞΛjðuT ; �vT ÞT

q
is a

convex function. It follows that PðAÞ is in general a convex cone.
Theorem 5 in Olesen and Petersen [19] suggests that QðAÞ

presented in terms of PðAÞ is given by

QðAÞ ¼ fðyT ; xT ÞT ARsþm
þ j8ðuT ; �vT ÞT APðAÞ : uTy�vTxr0g: ð7Þ

As a consequence, the production frontier for QðAÞ can be
presented as

EffQðAÞ ¼ fðyT ;xT ÞT ARsþm
þ j( ðuT ; �vT ÞT APðAÞ : uTy�vTx¼ 0g:

ð8Þ

3.2.2. Economic interpretation
The stochastic CCR efficiency index given by model (4) is next

interpreted. In a way similar to derive Eq. (5), we claim that the
reliability constraint defines a supporting hyperplane to the
following confidence region, which is called a reliability confi-
dence region, at the confidence level P½χ2

ðsþmÞr ðΦ�1ðβoÞÞ2� for
DMU o:

D0
oðq;βoÞ ¼ fðyT ; xT ÞT ARsþm

þ j½ðy�yoÞT ;
ðx�qxoÞT �Λ�1

o ½ðy�yoÞT ; ðx�qxoÞT �T r ðΦ�1ðβoÞÞ2g; ð9Þ

where Λo ¼ BΛoB and B¼ ½bgh� is a ðsþmÞ � ðsþmÞ matrix with
bgh ¼ 0 if gah, bgg ¼ 1 if grs and bgg ¼ q otherwise. Note that
D0
oðq;βoÞ is a confidence region rendered after the mean input

vector of DMU o changes proportionally by q.
Given q, let Vðq;βoÞ ¼ fðuT ; �vT ÞT ARsþmjuZ0, vZ0 and

PðuT ~yo�qvT ~xoZ0Þ ¼ βog, i.e., uTyo�qvTxo�Φ�1ðβoÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuT ; �qvT ÞΛoðuT ; �qvT ÞT

q
¼ 0 holds for every vector ðuT ; �vT ÞT

in Vðq;βoÞ. We consider 1�αorβoo50% and αo;βoZ50%
separately.

Suppose 1�αorβoo50%. Given a vector ðuT ; �vT ÞT AVðq;βoÞ,
we have uTyo�qvTxor0 as Φ�1ðβoÞo0. Applying Corollary 1 in
Olesen and Petersen [19], uTy�vTxr0 follows at any realization
ðyT ; xT ÞT AD0

oðq;βoÞ. As will be shown later in Corollary 1, the
reliability constraint is binding at optimality. It implies that a
vector ðuT ; �vT ÞT in Vðqn

o, βoÞ \ PðAÞ (the intersection of the two
sets is not empty as the model is always feasible) must be optimal.
By Eqs. (7) and (8), we realize that the reliability confidence region
D0
oðqn

o;βoÞ is positioned inside the PPS QðAÞ. Since qn
o is the

maximum objective function value, D0
oðqn

o;βoÞ shall overlap with
the production frontier Eff QðAÞ, that is, there exist a realization
ðyT ; xT ÞT AD0

oðqn
o;βoÞ and ðuT ; �vT ÞT APðAÞ such that uTy�vTx¼ 0.

Note that D0
oð1;βoÞ is the original reliability confidence region

and D0
oðqn

o;βoÞ the one after every input of DMU o contracts by the
rate qn

o . It now becomes clear that the stochastic CCR efficiency
index qn

o at the reliability level of βo measures the deviation
between the production frontier and the reliability confidence
region D0

oð1;βoÞ. We can interpret qn
o as follows.

� DMU o is stochastically CCR efficient if qn
o ¼ 1, which implies

that the reliability confidence region D0
oð1;βoÞ overlaps with the

production frontier Eff QðAÞ. In other words, there exists some
random realization ðyT ; xT ÞT AD0

oð1;βoÞ that lies on the produc-
tion frontier. As P½χ2

ðsþmÞr ðΦ�1ðβoÞÞ2�rφo, we know that
D0
oð1;βoÞ is a subset of DoðαoÞ. Note that the PPS QðAÞ spans

confidence regions DjðαjÞ8 j. It follows that a necessary condi-
tion for qn

o ¼ 1 is that confidence regions D0
oð1;βoÞ and DoðαoÞ

coincide, i.e., βoþαo ¼ 1.

� qn
oo1 means no random realization in the reliability confi-

dence region D0
oð1;βoÞ is efficient. qn

o is the maximum rate q of
proportional decrease in the inputs of DMU o before some
input–output combination within D0

oðq;βoÞ becomes efficient.
The index introduces a target reliability confidence region,
D0
oðqn

o;βoÞ, which overlaps with the production frontier.

Now we consider αoZ50% and βoZ50%. In a way similar to
the analysis for the above case, we conclude that uTy�vTxZ0
holds at any realization ðyT ; xT ÞT AD0

oðqn
o;βoÞ for a multiplier vector

ðuT ; �vT ÞT AVðqn
o , βoÞ \ PðAÞ. As a result, the target reliability

confidence region D0
oðqn

o;βoÞ is positioned outside the PPS QðAÞ
with some realization on the production frontier. qn

o is always less
than unity and can be regarded as the maximum rate q to decrease
the mean input vector of DMU o until no input–output combina-
tion within D0

oðq;βoÞ is inefficient.
In summary, the stochastic CCR efficiency index qn

o is the
maximum contraction rate q of the input vector for DMU o that
is necessary to move the reliability confidence region D0

oðq;βoÞ
until (i) it is not a proper subset of the PPS if 1�αorβoo50% or
(ii) it is entirely outside the PPS if βoZ50%.

Since Φ�1ð50%Þ ¼ 0, the confidence region Djð50%Þ of DMU j
reduces to a single point ðyT

j ; x
T
j ÞT . Note that ðyT

o ; x
T
o ÞT is also the

reliability confidence region D0
oð1;50%Þ. It is easy to see that qn

o
coincides with the DMU's deterministic CCR efficiency index
(under the assumption of no variability) when αj ¼ 50% for any
jAN and βo ¼ 50%. Hence the deterministic and stochastic CCR
efficiency indices can be interpreted similarly. But the latter is
concerned with a set of input–output combinations of the DMU
under evaluation instead of a single observation. Because qn

o is
non-increasing as βo or αj increases, the deterministic CCR
efficiency index of a DMU o is no less than its stochastic counter-
part qn

o when αj450%8 jAN and βo450%.
Olesen and Petersen [20] interpreted θn

o as the maximum
reduction rate in the mean inputs necessary for the confidence
region DoðαoÞ to overlap with the estimated production frontier.
However, we note that the variance–covariance matrix for the
inputs and outputs of DMU o shall change accordingly as the mean
inputs are displaced. Because the authors ignore this change in
modeling, their analysis would not identify the true target relia-
bility confidence region on the production frontier for an ineffi-
cient DMU and a correct stochastic efficiency index is returned by
model (2) only when the inefficient DMU's input vector is
deterministic.

An example of three DMUs adapted from Olesen and Petersen
[20] is used to illustrate the exposition in this sub-section. Each
DMU produces a single output from a single input. The input and
output combination of a DMU is assumed to follow a two-
dimensional normal distribution. The parameters of the distribu-
tions are given in Table 1. Let αj ¼ 85%, j¼ 1;2;3. Given j, we have
cj ¼Φ�1ð85%Þ � 1:036 and φj ¼ Pðχ2

ð2Þr1:0362Þ � 0:5847. As an
illustration, DMU 1's confidence region at the confidence level of

Table 1
Summary measures of the inputs and outputs.

DMU j Mean ðyj ; xjÞ Variance–covariance matrix Λj

1 (5, 2) 3.604 �1.2
�1.2 0.404

2 (5.8, 4.5) 0.148 0.264
0.264 0.488

3 (3.3, 3.9) 0.04 0.048
0.048 0.068
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0.5847 is formulated as

D1ð85%Þ ¼ ðy; xÞAR2
þ j

y�5
x�2

� �T 3:604 �1:2
�1:2 0:404

� ��1 y�5
x�2

� �
r1:0362

( )
:

Sincem¼ s¼ 1, each confidence region is an ellipsoid for which
the center and the axes are defined by the mean vector and the
variance–covariance matrix. The confidence regions D1ð85%Þ,
D2ð85%Þ and D3ð85%Þ are presented in Fig. 3.

As shown in the figure, the production frontier of the PPS spans
the confidence region D1ð85%Þ. By Eqs. (5) and (9), D0

1ð1;15%Þ is
identical to D1ð85%Þ as ½Φ�1ð85%Þ�2 ¼ ½Φ�1ð15%Þ�2. It follows that
DMU 1 is stochastically CCR efficient at the reliability level of 15%.

Suppose now β1 ¼ 30%. As presented in Fig. 4, the reliability
confidence region D0

1ð1;30%Þ is a subset of D1ð85%Þ. Hence, DMU
1 is stochastically inefficient at the reliability level of 30%. The
production frontier is a tangent line to the target reliability
confidence region D0

1ð0:6928;30%Þ. It follows that qn

1 ¼ 0:6928
when β1 ¼ 30%.

Let β1 ¼ 70%. Note ½Φ�1ðρÞ�2 ¼ ½Φ�1ð1�ρÞ�2 for any ρAð0;1Þ.
By Eqs. (5) and (9), we realize D0

1ðq;ρÞ ¼D1ðρÞ ¼D0
1ðq;1�ρÞ when

q¼1 and ρZ50%. Therefore, the reliability confidence region
D0
1ð1;70%Þ coincides with the region D0

1ð1;30%Þ, which was pre-
sented in Fig. 4. As shown in Fig. 5, D0

1ð0:3308;70%Þ is the target
reliability confidence region for DMU 1. That is, qn

1 ¼ 0:3308 at the
reliability level of 70%. Comparing Figs. 4 and 5 we note that
(i) choosing αjZ50% jAN, β1o50% and solving Eq. (4) for o¼1 is
equivalent to a search for the maximum value of the radial
contraction rate q of the mean input x1 such that D0

1ðq;β1Þ is not
a proper subset of the interior of the PPS partly spanned by the
confidence regions DjðαjÞ for DMU j¼ 1;2;3; (ii) choosing
αjZ50% jAN, β1450% and solving Eq. (4) for o¼1 is equivalent
to a search for the maximum value of the radial contraction rate q
of the mean input x1 such that the intersection of D0

1ðq;β1Þ and the
interior of the PPS partly spanned by the confidence regions DjðαjÞ
for DMU j¼ 1;2;3 is empty.

4. Solution approach

We note that model (4) is difficult to solve directly due to its strong
nonlinearity caused by the decision variable q appearing in the
reliability constraint as well as non-convexity. In this section, we
develop a solution procedure for model (4) by solving a series of
models in a form similar to (1), for which the deterministic equivalent
formulation is relatively easier to solve at least approximately.

The next result is useful to our ensuing exposition.

Proposition 2. Suppose that u0 and v0 are feasible multiplier vectors
to the constraints of model (4) other than the reliability constraint.Fig. 3. Production possibility set and production frontier.

Fig. 4. Efficiency analysis of DMU 1 at β1 ¼ 30%.

Fig. 5. Efficiency analysis of DMU 1 at β1 ¼ 70%.
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Let q0 ¼max q subject to the reliability constraint with u¼ u0 and
v¼ v0. It follows that Pfðu0ÞT ~yo=ðv0ÞT ~xoZq0g ¼ βo always holds.

Proof. Note that there exists at least one element in v0 that is
not zero. Since ~yro and ~xio are continuous random variables,
Pfðu0ÞT ~yo=ðv0ÞT ~xoZqg in terms of q can be interpreted as a
continuous mapping into (0, 1). By the Intermediate Value Theo-
rem [11], there exists some value q0 such that Pfðu0ÞT ~yo=ðv0ÞT
~xoZq0g ¼ βo. It is easy to verify that q0 ¼max q subject to the
reliability constraint. □

The corollary below is trivial to prove.

Corollary 1. Let qn
o, u

n and vn be optimal to model (4). It follows that
PfðunÞT ~yo=ðvnÞT ~xoZqn

og ¼ βo holds.

We now introduce the following programming problem with a
given parameter η:

γnoðηÞ ¼max
u;v

P
uT ~yo

vT ~xo
Zη

� �
s:t:

P
uT ~y j

vT ~x j
r1

( )
Zαj; jAN;

uZ0; vZ0: ð10Þ
The optimality condition of model (4) is presented below.

Theorem 1. γnoðqn
oÞ ¼ βo is the sufficient and necessary optimality

condition for model (4).

Proof. We first show that the optimality condition is necessary.
Let un, vn and qn

o be optimal to model (4). It follows that un and vn

are feasible to model (10) for any η and γnoðqn
oÞZβo. Suppose that

for model (10) the optimal multipliers u0 and v0 are such that
γnoðqn

oÞ ¼ Pfðu0ÞT ~yo=ðv0ÞT ~xoZqn
og4βo. It is easy to see that q¼ qn

o ,
u¼ u0 and v¼ v0 would be feasible to model (4), which contradicts
Proposition 2.

Next we show that the optimality condition is sufficient.
Assume that γnoðqÞ ¼ βo holds. Suppose that un, vn and qn

o is the
optimal solution to model (4) with qn

o4q. By Corollary 1, PfðunÞT
~yo=ðvnÞT ~xoZqg4βo and hence γnoðqÞ4βo, which contradicts our
assumption. □

A solution procedure is developed to solve the optimality
condition γnoðqn

oÞ ¼ βo.

Algorithm: Solving model (4)

Step 1: Let k¼1 and ηð1Þ be sufficiently small.
Step 2: Solve model (10) with η¼ ηðkÞ. Denote by uðkÞ and vðkÞ the

vectors of optimal multipliers. We require that not all
elements in uðkÞ are zero when k¼1.

Step 3: If γnoðηðkÞÞ�βooδ (a pre-selected tolerance), then stop and
return ηðkÞ as qn

o. Otherwise, let ηðkþ1Þ be the value such
that PfðuðkÞÞT ~yo=ðvðkÞÞT ~xoZηðkþ1Þg ¼ βo, increase k to kþ1
and go to Step 2.

The initial value of η should be chosen such that γnoðηð1ÞÞ is 1 or
close to 1. We can set ηð1Þ ¼ 0 if inputs and outputs are all positive
random variables. At the kth iteration of the algorithm, the sub-
problem (10) is solved for γnoðηðkÞÞ. The optimal multipliers
obtained are then used to generate ηðkþ1Þ. This process repeats
until γnoðηðkÞÞ and βo become sufficiently close.

The algorithm yields two sequences of numbers fηðkÞg and
fγnoðηðkÞÞg. The next proposition characterizes the sequence fηðkÞg.

Proposition 3. Iteration sequence fηðkÞg is monotone increasing in k.

Proof. Note that γnoðηð1ÞÞ is sufficiently close to 1. Since
Pfðuð1ÞÞT ~yo=ðvð1ÞÞT ~xoZηð2Þg ¼ βoo1, we have ηð1Þoηð2Þ. Suppose
that the algorithm does not terminate at the kth iteration. Since
uðkÞ and vðkÞ are feasible to model (10), we have γnoðηðkÞÞ4βoþδ,
PfðuðkÞÞT ~yo=ðvðkÞÞT ~xoZηðkþ1Þg ¼ βorγnoðηðkþ1ÞÞ. Hence, ηðkÞoηðkþ1Þ

unless γnoðηðkÞÞ�βooδ and therefore the sequence stops. □

The next corollary is natural.

Corollary 2. Iteration sequence fγnoðηðkÞÞg is monotone decreasing in
k.

According to the Monotone Convergence Principle [11], itera-
tion sequence fγnoðηðkÞÞg converges to βo.

Now we consider a special case where the inputs and outputs
of some DMUs are all deterministic. Let J be the set of all such
DMUs. The chance constraint in model (10) on any DMU jA J
changes to uTyj=vTxjr1 or uTyj�vTxjr0, where again yj and xj

denote deterministic output and input vectors. If o=2 J, then the
algorithm presented above is still applicable. Otherwise, the
following single problem is solved for the efficiency index qn

o:

qn

o ¼max
u;v

uTyo
vTxo

s:t:

P
uT ~y j

vT ~x j
r1

( )
Zαj; j=2 J;

uTyj
vTxj

r1; jA J;

uZ0; vZ0:

By the Charnes–Cooper transformation of linear fractional pro-
gramming problems [2], the above model can be rewritten as

qn

o ¼max
u;v

uTyo

s:t:

vTxo ¼ 1;

P
uT ~y j

vT ~x j
r1

( )
Zαj; j=2 J;

uTyj�vTxjr0; jA J;

uZ0; vZ0: ð11Þ
The iterative algorithm presented earlier in this section, which

we call Algorithm 1 can be applied here by replacing model (10)
with model (11).

We note that the algorithms developed in this section are
applicable to general probability distributions. The sub-problem
(10) can be solved in a way similar to model (1). Cooper et al. [7]
derived deterministic quadratic programs equivalent to model (1),
respectively, under two assumptions:

� Stochastic outputs and inputs are related only through a single
normally distributed factor.

� Input and output values are random variables following a
multivariate normal distribution.

In the next section, we will illustrate how to derive a determi-
nistic equivalent problem for model (10). We recommend that the
reader refer to Cooper, Huang, and Li [7] for details.

5. An illustrative example

We now evaluate the performance of a subset of the selected
gas stations studied by Suyoshi [22] to illustrate model (4) and
the algorithms developed in the previous section. In the
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computational studies, the linear problems are solved in Lindo
What'sBest! 10.0, an Excel spreadsheet add-in for mathematical
programming, while Algorithms 1 is coded using Microsoft VBA
(Visual Basic for Applications).

Sueyoshi [22] used a data set generated in summer 1998 to
predict future operational performance of sixty selected gas
stations in Tokyo, Japan. The three inputs in the data set are the
number of employees; the space size of a gas station; and the
monthly operational cost. The input values were observed in
summer 1998 and assumed to be deterministic. The two outputs
chosen are the sales of gasoline and petrol to be realized in winter
1998. The output levels were unknown at the time and a manager
in a Japanese petroleum firm was asked to provide the most likely
estimate, the optimistic estimate and the pessimistic estimate
for either output of each gas station. Under the assumption that
a random output level is independent and follows a particular
beta distribution used in PERT/CPM Sueyoshi [22] applied these
estimates to approximate the means and variances of the outputs.
(We note that Eq. (18) in [22] has typos. It should read b2rj ¼
½ðOPrj�PErjÞ=6�2.) Furthermore, the author adopted the single factor
symmetric disturbance assumption, i.e., the component of any
output determined solely by a single underlying random factor ξ
is formulated as

~yrj ¼ yrjþbrjξ;

for j¼ 1;2;…;n and r¼ 1;2;…; s, where ξ follows the standard
normal distribution. Note that yrj is the expected value of ~yrj, while
brj is the standard deviation. We would like to point out that the
assumptions of an independent PERT-beta distribution and a
single factor symmetric distribution are inconsistent, while the
author did not motivate or justify these assumptions. Despite
these problematic assumptions we choose the data set presented
in [22] as an illustrative example because there are very few
applications of stochastic DEA models available in the literature.

In the computational study, we run models (1) and (4) on this
data set. Only the twenty gas stations classified as “large” (1st to
20th DMUs in Tables 1 and 2 of [22]) are assessed.

Let y j ¼ ðy1j; y2j;…; ysjÞT and bj ¼ ðb1j; b2j;…; bsjÞT . x j ¼ ðx1j;
x2j;…; xmjÞ denotes the vector of deterministic input values for
DMU j.

Proceeding in a way analogous to Cooper, Huang and Li ([7]),
we can obtain a linear programming model equivalent to model

(1) under the single factor symmetric disturbance assumption:

κn

o ¼max
u;v

uTyo�vTxo

s:t:

uTbo ¼ 1;

uTy j�vTx jþΦ�1ðαjÞuTbjr0 jAN;

uZ0; vZ0:

Similarly, a linear programming model equivalent to model (10)
can be derived:

ωn

oðηÞ ¼max
u;v

uTyo�ηvTxo

s:t:

uTbo ¼ 1;

uTy j�vTx jþΦ�1ðαjÞuTbjr0 jAN;

uZ0; vZ0: ð12Þ

Remark 1. Note πn
o ¼Φðκn

oÞ and γnoðηÞ ¼Φðωn
oðηÞÞ. When Algorithm

1 is applied, model (12) is solved at the kth iteration with η¼ ηðkÞ,
while the optimal virtual multiplier vectors, denoted by uðkÞ and
vðkÞ are used to compute ηðkþ1Þ as

ηðkþ1Þ ¼Φ�1ðβÞþðuðkÞÞTyo

ðvðkÞÞTxo
:

Remark 2. Since model (1) was solved as a linear program and
Algorithm 1 iteratively solved a series of linear programs, the true
values of πn

o and qn
o were returned in this computational study for

every DMU o.

The computational results of model (1) are presented in Table 2
with α¼ αj ¼ 95%, 90%, 80%, 8 jAN. It is easy to see that for any
of these values of α stations 6, 15, 17, and 20 are deemed CHL
efficient.

Applying Algorithm 1, we assess the efficiency of each gas
station by solving a series of linear programming problems.
Table 3 gives qn

o of the twenty “large” gas stations with combina-
tions between α¼ αj ¼ 95%, 90%, 80%, 8 jAN and β¼ βo ¼ 1�α,
50%, and α. It is obvious that qn

o decreases with α and β. We note
that all CHL efficient units are stochastically CCR efficient when
β¼ 1�α. If β¼α or β¼50%, none of the units is stochastically CCR

Table 2
Stochastic outputs related through a single normally distributed factor: πn

o

values (%).

α 80% 90% 95%

DMU 1 2.139 0.589 0.172
DMU 2 0.404 0.101 0.028
DMU 3 0.000 0.000 0.000
DMU 4 2.351 0.418 0.075
DMU 5 0.257 0.055 0.013
DMU 6 20.000 10.000 5.000
DMU 7 7.479 3.004 1.245
DMU 8 0.388 0.081 0.019
DMU 9 0.000 0.000 0.000
DMU 10 0.001 0.000 0.000
DMU 11 17.485 8.332 4.000
DMU 12 0.000 0.000 0.000
DMU 13 0.000 0.000 0.000
DMU 14 1.078 0.314 0.100
DMU 15 20.000 10.000 5.000
DMU 16 0.000 0.000 0.000
DMU 17 20.000 10.000 5.000
DMU 18 0.265 0.074 0.023
DMU 19 0.112 0.009 0.001
DMU 20 20.000 10.000 5.000

Table 3
Stochastic outputs related through a single normally distributed factor: qn

o values.

α 80% 90% 95%

β 20% 50% 80% 10% 50% 90% 5% 50% 95%

DMU 1 0.957 0.927 0.896 0.956 0.911 0.865 0.955 0.898 0.840
DMU 2 0.926 0.891 0.857 0.927 0.876 0.824 0.928 0.863 0.798
DMU 3 0.866 0.834 0.803 0.867 0.820 0.773 0.869 0.809 0.749
DMU 4 0.970 0.948 0.926 0.965 0.932 0.900 0.961 0.920 0.878
DMU 5 0.928 0.897 0.867 0.928 0.882 0.836 0.929 0.870 0.811
DMU 6 1.000 0.966 0.931 1.000 0.949 0.897 1.000 0.935 0.870
DMU 7 0.979 0.949 0.920 0.979 0.935 0.891 0.980 0.923 0.867
DMU 8 0.943 0.917 0.890 0.942 0.902 0.863 0.941 0.891 0.840
DMU 9 0.847 0.822 0.796 0.845 0.808 0.770 0.844 0.797 0.749
DMU 10 0.868 0.836 0.804 0.870 0.821 0.773 0.871 0.809 0.748
DMU 11 0.997 0.969 0.943 0.997 0.955 0.916 0.997 0.944 0.894
DMU 12 0.887 0.866 0.844 0.883 0.851 0.820 0.880 0.840 0.799
DMU 13 0.888 0.862 0.835 0.886 0.847 0.808 0.885 0.836 0.786
DMU 14 0.942 0.909 0.876 0.943 0.894 0.844 0.944 0.881 0.818
DMU 15 1.000 0.967 0.934 1.000 0.951 0.901 1.000 0.937 0.875
DMU 16 0.834 0.816 0.798 0.827 0.800 0.773 0.821 0.787 0.754
DMU 17 1.000 0.970 0.940 1.000 0.955 0.910 1.000 0.943 0.886
DMU 18 0.919 0.884 0.849 0.923 0.870 0.818 0.925 0.859 0.793
DMU 19 0.942 0.920 0.898 0.937 0.904 0.871 0.933 0.891 0.850
DMU 20 1.000 0.975 0.950 1.000 0.962 0.924 1.000 0.952 0.904
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efficient, but station 20 appears to be stochastically pseudo-
efficient.

Next the same data set is used to demonstrate the application
of model (4) to perform a trade-off analysis between optimizing
and satisficing. Applying the model, the manager of each gas
station o seeks the highest aspiration level to be achieved with a
chosen probability βo. In light of the economic interpretation of
the stochastic CCR efficiency index, this is equivalent to finding the
maximum radial input contraction rate necessary for DMU o to
become stochastically efficient with a reliability level βo.

Take station 15 as an instance. Our computational results
presented in Table 3 suggest qn

15 ¼ 1:0 when β15 ¼ 10% and
α¼90%. That is, station 15 is stochastically CCR efficient at the
reliability level of 10%. Following our analysis in Section 3, we infer
that the reliability confidence region D0

15ð1:0;10%Þ shall be large so
that some realizations are on the production frontier, which
implies that the risk of failing to achieve the aspiration level of
1.0 is high. The manager of the gas station may prefer a higher
reliability level β15 and therefore a smaller reliability confidence
region in order to perform a less risky efficiency evaluation.
Increasing β15 renders qn

15o1 and requires that the inputs of the
gas station be cut to qn

15 � 100% of the original levels so as to
remain efficient and thus stay in business. Recall that given αj 8 j,
qn

15 is non-increasing in β15. As β15 increases, the performance of
the gas station should improve, if feasible, in order to generate the
desired outputs using less inputs.

Given α¼ αj ¼ 90% 8 j, we obtain qn

15 ¼ 0:9732 at β15 ¼ 30%
and qn

15 ¼ 0:8871 at β15 ¼ 95%. An input (cost) reduction rate of
0.8871 with a reliability level of 95% seems preferred. However,
our analysis in Section 3 indicates that the target reliability
confidence region D0

15ð0:8871;95%Þ is outside the production
possibility set. The manager of station 15 as a satisficer may thus
argue that it is too costly or technically challenging to make
changes to the process necessary to be efficient while cutting
the inputs to 88.71% of the current levels. Instead, the manager
may be satisfied with reducing the inputs to 97.32% of the current
levels with a reliability of 30% if the necessary changes to the
process are easy to implement.

6. Concluding remarks

It is critical to consider data uncertainty and variability when
assessing the performance of DMUs. A chance-constrained effi-
ciency analysis model with a reliability constraint has been
proposed in this paper. This new model links the formulations
developed by Olesen and Petersen [20] and Cooper et al. [7], and
can be applied to perform a trade-off analysis between optimizing
and satisficing.

For multivariate joint normal inputs and outputs the stochastic
efficiency index introduced in this study is shown to be a radial
measure that can be interpreted in a way similar to the determi-
nistic CCR efficiency index. The chance constraints in the proposed
model support two types of confidence regions in the input–
output space. Every DMU contributes a confidence region with its
non-contracted mean input and output vectors at the center. These
confidence regions span the production possibility set. The relia-
bility constraint generates a hyperplane to support a reliability
confidence region of the DMU under evaluation based on the
mean output vector and contracted mean input vector as well as
the reliability level chosen. The stochastic efficiency index is the
maximum contraction rate such that the reliability region is either
not a proper subset of the production possibility set (if the
reliability level is less than 0.5) or completely out of the produc-
tion possibility set (if the reliability level is greater than 0.5).

In this study, we have suggested a solution method that
determines the stochastic CCR efficiency index for a DMU by
generating and solving sub-problems iteratively. We realize that
this method cannot guarantee a global optimum in instances
where the sub-problems are not convex programs. This snag is
common for stochastic DEA models [23]. The task of developing a
more effective algorithm is left for future research.
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