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Abstract	
	
	 With	the	advent	of	genetic	sequencing,	there	was	much	hope	of	finding	the	

inherited	elements	underlying	complex	diseases,	such	as	late-onset	Alzheimer’s	

disease	(AD),	but	it	has	been	a	challenge	to	fully	uncover	the	necessary	information	

hidden	in	the	data.	A	likely	contributor	to	this	failure	is	the	fact	that	the	

pathogenesis	of	most	complex	diseases	does	not	involve	single	markers	working	

alone,	but	patterns	of	genetic	markers	interacting	additively	or	epistatically.	But	as	

we	move	upwards	beyond	patterns	of	size	two,	it	quickly	becomes	computationally	

infeasible	to	examine	all	combinations	in	the	solution	space.	A	common	solution	to	

solving	this	type	of	combinatorial	optimization	problem	is	to	model	it	as	a	mixed-

integer	linear	program	(MIP)	and	solve	it	using	the	algorithm	branch-and-cut,	

implemented	by	a	commercial	solver.	However,	with	the	trend	of	using	increasing	

numbers	of	computing	cores	to	increase	computational	power,	there	is	a	need	for	a	

different	approach	to	solving	MIPs	that	can	utilize	parallel	environments.	Here	we	

show	how	a	parallelized	implementation	of	an	alternative	algorithm,	cut-and-solve,	

can	be	used	to	solve	this	genetics	problem	faster	than	CPLEX,	one	of	the	leading	

commercial	MIP	solvers.		
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Section	1:	Introduction	
	
	 Identification	of	genetic	markers	underlying	a	complex	disease	is	a	first	step	

toward	unraveling	the	pathogenesis	of	the	disease	and	development	of	drugs	to	

treat	the	disorder;	it	also	enables	increased	accuracy	of	risk	prediction.	Genome-

wide	association	studies	(GWAS)	are	designed	to	address	this	critical	need.	A	GWAS	

is	an	observational	study	in	which	genetic	variants	are	examined	to	see	if	any	

variant	is	associated	with	a	cohort	of	afflicted	cases	or	normal	controls.	Though	this	

could	be	any	type	of	genetic	variant,	single	nucleotide	polymorphism	(SNP)	markers	

are	most	typically	used.	A	SNP	is	a	nucleotide	state	at	a	particular	location	in	the	

genome	that	may	vary	amongst	individuals.	Traditional	GWAS	examine	each	SNP	in	

isolation,	testing	whether	the	frequency	of	one	variant	is	significantly	more	(or	less)	

in	cases	with	the	disease	than	in	normal	controls.	However,	most	complex	diseases	

of	interest	arise	due	to	interactions	of	multiple,	possibly	many,	variants	acting	

additively	and/or	epistatically,	with	each	individual	SNP	exhibiting	small	or	

nonexistent	marginal	effects1.	

	 Owing	to	this	pressing	need	to	reveal	additive	and/or	epistatic	interactions	

associated	with	complex	diseases,	a	number	of	combinatorial	GWAS	(cGWAS)	

approaches	have	been	implemented	(e.g.2–6).	An	obvious	approach	is	to	exhaustively	

test	every	possible	combination,	thereby	ensuring	the	optimal	solution	is	identified.	

Pair-wise	association	methods,	such	as	PLINK’s	Fast	Epistasis3	and	a	statistic	

introduced	by	Wu	et	al5,	have	been	used	in	previous	cGWAS	efforts.	However,	these	

trials	are	unable	to	handle	higher-ordered	interactions	and	also	impose	hefty	

multiple	testing	corrections,	resulting	in	low	power	and	little	progress	in	this	area.	It	
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should	be	noted	that	directly	testing	every	quadruplet	or	higher-ordered	

combination	is	currently	computationally	intractable	for	large	studies.	Even	testing	

every	trio	would	be	impractical.	For	example,	one	million	SNPs	contains	1.7	x	1017	

unique	trios.	If	1-billion	trios	were	examined	each	second,	it	would	take	over	5	years	

to	test	every	trio.	Testing	every	quadruplet	would	take	over	1.3	million	years.	In	

general,	complex	diseases	could	involve	3-,	4-,	or	much	higher-ordered	

interactions2,	and	pair-wise	explorations	might	be	unable	to	capture	these	intricate	

mechanisms,	particularly	when	one	or	more	factor	behaves	epistatically.	

	 This	type	of	combinatorial	optimization	is	common	for	mixed-integer	linear	

programs	(MIPs).	A	MIP	is	a	mathematical	definition	of	a	problem	that	is	comprised	

of	a	set	of	decision	variables,	some	or	all	of	which	are	required	to	have	integral	

values;	a	linear	objective	function	to	be	minimized	or	maximized;	and	a	set	of	

constraints,	all	of	which	are	linear	equalities	or	inequalities.	In	general,	MIPs	are	NP-

hard7	and	may	require	exponential	computation	time.	Yet	great	progress	has	been	

made	in	this	field	and	a	few	extremely	large	instances	have	been	optimally	solved,	

such	as	the	85,900-city	Traveling	Salesman	Problem	(TSP)	which	includes	over	3.6	

billion	variables8,9.	These	successes	are	possible	due	to	the	use	of	upper	and	lower	

bounds	to	prune	away	most	of	the	solution	space	without	compromising	optimality.	

It	is	important	to	note	that	this	85,900-city	TSP	models	an	integrated	circuit	with	a	

relatively	regular	pattern	and	the	distances	between	cities	are	symmetric	and	obey	

the	triangle	inequality.	In	general,	many	relatively	small	TSPs	and	similar	problems	

remain	intractable.	For	example,	instances	of	closely-related	sequencing	problems	

with	only	48	cities	have	yet	to	be	solved	to	optimality10.		
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	 Generic	MIP	solvers	have	evolved	over	time	and	include	Cutting	Planes11,	

Branch-and-Bound12,	Branch-and-Cut13,	and	Cut-and-Solve14.	All	of	these	solvers	

utilize	relaxations	of	the	MIP—a	version	of	the	problem	in	which	one	or	more	

constraints	is	weakened	or	removed	entirely.	The	integrality	constraints	are	

commonly	relaxed,	resulting	in	a	linear	program	(LP)	which	can	be	solved	in	

polynomial	time	using	interior	point	methods,	or	worst-case	exponential	time	using	

the	Simplex	method15.	Despite	its	worst-case	performance,	Simplex	is	usually	very	

fast	in	practice	and	is	frequently	employed.	

	 Branch-and-Cut	(BNC)	combines	cutting	planes	and	branch-and-bound	into	a	

seamless	search	strategy	and	its	introduction	led	to	rapid	advancements	in	the	field,	

as	demonstrated	by	the	growth	of	optimally-solved	problem	sizes	for	the	TSP.	While	

cutting	planes	and	branch-and-bound	approaches	in	isolation	struggled	to	solve	49-

city	instances16,	BNC	solved	the	previously	mentioned	85,900-city	instance8.	State-

of-the-art	commercial	MIP	solvers,	such	as	IBM’s	CPLEX	and	Gurobi	Optimization,	as	

well	as	the	popular	open-source	solver	SCIP,	use	the	BNC	strategy,	and	the	primary	

research	focus	in	this	area	has	been	on	developing	sophisticated	separation	

algorithms	for	determining	cutting	planes	to	remove	the	relaxed	solution	while	

retaining	all	feasible	solutions9.	

	 One	key	challenge	for	BNC	solvers	is	memory	requirements,	and	many	large-

scale	instances	fail	due	to	memory	exhaustion.	Another	challenge	for	BNC	is	that	it	is	

not	amenable	to	massive	parallelization.	This	algorithm	involves	sequential	

derivations	and	applications	of	cutting	planes	at	each	node	of	the	search	tree.	

Consequently,	small-scale	parallelization	efforts	for	BNC	have	primarily	focused	
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upon	solving	each	problem	on	multiple	processors	with	varying	parameters	and/or	

simultaneously	solving	a	limited	number	of	tree	nodes;	while	massive	

parallelization	efforts	reduce	computations	spent	on	applications	of	cutting	planes	

and	revert	to	a	simple	branch-and-bound	search17.		

	 Cut-and-Solve	(CNS)	was	developed	to	address	these	challenges14.	CNS	

explores	a	search	path,	rather	than	a	tree.	At	each	node	in	the	search	path,	a	

relaxation	is	solved	and	a	‘piercing’	cut	is	applied	that	removes	a	chunk	of	the	

solution	space.	Unlike	traditional	cutting	planes,	piercing	cuts	intentionally	remove	

feasible	solutions	from	the	solution	space.	The	small	MIP	corresponding	to	this	

chunk—called	a	‘sparse’	problem—is	optimally	solved	using	BNC,	and	a	constraint	

removing	this	chunk	of	the	solution	space	is	applied	to	all	subsequent	problems	in	

the	search	path.	When	solved,	each	small	MIP	provides	a	feasible,	though	not	

necessarily	optimal,	‘anytime’	solution	which	replaces	the	current	incumbent	if	it	is	

a	better	solution.	For	maximization	(minimization)	problems,	the	relaxed	problems	

yield	non-increasing	(non-decreasing)	solution	values	due	to	the	addition	of	a	

constraint	at	each	level.	When	the	constraining	of	the	relaxed	problem	becomes	

tight	enough,	its	solution	value	becomes	no	better	than	the	incumbent	solution	

value.	This	moment	is	defined	as	convergence,	and	it	is	at	this	point	when	the	

incumbent	solution	is	declared	to	be	optimal.	

	 CNS	has	been	shown	to	outperform	state-of-the-art	commercial	solvers	in	

over	a	dozen	manuscripts	focused	on	diverse	optimization	problems14,18,27–33,19–26.	In	

general,	CNS	successes	have	been	for	exceptionally	tough	problems	in	which	the	

approach	for	breaking	the	solution	space	down	into	more	manageable	pieces	has	
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provided	the	essential	key.	As	the	search	path	is	traversed,	the	only	information	that	

needs	to	be	retained	is	the	list	of	piercing	cuts	that	are	added	to	remove	the	small	

chunks	of	the	solution	space.	Since	each	of	the	MIPs	that	are	solved	is	for	a	small	

portion	of	the	solution	space,	the	memory	requirements	are	greatly	reduced.		

	 In	contrast	to	BNC	approaches,	CNS	is	readily	adapted	to	massive	

parallelization	across	distributed	memory14.	Note	that	the	sparse	problems	solved	

during	a	CNS	search	do	not	need	to	be	computed	in	any	particular	order	and	each	

can	be	solved	in	isolation.	Relaxations	can	be	solved	and	piercing	cuts	applied	

iteratively,	spawning	a	new	process	to	solve	a	small	MIP	at	each	level	of	the	path.	

Therefore,	it	is	straightforward	to	parallelize	CNS.	The	incumbent	solution	is	

globally	accessed	as	small	MIPs	are	solved	and	once	this	incumbent	is	better	than	a	

relaxed	solution	the	search	path	is	terminated.	In	fact,	it	is	not	necessary	to	solve	all	

of	the	outstanding	MIPs	at	that	time	in	many	cases.	For	maximization	

(minimization)	MIPs,	only	those	spawned	prior	to	the	relaxation	that	has	a	smaller	

(larger)	value	than	the	incumbent	need	to	be	computed	to	ensure	optimality.		

	 Applying	CNS	to	this	cGWAS	problem	was	first	done	by	Brandenburg34.	They	

developed	a	MIP	model	for	cGWAS	and	solved	the	model	on	late-onset	Alzheimer’s	

disease	(AD)	datasets	using	a	parallelized	implementation	of	CNS,	demonstrating	

CNS’s	ability	to	scale	with	the	number	of	processors	given.	A	strong	merit	of	their	

implementation	was	the	ability	to	find	high	quality,	many	times	optimal,	solutions	

early	in	the	search	path,	but	they	were	unable	to	get	CNS	to	prove	their	optimality	in	

a	reasonable	amount	of	time	for	all	but	the	smallest	of	problems.	Here	we	build	on	

their	work,	making	various	improvements	to	both	the	MIP	model	and	CNS	
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implementation	to	address	many	of	their	shortcomings,	including	speeding	up	the	

time	to	convergence.	
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Section	2:	Methods	
2.1	Background	
	
2.1.1	The	ORCA	Model	
	
	 In	order	to	use	a	mixed-integer	linear	programming	approach,	a	

mathematical	model	with	an	appropriate	objective	function	must	be	developed,	

such	that	when	solved,	provides	us	with	insight	into	the	overall	problem.	To	solve	

the	aforementioned	combinatorial	genetics	problem,	the	Operations	Research	for	

Objective:	

(1)				Maximize				𝑍 = 	
1
𝐴𝐷	0𝑖𝑛𝑑4 −

67

489

1
𝑁𝐶	 0 𝑖𝑛𝑑4

67<=>

4867<9

	

Subject	to:	

(2)				𝑠𝑖𝑧𝑒 = 	0𝑚𝑎𝑟𝑘G
H

G89

	

(3)				𝑖𝑛𝑑4 ≤
1
𝑆
L0𝐺G,4𝑚𝑎𝑟𝑘G − 𝑠𝑖𝑧𝑒 + 𝑆

H

G89

P 						∀𝑗, 1 ≤ 𝑗 ≤ 𝐴𝐷 + 𝑁𝐶	

	

(4)				𝑖𝑛𝑑4 ≥
1
𝑆
L0𝐺G,4𝑚𝑎𝑟𝑘G − 𝑠𝑖𝑧𝑒 + 1

H

G89

P 						∀𝑗, 1 ≤ 𝑗 ≤ 𝐴𝐷 + 𝑁𝐶	

(5)				𝑖𝑛𝑑4 ∈ {0, 1}	
(6)				𝑚𝑎𝑟𝑘G ∈ {0, 1}	
(7)				𝑠𝑖𝑧𝑒 ∈ 	ℤ<	

	
Constants:	
	

(8)				AD	=	number	of	Alzheimer’s	cases	
(9)				NC	=	number	of	normal	controls	
(10)				S	=	number	of	marker	states	

(11)				𝐺G,4 ∈ {0, 1}	
	

Figure	1.	The	original	ORCA	model	for	finding	the	optimal	risk	pattern.	
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Combinatorial	Associations	(ORCA)	model	was	developed,	which	seeks	to	find	the	

genetic	pattern	with	the	absolute	maximum	percentage	difference	between	cases	

and	controls	(Figure	1)34.	Without	loss	of	generality	we	will	discuss	as	if	we	were	

finding	a	genetic	risk	pattern,	but	note	that	a	protective	pattern	could	also	be	found	

by	negating	the	right-hand	side	of	the	objective	function	(1).	

		 The	objective	function	(1)	specifies	that	we	are	to	maximize	Z,	the	difference	

between	the	ratio	of	AD	cases	with	the	pattern	and	the	ratio	of	normal	controls	with	

that	same	pattern.	The	variable	indj	will	be	1	if	and	only	if	individual	j	carries	the	full	

pattern,	and	0	otherwise.	All	individuals	are	kept	sequentially,	with	individuals	1	

through	AD	representing	cases,	and	individuals	AD+1	through	AD+NC	representing	

controls.		

	 Constraint	(2)	states	that	the	sum	of	the	mark	variables	must	equal	the	

variable	size.	Although	size	can	assume	any	positive	integral	value,	it	is	usually	a	

constant	chosen	before	solving	the	model	as	the	solution	space	is	drastically	

reduced	by	doing	so.	Trials	with	alternative	size	values	can	be	run	separately	and,	

due	to	their	independence,	may	be	run	in	parallel,	thereby	utilizing	all	available	

processors.	

	 Constraints	(3)	state	that	each	individual	can	be	assigned	a	value	of	1	only	if	

that	individual	carries	all	marker	states	in	the	pattern.	G	is	a	2-D	matrix	of	constant	

values,	where	element	Gi,j	is	1	if	individual	j	carries	marker	state	i,	and	0	otherwise.	

For	biallelic	SNPs,	all	individuals	will	either	be	homozygous	in	the	first	allele,	

homozygous	in	the	second	allele,	or	heterozygous.	These	three	possibilities	are	

encoded	into	4	possible	states	(Table	1).		
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	 We	give	an	example	of	matrix	G	with	a	trivial	dataset	of	1	SNP	and	3	

individuals	(Table	2).	If	the	possible	alleles	for	the	SNP	are	C	and	T,	then	individual	1	

carries	CT,	individual	2	carries	TT,	and	individual	3	carries	CC.		

	

	 Constraints	(4)	restrict	individuals	in	the	opposite	direction,	stating	that	an	

individual	can	be	assigned	a	value	of	0	only	if	they	do	not	carry	the	full	pattern.	

Constraints	(3)	and	(4)	together	with	integrality	constraints	(5)	enforce	the	rule	

that	indj	=	1	if	and	only	if	individual	j	carries	the	full	pattern.	

	

2.1.2	Cut-and-Solve	
	
	 An	essential	part	of	the	cut-and-solve	(CNS)	algorithm	is	the	selection	of	

piercing	cuts.	A	piercing	cut	is	a	cut	that	designates	a	sparse	problem	to	be	removed	

from	the	solution	space	and	solved	independently.	In	our	problem,	a	piercing	cut	is	

defined	by	a	set	of	marker	states.	We	refer	to	the	size	of	a	piercing	cut	as	the	number	

Table	1.	How	SNPs	are	encoded	in	matrix	G.	
	 Homozygous	A	 Carrier	A	 Carrier	a	 Homozygous	a	
AA	 1	 1	 0	 0	
Aa	 0	 1	 1	 0	
aa	 0	 0	 1	 1	

	

Table	2.	An	example	of	matrix	G	for	a	dataset	with	3	individuals	and	1	SNP.	
	 ind1	 ind2	 ind3	

mark1	(Homozygous	C)	 0	 0	 1	
mark2	(Carrier	C)	 1	 0	 1	
mark3	(Carrier	T)	 1	 1	 0	

mark4	(Homozygous	T)	 0	 1	 0	
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of	marker	states	that	define	the	cut.	When	the	sparse	problem	corresponding	to	a	

piercing	cut	is	solved,	it	means	that	the	optimal	pattern—using	only	the	marker	

states	in	the	cut—has	been	found.	To	cut	off	the	section	of	the	solution	space	defined	

by	the	piercing	cut,	a	linear	constraint	is	added	to	the	model.	This	linear	constraint	

is	of	the	form	∑ 𝑚𝑎𝑟𝑘G ≤ 𝑠𝑖𝑧𝑒 − 1G∈> ,	where	C	is	the	set	of	marker	states	that	define	

the	sparse	problem.	This	constraint	states	that	a	full	genetic	pattern	cannot	consist	

entirely	of	marker	states	in	C.	We	give	an	example	(Figure	2).	

	

	 The	original	ORCA	model	was	solved34	using	CNS14.	Similar	to	other	previous	

implementations14,18,27–33,19–26,	the	Brandenburg	implementation	used	CPLEX	to	

solve	the	sparse	problems.	On	the	other	hand,	instead	of	using	reduced	costs	to	

determine	the	piercing	cuts,	the	Brandenburg	implementation	used	the	values	

assigned	to	the	mark	variables	from	the	relaxations.	More	specifically,	a	fixed	

number	of	the	highest-valued	mark	variables	was	chosen.	They	found	that	this	

strategy	led	to	finding	high	quality,	often	optimal,	solutions	early	in	the	search	path.	

Suppose	we	are	searching	for	the	optimal	pattern	(size	=	2)	for	a	dataset.	The	
following	set	of	marker	states	is	chosen	for	a	sparse	problem:	

{3,	4,	10,	15}	
	
The	solution	space	for	this	sparse	problem	is	the	family	of	sets:	

{{3,	4},	{3,	10},	{3,	15},	{4,	10},	{4,	15},	{10,	15}}	
	
To	solve	this	sparse	problem,	find	the	set	of	marker	states	from	the	family	that	
maximizes	the	objective	function.	
	
To	cut	off	the	section	of	the	solution	space	defined	by	the	sparse	problem,	add	the	
following	linear	constraint:	

𝑚𝑎𝑟𝑘^ + 𝑚𝑎𝑟𝑘_ + 𝑚𝑎𝑟𝑘9` + 𝑚𝑎𝑟𝑘9a ≤ 1	
	
Figure	2.	Example	of	a	sparse	problem.	
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2.2	Changes	to	the	ORCA	Model	
	
	 A	problem	with	this	aforementioned	formulation	of	the	ORCA	model	is	that	

the	bounds	on	the	variables	representing	individuals	are	too	loose	when	integrality	

is	relaxed.	In	the	CNS	algorithm,	we	regularly	use	relaxations	to	extract	the	upper	

bound	of	the	problem.	To	illustrate	this	point,	we	graph	the	expression	

∑ 𝐺G,4𝑚𝑎𝑟𝑘GH
G89 	against	indj,	where	∑ 𝐺G,4𝑚𝑎𝑟𝑘GH

G89 	represents	the	number	of	marker	

states	of	the	pattern	that	individual	j	carries	(Figure	3).		

	

	 When	integrality	is	relaxed,	then	a	case	that	carries	no	marker	states	of	the	

pattern	can	have	a	high	indj	value.	Similarly,	a	control	carrying	the	full	pattern	can	

have	a	low	indj	value.	

	 To	fix	this,	we	revised	the	model	(Figure	4)	by	first	converting	size	from	a	

variable	to	a	constant	(we	were	already	doing	this	in	practice).	This	conversion	

allowed	us	to	then	substitute	S	with	size	in	constraints	(3),	resulting	in	constraints	

(14).	This	could	not	have	been	done	before	while	maintaining	linearity.	In	

constraints	(4)	the	9
H
	coefficient	is	removed	entirely,	resulting	in	constraints	(15).	

Additionally,	because	this	is	a	maximization	problem,	constraints	(14)	only	needs	to	

in
d j
	

∑ 𝐺G,4𝑚𝑎𝑟𝑘GH
G89 		

Figure	3.	Search	space	for	an	individual	for	a	problem	with	5	SNPs	using	the	
original	model	(size	=	5).	
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be	imposed	on	cases,	and	constraints	(15)	only	needs	to	be	imposed	on	controls,	

thereby	halving	the	number	of	these	constraints.	This	revised	model	restricts	the	

solution	space	for	each	individual	(Figure	5),	resulting	in	faster	solving	and	tighter	

upper	bounds	from	the	relaxations.	Note	that	to	find	protective	patterns	using	the	

revised	model,	the	right	hand	side	of	the	objective	function	(12)	should	be	negated,	

constraints	(14)	should	be	applied	to	individuals	𝐴𝐷 + 1 ≤ 𝑗 ≤ 𝐴𝐷 + 𝑁𝐶,	and	

constraints	(15)	should	be	applied	to	individuals	1 ≤ 𝑗 ≤ 𝐴𝐷.		

	

Objective:	

(12)				Maximize				𝑍 = 	
1
𝐴𝐷	0𝑖𝑛𝑑4 −

67

489

1
𝑁𝐶	 0 𝑖𝑛𝑑4

67<=>

4867<9

	

Subject	to:	

(13)				𝑠𝑖𝑧𝑒 = 	0𝑚𝑎𝑟𝑘G
H

G89

	

(14)				𝑖𝑛𝑑4 ≤
1
𝑠𝑖𝑧𝑒0𝐺G,4𝑚𝑎𝑟𝑘G

H

G89

						∀𝑗, 1 ≤ 𝑗 ≤ 𝐴𝐷	

(15)				𝑖𝑛𝑑4 ≥0𝐺G,4𝑚𝑎𝑟𝑘G − 𝑠𝑖𝑧𝑒
H

G89

+ 1							∀𝑗, 𝐴𝐷 + 1 ≤ 𝑗 ≤ 𝐴𝐷 + 𝑁𝐶	

(16)				𝑖𝑛𝑑4 ∈ {0, 1}	
(17)				𝑚𝑎𝑟𝑘G ∈ {0, 1}	

	
Constants:	
	

(18)				𝑠𝑖𝑧𝑒 ∈ 	ℤ<	
(19)				AD	=	number	of	Alzheimer’s	cases	
(20)				NC	=	number	of	normal	controls	
(21)				S	=	number	of	marker	states	

(22)				𝐺G,4 ∈ {0, 1}	
	

Figure	4.	The	revised	ORCA	model	for	finding	the	optimal	risk	pattern.	
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	 We	then	took	this	revised	model	a	step	further	and	converted	it	into	a	

piecewise-linear	approximation	(Figure	6)	by	using	‘big	M’	(an	adequately	large	

constant),	adding	a	new	set	of	binary	variables	bj,	and	adding	one	new	set	of	

constraints	(Figure	7).	With	these	additions,	we	were	able	to	relax	integrality	on	the	

mark	and	ind	variables,	yet	still	obtain	entirely	integral	solutions,	as	explained	next.		

	 The	new	case	constraints	(25)	and	(26)	state	that	an	individual	j	must	have	at	

least	c𝑠𝑖𝑧𝑒 − 9
d
e	marker	states	of	the	pattern	in	order	for	indj	to	equal	1.	Otherwise	

𝑖𝑛𝑑4 = 0.	Consequently,	these	constraints	put	extremely	strong	pressure	on	cases	to	

have	the	full	pattern	in	order	for	their	indj	variable	to	have	non-zero	values.	This	fact	

coupled	with	the	integrality	requirements	on	the	b	variables	and	the	use	of	an	

adequately	large	M	encourages	integrality	of	the	ind	variables	for	the	cases.		

in
d j
	

∑ 𝐺G,4𝑚𝑎𝑟𝑘GH
G89 		

Figure	5.	Search	space	for	an	individual	using	the	revised	model	(size	=	5).	

in
d j
	

∑ 𝐺G,4𝑚𝑎𝑟𝑘GH
G89 		

Figure	6.	Search	space	for	a	case	individual	for	a	true	piecewise	model	(size	=	5).	
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	 For	the	controls,	we	kept	the	same	constraints	(15).	Despite	having	no	

integrality	constraints,	the	indj	values	for	the	controls	will	still	be	integral.	The	

objective	function	pushes	ind	values	for	controls	to	be	zero,	but	constraints	(27)	

force	the	value	to	be	1	when	the	individual	possesses	the	entire	pattern.	

Consequently,	these	variables	assume	integral	values	without	explicit	integrality	

constraints	present.	Note	that	to	find	protective	patterns	using	the	piecewise	model,	

Objective:	

(23)				Maximize				𝑍 = 	
1
𝐴𝐷	0𝑖𝑛𝑑4 −

67

489

1
𝑁𝐶	 0 𝑖𝑛𝑑4

67<=>

4867<9

	

Subject	to:	

(24)				𝑠𝑖𝑧𝑒 = 	0𝑚𝑎𝑟𝑘G
H

G89

	

(25)				𝑖𝑛𝑑4 ≤ 𝑀0𝐺G,4𝑚𝑎𝑟𝑘G + 𝑏4(1 −𝑀 ∗ 𝑠𝑖𝑧𝑒)
H

G89

						∀𝑗, 1 ≤ 𝑗 ≤ 𝐴𝐷	

	
(26)				𝑖𝑛𝑑4 ≤ 𝑏4						∀𝑗, 1 ≤ 𝑗 ≤ 𝐴𝐷	

(27)				𝑖𝑛𝑑4 ≥ 0𝐺G,4𝑚𝑎𝑟𝑘G − 𝑠𝑖𝑧𝑒
H

G89

+ 1							∀𝑗, 𝐴𝐷 + 1 ≤ 𝑗 ≤ 𝐴𝐷 +𝑁𝐶	

(28)				0 ≤ 𝑖𝑛𝑑4 ≤ 1	
(29)				0 ≤ 𝑚𝑎𝑟𝑘G ≤ 1	
(30)				𝑏4 ∈ {0,1}	

	
Constants:	
	

(31)				𝑀 = 1 × 10^	
(32)				𝑠𝑖𝑧𝑒 ∈ 	ℤ<	

(33)				AD	=	number	of	Alzheimer’s	cases	
(34)				NC	=	number	of	normal	controls	
(35)				S	=	number	of	marker	states	

(36)				𝐺G,4 ∈ {0, 1}	
	

Figure	7.	The	piecewise	ORCA	model	for	finding	the	optimal	risk	pattern.	
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the	right	hand	side	of	the	objective	function	(23)	should	be	negated,	constraints	(25)	

and	(26)	should	be	applied	to	individuals	𝐴𝐷 + 1 ≤ 𝑗 ≤ 𝐴𝐷 + 𝑁𝐶,	and	constraints	

(27)	should	be	applied	to	individuals	1 ≤ 𝑗 ≤ 𝐴𝐷.	

	 While	the	piecewise	model	gave	us	a	significant	increase	in	speed	for	solving	

the	sparse	problems,	the	relaxed	version	of	the	piecewise	model	gives	no	such	

benefit	over	the	relaxed	version	of	the	revised	model.	The	main	strength	of	the	

piecewise	model	is	the	fewer	number	of	integer	variables.	However,	when	

Objective:	

(37)				Maximize				𝑍 = 	
1
𝐴𝐷	0𝑖𝑛𝑑4 −

67

489

1
𝑁𝐶	 0 𝑖𝑛𝑑4

67<=>

4867<9

	

Subject	to:	

(38)				𝑠𝑖𝑧𝑒 = 	0𝑚𝑎𝑟𝑘G
H

G89

	

(39)				𝑖𝑛𝑑4 ≤
1
𝑠𝑖𝑧𝑒0𝐺G,4𝑚𝑎𝑟𝑘G

H

G89

						∀𝑗, 1 ≤ 𝑗 ≤ 𝐴𝐷	

(40)				𝑖𝑛𝑑4 ≥0𝐺G,4𝑚𝑎𝑟𝑘G − 𝑠𝑖𝑧𝑒
H

G89

+ 1							∀𝑗, 𝐴𝐷 + 1 ≤ 𝑗 ≤ 𝐴𝐷 + 𝑁𝐶	

(41)				0 ≤ 𝑖𝑛𝑑4 ≤ 1	
(42)				0 ≤ 𝑚𝑎𝑟𝑘G ≤ 1	

	
Constants:	
	

(43)				𝑠𝑖𝑧𝑒 ∈ 	ℤ<	
(44)				AD	=	number	of	Alzheimer’s	cases	
(45)				NC	=	number	of	normal	controls	
(46)				S	=	number	of	marker	states	

(47)				𝐺G,4 ∈ {0, 1}	
	

Figure	8.	The	LP	relaxation	of	the	revised	ORCA	model	for	finding	the	optimal	risk	
pattern.	
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integrality	is	relaxed,	the	revised	model	has	both	fewer	variables	and	fewer	

constraints.	Therefore,	we	have	elected	to	use	the	relaxed	version	of	the	revised	

model	for	the	relaxations	instead	of	the	piecewise	model	(Figure	8).	

	

2.3	Our	Cut-and-Solve	Implementation	
	
	 There	are	a	few	key	differences	between	the	Brandenburg	implementation	of	

CNS	and	our	own.	First,	we	use	a	different	strategy	to	decide	which	piercing	cuts	to	

make.	Second,	we	introduce	‘special’	cuts	which	help	to	reduce	the	solution	space	

and	upper	bound.	Third,	we	have	split	our	implementation	into	two	phases:	a	

sequential	phase	run	on	a	single	core	and	a	phase	for	massive	parallelization.	And	

lastly,	we	use	enumeration	to	solve	the	sparse	problems	rather	than	CPLEX.	This	

section	will	explain	the	details	of	these	changes	and	the	reasons	behind	them.	

	

2.3.1	Determining	Cuts	
	
	 There	are	two	categories	of	cuts	that	we	use	in	our	CNS	implementation:	

piercing	cuts	and	special	cuts.	A	piercing	cut	is	a	cut	that	specifies	a	sparse	problem	

and	is	added	to	the	model	under	the	assumption	that	the	sparse	problem	will	be	

solved	to	optimality.	As	previously	described	in	Section	2.1.2,	the	sparse	problem	is	

a	MIP	with	only	a	small	subset	of	the	mark	variables.	The	corresponding	piercing	cut	

is	∑ 𝑚𝑎𝑟𝑘G ≤ 𝑠𝑖𝑧𝑒 − 1G∈> ,	where	C	is	the	subset.	A	special	cut	is	an	additional	

constraint	that	can	be	immediately	added	to	the	model	once	certain	conditions	are	

met.	There	is	no	corresponding	sparse	problem	for	a	special	cut.	There	are	multiple	

types	of	piercing	cuts	and	special	cuts.	
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2.3.1.1	Determining	Piercing	Cuts	
	
Cut	Set	Before	delving	into	the	types	of	piercing	cuts	and	how	they	are	determined,	

we	introduce	the	cut	set,	a	data	structure	central	to	our	CNS	implementation.	The	

underlying	data	structure	of	a	cut	set	is	a	set	of	arrays,	where	each	array	represents	

a	piercing	cut.	More	specifically,	the	values	in	the	array	indicate	mark	variables	of	

subset	C.	A	piercing	cut	can	be	stored	in	the	cut	set	only	if	it	is	not	a	subset	of	any	

other	piercing	cut	in	the	set.	We	refer	to	the	number	of	piercing	cuts	in	the	cut	set	as	

the	size	of	the	cut	set.	

	 As	an	example,	suppose	there	is	a	cut	set	that	contains	piercing	cut	x	and	we	

attempt	to	add	piercing	cut	y	to	the	cut	set.	If	y	is	a	subset	of	x,	then	y	is	not	added	to	

the	cut	set,	leaving	the	cut	set	unchanged.	On	the	other	hand,	if	y	is	a	superset	of	x,	

then	x	is	removed	from	the	cut	set	and	y	is	added.	To	further	explain	we	give	a	

concrete	example	(Figure	9).	

	

Piercing	Cuts	from	Relaxed	Values	Similar	to	the	Brandenburg	implementation34,	

we	also	create	piercing	cuts	by	examining	the	values	assigned	to	mark	variables	

Suppose	we	had	a	cut	set	containing	the	following	piercing	cuts:	
{{1,	3,	5,	7,	9},	{2,	7,	10,	12,	14}}	

	
If	the	piercing	cut	{1,	2,	3,	7,	10}	was	added	to	the	cut	set,	then	the	cut	set	would	
contain:	

{{1,	3,	5,	7,	9},	{2,	7,	10,	12,	14},	{1,	2,	3,	7,	10}}	
	
If	{2,	10,	12,	14}	was	added,	the	cut	set	would	not	change.	
	
If	{1,	2,	3,	5,	7,	9,	10}	was	added,	then	the	cut	set	would	contain:	

{{2,	7,	10,	12,	14},	{1,	2,	3,	5,	7,	9,	10}}	
	
Figure	9.	Example	of	adding	a	piercing	cut	to	a	cut	set.	
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from	the	relaxations.	But	while	the	Brandenburg	implementation	used	a	fixed	

number	of	the	mark	variables	with	the	highest	values,	we	use	all	mark	variables	

with	non-zero	values.	The	reason	for	this	change	is	because	of	our	use	of	

enumeration	instead	of	a	MIP	solver	to	solve	the	sparse	problems	(the	reasons	for	

using	enumeration	are	explained	in	section	2.3.4.1).	The	Brandenburg	

implementation	used	a	fixed	number	of	marker	states	for	each	sparse	problem	in	

order	to	keep	the	memory	requirements	for	the	MIP	solver	low.	Enumeration	has	no	

such	memory	requirements,	so	no	compromises	need	to	be	made	in	the	selection	of	

marker	states.	

	

Piercing	Cuts	from	Merging	Part	of	the	enumeration	algorithm	entails	iterating	

through	the	cut	set	to	see	if	a	genetic	pattern	has	already	been	enumerated	in	a	

previous	sparse	problem.	This	prevents	duplicated	work	at	the	expense	of	iterating	

through	the	cut	set.	However,	the	cut	set	can	gain	so	many	piercing	cuts	that	the	

number	of	array	accesses	needed	to	look	through	the	cut	set	becomes	greater	than	

the	number	of	array	accesses	needed	to	enumerate	a	genetic	pattern.	Therefore,	we	

introduce	the	creation	of	piercing	cuts	by	merging	two	previous	piercing	cuts	from	

the	cut	set.	

	 Our	method	for	finding	a	merged	cut	involves	using	the	Hamming	distance	

between	two	piercing	cuts,	where	the	Hamming	distance	between	two	strings	of	

equal	length	is	the	number	of	positions	at	which	the	corresponding	symbols	are	

different35.	Every	piercing	cut	is	defined	by	an	array	of	binary	values,	where	

𝑚𝑎𝑟𝑘[𝑎] = m1	if	𝑚𝑎𝑟𝑘o	is	in	the	piercing	cut
0	otherwise

	.	To	find	the	distance	between	two	
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piercing	cuts,	we	calculate	the	Hamming	distance	between	their	arrays.	The	merged	

cut	will	be	the	union	between	the	two	piercing	cuts	with	the	least	distance	between	

them,	with	the	requirement	that	at	least	one	of	the	two	piercing	cuts	is	the	smallest	

cut	in	the	cut	set.	As	an	example,	suppose	we	have	a	dataset	with	2	SNPs	(8	marker	

states)	and	we	determined	that	the	two	cuts	to	be	merged	are	{1,	1,	0,	0,	0,	1,	1,	0}	

and	{0,	1,	1,	0,	0,	0,	1,	1}.	The	distance	between	these	two	cuts	is	4	and	the	resulting	

merged	cut	would	be	{1,	1,	1,	0,	0,	1,	1,	1}.	

	 This	merged	cut	is	a	superset	of	the	two	piercing	cuts	used	to	create	it.	

Because	no	cut	can	be	a	subset	of	any	other	cut	in	the	cut	set,	when	this	merged	cut	

is	added	to	the	cut	set,	the	two	original	piercing	cuts	are	removed.	Thus,	the	addition	

of	a	merged	cut	to	the	cut	set	will	result	in	a	net	reduction	in	the	size	of	the	cut	set	

by	at	least	1.	

	

Piercing	Cuts	from	Individuals	The	final	type	of	piercing	cut	we	use	is	a	piercing	

cut	derived	from	an	individual’s	marker	states.	As	a	reminder,	every	individual	has	

their	own	set	of	marker	state	values	deduced	from	the	SNP	alleles	they	carry	(Table	

3).	Matrix	G	is	comprised	of	these	constant	values,	where	each	column	represents	an	

Table	3.	An	example	of	matrix	G	for	a	dataset	with	3	individuals	and	2	SNPs.	
	 ind1	 ind2	 ind3	

mark1	 0	 0	 1	
mark2	 1	 0	 1	
mark3	 1	 1	 0	
mark4	 0	 1	 0	
mark5	 1	 0	 0	
mark6	 1	 1	 0	
mark7	 0	 1	 1	
mark8	 0	 0	 1	
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individual	in	the	study.	We	can	create	a	piercing	cut	from	this	information	directly.	

Solving	the	corresponding	sparse	problem	for	a	piercing	cut	derived	from	a	given	

individual’s	marker	states	would	be	to	find	the	optimal	genetic	pattern,	given	that	

this	individual	carries	that	pattern.	When	this	type	of	piercing	cut	is	added	to	the	

model,	the	constraint	indj	=	0	can	also	be	added,	effectively	removing	individual	j	

from	the	solution	space.	When	enough	of	this	type	of	piercing	cut	is	added	to	the	

model,	the	number	of	case	individuals	set	to	0	will	become	large	enough	that	the	

objective	value	from	the	relaxation	can	no	longer	exceed	the	current	incumbent	

solution,	guaranteeing	that	the	optimal	solution	has	been	found.	

	 Taking	the	information	from	Table	3	as	an	example,	suppose	we	wanted	to	

create	a	cut	from	individual	2’s	marker	states.	The	piercing	cut	would	be	𝑚𝑎𝑟𝑘^ +

𝑚𝑎𝑟𝑘_ + 𝑚𝑎𝑟𝑘{ + 𝑚𝑎𝑟𝑘| ≤ 𝑠𝑖𝑧𝑒 − 1.	When	this	piercing	cut	is	added	to	the	model,	

we	add	the	additional	constraint	ind2	=	0.	

	

2.3.1.2	Determining	Special	Cuts	
	
Marker	Removal	When	either	a	new	incumbent	solution	is	found,	or	an	ind	variable	

is	set	to	zero,	there	is	an	opportunity	to	set	mark	variables	to	zero.	

	 The	first	step	is	to	create	an	array,	casesCarrying,	of	S	elements,	where	S	is	

the	total	number	of	marker	states.	Each	element	is	initialized	to	the	number	of	cases	

that	carry	that	particular	marker	state.	For	example,	if	casesCarrying[i]	is	140,	then	

140	cases	carry	marker	state	i.	Whenever	a	new	incumbent	solution	is	found,	the	

objective	value	of	the	new	solution	is	compared	against	each	element	in	

casesCarrying	divided	by	the	total	number	of	cases	originally	in	the	problem.	In	
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other	words,	for	each	marker	state,	the	incumbent	objective	value	is	compared	

against	the	ratio	of	cases	carrying	that	marker	state.	If	the	ratio	for	marker	state	i	is	

less	than	or	equal	to	the	objective	value	of	the	incumbent	solution,	then	we	can	

effectively	remove	marker	state	i	from	the	solution	space	by	adding	the	constraint	

marki	=	0.	

	 Additionally,	whenever	a	case	individual	is	removed	from	the	solution	space,	

the	elements	in	casesCarrying	are	decremented	for	all	marker	states	that	that	

individual	was	carrying.	Then,	we	again	compare	the	incumbent	objective	value	

against	the	ratio	of	cases	carrying	each	marker	state	and	set	mark	variables	to	zero	

if	any	ratio	is	less	than	or	equal	to	the	incumbent	objective	value.	

	

Individual	Equalities	Whenever	a	marker	state	is	removed	from	the	solution	space,	

there	is	an	opportunity	to	set	ind	variables	equal	to	one	another.	We	do	this	by	

making	the	following	check:	for	all	marker	states	that	have	not	been	removed	from	

the	problem,	if	two	individuals	carry	the	same	marker	states,	then	we	set	those	two	

individuals	equal	to	each	other.	That	is,	for	each	pair	of	individuals	j	and	k,	if	𝐺G,4 =

𝐺G,}	, ∀G∈7	where	D	is	the	set	of	marker	states	that	have	not	been	removed	from	the	

solution	space,	then	we	add	the	constraint	𝑖𝑛𝑑4 = 𝑖𝑛𝑑} .	

	 This	is	particularly	strong	if	such	a	constraint	is	created	between	a	case	and	a	

control.	As	an	example,	consider	a	problem	where	size	=	5.	In	a	relaxation,	if	a	case	j	

carries	4	marker	states	of	the	pattern,	indj	will	be	set	to	0.8.	On	the	other	hand,	if	

control	k	carries	4	marker	states	of	the	pattern,	indk	will	be	set	to	0.	But	if	the	
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constraint	𝑖𝑛𝑑4 = 𝑖𝑛𝑑} 	is	added,	then	either	indj	must	equal	0,	or	indk	must	equal	0.8.	

Either	situation	will	lead	to	a	reduction	in	the	objective	value	from	the	relaxation.	

	 While	it	is	unlikely	that	two	individuals	will	have	the	exact	same	set	of	

marker	states	at	the	beginning	of	the	search,	the	probability	increases	as	marker	

states	are	removed	from	the	solution	space.	

	

2.3.2	Splitting	the	Sequential	and	Parallel	Components	
	
	 While	the	sparse	problems	can	be	solved	in	parallel,	the	selection	of	the	

piercing	cuts	that	create	those	sparse	problems	is	a	sequential	process.	Thus,	in	

order	to	better	utilize	the	time	we	are	given	on	computing	clusters,	we	have	split	

our	CNS	implementation	into	separate	sequential	and	parallel	components.	The	

sequential	component	determines	the	piercing	cuts	and	saves	them	to	a	file.	The	

parallel	component	reads	this	file	and	immediately	sends	work	to	parallel	

processors,	minimizing	ramp-up	time.	

	

2.3.3	Two-Phase	Sequential	Algorithm	
	
	 The	purpose	of	the	sequential	component	of	our	cut-and-solve	

implementation	is	to	create	a	list	of	piercing	cuts	that	the	parallel	component	can	

begin	solving	immediately.	The	sequential	component	is	split	into	two	phases.	The	

first	phase	both	creates	cuts	and	solves	the	corresponding	sparse	problem.	The	

second	phase	creates	cuts	only.	
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2.3.3.1	Phase	One	
	
	 Phase	one	both	creates	cuts	and	solves	the	sparse	problems	corresponding	to	

the	piercing	cuts.	The	purpose	of	phase	one	is	to	attain	an	initial	incumbent	solution	

of	reasonable	quality.	The	longer	phase	one	runs,	the	better	the	incumbent.	This	

initial	incumbent	causes	the	creation	of	special	cuts,	which	facilitate	the	creation	of	

piercing	cuts	that	more	likely	target	areas	of	the	solution	space	that	carry	the	

optimal	solution.	The	initial	incumbent	also	gives	the	algorithm	the	ability	to	

terminate	early	due	to	convergence.	

	 Before	each	piercing	cut	is	created,	a	relaxation	is	solved.	The	relaxations	are	

used	to	check	for	convergence	and	to	create	piercing	cuts.	As	previously	described,	

there	are	three	potential	sources	of	a	piercing	cut:	from	relaxed	mark	variables,	

from	merging	two	previous	piercing	cuts,	and	from	the	marker	states	an	individual	

carries.	The	following	pseudocode	shows	how	we	decide	which	source	to	use:	

Cut createPiercingCut() { 
    static bool merge = false 
    static bool useIndivs = false 
 
    if useIndivs OR switchToIndivs() 
        useIndivs = true 
        return createCutFromIndividual() 
 
    else if merge OR the cut set is at maximum capacity 
        merge = true 
        if number of cuts in the cut set is below half the max capacity 
            merge = false 
        return createCutFromMerging() 
 
    else 
        return createCutFromRelaxedValues() 
} 
 
bool switchToIndivs() { 
    x = number of marker states in the largest cut in the cut set 
    for i in indivs 
        y = number of marker states indivs[i] has that are still in the solution space 
        if x >= y 
            return true 
    return false 
} 
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	 The	merge	and	useIndiv	variables	are	static,	meaning	they	are	initialized	

only	on	the	first	call	to	createPiercingCut(),	and	then	their	values	are	saved	for	

each	subsequent	call	to	createPiercingCut().	The	first	if	statement	checks	if	the	

piercing	cut	should	be	derived	from	the	marker	states	carried	by	an	individual.	As	

soon	as	one	piercing	cut	is	derived	from	an	individual,	all	subsequent	piercing	cuts	

will	follow.	

	 The	following	else if	checks	if	the	next	piercing	cut	should	be	created	by	

merging.	This	occurs	when	the	cut	set	reaches	its	maximum	capacity	of	piercing	

cuts.	This	capacity	is	set	as	a	parameter	before	program	execution	and	should	not	be	

greater	than	the	number	of	individuals	in	order	for	the	enumerations	to	be	most	

effective.	When	this	capacity	is	reached,	then	the	merge	flag	is	set.	All	subsequent	

piercing	cuts	will	be	merged	cuts	until	either	the	cut	set	is	below	half	capacity,	or	a	

piercing	cut	can	be	derived	from	an	individual.	

	 If	neither	the	if	nor	the	else if	statements	evaluated	to	true,	then	a	

piercing	cut	is	created	using	the	values	of	the	mark	variables	from	the	relaxation.	

	 After	a	piercing	cut	is	created,	the	corresponding	sparse	problem	is	solved.	

The	sparse	problems	are	solved	using	enumeration,	which	will	be	detailed	in	section	

2.3.4.1.	Whenever	a	sparse	problem	is	solved,	the	piercing	cut	is	added	to	the	MIP	

and	also	saved	to	a	file	so	that	the	parallel	component	can	add	it	to	its	cut	set.	This	

cycle	of	creating	a	piercing	cut,	followed	by	solving	a	sparse	problem	continues	until	

either	convergence	has	occurred	or	a	user-set	time	limit	has	been	reached.	Phase	

two	follows	immediately	after.	
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2.3.3.2	Phase	Two	
	
	 Phase	two	is	the	same	as	phase	one	except	for	two	key	differences.	First,	no	

sparse	problems	are	solved	since	we	focus	entirely	on	creating	piercing	cuts	for	the	

parallel	component	of	the	algorithm.	Second,	instead	of	writing	every	cut	to	the	file,	

no	cuts	are	written	until	convergence	occurs.	Once	convergence	occurs,	the	entire	

contents	of	the	cut	set	are	written	to	the	file.	This	prevents	extra	work	by	the	

parallel	part	of	the	algorithm	because	it	prevents	the	output	of	piercing	cuts	that	

may	be	merged	into	later	cuts.	For	example,	if	piercing	cuts	A,	B,	and	C	are	written	to	

the	file,	where	piercing	cut	C	is	created	by	merging	A	and	B,	then	when	the	parallel	

algorithm	reads	the	file,	it	will	solve	A,	then	B,	then	C,	which	is	more	work	than	just	

solving	C	alone.	

	

2.3.4	Parallel	Algorithm	
	
	 After	a	file	of	piercing	cuts	is	generated	from	the	sequential	computations,	

parallel	processors	are	used	to	solve	the	piercing	cuts.	One	processor,	known	as	the	

master,	reads	this	file	and	distributes	the	sparse	problems	among	the	other	

processors,	known	as	the	workers.	The	workers	solve	the	sparse	problems	using	

enumeration.	Although	it	is	expected	that	enumeration	would	be	much	slower	than	

state-of-the-art	MIP	solvers	using	branch-and-cut,	we	found	our	efficient	

enumeration	implementation	to	be	faster	than	CPLEX	for	solving	sparse	problems	

using	any	of	our	ORCA	models.	This	may	be	due	to	the	ineffectiveness	of	CPLEX’s	

cutting	planes	and/or	poor	variable	selection	by	CPLEX	for	tree	branching	for	the	

particular	problem	structures	that	the	ORCA	model	produces.		
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	 In	the	Brandenburg	implementation,	the	number	of	mark	variables	in	each	of	

the	sparse	problems	was	kept	to	a	constant	number	in	order	to	minimize	the	

likelihood	that	CPLEX	exceeded	a	given	amount	of	memory.	In	our	implementation,	

sparse	problems	may	vary	greatly	in	size.	Load	balancing	would	be	an	issue	if	every	

processor	was	each	given	a	single	sparse	problem	at	a	time.	Therefore,	we	sparse	

problems	are	split	across	multiple	processors.	

	 This	process	of	reading	cuts	and	distributing	sparse	problems	continues	until	

either	convergence	occurs	or	there	are	no	more	cuts	to	read.	Running	out	of	cuts	

occurs	if	the	sequential	component	was	not	run	to	convergence.	If	this	happens,	

then	the	master	will	begin	determining	cuts	in	the	same	manner	as	the	sequential	

component.	

	

2.3.4.1	Enumeration	

	 One	feature	unique	to	our	CNS	implementation	is	the	use	of	enumerations	to	

solve	the	sparse	problems.	To	be	clear,	enumeration	in	our	context	means	that	every	

possible	genetic	pattern	in	the	sparse	problem	is	checked	(Figure	10.).	Typically,	

sparse	problems	are	solved	using	a	MIP	solver,	but	CPLEX—the	MIP	solver	we	

used—gave	poor	performance	on	each	of	our	ORCA	models.	While	the	piecewise	

Suppose	we	have	a	sparse	problem	with	the	following	marker	states:	
{3,	5,	7,	10}	

	
If	we	were	searching	for	an	optimal	pattern	(size	=	2),	then	the	objective	function	
value	for	each	of	the	following	patterns	would	be	individually	checked:	

{3,	5},	{3,	7},	{3,	10},	{5,	7},	{5,	10},	{7,	10}	
	

Figure	10.	Clarification	of	enumeration.	
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model	yielded	much	improved	performance	over	the	other	models,	it	was	still	

slower	than	a	pure	enumeration	of	the	solution	space.	Therefore,	we	elected	to	use	

enumeration	to	solve	the	sparse	problems	instead.	

	 In	addition	to	solving	our	sparse	problems	faster	than	CPLEX,	enumeration	

has	three	other	advantages.	The	first	is	low	memory	consumption.	A	major	

drawback	of	conventional	MIP	solvers	is	high	memory	usage.	To	avoid	this,	one	can	

either	choose	a	less	demanding	algorithm	for	the	solver	to	use,	such	as	branch-and-

bound,	or	direct	the	solver	to	save	part	of	the	instance	on	secondary	storage.	Both	

options	will	slow	the	solver.	Enumeration	has	no	such	memory	constraints.	Second,	

because	there	are	no	memory	issues,	the	sparse	problems	do	not	need	to	be	limited	

to	small	sizes	due	to	memory,	and	thus	no	compromise	needs	to	be	made	in	

selecting	the	marker	states	to	include	in	the	sparse	problems.	Third,	it	is	

straightforward	to	split	a	single	sparse	problem	among	multiple	processors	with	no	

work	duplicated	across	those	processors.	This	is	especially	useful	because	of	the	

potentially	increased	size	of	the	sparse	problems.	Moreover,	this	parallelization-

within-parallelization	enables	prospects	for	solving	large	problem	sizes	using	

massive	parallelization.	MIP	solvers	using	branch-and-cut	do	not	have	such	a	

capability.	

	 While	no	work	is	duplicated	across	processors	working	on	the	same	sparse	

problem,	many	potential	patterns	will	be	duplicated	across	sparse	problems.	Note	

that	this	is	a	consequence	of	how	the	piercing	cuts	are	chosen	and	is	an	issue	

regardless	of	whether	a	MIP	solver	or	enumerations	are	used.	To	minimize	the	

amount	of	duplicate	work	done,	each	processor	has	their	own	cut	set	containing	all	



	 32	

piercing	cuts	prior	to	the	cut	currently	being	solved.	For	each	pattern	in	the	sparse	

problem,	that	pattern	is	checked	against	the	cut	set.	A	pattern	is	skipped	if	it	is	

contained	in	a	previous	cut	(Figure	11).	Checking	if	a	pattern	is	contained	in	a	

previous	cut	does	take	time,	and	thus	the	number	of	cuts	in	the	cut	set	should	be	

limited	to	at	most	the	number	of	individuals.	Otherwise,	looking	through	the	cut	set	

would	take	more	work	than	counting	the	number	of	cases	and	controls	with	the	

pattern.	We	recommend	further	limiting	the	number	of	cuts	in	the	cut	set	to	at	most	

the	number	of	cases.	Often,	a	pattern	is	carried	by	so	few	cases	that	the	number	of	

controls	carrying	it	do	not	need	to	be	counted.	Thus,	having	a	cut	set	with	more	cuts	

than	the	number	of	cases	incurs	more	work	than	necessary.	

	

	

	

Suppose	we	have	a	sparse	problem	with	the	following	marker	states:	
{3,	5,	7,	10}	

	
If	we	were	searching	for	an	optimal	pattern	(size	=	2),	then	each	of	the	following	
patterns	would	be	individually	checked:	

{3,	5},	{3,	7},	{3,	10},	{5,	7},	{5,	10},	{7,	10}	
	

Suppose	we	have	a	cut	set	containing	the	following	piercing	cuts:	
{1,	3,	5,	8},	{5,	4,	6,	10},	{2,	4,	5,	7}	

	
Before	calculating	the	objective	value	for	each	pattern,	we	check	if	a	pattern	is	
contained	in	a	previous	cut.	
	
The	following	patterns	are	carried	in	previous	cuts:	

{3,	5},	{5,	7},	{5,	10}	
	

Thus,	the	objective	values	are	only	calculated	for	the	remaining	patterns:	
{3,	7},	{3,	10},	{7,	10}	

Figure	11.	Example	of	avoiding	duplicate	work	by	using	the	cut	set.	
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2.3.4.2	Splitting	a	Sparse	Problem	

	 In	order	to	keep	an	even	load	balance,	a	sparse	problem	may	be	split	among	

multiple	processors.	This	is	decided	using	an	integer	parameter	that	specifies	an	

average	number	of	patterns	to	be	enumerated	per	processor	at	a	time.	It	should	be	

set	to	a	number	large	enough	that	the	overhead	of	sending	information	back	and	

forth	between	the	master	and	worker	is	a	small	amount	of	time	relative	to	the	time	

spent	solving	the	problem.	On	the	other	hand,	it	should	be	small	enough	that	it	can	

be	solved	in	a	reasonable	amount	of	time	on	a	single	processor.		

	 To	split	a	sparse	problem,	first	determine	the	number	of	processors	that	will	

work	on	the	sparse	problem,	m,	and	the	number	of	patterns	per	processor,	n.	Each	

of	the	first	(m-1)	processors	get	n	patterns,	and	the	mth	processor	gets	the	

remainder.	We	give	an	example	(Figure	12).	

	

	
	

Suppose	we	have	a	sparse	problem	with	the	following	marker	states:	
{2,	4,	8,	11,	17}	

	
For	a	pattern	size	of	2,	the	following	patterns	would	be	the	entire	solution	space:	

{2,	4},	{2,	8},	{2,	11},	{2,	17},	{4,	8},	{4,	11},	{4,	17},	{8,	11},	{8,	17},	{11,	17}	
	

Suppose	we	split	this	among	4	processors	with	3	patterns	each.	
	
Processor	1	would	find	the	optimal	pattern	from	{{2,	4},	{2,	8},	{2,	11}}.	
Processor	2	would	find	the	optimal	pattern	from	{{2,	17},	{4,	8},	{4,	11}}.	
Processor	3	would	find	the	optimal	pattern	from	{{4,	17},	{8,	11},	{8,	17}}.	
Processor	4	would	find	the	optimal	pattern	from	{{11,	17}}.	

Figure	12.	Example	of	how	a	sparse	problem	is	split	among	multiple	processors.	
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2.4	Implementation	
	
2.4.1	Computation	Details	
	
	 Trials	were	run	on	the	Lewis	High	Performance	Computing	Cluster	at	the	

University	of	Missouri-Columbia	with	an	upper	time	limit	of	48	hours	each.	

	 The	sequential	part	of	our	CNS	implementation	was	run	on	a	single	core	until	

completion.	The	parallel	part	was	run	on	three	nodes	consisting	of	two	Intel(R)	

Xeon(R)	Gold	6138	CPU	@	2.00GHz	processors	each.	Each	processor	has	20	cores,	

giving	a	total	of	120	cores.	Each	CNS	trial	was	given	the	default	amount	of	1	GB	of	

RAM	per	core.	

	 Trials	using	CPLEX	alone	were	also	run	to	serve	as	a	comparison	to	CNS.	

These	trials	were	run	on	the	same	type	of	hardware,	but	each	was	given	only	a	

single	node	instead	of	three	because	CPLEX	is	unable	to	utilize	distributed	

processing	for	branch-and-cut	search.	Each	CPLEX	trial	was	given	350	GB	of	RAM.	

	

2.4.2	Libraries	
	
	 All	code	was	written	in	C++.	IBM	ILOG	CPLEX	Optimization	Studio	12.7.0	was	

used	as	the	LP	solver	in	cut-and-solve	and	as	a	standalone	MIP	solver	when	used	as	

a	comparison	tool.	Open	MPI	3.1.2	was	used	for	parallelization.	

	

2.4.3	GitHub	
	
	 All	code	will	be	publicly	available	at	https://github.com/ClimerLab/Orca	

following	the	publication	of	our	journal	paper.	
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2.5	Data	
	

Data	was	downloaded	from	

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33528	and	previously	

described	by	Ghani	et	al36	and	Lee	et	al37.	Briefly,	the	downloaded	data	included	559	

late-onset	Alzheimer’s	disease	(AD)	cases	and	554	controls	genotyped	using	the	

Illumina	HumanHap	650Y	platform.	The	individuals	were	self-reported	Hispanic	of	

Caribbean	origin	drawn	from	the	Washington	Heights–Inwood	Columbia	Aging	

Project	(WHICAP)	study	and	the	Estudio	Familiar	de	Influencia	Genetica	de	

Alzheimer	(EFIGA)	study.	The	cases	and	controls	had	similar	age	and	sex	

distributions	and	were	unrelated.	Their	ancestry	was	primarily	from	the	Dominican	

Republic	and	Puerto	Rico.	AD	phenotyping	was	based	on	the	National	Institute	of	

Neurological	Disorders	and	Stroke–Alzheimer's	Disease	and	Related	Disorders	

Association	criteria38	and	utilized	data	collected	from	1999	through	200737.		

We	cleaned	the	data	and	removed	SNPs	and	individuals	with	more	than	5%	

missing	values	using	an	iterative	approach	so	as	to	maximize	data	retention.	172	

mitochondrial	SNPs	were	also	removed.	This	process	left	657,477	SNPs	for	457	AD	

cases	and	421	controls.		

A	principal	component	analysis	(PCA)	was	conducted	on	the	data	as	follows.	

The	data	was	reformatted	into	PLINK3	format	using	in-house	code.	The	HapMap	

reference	panels	for	the	Han	Chinese	in	Beijing,	China	and	Japanese	in	Tokyo,	Japan	

(ASN),	Utah	residents	with	Northern	and	Western	European	ancestry	from	the	

CEPH	collection	(CEU),	and	Yoruba	in	Ibadan,	Nigeria	(YRI)	populations	were	

employed	for	the	analysis.	We	extracted	data	for	177,938	SNPs	which	matched	
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HapMap	SNPs	in	order	to	provide	missing	genomic	information	(the	downloaded	

data	included	only	the	rsID	numbers	for	the	SNPs).	PLINK	tools	were	used	to	

preprocess	the	data	and	run	PCA.	The	resultant	plot	is	shown	in	Figure	13.	

	
	

We	then	removed	SNPs	drawn	from	the	X	and	Y	chromosomes	as	follows.	We	

first	downloaded	SNP	data	from	UCSC	database	using	the	following	command:	

rsync -a -P rsync://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/snp150Common.txt.gz ./ 

This	file	is	based	on	hg38	assembly	and	was	last	updated	on	8/30/2017.	It	includes	

15,124,099	SNPs.	The	file	has	variable	numbers	of	columns;	however,	chromosome	

number	is	listed	in	column	2,	position	in	column	4,	and	rsID	in	column	5.	The	

Figure	13.	The	first	two	principal	components	from	the	PCA	conducted	for	the	
Hispanic	data	analyzed	in	this	manuscript	and	three	HapMap	populations.	
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chromosome	numbers,	rsIDs,	positions,	and	alleles	were	extracted	accordingly.	The	

rsIDs	that	matched	the	Hispanic	data	were	extracted.	A	number	of	SNPs	were	

repeated	in	the	list	and	these	were	removed.	The	list	was	sorted	by	chromosome	

number	and	those	corresponding	to	X	and	Y	chromosome	were	deleted.	Then	the	

genotype	data	corresponding	to	the	remaining	SNPs	were	extracted,	yielding	a	total	

of	629,598	SNPs.	A	total	of	21,680	duplicates	were	included	with	chromosome	

names	ending	with	‘alt.’	

	 Twelve	candidate	risk	SNPs	were	identified	as	follows.	We	started	with	the	

list	provided	in	a	2016	review	paper39	and	extracted	SNPs	that	matched	those	in	our	

dataset,	choosing	no	more	than	one	SNP	per	gene,	providing	12	SNPs.	We	then	

identified	proxies	for	the	missing	risk	SNPs.	We	used	NIH’s	LDProxy	tool	for	this	

task	(https://ldlink.nci.nih.gov).	Three	of	the	four	available	Admixed	American	

populations	were	selected	for	this	analysis:	Mexican	Ancestry	from	Los	Angeles,	USA	

(MXL),	Puerto	Ricans	from	Puerto	Rico	(PUR),	and	Colombians	from	Medellin,	

Colombia	(CLM).	The	Peruvians	from	Lima,	Peru	were	excluded	due	to	

dissimilarities	in	ancestry.	The	SNP	that	was	included	in	the	dataset	and	exhibited	

the	highest	r2	value	was	selected,	with	a	minimum	r2	value	of	0.4	required	for	

inclusion.	Table	4	summarizes	the	22	SNPs	that	were	used	in	our	trials.	

	 We	created	datasets	for	our	trials	that	include	the	22	risk	SNPs	and	increased	

in	size	to	capture	additional	SNPs	correlated	with	these	22	SNPs.	The	custom	

correlation	coefficient	(CCC)40	was	used	to	determine	the	correlated	SNPs.	We	chose	

this	metric	as	AD	exhibits	genetic	heterogeneity	and	CCC	has	been	shown	to	

accommodate	heterogeneity40–43.	For	each	increasing	size	of	dataset,	the	SNP	with	
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the	highest	CCC	value	for	each	of	the	22	SNPs	was	added.	Note	that	one	SNP	

appeared	twice	in	the	88-SNP	list,	resulting	in	the	number	of	SNPs	being	reduced	to	

87.	Missing	values	were	replaced	by	heterozygotes	and	were	reexamined	following	

the	trials	to	assess	their	impact	on	the	results.	

	 We	created	two	large	datasets	by	adding	15	and	30,	respectively,	SNPs	with	

the	highest	CCC	values.	There	were	some	ties	for	the	CCC	values	and	the	tied	SNPs	

were	included,	adding	three	SNPs	to	the	15-links	set	and	seven	SNPs	to	the	30-links	

set.	After	removing	duplicates,	there	were	329	and	652	SNPs,	respectively,	in	the	

two	datasets.	

	 We	also	created	a	smaller	10	SNP	dataset	using	SNPs	from	the	22	SNP	

dataset.	This	was	done	to	ensure	that	both	methods	could	solve	at	least	one	dataset.	

	 SNP	lists	for	all	datasets	are	included	in	Appendix	A.	
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Table	4.	List	of	risk	SNPs	and	proxies	used	in	our	trials.	
Gene Location SNP Proxy SNP / notes r2 

APOE 19q13.2  rs2075650 0.42 

CLU 8p21-p12 rs11136000   

ABCA7 19p13.3 rs3764650   

SORL1 11q23.2-q24.2  rs2298813 1.00 

CR1 1q32 rs3818361   

CD33 19q13.3 rs3826656   

MS4A 11q12.2 rs610932   

TREM2 6p21.1  3 SNPs with r2 ≥ 0.4, none in dataset.  

BIN1 2q14.3 rs744373   

CD2AP 6p12  rs9395285 0.96 

PICALM 11q14 rs3851179   

EPHA1 7q34 rs11771145   

HLA-DRB5/HLA-DRB1 6p21.3  855 with r2 ≥ 0.4, none in dataset.  

INPP5D 2q37.1  rs4571051  0.67 

MEF2C 5q14.3  rs304132 0.49 

CASS4 20q13.31  rs6024881 0.75 

PTK2B 8p21.1  rs17057051 0.88 

NME8 7p14.1  rs1470719 0.48 

ZCWPW1 7q22.1  rs12539172 0.93 

CELF1 11p11  rs7120548 1.00 

FERMT2 14q22.1 rs17125944   

SLC24A4/RIN3 14q32.12 rs10498633   

DSG2 18q12.1 rs8093731   

PLD3 19q13.2  rs145999145 is monoallelic in the AMR 
populations.  

 

UNC5C 4q22.3  rs137875858 is not in 1000G reference panel.  

AKAP9 7q21-q22  
254 with r2 ≥ 0.4 for rs144662445, none in 
dataset. rs149979685 is monoallelic in the 
AMR populations. 

 

ADAM10 15q22 rs2305421   
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Section	3:	Results	
	
	 Trials	using	cut-and-solve	(CNS)	and	CPLEX	were	run.	CPLEX	trials	were	

used	as	a	baseline	for	comparison.	Both	algorithms	ran	on	datasets	of	10,	22,	44,	66,	

87,	109,	131,	329,	and	652	SNPs.	

	 Each	SNP	is	encoded	as	4	marker	states	(Table	1),	which	we	use	to	gauge	the	

difficulty	of	a	problem.	This	conversion	allows	for	easier	comparison	with	future	

studies	using	data	types	other	than	biallelic	SNPs.	The	number	of	marker	states	for	

each	trial	is	listed	in	Table	5.	CNS	used	the	relaxed	ORCA	model	(Figure	8)	for	the	

relaxations.	CPLEX	solved	the	piecewise	ORCA	model	(Figure	7).	All	datasets	had	

457	cases	and	421	controls.	Risk	patterns	were	identified.	

	
	 The	sequential	component	of	CNS	was	run	until	convergence,	meaning	all	

piercing	cuts	were	determined	ahead	of	time.	For	the	4	smallest	datasets,	a	single	

sparse	problem	was	solved	to	get	a	lower	bound.	Each	of	these	sparse	problems	

took	less	than	0.2	seconds.	For	the	other	5	datasets,	sparse	problems	were	solved	

for	30	minutes.	We	separated	it	this	way	because	otherwise,	the	sequential	

Table	5.	The	number	of	marker	states	in	each	of	the	datasets.	
Number	of	SNPs	 Number	of	Marker	States	

10	 40	
22	 88	
44	 176	
66	 264	
87	 348	
109	 436	
131	 524	
329	 1316	
652	 2608	
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component	would	take	longer	than	the	parallel	component	for	the	4	smallest	

datasets.	

	 After	these	sparse	problems	were	solved,	the	rest	of	the	time	was	devoted	to	

determining	piercing	cuts.	The	amount	of	time	the	sequential	components	ran	for	is	

listed	in	Table	6.	

	 Figure	14	shows	the	number	of	wall	clock	seconds	the	solvers	ran	for	until	

convergence	was	reached.	No	data	point	is	shown	if	a	particular	trial	did	not	

converge.	For	example,	only	one	data	point	is	shown	for	CPLEX	because	it	was	

unable	to	reach	convergence	for	any	dataset	except	for	40	marker	states.	Neither	

solver	was	able	to	reach	convergence	for	1316	and	2608	marker	states.	

	
	
	
	
	
	
	
	
	

Table	6.	Amount	of	time	the	sequential	component	of	CNS	ran	for.	
Number	of	Marker	States	 Time	for	Sequential	Component	(mm:ss)	

40	 00:02	
88	 00:03	
176	 00:10	
264	 00:18	
348	 31:00	
436	 32:04	
524	 33:07	
1316	 39:57	
2608	 52:24	

	



	 42	

	

	 Figure	15	shows	the	gap	at	termination.	The	gap	is	calculated	with	the	

following	expression:	

gap =
upperBound − lowerBound

lowerBound 	

	
The	upper	bound	is	the	objective	value	of	the	incumbent	relaxed	solution.	The	lower	

bound	is	the	objective	value	of	the	incumbent	integer	solution.	The	gap	gives	a	

conservative	estimate	of	the	percentage	difference	the	solver	is	from	finding	the	

optimal	solution.	If	the	gap	is	zero,	then	convergence	was	reached.	
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Figure	14.	The	number	of	wall	clock	seconds	each	solver	ran	for	until	convergence.	
Data	points	are	not	shown	for	trials	that	did	not	reach	convergence.	For	CNS,	only	
times	from	the	parallel	component	are	shown.	
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Figure	15.	The	gap	for	each	trial	at	termination.	If	the	gap	is	0%,	then	convergence	
occurred.	

Table	7.	The	results	in	tabular	form.	M	means	the	trial	terminated	due	to	memory	
constraints.	T	means	the	trial	terminated	due	to	reaching	the	48-hour	time	limit.	For	
CNS,	only	times	from	the	parallel	component	are	shown.	

Number	of	
Marker	States	

Time	to	Convergence	(h:mm:ss)	 Gap	at	Termination	

Cut-and-Solve	 CPLEX	 Cut-and-Solve	 CPLEX	
40	 0:00:03	 0:13:52	 0%	 0.00%	
88	 0:00:04	 M	 0%	 67.08%	
176	 0:01:43	 M	 0%	 234.40%	
264	 0:22:12	 M	 0%	 356.80%	
348	 1:25:12	 M	 0%	 269.04%	
436	 2:11:06	 M	 0%	 247.46%	
524	 2:45:42	 M	 0%	 361.13%	
1316	 T	 T	 336.91%	 443.61%	
2608	 T	 T	 297.02%	 530.73%	
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	 Each	smaller	dataset	is	a	subset	of	a	larger	one,	so	the	objective	value	of	the	

optimal	pattern	is	nondecreasing	as	we	go	from	the	smallest	to	the	largest	dataset.	

The	pattern	we	found	with	the	highest	objective	value	was	from	the	dataset	with	

2608	marker	states.	This	pattern	is	detailed	in	Table	8.	This	pattern	was	carried	by	

204	of	457	AD	cases	and	101	of	421	normal	controls,	giving	an	objective	value	of	

0.2065.	Because	convergence	did	not	occur	in	the	trial	in	which	this	pattern	was	

found,	this	may	not	be	an	optimal	solution.	
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Table	8.	The	best	risk	pattern	found	for	size	5.	

	
	
	 	

rsID Position Gene Full Name Proximity Notes Citation 

rs10120342 9:26919609 PLAA phospholipase A2 
activating protein 

Intron 
variant 

Overexpression 
leads to reduced 

clusterin 
production and 

activation of NF-
KB, and may 
perpetuate 

inflammation.  

44 

rs10223879 6:145367826 EPM2A 
EPM2A, laforin 

glucan 
phosphatase 

Downstream 

Loss-of-function 
mutations of 

EPM2A leads to 
Lafora disease, 
which is a rare 

recessive 
neurodegenerative 

disease with 
adolescent onset 

that arises due 
accumulation of 

neurotoxic 
insoluble 

glycogen-derived 
bodies. 

45 

rs12594742 15:58666266 ADAM10  
ADAM 

metallopeptidase 
domain 10 

Intron 
variant 

ADAM10 cleavage 
of amyloid 

precursor protein 
(APP) precludes 

formation of 
amyloid-beta 

peptides. 

46 

rs2635268 4:147940686 ARHGAP10 
Rho GTPase 

activating protein 
10 

Intron 
variant     

rs4662750 2:127634972 MYO7B myosin VIIB Intron 
variant 

Located about 500 
Kb from BIN1 SNP, 
~5Kb downstream 
from LIMS2 (LIM 

zinc finger domain 
containing 2), and 
~10Kb upstream 
from GPR17 (G 

protein-coupled 
receptor 17).  
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Section	4:	Discussion	
	

4.1	Interpretation	of	Results	
	
	 Our	cut-and-solve	(CNS)	implementation	performed	better	than	CPLEX	in	all	

of	the	trials.	The	only	dataset	that	CLPEX	was	able	to	complete	was	the	smallest	

dataset	consisting	of	40	marker	states.	It	solved	this	in	832.22	seconds,	whereas	the	

parallel	component	of	CNS	solved	it	in	3.21	seconds.	CPLEX	was	unable	to	solve	any	

of	the	other	datasets	because	it	either	reached	the	48-hour	time	limit	or	it	used	all	of	

the	350	GB	of	RAM.	CNS	was	able	to	solve	all	but	the	two	largest	datasets	where	it	

reached	the	48-hour	time	limit.	For	these	two	datasets,	CNS	had	smaller	gaps	than	

CPLEX,	indicating	that	CNS	was	closer	to	convergence	than	CPLEX	was.	

	 Even	if	the	running	times	for	the	sequential	and	parallel	components	are	

added	together,	all	trials	that	completed	would	have	still	been	within	the	48-hour	

time	limit	(Table	9).	

Table	9.	Comparison	of	run	times	for	CNS	(both	sequential	and	parallel	
components)	and	CPLEX.	M	means	the	trial	terminated	due	to	memory	constraints.	
T	means	the	trial	terminated	due	to	reaching	the	time	limit.	

Number	of	
Marker	States	

CNS	Sequential	and	Parallel	
Combined	Time	(h:mm:ss)	 CPLEX	Time	(h:mm:ss)	

40	 0:00:05	 0:13:52	
88	 0:00:07	 M	
176	 0:01:53	 M	
264	 0:22:30	 M	
348	 1:56:12	 M	
436	 2:43:12	 M	
524	 3:18:49	 M	
1316	 T	 T	
2608	 T	 T	
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	 The	large	jump	between	being	able	to	solve	524	marker	states	in	2:45:42	(or	

3:18:49	if	the	sequential	time	is	counted)	and	the	inability	to	solve	1316	marker	

states	in	48-hours	may	lead	one	to	believe	that	there	is	a	significant	performance	

degradation	at	a	certain	point.	We	do	not	believe	this	to	be	the	case.	While	there	are	

only	about	2.5	times	more	marker	states	in	1316	than	524,	there	are	more	than	101	

times	more	patterns	of	size	5.	We	did	not	run	the	1316	and	2608	marker	state	trials	

with	the	expectation	that	they	would	complete	within	48	hours.	They	were	run	to	

compare	the	performance	of	CNS	and	CPLEX	on	large	datasets	that	neither	method	

could	complete.	

	

4.2	Future	Work	
	
	 The	work	on	this	project	is	far	from	complete.	Here	we	give	suggestions	for	

future	exploration.	

	

Find	and	Verify	Patterns	After	having	shown	the	practicality	of	our	ORCA	model	

and	CNS	implementation,	the	next	step	is	to	apply	them	to	more	datasets	and	find	

both	optimal	and	near-optimal	patterns.	Each	pattern	should	then	be	verified	in	

independent	data	to	help	determine	if	it	is	a	pattern	truly	related	to	AD.	

	

Extend	to	Other	Biological	Data	Our	software	package	can	be	directly	applied	to	

any	GWAS	dataset	comprised	of	biallelic	SNPs;	such	trials	may	greatly	benefit	

research	for	a	multitude	of	diseases	and	other	complex	traits	of	interest.	
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	 More	broadly,	our	current	CNS	implementation	is	tailored	specifically	for	

working	with	biallelic	SNPs	and	we	would	like	to	generalize	this	to	other	types	of	

genetic	data	such	as	proteins	and	multiallelic	SNPs.	The	code	should	not	only	be	

generalized	for	other	types	of	data,	but	specific	types	of	cuts	for	each	type	of	data	

should	be	researched	and	implemented.	

	

Set	Covering	Depending	on	the	piercing	cuts	that	are	made,	there	is	a	possibility	

that	an	individual	j	can	be	removed	from	the	problem	(i.e.,	indj	could	be	set	to	zero)	

even	if	no	single	piercing	cut	was	made	that	explicitly	targeted	that	individual’s	

marker	states.	We	give	an	example	of	this	occurrence	(Figure	16).	The	problem	of	

detecting	such	an	occurrence	is	related	to	the	Set	Cover	problem7.	

Suppose	we	are	looking	for	an	optimal	genetic	pattern	(size	=	2)	and	an	individual	
j	carries	the	following	marker	states:	

{2,	3,	7,	8,	11,	12}	
	
Suppose	the	following	piercing	cuts	have	been	made:	

{2,	3,	7,	8}	
{7,	8,	11,	12}	
{2,	3,	11,	12}	

	
This	means	the	following	constraints	have	been	added	to	the	model:	

𝑚� + 𝑚^ + 𝑚| + 𝑚� ≤ 1	
𝑚| +𝑚� +𝑚99 + 𝑚9� ≤ 1	
𝑚� +𝑚^ +𝑚99 + 𝑚9� ≤ 1	

	
Even	though	the	piercing	cut	{2,	3,	7,	8,	11,	12}	was	never	explicitly	made,	it	is	
still	impossible	for	individual	j	to	carry	any	pattern	greater	than	size	1.	Thus,	the	
constraint	indj	=	0	can	be	added.	
Figure	16.	Example	of	an	individual	being	unable	to	carry	any	pattern	of	size	2.	



	 49	

	 Briefly,	the	set	cover	problem	is:	given	a	collection	of	subsets	S	and	a	

universal	set	U,	find	the	smallest	subset	T	of	S	whose	union	equals	U47.	Here,	our	

problem	is:	given	the	set	of	patterns	S	from	a	cut	set,	determine	if	their	union	covers	

the	set	of	all	patterns	I	that	an	individual	j	carries.	If	I	is	covered,	then	the	constraint	

indj	=	0	can	be	added	to	the	model.	

	 Adding	constraints	of	this	form	nearly	always	decreases	the	upper	bound,	

and	adding	enough	of	these	constraints	guarantees	convergence.	Additionally,	

detecting	if	individuals	are	already	covered	by	previous	cuts	allows	the	algorithm	to	

target	piercing	cuts	in	areas	where	the	optimal	solution	is	more	likely	to	be.	

	 We	attempted	to	solve	this	problem	using	linear	programming,	solving	a	

separate	linear	program	(LP)	for	every	AD	case.	The	objective	for	each	LP	is	to	

maximize	the	marker	states	that	individual	j	carries.	The	constraints	are	all	the	

piercing	cuts	that	have	been	made.	Being	an	LP,	the	mark	variables	are	continuous	

values	and	the	optimal	solution	provides	an	upper	bound	on	the	solution	if	

integrality	were	enforced.	Consequently,	if	the	optimal	solution	to	this	LP	is	strictly	

less	than	the	pattern	size,	then	the	constraint	indj	=	0	can	be	added	to	the	overall	

model.	

	 A	similar	idea	can	be	used	for	normal	controls.	The	objective	for	these	LPs	

would	be	to	minimize	the	marker	states	that	individual	j	carries.	The	constraints	

would	be	all	the	piercing	cuts	that	have	been	made,	along	with	an	additional	

constraint	that	the	sum	of	all	the	marker	states	must	equal	size.	If	the	optimal	

solution	is	equal	to	size,	then	the	constraint	indj	=	1	can	be	added	to	the	overall	

model.	
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	 The	problem	with	doing	this	is	speed.	In	order	to	detect	if	ind	variables	can	

be	set	to	0	or	1	as	early	as	possible,	these	LPs	would	be	performed	after	every	

piercing	cut	is	added	to	the	model.	An	LP	is	solved	for	every	individual,	so	for	our	

datasets,	878	LPs	would	be	solved	after	each	addition	of	a	piercing	cut.	If	each	of	

these	LPs	takes	1	second	to	finish—a	typical	amount	of	time—nearly	15	minutes	of	

additional	time	would	be	required	per	piercing	cut.	This	slows	down	our	CNS	

implementation	to	an	impractical	level,	even	if	these	LPs	are	only	solved	in	the	

sequential	component.	Additional	research	should	be	done	into	faster	algorithms	for	

this	specific	problem	and/or	effective	strategies	for	choosing	when	to	compute	

these	LPs.	

	 A	similarly	related	problem	is:	given	the	set	of	patterns	S	from	a	cut	set,	and	

the	set	of	patterns	I	that	individual	j	carries,	determine	the	set	of	patterns	T	that	

satisfies	𝑆 ∪ 𝑇 ⊇ 𝐼.	If	this	problem	could	be	solved,	then	the	sparse	problems	

corresponding	to	piercing	cuts	derived	from	an	individual’s	marker	states	would	be	

reduced	to	more	manageable	sizes.	

	

Different	MIP	Solvers	While	CPLEX	performed	poorly	with	our	ORCA	model,	it	is	

possible	that	other	MIP	solvers	such	as	Gurobi,	SCIP,	and	COIN-OR	behave	

differently.	The	performance	of	these	other	MIP	solvers	on	ORCA	should	be	

compared	to	enumeration.	If	a	solver	is	faster	than	enumeration,	it	may	be	worth	

using	instead,	though	this	potential	speed	advantage	should	be	weighed	against	

enumeration’s	extremely	low	memory	requirements	and	ability	to	create	and	split	

large	sparse	problems	with	no	duplicated	work.	
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Custom	Branch-and-Bound	The	weakness	of	enumeration	is	that	it	does	not	scale	

well	with	larger	problems;	every	pattern	must	be	examined	in	some	way.	The	

traditional	algorithms	for	solving	MIPs	such	as	cutting	planes,	branch-and-bound,	

and	branch-and-cut	should	scale	better	because	of	their	ability	to	disregard	large	

portions	of	the	solution	space.	If	other	MIP	solvers	other	than	CPLEX	also	perform	

poorly	with	ORCA,	a	logical	next	step	would	be	to	create	an	implementation	of	

branch-and-bound	tailored	specifically	for	solving	the	ORCA	model.	

	

Custom	LP	Solver	Currently	the	LP	relaxations	are	solved	using	CPLEX.	While	

CPLEX	is	generally	fast	for	LPs,	it	slows	down	as	more	constraints	are	added	to	the	

problem.	It	may	be	possible	that	the	types	of	constraints	we	add	to	the	model	exhibit	

unique	structure	that	could	be	exploited	by	a	custom	implementation	of	an	LP	

solver.	Additionally,	ceasing	to	use	CPLEX	would	allow	our	code	to	be	run	by	anyone	

without	the	need	of	software	licenses.	

	

Utilize	GPUs	Graphics	processing	units	(GPUs)	hold	an	incredible	amount	of	

processing	power,	though	harnessing	this	power	is	often	difficult	because	of	their	

SIMD	(Single	Instruction	Multiple	Data)	model	of	execution.	Nevertheless,	

implementations	of	branch-and-bound	and	the	Simplex	method	have	been	written	

using	GPUs48–50	and	it	would	be	worth	investigating	if	we	could	similarly	do	so	with	

ORCA	and	CNS.	
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4.3	Broader	Impact	
	
	 By	providing	the	genetic	pattern	that	provides	the	absolute	maximal	

difference	between	case	and	control	carriers,	ORCA	eliminates	an	insidious	source	

of	error	that	has	previously	handicapped	combinatorial	genetic	association	testing.	

Our	open-source	code	is	freely	available	and	can	be	directly	applied	to	biallelic	SNP	

data	for	any	trait	of	interest,	including	complex	diseases	plaguing	humans	and	

animals,	as	well	as	important	phenotypes	for	diploid	plants,	such	as	drought	

tolerance.	Furthermore,	the	code	can	be	easily	extended	to	handle	organisms	with	

higher	ploidy,	such	as	apples,	oats,	and	wheat.	In	general,	the	number	of	marker	

states	per	SNP	will	be	equal	to	two	times	the	number	of	chromosomes.		

	 In	addition	to	providing	a	novel	approach	for	combinatorial	genetic	

association	studies,	ORCA	provides	a	pioneering	example	for	massively	parallelizing	

mixed-integer	linear	programs	(MIPs).	MIPs	have	been	used	to	model	a	plethora	of	

combinatorial	optimization	problems	that	arise	in	business,	industrial	operations,	

government,	military,	sports,	and	every	field	of	science.	This	research	demonstrates	

the	parallelization	of	cut-and-solve	as	well	as	novel	customizations	that	reach	far	

beyond	previous	instantiations	of	this	search	strategy,	and	lays	the	foundation	for	

future	projects	that	may	be	of	benefit	to	humankind.	
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Appendix	A.	
	
Supplementary	Data	Files	
	
Description:	
	
The	accompanying	.txt	files	each	contain	a	list	of	rsID	numbers	of	the	SNPs	in	a	
particular	dataset.	SNP	lists	for	88	SNPs	and	larger	contain	duplicate	rsID	numbers.	
Duplicates	are	removed	from	the	final	datasets	so	that	each	rsID	appears	only	once.	
	
Link	to	Folder:	
	
https://goo.gl/bLqWMc	
	
Filenames:	
	
risk_10SNPs_list.txt	
risk_22SNPs_list.txt	
risk_44SNPs_list.txt	
risk_66SNPs_list.txt	
risk_88SNPs_list.txt	
risk_110SNPs_list.txt	
risk_132SNPs_list.txt	
risk_349SNPs_list.txt	
risk_672SNPs_list.txt	 	
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