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Abstract 

The staple crop Sorghum bicolor shows potential as a source of secondary metabolite-

based biofuels due to its diverse phenotype and chemical profile. S. bicolor produces a 

variety of high-energy metabolites, including terpenes which are a potential renewable 

source of fuel additives. Information on the biosynthetic and genetic pathways by which 

S. bicolor terpenes are produced is limited and these pathways must be better 

understood before they can be engineered for human applications. Recent work on 

plant biosynthetic pathways has shown that terpenes can be modified by the products 

of clustered genes. Identification of biosynthetic gene clusters may accelerate the 

elucidation of complete pathways, but few have been characterized in S. bicolor. The 

aims of this thesis were to identify a putative terpene biosynthetic gene cluster in S. 

bicolor, characterize the terpene synthase in the cluster, and express the terpene 

synthase alongside clustered enzymes to determine if they modify the terpene skeleton 

structure. The terpene synthase Sobic.001G339000 was found to produce a novel 

sesquiterpene product. Mass spectra analysis suggested that the novel product was 

similar to guaiol and β-eudesmol and possibly shared a mass (222.2 Da) and chemical 

formula (C15H26O) with these compounds. Transient expression of the putative gene 

cluster in N. benthamiana produced a metabolite of a significantly higher mass than 

anticipated based on the hypothesized mass of the unknown terpene. Elucidation of a 

structure by NMR spectroscopy will be required to characterize the unknown terpene 

product. Once the structure of the terpene is known, analysis of the metabolic profile of 

transfected N. benthamiana will be simplified and the effect of clustered enzymes on 

the terpene product can be better explored.  
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Chapter 1: Introduction to gene clustering in terpene biosynthesis  
 

1.1 Production and applications of terpenes 

1.1.1 Terpene biosynthesis 

Secondary metabolites are compounds produced by an organism that are not essential 

to the organism's function (Osbourn, 2010). In plants, secondary metabolites have many 

roles, including as chemical deterrents to predation and disease, allelopathic 

competition against neighbouring plants, protection from environmental stresses and as 

pollinator attractants (Boutanaev et al., 2015; Nützmann et al., 2016). The study of 

secondary metabolites is essential for improving the natural defences of crop plants 

against pests and diseases and for investigating compounds that have applications in 

industry and medicine. The complete biosynthetic pathway of a metabolite, including all 

genetic and biochemical components, must be understood in order to manipulate the 

pathway for human use. The majority of secondary metabolite biosynthetic pathways in 

the plant kingdom remains uncharacterized, so little can be done to improve 

endogenous metabolite production or develop alternative production platforms to 

manufacture useful compounds. 

The largest class of secondary metabolites is terpenes, which until the 1970's were 

thought to be waste products from other metabolic processes (Gershenzon and 

Dudareva, 2007). Terpenes are compounds comprised of five-carbon isoprene units that 

can be found in all domains of life, including Archaea, Bacteria, and Eukarya (Chen et al., 

2016). In Archaea, isoprene is an essential component of the phospholipid cellular 

membrane, though genome analysis has determined that Archaea possess no terpene 

synthases and do not convert isoprene into more complex compounds (Naparstek et al., 

2012; Yamada et al., 2015). Animals produce a small number of highly complex 

terpenes, primarily steroids derived from squalene such as lanosterol and cholesterol 

(Rozman et al., 1996). Some insect species produce defensive secretions that contain a 

mixture of terpenes which deter predators (Gershenzon and Dudareva, 2007). Bacteria 
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produce a small range of terpenes. One notable example is the degraded sesquiterpene 

alcohol geosmin, which was first isolated in 1891. The volatile compound is emitted by 

soil-dwelling bacteria and is responsible for petrichor, the earthy smell of soil after rain 

(Cane and Ikeda, 2012). The terpene profiles of fungi and plants are significantly more 

diverse than those of any other kingdoms. Thousands of fungal terpenes have been 

identified as being involved in communication and signalling, and as essential for growth 

and development (Schmidt-Dannert, 2015). In plants, terpenes play active roles in 

attracting and repelling insects, tissue toxicity, hormonal regulation, and photosynthesis 

(Gershenzon and Dudareva, 2007). Over 40, 000 unique plant-based terpenes have been 

identified, though few have been examined in depth (Boutanaev et al., 2015). Since all 

terpenes are formed from similar processes, inferences can be made about the 

structure and function of even understudied members of this metabolite family. 

Terpenes are classified based on the number of 5-carbon isoprene subunits in their 

structure (Nagegowda, 2010). These structural variations convey specific functions to 

each terpene type. The most basic types are isoprenes, composed of 5-carbon chains, 

monoterpenes (C10), and sesquiterpenes (C15) (Degenhardt et al., 2003). These terpenes 

are typically volatile compounds that give fruits and flowers their scent and provide 

indirect defense against herbivores. These compounds are usually released only when 

specific circumstances, such as insect feeding, trigger emission (Degenhardt et al., 

2003). Another major class is the diterpenes (C20) which include phytoalexins involved in 

herbivore defense and the precursors to many essential compounds such as 

gibberellins, phytol, and taxanes (Zerbe et al., 2013). Other terpene types include the 

triterpenes (C30) which are the precursor to sterols, and the tetraterpenes (C40) which 

form several photosynthetic pigments (Phillips et al., 2006). Terpenes of every type 

range in complexity from simple carbon chains to large ring formations, corresponding 

to their diverse bioactivities (Fig. 1). 
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 Figure 1: Representative terpene structures. A) Isoprenes are the most basic C5 chains 
used to construct more complex terpenes. B) Monoterpenes are C10 compounds 
composed of 2 isoprene subunits. C) Sesquiterpenes are C15 compounds composed of 3 
isoprene subunits. D) Diterpenes are C20 compounds composed of 4 isoprene subunits. 
Figure adapted from Lima et al., 2016 (permission number 4340931284126) and Higdon 
and Frei, 2006. 

The terpene type also indicates how the structure was produced. Sesquiterpenes and 

triterpenes are produced by the mevalonate (MEV) pathway in the cytosol (Fig. 2). In 

this pathway, two molecules of isopentenyl diphosphate (IPP) and one of dimethylallyl 

diphosphate (DMAPP) are condensed into the terpene precursor farnesyl 

pyrophosphate (FPP). Monoterpenes, diterpenes, and tetraterpenes are formed by the 

A

B

C

D

CafestolTriptolide

α-Farnesene α-Bisabolene β-Caryophyllene

Myrcene Terpinolene

α-Pinene

α-Terpineol Longifone

Isoprene Prenol Tiglic acid Isovaleric acid



Hay, Rebecca, 2018, UMSL, p.4 
 

methylerthritol-4-phosphate pathway (MEP), also referred to as the mevalonate-

independent pathway, which takes place in the plastid. This follows a similar 

condensation of one molecule of IPP and DMAPP into the precursors geranyl 

pyrophosphate (GPP), from which monoterpenes are formed, and three IPP to one 

DMAPP to create geranylgeranyl pyrophosphate (GGPP), from which diterpenes are 

formed (Degenhardt et al., 2003). FPP, GPP and GGPP are then acted upon by terpene 

synthases and other modifying enzymes to form a terpene, terpenoid or sterol product. 

There are thousands of terpene synthases which pair with a combination of modifying 

enzymes to produce unique structures from these three precursors. For example, the 

sesquiterpene artemisinin is formed in the cytosol from FPP by the activity of an initial 

amorpha-4,11-diene synthase, followed by augmentations by cytochromes P450 and 

dehydrogenases into a final functional product (Fig. 3).  

 

Figure 2: Terpene biosynthetic pathway. The MEV and MEP pathways produce terpene 
precursors from DMAPP and IPP in either the plastid or the cytosol. These precursors are 
acted upon by terpene synthases (TPS) and other modifying enzymes to produce an 
active terpene product. Figure adapted from Muhlemann et al., 2014 (permission 
number 4340940542375). 
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Figure 3: Simplified artemisinin biosynthetic pathway demonstrating the actions of a 
terpene synthase and modifying enzymes. The FPP precursor is acted upon by a terpene 
synthase (amorpha-4,11-diene synthase, ADS) and then further modified by cytochromes 
P450 (CYP71) and aldehyde dehydrogenases (Aldh) and UV light into artemisinin. Figure 
adapted from Bohlmann and Keeling, 2008 (permission number 4340940705257). 

 

1.1.2 Terpenes for human use 

Many terpenes have properties that are valuable for human use. Commercial 

applications of terpenes include use in food additives, medicine, fragrances, industrial 

solvents, insecticides, and alternative fuels (Augustin et al., 2015a; Brückner and Tissier, 

2013). One of the most well known terpene-based products is turpentine, a solvent 

extracted from pine resin containing the monoterpenes pinene, carene, and myrcene 

among many others (Belgacem and Gandini, 2011). Turpentine is primarily associated 

with paint thinners and industrial solvents, but is also purified into its base 

monoterpenes for use in flavours, fragrances, and oils (Belgacem and Gandini, 2011). 

The monoterpene limonene is a common flavour and fragrance additive that is also used 

as an industrial solvent. Derived from the discarded rinds of citrus fruits, over 70, 000 

tons of limonene are produced annually to provide an environmentally-friendly 

alternative to the harsh chemicals used in industrial cleaning (Ciriminna et al., 2014).  

The pharmacological uses of terpenes are well established. The two most well-studied 

pharmaceutical terpenes are the diterpene taxol and sesquiterpene lactone artemisinin, 

which are used in the treatment of cancer and malaria, respectively (Sheludko, 2010). 

The bioactivity of complex terpene structures is correlated to their architecture. Taxol, 

which is extracted from the bark of Taxus species, inhibits cancerous tumor growth and 
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is an important component of chemotherapy treatments for breast, lung, and ovarian 

cancer (Fig. 4A) (Gershenzon and Dudareva, 2007; Juyal et al., 2014). Taxol binds to a 

specific region of β-tubulin and disrupts the microtubule construction and degradation 

cycle, preventing mitotic spindle formation and cell division (Kingston, 2007). The 

binding ability of taxol is related to the position of functional groups around its ring 

structure. Removal of functional groups heavily reduces cytotoxicity, while substitution 

of novel groups in place of native ones can increase tubulin binding efficiency (Kingston, 

2007).  

Artemisinin is derived from the annual herb Artermisia annua, and is an endoperoxide 

that can kill the malaria parasite Plasmodium falciparum during the early stages of its 

lifecycle (Fig. 4B) (Gershenzon and Dudareva, 2007). Artemisinin contains a peroxide 

bridge that reacts with hemin, a waste product of hemoglobin that has been digested by 

the parasite. This interaction produces free radicals which are thought to kill P. 

falciparum (Cheng et al., 2002). Though taxol and artemisinin are products of the same 

biosynthetic pathway, they have vastly different bioactivities and modes of action. The 

unique biosynthetic pathways by which terpenes are derived have led to a diversity of 

bioactive terpene structures.  

Figure 4: A) Structure of 
taxol, a diterpene used in 
chemotherapy 
treatments. The 
positioning of oxygen and 
functional groups around 
the central ring structure 
coordinates binding of 
taxol to β-tubulin, 
affecting microtubule 

dynamics. B) Structure of artemisinin, a sesquiterpene valuable in the treatment of 
malaria. The peroxide bridge (O-O bond) interacts with by-products of the malaria 
parasite and generates damaging free radicals which inhibit parasite spread. Figure 
adapted from NCBI Resource Coordinators, 2017. 
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While terpene bioactivities are useful in medicine, their structural features have led to 

their use as a renewable source of high-energy fuel additives. Terpene metabolites have 

been shown to have an energy content comparable to diesel fuel (Peralta-Yahya et al., 

2011) and jet fuel (Chuck and Donnelly, 2014). Diesel fuel contains 16-carbon alkane 

chains that can be cyclical, linear, or branched. Sesquiterpenes (C15) have a similar 

structure, composed of acyclic hydrocarbon chains or cyclized compounds that are 

energy dense (Fig. 5). Many terpenes have methyl branches which lower the freezing 

point and increase the stability of the fuel mixture under pressure, both benefits over 

diesel (George et al., 2015). However, heavily branched terpene structures often have 

lower combustion quality than what is required for diesel engines. The sesquiterpenes 

farnesane and bisabolane produce comparable combustion levels to diesel. While the 

mostly-linear farnesane has a lower energy content than cyclic bisabolane, it burns 

more efficiently due to its structure (George et al., 2015). A fuel source that contains a 

mixture of terpene structures could provide a balance between the beneficial features 

of chain and cyclic compounds.  

Figure 5: Comparison of fuel 
structures. The chemical 
structure of the terpenes A) 
bisabolane and B) farnesane 
are similar to the diesel fuel 
component C) hexadecane 
and D) methyl palmitate, a 
component of plant-based 
oils. Figure adapted from 
Peralta-Yahya et al., 2011 and 
NCBI Resource Coordinators, 
2017. 

Jet fuel requires a different energy profile than diesel and is graded based on energy 

content and function (George et al., 2015). To be suitable for aviation, an alternative 

fuel source must have high energy density, the ability to be ignited safely at both high 

altitudes and sea level, low viscosity and freezing point, and an economical production 

method (Chuck and Donnelly, 2014). Jet-A fuel has a mid-level energy content 

A

B

C

D
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comparable to limonene (Brennan et al., 2012). As limonene can be produced from 

waste rinds from the citrus industry, it is a sustainable source of a Jet-A fuel supplement 

(Ciriminna et al., 2014). Higher-energy fuels, such as JP-10, have strained ring structures 

that are energy dense and difficult to replicate (George et al., 2015). The monoterpenes 

α-pinene and β-pinene have similar energy contents to JP-10, but are difficult to 

sustainably produce from natural or synthetic sources at the volumes required for the 

fuel industry (Fig. 6) (George et al., 2015).  

 Figure 6: Structural comparison of JP-10 fuel 
components and pinene isomers. JP-10 aviation fuel 
consists of strained ring structures such as A) exo-
tetrahydrodicyclopentadiene and B) adamantane. The 
monoterpenes C) α-pinene and D) β-pinene have 
comparable structures and energy content. Figure 
adapted from Gao et al., 2015 (permission number 
4340941292149) and NCBI Resource Coordinators, 
2017. 

 

1.1.3 Current issues in terpene production 

The availability of terpenes for use in pharmaceuticals and biofuels is often limited by 

the production system. Often, plants do not naturally produce enough of these 

secondary metabolites to make harvesting and extraction from plant tissues sustainable 

(Degenhardt et al., 2003). Collection of plant materials from nature can endanger the 

species and ecosystem, exemplified by the reduced range of the yew tree caused by the 

overharvesting of Taxus species for the production of taxol (Juyal et al., 2014). 

Alternative production methods must be developed to overcome the challenge of 

harvesting essential terpenes from endangered or low-yielding plants. 

Engineering a biosynthetic pathway to produce more terpenes in the native species or 

transforming it into a species amenable to mass production could improve terpene 

availability. While the MEV pathway and several terpenes, including precursors to the 

pharmaceutical taxol, can be produced in microbial systems, commercially suitable 
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amounts of product often cannot be generated due to the toxicity of terpene 

intermediates (Ajikumar et al., 2010; Peralta-Yahya et al., 2011). For many terpenes, 

microbial production requires that the yield increase beyond the limit of toxicity for the 

cell culture in order to be profitable (Dunlop et al., 2011). There is currently no efficient 

commercial production system for key terpenes used as biofuel additives. Farnesane 

and bisabolane have been produced in microbial systems but in insufficient volumes 

(George et al., 2015; Peralta-Yahya et al., 2011). In order to compete with traditional 

fuels, a terpene production system must be developed that is cost effective and that 

meets the volume requirements of the fuel industry. Engineering a terpene biosynthetic 

pathway to increase production in the native plant species or an alternative production 

system could improve the economic viability of terpenes as a renewable fuel source.  

1.2 Gene clustering in secondary metabolite production 

1.2.1 History of gene clusters  

A gene cluster is a portion of the genome that contains three or more non-homologous 

genes that function in the same biosynthetic pathway, often encoding sequential steps 

(Nützmann et al., 2016). Clusters have been identified in animals, fungi, bacteria, and 

plants. In humans, several essential proteins such as the β-globin subunit of 

haemoglobin and the human growth hormone somatomammotropin are produced by 

tightly regulated gene clusters (Chakravarti et al., 1984; Gusella et al., 1979). In fungi, 

plants, and bacteria, clusters are more often involved in non-essential metabolic 

pathways (Ballouz et al., 2010; Keller and Hohn, 1997). The first biosynthetic gene 

cluster was discovered in the bacterium Streptomyces coelicolor and was involved in 

production of the polyketide antibiotic actinorhodin (Malpartida and Hopwood, 1984). A 

wide array of fungal and bacterial metabolites have since been found to be produced by 

gene clusters (Ballouz et al., 2010; Brakhage and Schroeckh, 2011).  

The physical clustering of genes involved in metabolite biosynthesis is seen in both 

monocots and dicots (Nützmann and Osbourn, 2014). The first described plant gene 
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cluster was found in Zea mays in the synthesis of 2,4-dihydroxy-7-methoxy-1,4-

benzoxazin-3-one (DIMBOA), an insect defence compound (Frey et al., 1997). Many 

clusters producing secondary metabolites have since been identified, several of them in 

monocot species. Clustering has been confirmed in the production of phytoalexins in 

Oryza sativa (Wilderman et al., 2004), avenacins in Avena strigosa (Qi et al., 2004), and 

the cyanogenic glucoside dhurrin in Sorghum bicolor (Darbani et al., 2016). 

The structure and composition of gene clusters varies both between and within species. 

In plants, clusters have been found which contain 3-10 genes in varying arrangements 

(Nützmann and Osbourn, 2014). Clusters can be collinear, where the genes are 

positioned on the chromosome in the order in which they act, or randomly arrayed 

around a founder gene. The founder gene of a biosynthetic cluster encodes an enzyme 

that creates the initial skeleton structure of the metabolite, while the remaining genes 

are enzymes that modify the skeleton structure (Osbourn, 2010). These modifying 

enzymes can include, but are not limited to, cytochromes P450, reductases, methyl- and 

acyltransferases, sugar transferases, dioxygenases, carboxylesterases, transaminases, 

and polyketide synthases (Nützmann et al., 2016). Clusters can also contain 

transcription factors that regulate the expression of the gene cluster, or compounds 

that convey resistance to a toxic final product (Darbani et al., 2016; Osbourn, 2010).  

The distance between individual genes in a cluster, and therefore overall cluster size, is 

highly variable. Clustered genes can be immediately adjacent to one another or 

separated by thousands of base pairs. The smallest described gene clusters, spanning 35 

kb, are in Arabidopsis thaliana and encode the triterpenes thalianol and marneral (Field 

and Osbourn, 2008; Field et al., 2011) while the largest is the approximately 270 kb 

DIMBOA biosynthetic gene cluster (Dutartre et al., 2012). The variability of cluster size 

and composition complicates the identification of clustered genes. Rigorous testing of 

gene expression patterns and interactions between genes is required to confirm 

clustering. 
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It is unclear how gene clusters initially arose. Current hypotheses involve gene 

duplication events giving rise to chromosomal rearrangements and subfunctionalization 

of duplicated genes with clusters persisting due to novel advantages or protective 

adaptations (Boutanaev et al., 2015; Boycheva et al., 2014). There is also no definitive 

answer as to why gene clusters occur with such apparent frequency in secondary 

metabolite production. It is possible that the close proximity of the genes allows for 

more efficient co-regulation of expression, or that it increases the probability that all of 

the genes necessary for metabolite production will be inherited by the next generation 

(Osbourn, 2010). The intermediate compounds of a biosynthetic pathway can have 

negative effects when accumulated, and both the co-expression of all genes involved 

and the inheritance of a complete pathway reduces the likelihood that toxic 

intermediates will damage plant tissues (Nützmann et al., 2016). It is possible that 

biosynthetic gene clusters are widespread due to cluster movement via horizontal gene 

transfer. Genes involved in secondary metabolite production can be transferred from 

bacteria to fungi (Wenzl et al., 2005) and from fungi to plants (Richards et al., 2009), and 

complete gene clusters are capable of being transferred between different species of 

fungi and bacteria (Khaldi et al., 2008; Lawrence and Roth, 1996). It is possible that the 

horizontal gene transfer from bacteria to higher organisms is the origin of some plant 

clusters for secondary metabolite production, though this hypothesis has yet to be 

proven (Nützmann et al., 2016).  

1.2.2 Gene clusters in terpene biosynthesis 

Over 40,000 terpenes have been identified in plants but the majority of the genes 

involved in their biosynthesis are unknown (Boutanaev et al., 2015). Terpene 

biosynthesis is typically studied by identifying the products of a single terpene synthase 

(Zhuang et al., 2012). However, since terpene synthases can produce a skeleton 

structure that undergoes further modification, the product of a terpene synthase alone 

may not be a biologically active compound. In order to fully understand terpene 

biosynthesis, all enzymes in the pathway must be identified. The application of gene 



Hay, Rebecca, 2018, UMSL, p.12 
 

cluster identification for terpene production can simplify the elucidation of terpene 

biosynthetic pathways.  

Gene clustering in terpene biosynthesis has been reported in several bacteria, fungi, and 

plant species (Nützmann and Osbourn, 2014; Wilderman et al., 2004). Research on 

terpene production in bacteria is limited. Only a handful of terpene or terpenoid 

structures have been identified and few biosynthetic pathways characterized (Yamada 

et al., 2015). Phenalinolactone, a terpene glycoside, is one of the few terpenes known to 

be produced in Streptomyces species. It is encoded by a 35-gene cluster that contains all 

the biosynthetic and regulatory genes necessary for terpene production (Dürr et al., 

2006). Other bacterial terpenes, such as the diterpenes terpenticin and brasilicardin A, 

are known to be produced in clusters and have partially characterized biosynthetic 

pathways that require further investigation to complete (Dairi et al., 2001; Hayashi et 

al., 2008). Fungi produce thousands of terpenes and gene clustering is widespread in 

fungal secondary metabolite biosynthetic pathways. Several fungal terpenes have fully 

elucidated biosynthetic pathways and are confirmed to be produced by gene clusters. 

The fungus Cephalosporium aphidicola synthesizes the diterpene aphidicolin from a 6-

gene cluster composed of a terpene synthase, two cytochromes P450 and transcription 

factors (Toyomasu et al., 2004). Terpenoids such as terretonin, fumagillin, and austinol, 

among many others, are also produced by biosynthetic gene clusters of varying sizes 

and composition (Lin et al., 2013; Schmidt-Dannert, 2015). In plants, metabolic gene 

clusters involved in terpene biosynthesis typically contain the terpene synthase as the 

first committed step of the biosynthetic pathway, paired with a cytochrome P450 from 

the CYP71 family (Boutanaev et al., 2015). From these two classes of enzymes arise a 

huge diversity of terpene structures that can be further modified by additional enzymes. 

Several gene clusters involved in terpene production have been identified in monocot 

species. In Oryza sativa the diterpenes momilactone A and B are produced from a gene 

cluster containing multiple terpene synthases that perform consecutive reactions in the 

momilactone biosynthetic pathway (Fig. 7) (Wilderman et al., 2004). O. sativa also 
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contains a gene cluster composed of 6 cytochromes P450 and four terpene synthases 

that produces both phytocassanes and oryzalides (Wilderman et al., 2004). In Avena 

strigosa the triterpene avenacin is produced from a cluster which contains the initial 

terpene synthase and the cyclase, oxidase, glycosyltransferase and acyltransferase 

required to convert the terpene precursor into an functional final product (Qi et al., 

2004). These known clusters indicate the possible composition of terpene-producing 

clusters in other monocot species.  

 
Figure 7: Terpene biosynthetic gene clusters in monocot species. O. sativa has clusters 
producing the diterpene momilactones, phytocassanes, and oryzalides. A. strigosa has a 
cluster producing the triterpene avenacin. Green arrow = terpene synthase, blue = 
cytochrome P450, orange = dehydrogenase/reductase, red = glycosyltransferase, yellow 
= acyltransferase. Figure adapted from Nützmann and Osbourn, 2014 (permission 
number 4340941469816). 
 
1.2.3 Importance of cluster identification 

Identification of gene clusters is essential for the discovery of new metabolic pathways 

and the engineering of these pathways for human use. Advances in sequencing 

technology and bioinformatic analysis have accelerated the identification of natural 

product pathways, but fewer than 50 biosynthetic pathways with genetic annotations 

have been completed in plants (Nützmann et al., 2016). Production of sustainable 

amounts of desirable metabolites requires a better understanding of how the 

metabolites are produced. 
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The discovery of gene clusters has simplified the process of identifying and 

characterizing the genes involved in biosynthetic pathways. It was previously thought 

that gene organization was mostly random, making it difficult to predict which genes are 

involved in related processes (Nützmann et al., 2016). Improvements in bioinformatic 

analytical techniques and subsequent identification of gene clusters has allowed for 

mining of large plant genomes for candidate biosynthetic clusters. The clusters can then 

be screened for their predicted functions and interactions and even engineered to 

produce more potent or higher volumes of product. Such investigations have been 

conducted on bacterially-produced compounds, such as the antitumor macrolides from 

actinobacteria. Mutation of a cytochrome P450 in the macrolide biosynthetic gene 

cluster resulted in a final product that was more cytotoxic than the native compound 

(Salcedo et al., 2016). Gene cluster identification can also be used to complete partially 

characterized biosynthetic pathways. The critical anti-cancer monoterpenes vinblastine 

and vincristine are partially derived from several small clusters of biosynthetic genes 

(Kellner et al., 2015). Investigation of these clusters revealed novel enzymes that are 

responsible for some of the missing steps of the biosynthetic pathway (Nützmann et al., 

2016). A better understanding of gene clusters could lead to similar advances in plant 

systems for production of biofuels and industrial solvents. 

1.3 Terpenes in Sorghum bicolor 

1.3.1 S. bicolor as a food and fuel  

Sorghum bicolor is a staple crop that is harvested worldwide for its grain, leaves, and 

sugar-rich stems, which are converted into feed, flour, sugar, syrup, alcohol, and 

biomass. It is predominately grown in semi-arid regions that cannot support corn or 

wheat (Zhuang et al., 2012). As rising temperatures increase the incidence of droughts 

worldwide, the C4 photosynthetic pathway and drought tolerance of S. bicolor will 

become more advantageous.  

The S. bicolor phenotype is highly varied and depends on the product the line has been 

bred to produce. Grain varieties have been bred to be significantly more compact than 
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sweet varieties, which are harvested for sugar or feedstock. The sweet varieties 

accumulate large amounts of biomass even under stress conditions such as drought or 

high salinity (Prasad et al., 2007). This genetic diversity, along with its small genome, 

available sequence data, hardiness, and variability in both photoperiod and biomass 

allocation makes S. bicolor an ideal crop for biofuel production (Turner et al., 2016).  

For a crop to be an efficient source of renewable fuels, it must require low resource 

inputs and have a high fuel to biomass ratio (Fesenko and Edwards, 2014). S. bicolor is a 

low-input crop that is currently cultivated worldwide, with a framework for growth and 

harvest well established. S. bicolor has been documented as a source of ethanol but is 

not a competitive alternative to Zea mays. While S. bicolor requires lower inputs of 

resources such as fertilizer and water, current varieties produce as little as a third of the 

total ethanol per hectare extracted from maize (Elbehri et al., 2013; Wortmann et al., 

2010). However, ethanol has only two-thirds the energy content of gasoline and, ideally, 

a renewable biofuel would have a high energy content comparable to traditional fossil 

fuels (Peralta-Yahya et al., 2011). Alternatives to ethanol are under investigation, 

including several terpene production systems (Augustin et al., 2015a; Peralta-Yahya et 

al., 2011). S. bicolor, which is already known to produce terpenes, could potentially 

become a production platform of these more energy-efficient biofuels. 

1.3.2 Secondary metabolites and gene clustering in S. bicolor 

Despite the genetic diversity and economic importance of S. bicolor, only limited 

information is available on the secondary metabolites produced by this crop. Extracts of 

plant tissues have been found to contain phenolic acids and flavonoids, such as cinnamic 

acid, anthocyanins, and tannins, all of which have antioxidant potential and other health 

benefits, as well as various phytosterols and policosanols (Awika and Rooney, 2004). 

However, the biosynthetic pathways and genetic regulation involved in the production 

of these metabolites remain largely unknown.  
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Like the phenotype, the chemical profile of S. bicolor varies depending on genotype and 

environmental conditions. In some cases the phytochemical variations are actively 

selected for, such as in South Africa where a variety with high grain tannin content is 

cultivated to decrease bird predation, despite reduced digestibility for livestock (Awika 

and Rooney, 2004). In most cases, phytochemical variation is a by-product of selection 

for agriculturally relevant traits. This variation can be exploited to find genotypes that 

produce high volumes of compounds of interest. 

The release of the full S. bicolor BTx623 genome has accelerated the characterization of 

unknown genes, some of which produce valuable or novel compounds (Paterson et al., 

2009). Several of these compounds are produced by gene clusters, such as the immune 

response to Setosphaeria turica, the pathogen responsible for northern leaf blight. This 

activity is controlled by a cluster of 6 genes which encode a resistance protein that 

triggers host response upon pathogen detection (Martin et al., 2011). Additional S. 

bicolor gene clusters include ten repeated genes spanning 35 kb which produce the seed 

storage protein kafarin (Song et al., 2004) and a large cluster spanning 104 kb containing 

5 genes encoding the cyanogenic glucoside dhurrin (Fig. 8) (Takos et al., 2011). The 

dhurrin gene cluster was initially thought to contain two cytochromes P450 and a UDP-

glucosyltransferase, which act upon the precursor, tyrosine. The cluster was later found 

to include a glutathione S-transferase and a transporter from the multidrug and toxic 

compound extrusion (MATE) protein family which were located in the intervening 

region between genes of interest (Darbani et al., 2016). The MATE transporter functions 

in removing synthesized dhurrin to the vacuolar membrane, confirming that clusters in 

S. bicolor can contain non-biosynthetic genes.  

The diversity of the known clusters in S. bicolor illustrates that even within a single 

species there is large variability in cluster size and composition. Currently no studies are 

available on the clustering of genes that produce terpenes in S. bicolor, but it is 

expected that they will be similar to those identified in other monocots. 
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Figure 8: Gene cluster producing the cyanogenic glucoside dhurrin. The dhurrin cluster 
contains five genes, two cytochromes P450 (CYP71, CYP79), UDP-glucosyltransferase 
(UGT), glutathione S-transferase (GST) and a MATE transporter. Chromosomal position is 
indicated by grey genes. Figure adapted from Darbani et al., 2016 and Kristensen et al., 
2005. 

1.3.3 Terpene synthesis in S. bicolor 

In monocot crops, terpenes are often produced as an indirect defense in response to 

insect attacks. Both the model crops Z. mays and O. sativa emit a combination of 

terpenes that attract predators when tissues are damaged by herbivory (Yuan et al., 

2008). While many volatiles have been identified, only a handful of terpene synthase 

genes have been characterized in these species. The enzymes which have been analyzed 

produce a diverse range of terpene and terpenoid structures in leaves, roots, stems, and 

reproductive plant organs (Zhuang et al., 2012). Analysis of S. bicolor leaf volatiles shows 

that sorghum produces a similar chemical profile to maize and rice. Terpenoids 

produced when S. bicolor tissues are damaged by insects are predominately β-

caryophyllene, α-bergamotene, and β-farnesene (Zhuang et al., 2012). Most of these 

leaf volatiles are produced by five sesquiterpene synthases, which are currently the only 

confirmed terpene biosynthetic genes in S. bicolor (Zhuang et al., 2012).  

Over 47 potential sesquiterpene synthases have been identified in S. bicolor, but the 

majority has not been investigated (Zhuang et al., 2012). In addition, there has been 

little investigation into how the physical clustering of biosynthetic genes influences 

terpene production in this species. This lack of information illustrates the need for a 

protocol that identifies potential terpene synthases and modifying genes and that 

confirms both clustering and gene activity. The elucidation of a complete clustered 

pathway for terpene production in S. bicolor would accelerate gene discovery by 

confirming the presence of terpene biosynthetic gene clusters and their role in 

Sobic.001G012100

CYP71 CYP79 UGT GST MATE

Sobic.001G012700
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metabolism. A better understanding of metabolite synthesis would allow for 

augmentation of the pathway through genetic engineering to increase innate or 

alternative host terpene production for human use. 

1.4 Hypothesis and Objectives 

An ongoing issue in secondary metabolite analysis is elucidation of complete 

biosynthetic pathways. Thorough understanding of a pathway is necessary for 

engineering sustainable production of metabolites for human use. Applying current 

knowledge of gene clustering to terpene biosynthetic genes in S. bicolor could simplify 

pathway identification. This thesis project addresses the following goals: (1) 

identification of potential terpene biosynthetic gene clusters in S. bicolor based on 

sequence similarity to terpene synthases and associated enzymes in other species, (2) 

characterization of the terpene synthase present in the selected gene cluster, and (3) 

determination if clustered genes act upon the product of the terpene synthase. It was 

hypothesized that terpene biosynthetic gene clusters could be identified based on the 

spatial distribution of potentially related genes, and that clustering could be confirmed 

by gene expression and characterization in a heterologous system.  
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Chapter 2: Identification of putative terpene biosynthetic gene clusters 

2.1 Summary 

Gene clustering of secondary metabolite biosynthetic pathways is a common 

phenomenon in plants. Identification of clusters has improved as more complete 

genomes have been released. Previous studies have shown that some terpenes, a class 

of secondary metabolite explored as renewable fuel additives, industrial solvents, and 

pharmaceuticals, are produced by gene clusters. Sorghum bicolor produces a variety of 

terpenes but information on their biosynthesis and potential application is limited. The 

metabolic profile of S. bicolor and its suitability as a source of alternative fuel makes it 

an ideal crop for the study of gene clustering in terpene biosynthetic pathways. Herein, 

putative gene clusters involved in terpene synthesis are identified and a single cluster 

containing a terpene synthase, cytochrome P450, and a galacturonosyltransferase is 

selected for further study. 

2.2 Significance 

Few terpene synthase genes in S. bicolor have been characterized or investigated for 

linkages to clustered genes. In this study, a novel method of identifying putative terpene 

biosynthetic gene clusters was applied to the S. bicolor genome and many potential 

clusters were successfully located.  

2.3 Contributions 

The Kellogg lab curated the database of known plant terpene synthases, cyclotides, 

cysteins, glycosyltransferases, methyltransferases, polyketide synthases, reductases and 

cytochromes P450 that was used in this project. Dr. Michael McKain developed the 

novel cluster identification method used to identify putative terpene biosynthetic 

clusters. Collaborative analysis of putative clusters between the Kutchan and Kellogg 

labs advanced three clusters for further characterization. 

2.4 Introduction 

Characterization of biosynthetic pathways is hindered by the difficulty of identifying 

related biosynthetic genes. The sequencing of complete plant genomes and the 
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development of bioinformatic analytical techniques have vastly accelerated the gene 

identification process. Currently, complete genomes from nearly 100 plant species are 

available (Kautsar et al., 2017). Sequence analysis of these genomes can identify 

potential gene clusters and elucidate unknown genes involved in critical biosynthetic 

pathways.  

When analyzing a genome for novel biosynthetic genes, mass searches featuring local or 

global alignment tools can quickly identify genomic regions that are similar to known 

biosynthetic genes. A commonly-used local alignment software is BLAST (Basic Local 

Alignment Search Tool) which is used to compare a query sequence to a database and 

identify regions of characterized sequences that are statistically similar to the query 

(Altschul et al., 1990). A global alignment, or multiple sequence alignment, does not 

involve a database and requires that sequences be manually input for comparison 

(Pearson, 2013). Tools such as MAFFT or MUSCLE align the entire length of the query 

sequences to each other to determine total sequence similarity (Edgar, 2004; Katoh and 

Standley, 2013). Multiple sequence alignment results are most accurate when applied to 

sequences that are of similar length and suspected to share a function. Multiple 

sequence alignments are more time consuming than local alignments and require that 

all sequences of interest be identified prior to comparison; as such, they are often used 

as a second alignment tool following a local alignment (Pearson, 2013). 

Bioinformatic analysis has been used to identify novel biosynthetic genes in several 

plant species, such as triterpene saponin synthases in Medicago truncatula (Achnine et 

al., 2005), and a valerenadiene synthase in Valeriana officinalis, which is the 

sesquiterpene responsible for the sedative properties of valerian root (Yeo et al., 2013). 

Once a putative biosynthetic gene is identified by an alignment tool, it must be 

characterized to confirm function. Due to the massive amounts of genetic information 

available, many putative biosynthetic genes remain uncharacterized even after 

identification by sequence analysis (Zhuang et al., 2012).  
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Gene clusters can also be identified by sequence analysis using genomic data. Alignment 

tools can be used to identify multiple types of biosynthetic genes and determine their 

proximity to one another on the chromosome. Genes that are involved in similar 

pathways and localized to the same region of the chromosome form putative gene 

clusters, which can then be tested for similar patterns of expression and gene 

interactions. Dozens of gene clusters thought to be involved in terpene biosynthesis 

have been identified in over 40 plant species (Kautsar et al., 2017). Analysis of terpene 

biosynthetic gene clusters has led to a better understanding of how elusive compounds 

such as the anticancer agents vinblastine and vincristine are synthesized (Kellner et al., 

2015). Research has primarily focussed on terpene biosynthetic clusters that produce 

antibiotics and antiviral agents or other compounds with medicinal benefits (Dürr et al., 

2006; Toyomasu et al., 2004). The carbon density and ring structure of terpenes also 

show promise as an alternative fuel source, though information on the effect of gene 

clustering on the biosynthesis of these types of terpenes is limited. Understanding the 

prevalence of gene clustering in the production of terpenes that have potential as 

biofuels is an essential step in mass-producing these high-energy compounds.  

In order to investigate gene clustering in terpene biosynthesis, a putative cluster 

containing a terpene synthase must first be identified and confirmed to produce a 

functional terpene. The terpene synthase gene, as well as the type of terpene it 

produces, can be identified by sequence similarities between terpene synthases in the 

plant kingdom. Terpene synthases are typically between 550 and 850 amino acids in 

length, contain 6-12 introns, and have a characteristic terpene synthase fold and DDXXD 

metal ion binding motif (Alquézar et al., 2017; Zhou and Peters, 2009). In plants, terpene 

type is indicated by the presence of a subcellular localization signal. Monoterpene and 

diterpene synthases are 50-70 amino acids longer than sesquiterpene synthases due to 

the N-terminus transit peptide which locates these proteins to the chloroplast 

(Nagegowda, 2010). These conserved regions allow for identification of putative terpene 

synthases by sequence analysis. The presence of these regions does not guarantee that 
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the protein is functional, nor does it necessarily guarantee the type, so further testing is 

required to confirm terpene synthase activity. 

When localized to a gene cluster, the terpene synthase is considered the founding gene. 

It converts the precursor molecule FPP, GPP, or GGPP into a terpene skeleton structure, 

which can be further modified by other enzymes, such as cytochromes P450, 

reductases, methyltransferases, and glycosyltransferases, into a final terpene product 

(Degenhardt et al., 2003). The identification of these modifying genes in close proximity 

to a terpene synthase indicates a putative gene cluster. Gene function, expression and 

interaction with other members of the cluster must be analyzed before cluster identity 

is confirmed. 

2.5 Experimental Procedures 

2.5.1 Cluster identification 

The annotated cDNA and protein sequences of S. bicolor (v3.1) were obtained from the 

Joint Genome Institute (Nordberg et al., 2014). A database of nucleotide sequences 

from plant-based terpene synthases, cyclotides, cystine knots, glycosyltransferases, 

methyltransferases, polyketide synthases, reductases, and cytochromes P450 was 

developed in house by Dr. Michael McKain at the Donald Danforth Plant Science Center 

(St. Louis, MO, USA). A BLAST search (BLASTX) comparing the S. bicolor protein 

sequence to the plant-based enzyme database identified S. bicolor proteins similar to 

those of the database with an e-value of 10-8 (Altschul et al., 1990). The resulting S. 

bicolor sequences were filtered based on their bidirectional overlap with the targeted 

gene families. A minimum of 85% overlap was used to accept a putative S. bicolor 

member of a gene family. As an additional filtering step to confirm identity, S. bicolor 

genes were aligned to the initial database of plant-based enzymes using the MAFFT 

multiple sequence alignment tool (Katoh and Standley, 2013).  

The clustering of identified gene families was determined using a novel Perl script (2.8 

Supplementary Information) that searched for targeted gene families within a specific 

distance from each other. Clusters consisting of at least one terpene synthase and one 



Hay, Rebecca, 2018, UMSL, p.23 
 

other target gene family, and having a range of 0-20 intervening genes between 

targeted genes, were reserved while the others were discarded. The clusters were 

manually curated based on size, the proximity of targeted genes, the number of gene 

families contained, and gene family composition. Putative clusters larger than the 

current largest documented plant biosynthetic gene cluster, 270 kb, were discarded 

(Frey et al., 1997). Plant biosynthetic gene clusters are considered to contain three or 

more genes, so clusters containing only a gene pair were also removed from 

consideration (Nützmann et al., 2016). Terpene biosynthetic gene clusters typically 

contain a terpene synthase/cytochrome P450 pair and so putative clusters lacking a 

cytochrome P450 were not advanced (Boutanaev et al., 2015). The final filtering step 

was selecting the clusters with the fewest total number of genes to facilitate analysis. 

From these criteria, three clusters were selected for further analysis. A BLASTX search 

was used to determine the putative function of all genes contained in the cluster and 

the intervening regions. 

2.5.2 Determination of terpene synthase type in candidate clusters 

The types of terpenes produced by the selected terpene synthases were determined 

using their phylogenetic relationship to known terpene synthases. A database of protein 

sequences from 533 known mono-, di-, tri- and sesquiterpene synthases and FPP, GPP 

and GGPP synthases was collected from the National Center for Biotechnology 

Information (NCBI Resource Coordinators, 2017). The protein sequence of each 

candidate terpene synthase was aligned to this database using MAFFT alignment 

software (Katoh and Standley, 2013). Trees were constructed in Mega 7 using maximum 

likelihood analysis with 500 bootstrap replicates (Kumar et al., 2016). The protein 

sequence of each terpene synthase was also analyzed using SignalP and TargetP to 

identify potential subcellular localization signals (Emanuelsson et al., 2000; Petersen et 

al., 2011). 
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2.5.3 Modification of gene cluster based on expression data 

Expression data of RNA transcripts is available for the majority of S. bicolor genes 

(Makita et al., 2015). As Cluster 1 was accepted for advancement, the expression 

patterns of all genes identified as part of the cluster as well as the intervening genes 

were compared. Genes that were not expressed in the same tissues as the founding 

terpene synthase gene of Cluster 1 were removed from further analysis.  

2.6 Results 

2.6.1 Cluster identification 

The initial analysis yielded 315 unique putative terpene biosynthetic clusters, each 

containing at least one terpene synthase. Only 23 of these putative clusters contained 3 

or more gene families (Table S2.1). These 23 clusters were further reduced to 3 

candidates for further analysis based on cluster size and the total number of intervening 

genes (Table 1). The candidate clusters spanned between 104 kb and 156 kb, and 

contained no more than seven intervening genes. Cluster 1 contained three gene 

families of interest - a reductase, cytochrome P450, and a terpene synthase most similar 

to the sesquiterpene α-copaene synthase found in Oryza brachyantha. The terpene 

synthase, Sobic.001G339000, was previously identified as a putative sesquiterpene 

synthase, though gene function was not confirmed (Zhuang et al., 2012). Cluster 2 

contained two cytochromes P450, a methyltransferase, and a putative terpene synthase 

that was annotated as a farnesyl pyrophosphate synthase, the precursor to 

sesquiterpenes. Cluster 3 contained the terpene synthase identified as 

Sobic.007G035800, which was characterized by Zhuang et al., 2012 as a sesquiterpene 

synthase, as well as a cytochrome P450 and a reductase.  
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Table 1: Candidate Terpene Biosynthetic Gene Clusters. Three putative gene clusters 
were selected based on size and gene family composition. Genes with a confirmed Gene 
Family are members of the cluster. All other functions are based on BLAST searches. The 
putative terpene synthase of each cluster is indicated in bold.  

Cluster 1: 137.3 kb 

Gene ID Gene Family Putative Function 

Sobic.001G338000 Reductase Similar to dehydrogenase/reductase [Dichanthelium oligosanthes] 

Sobic.001G338100  Similar to hypothetical protein [Dichanthelium oligosanthes] 

Sobic.001G338200  Similar to hypothetical protein [Oryza sativa] 

Sobic.001G338400  Similar to galacturonosyltransferase [Setaria italica] 

Sobic.001G338500  Similar to ACT domain-containing protein [Setaria italica] 

Sobic.001G338600  Similar to hypothetical protein [Zea mays] 

Sobic.001G338700  Similar to transcription factor CBF/NF-YB/HAP3 [Triticum aestivum] 

Sobic.001G338800  Similar to myosin-2 heavy chain [Zea mays] 

Sobic.001G338900 Cytochrome P450 Similar to cytochrome P450 [Zea mays]  

Sobic.001G339000 Terpene Synthase Similar to α-copaene synthase [Oryza brachyantha] 

Cluster 2: 104.3 kb 

Gene ID Gene Family Putative Function 

Sobic.003G269500 Cytochrome P450 Similar to cytochrome P450 [Dichanthelium oligosanthes] 

Sobic.003G269600 Cytochrome P450 Similar to cytochrome P450 [Setaria italica] 

Sobic.003G269700 Methyltransferase Similar to carboxymethyltransferase [Dichanthelium oligosanthes] 

Sobic.003G269800  Similar to phosphatidylcholine transfer protein [Zea mays] 

Sobic.003G269900  Similar to subtilisin-like protease [Setaria italica] 

Sobic.003G270000  No putative function 

Sobic.003G270100  Similar to chaperone protein dnaJ 10 [Zea mays] 

Sobic.003G270200  Similar to dehydrin Rab25 [Setaria italica] 

Sobic.003G270300  Similar to DNA binding protein Hv33 [Setaria italica] 

Sobic.003G270400  Similar to ubiquitin-protein ligase [Setaria italica] 

Sobic.003G270500 Terpene Synthase Similar to farnesyl phosphate synthase [Setaria italica] 

Cluster 3: 155.9 kb 

Gene ID Gene Family Putative Function 

Sobic.007G034900 Cytochrome P450 Similar to indole-2-monozygenase [Zea mays] 

Sobic.007G035000  Similar to aromatic-L-amino-acid decarboxylase [Triticum urartu] 

Sobic.007G035100  Similar to cyclin protein [Zea mays] 

Sobic.007G035200  Similar to cobyrinic acid a,c-diamide synthase [Aquincola 
tertiaricarbonis] 

Sobic.007G035300  Similar to aromatic-L-amino-acid decarboxylase [Setaria italica] 

Sobic.007G035500  Similar to aromatic-L-amino-acid decarboxylase [Zea mays] 

Sobic.007G035600  Similar to vesicle-associated protein 4-2 [Setaria italica] 

Sobic.007G035700 Reductase Similar to NAD(P)H-ubiquinone oxidoreductase B2 [Setaria italica] 

Sobic.007G035800 Terpene Synthase α-bergamotene and γ-bisabolene synthase [Sorghum bicolor] 

 

https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_1070982621
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_1070982621
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_1070982621
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_1070982621
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2.6.2 Determination of terpene type from candidate gene clusters 

Phylogenetic analysis of the potential terpene synthases confirmed the BLAST results 

detailed in Table 1. Each candidate terpene synthase clustered strongly with various 

sesquiterpene synthases, or, in the case of Cluster 2, farnesyl pyrophosphate synthases 

(Fig. 9). Sobic.001G339000 clustered among α-copaene synthase-like proteins from 

Oryza brachyantha, as predicted by the BLAST search, and the sesquiterpene 

aristolochene and vetispiradiene synthases from Triticum and Oryza species. The 

terpene synthase from Cluster 2, Sobic.003G270500, is most closely related to the 

farnesyl pyrophosphate synthases from Triticum, Aegilops, Oryza, and Zea species. 

Sobic.007G035800 clustered most closely with β-sesquiphellandrene and β-farnesene 

synthases from Setaria italica, a zizaene synthase, and a (S)-β-macrocarpene synthase 

from Zea mays. The position of Sobic.007G035800, previously characterized as a 

sesquiterpene synthase that produces β-farnesene, among other sesquiterpene 

synthases supports the effectiveness of this phylogenetic method in determining 

terpene type. These results indicate that the candidate genes are sesquiterpene 

synthases or enzymes that form the precursor farnesyl pyrophosphate and are 

therefore localized to the cytosol. No subcellular localization signal is present in this 

type of terpene synthase. The absence of a subcellular localization signal was supported 

by analysis using both SignalP and TargetP software (Emanuelsson et al., 2000; Petersen 

et al., 2011). As the terpene synthase from Cluster 3 has been previously characterized, 

and Cluster 2 encodes a farnesyl pyrophosphate synthase rather than a true terpene 

synthase, Cluster 1 is the best candidate for further analysis. 
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Figure 9: Phylogenetic 
analysis of candidate 
terpene synthases. Each 
candidate terpene 
synthase (indicated by 
arrow) was positioned 
among known 
sesquiterpene synthases 
or FPP synthases, 
indicating that the 
proteins are active in the 
cytosol. A) 
Sobic.001G339000 is 
most similar to the α-
copaene synthase found 
in Oryza sp. B) 
Sobic.003G270500 is 
found among farnesyl 
pyrophosphate synthases 
of monocots. C) 
Sobic.007G035800 is 
most similar to β-
sesquiphellandrene 
synthase and is also 
known to produce β-
farnesene. 

 

 

2.6.3 Modification of gene cluster based on expression data 

Expression analysis of Cluster 1 determined that the terpene synthase, the founding 

gene of the cluster, was most highly expressed in the root tissues (Fig. 10). The 

cytochrome P450 of interest exhibited a similar expression pattern. However, the 

reductase that was identified as a potential cluster member was expressed in shoot 

tissues rather than the roots. As such, it was removed from further investigations of the 

cluster. The expression pattern of intervening genes was also examined. 

Sobic.001G338400, a putative galacturonosyltransferase, was expressed in all examined 
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tissues with high expression in roots. Sobic.001G338400 was hereafter included in 

further cluster analysis. 

Figure 10: Expression patterns of the genes of interest. RNA expression patterns for the 

S. bicolor genes A) Sobic.001G339000 (terpene synthase) B) Sobic.001G338900 

(cytochrome P450) C) Sobic.001G338400 (galacturonosyltransferase) D) 

Sobic.001G338000 (reductase). In untreated conditions, TPS expression (A) is highest in 

seedling roots; this expression point is indicated with an asterisk. The CYP450 (B) and 

galacturonosyltransferase (C) are also expressed in untreated roots. The reductase (D) is 

not expressed in root tissues. Figure adapted from Makita et al., 2015. 

2.7 Discussion 

The novel method of cluster identification used in this study yielded 315 potential 

terpene biosynthetic gene clusters in S. bicolor. Many of these putative clusters 

contained only two genes, which is smaller than most clusters described in plants. 

Therefore, while the paired genes may be linked, they were not suitable for this study 

and were not included in further analysis. Here, in addition, putative clusters were 

required to contain three or more gene families, since most documented terpene 
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biosynthetic gene clusters contain multiple enzymes types (Qi et al., 2004; Wilderman et 

al., 2004). Twenty-three putative clusters containing three or more gene families were 

identified. Previous research identified a total of 54 putative biosynthetic gene clusters 

in S. bicolor (Kautsar et al., 2017), though these had different compositional 

requirements than those in this study. It is likely only a fraction of the 23 identified here 

are true gene clusters. 

Further analysis of cluster size and composition reduced the pool of 23 potential gene 

clusters to three candidates for biochemical analysis. The majority of the 23 putative 

clusters contained a terpene synthase paired with a cytochrome P450, which is the gene 

pair most commonly found in terpene biosynthetic clusters (Boutanaev et al., 2015). 

Eight of the putative clusters did not contain a cytochrome P450 and were not 

considered for advancement, as it is unlikely for a terpene biosynthetic cluster to lack 

this gene based upon current published data. The remaining enzyme types found in 

clusters were, in order of decreasing frequency, reductases, polyketide synthases, 

glycosyltransferases, and methyltransferases. No cyclotides or cystine knots were found 

in any cluster. Of the fifteen putative clusters containing the terpene 

synthase/cytochrome P450 pair, only three of these contained fewer than 12 total 

genes and spanned less than 270 kb. Therefore, these three clusters were selected for 

phylogenetic analysis.  

Cluster 1 contained the terpene synthase Sobic.001G339000 (formerly annotated as 

Sb01g032610), which is most closely related to the putative α-copaene synthase 

identified in Oryza sativa. Copaene is a tricyclic sesquiterpene, indicating that 

Sobic.001G339000 is likely a sesquiterpene synthase as well. Previous sequence analysis 

results also indicate that Sobic.001G339000 is a sesquiterpene synthase, though no 

attempt has been made to characterize this gene (Priya et al., 2018; Zhuang et al., 

2012). Cluster 1 contained two more gene families of interest, a reductase and a 

cytochrome P450, both homologous to enzymes in Zea mays. The intervening region of 

the cluster also contained several promising genes that were not specifically targeted in 
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the cluster search. A putative galacturonosyltransferase was identified in this region 

and, based on expression data, could potentially be involved in terpene biosynthesis. 

Cluster 2 contained the putative terpene synthase Sobic.003G270500. Both a BLAST 

search and phylogenetic analysis indicated that Sobic.003G270500 is not a terpene 

synthase, but more likely forms the terpene precursor farnesyl pyrophosphate. Cluster 2 

contains three other genes of interest, two cytochromes P450 and a methyltransferase, 

that may be involved in FPP synthesis. As this cluster does not form a specific terpene 

product, it is not ideal for this study. Examination of this putative cluster is better-suited 

for a study on gene clustering in the MEV biosynthetic pathway.  

Cluster 3 contains the terpene synthase Sobic.007G035800 (Sb07g003080) which has 

previously been characterized (Zhuang et al., 2012). It produces seven sesquiterpenes, 

including 7-epi-sesquithujene, (E)-α-bergamotene, sesquisabinene A, (E)-β-farnesene, β-

bisabolene, (Z)-γ-bisabolene, and (E)-γ-bisabolene (Zhuang et al., 2012). This terpene 

synthase was advanced for further analysis to verify the effectiveness of our methods of 

cluster identification. The detection of putative terpene synthases and associated gene 

families in S. bicolor is validated by the identification of Sobic.007G035800 using this 

protocol. Sobic.007G035800 was also used to validate our method of terpene 

categorization. The phylogenetic tree used to ascertain terpene type correctly placed 

Sobic.007G035800 among sesquiterpene synthases, including a (E)-β-farnesene 

synthase and β-sesquiphellandrene synthase, a compound structurally similar to 

sesquisabinene. This validates our current terpene identification method and suggests 

that the placement of the other two terpene synthases, Sobic.001G339000 and 

Sobic.003G270500, is accurate.  

In addition, cluster 3 contained two other genes of interest, a cytochrome P450 and a 

reductase homologous to enzymes in Zea mays and Setaria italica. These genes 

potentially act upon the product of Sobic.007G035800 to form novel sesquiterpenes in 

addition to the seven the terpene synthase alone is known to produce. However, since 
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Sobic.007G035800 has been previously characterized, cluster 3 was not an ideal 

candidate for this study.  

All of the investigated terpene synthases were involved in the biosynthesis of 

sesquiterpenes, and were therefore active in the cytosol. No subcellular localization 

signal is present. Of the three clusters selected, cluster 1 containing the putative 

terpene synthase Sobic.001G339000 was best suited for further study. 

Sobic.003G270500 is likely involved in synthesis of a terpene precursor rather than a 

terpene, and investigation of gene clustering in the MEV pathway was beyond the scope 

of this study. Cluster 3 contained the terpene synthase Sobic.007G035800 which had 

already been thoroughly studied (Zhuang et al., 2012). Cluster 1 was the best candidate 

for advancement to both characterize a novel terpene synthase and validate our cluster 

identification methods.  

The founding member of Cluster 1, the terpene synthase, is most highly expressed in 

root tissues. While most of the well-studied terpenes are involved in herbivore defense 

or pollinator attraction and are produced in above ground plant tissues, several 

terpenes are produced in roots. For instance, (E)-β-caryophyllene is produced in maize 

roots in response to insect attack (Rasmann et al., 2005). Other, non-volatile, terpenes 

are released by roots to assist development of hyphae by soil mycorrhizal fungi, creating 

a symbiotic relationship which improves nutrient acquisition by plant roots (Akiyama et 

al., 2005). Root-specific terpene synthases have also been found in Arabidopsis, 

producing the monoterpene 1,8-cineole and the sesquiterpene (Z)-γ-bisabolene (Chen 

et al., 2004; Ro et al., 2006), as well as Orzya sativa, which produces momilactones to 

suppress the growth of neighbouring plants (Wilderman et al., 2004). 

Expression analysis of Cluster 1 shifted cluster composition from what was predicted 

based on genomic data. As the founding terpene synthase is highly expressed in roots, 

all other members of the gene cluster are expected to have a similar expression pattern. 

The putative CYP450 located in cluster 1 has a similar expression profile to the terpene 

synthase, with peak expression localized to the roots. This CYP450 also has some 
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expression in embryonic tissues, a trait not shared with the terpene synthase. 

Sobic.001G338000, a putative reductase identified as a cluster member by our sequence 

analysis, is expressed in shoots rather roots. It is unlikely that the reductase is a member 

of the gene cluster and it should not be included in further analysis. One of the 

intervening genes in the cluster, Sobic.001G338400, is a putative 

galacturonosyltransferase that is highly expressed throughout S. bicolor, including in 

roots. As such, the galacturonosyltransferase is a candidate member of the gene cluster 

and should be included in further analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Hay, Rebecca, 2018, UMSL, p.33 
 

 

2.8 Supplementary Information 

2.8.1 Supporting Resources 

The script used to identify putative gene clusters was developed by Dr. Michael McKain 

and can be found at: https://github.com/mrmckain/Secondary_Metabolite_Clustering 

2.8.2 Supplementary Tables 

Table S2.1: Summary of putative terpene biosynthetic gene clusters. Experimental ID 
indicates which clusters were advanced. Cluster selection was based on cluster size, 
number of intervening genes, and gene family composition. Gene family acronyms: TPS = 
terpene synthase, CYP450 = cytochrome P450, Red = reductase, GT = glycosyltransferase, 
MT = methyltransferase, PKS = polyketide synthase. 
 

 Gene Families 

Experimental 
ID 

Cluster 
ID 

Cluster 
Size (kb) 

Total 
Genes 

No. Intervening 
Genes 

TPS CYP450 Red GT MT PKS 

Cluster 1 69 137.3 10 7 1 1 1    

Cluster 2 263 104.3 11 7 1 2   1  

Cluster 3 517 155.9 9 6 1 1 1    

  429 134.3 23 8 1  4   3 

  43 918.7 22 10 1  1  1  

  63 314.1 20 10 1 1 1    

  371 127.2 21 10 2  1  1  

  162 187.1 15 11 1   1  1 

  361 220.2 50 11 2 1 1  1 3 

  264 433.3 36 12 3   1 2  

  53 337.5 24 13 1 1 2    

  145 286.4 30 14 1  1 1  1 

  339 562.1 25 14 1 3 1   1 

  434 709.7 22 14 1 1  1   

  211 389.2 27 15 1 2  1 1  

  326 112.2 54 15 2 5  2  1 

  463 446.0 23 15 1 1    3 

  132 318.1 31 16 1  3   1 

  135 544.8 58 16 1 4 1 1  1 

  55 495.0 36 17 1 5 1    

  412 518.5 36 17 1 2 1    

  92 667.5 36 20 1 2 1    

  305 229.2 44 20 1  5   3 
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Chapter 3: Characterization of a novel S. bicolor terpene synthase 

3.1 Summary 

Sesquiterpene synthases convert the precursor molecule farnesyl pyrophosphate (FPP) 

into a skeleton structure that can undergo further enzymatic modifications to produce a 

variety of terpene products. The putative gene cluster identified in Chapter 2 contained 

an uncharacterized terpene synthase hypothesized to produce a sesquiterpene. In this 

chapter, protein functionality and terpene structure were determined. The terpene 

synthase was expressed in Escherichia coli, purified, and combined with FPP in an in 

vitro enzyme assay. Protein function was confirmed using gas chromatography - mass 

spectrometry (GC-MS) for identification of an unknown terpene product. In order to 

determine the structure of the unknown terpene, the terpene synthase was co-

expressed in E. coli alongside a plasmid containing the mevalonate pathway to produce 

the product in vivo. The terpene product was isolated from the culture by solid-phase 

extraction (SPE) and analyzed by direct infusion mass spectroscopy. 

3.2 Significance 

Despite the economic importance and metabolic diversity of S. bicolor, few natural 

product biosynthetic genes have been characterized in this species. This study expresses 

a novel sesquiterpene synthase from S. bicolor and determines a potential molecular 

formula of the terpene product.  

3.3 Contributions 

Development of protocols for the Triversa Nanomate/Q Exactive direct infusion system 

was done by Dr. Bradley Evans.  

3.4 Introduction 

Five terpene synthase genes, each of which produces multiple terpenes, have been 

characterized in S. bicolor (Zhuang et al., 2012). These genes are part of the biosynthetic 

pathways of the leaf volatiles β-bisabolene, zingiberene, β-sesquiphellandrene, α-

bergamotene, β- farnesene, and β-caryophyllene and minor products such as 
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sesquisabinene and α-humulene. At least 42 other putative terpene synthases have 

been identified by genome analysis in S. bicolor, but they remain uncharacterized 

(Zhuang et al., 2012). The gene of interest in this study, Sobic.001G339000, is a putative 

sesquiterpene synthase whose products have not been investigated. Sobic.001G339000 

is the founding gene of a possible gene cluster containing several enzyme classes that 

are known to modify terpene skeleton structures. Before gene clustering can be 

confirmed, it must be determined if the founding gene encodes a functional protein.  

Putative terpene synthases are often characterized by heterologous expression in an 

alternative host. The resulting protein is then extracted and its activity assessed by 

enzyme assay with the predicted substrate. Heterologous expression systems are 

selected based on their ease of use and ability to produce large quantities of product at 

a low cost. Plant species that are easy to cultivate and amenable to transformation, such 

as Nicotiana benthamiana, are the ideal host for synthesizing plant-based terpenes. 

They possess all the required cellular machinery and naturally produce terpene 

precursors, removing the need for exogenous supply of FPP, GPP, and GGPP. However, 

the yield of plant-based systems is variable and they are costly and time-consuming to 

maintain (Leavell et al., 2016). Microbial systems such as E. coli or Saccharomyces 

cerevisiae are better-suited for generating large volumes of protein, despite the extra 

steps required for purification and combination of the protein with an exogenous source 

of substrate.  

A signal peptide on the terpene synthase will affect the subcellular location of the 

protein and therefore its functionality in a heterologous expression system. 

Sesquiterpene and triterpene synthases act upon FPP, which is synthesized in the 

cytosol by the mevalonate (MEV) pathway (Degenhardt et al., 2003). Monoterpene and 

diterpene synthases act on GPP and GGPP, respectively, which are synthesized in the 

plastid by the non-mevalonate (MEP) pathway (Degenhardt et al., 2003). Terpene 

synthases which act upon GPP and GGPP possess a subcellular localization signal that 

directs the protein to the plastid where the pools of precursor are stored. While some 
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terpene synthases are promiscuous and can be found in both the plastid and the 

cytosol, typically they remain segregated (Aharoni et al., 2004). Expression systems such 

as E. coli, S. cerevisiae, and Spodoptera frugiperda (Sf9 cells) do not possess the correct 

cellular machinery to process compounds with this subcellular localization signal, so 

either a plant-based production system must be used to express plastidial terpene 

synthases or the transit peptide must be cleaved (Brückner and Tissier, 2013). Since 

Sobic.001G339000 is a putative sesquiterpene synthase and therefore active in the 

cytosol, no signal peptide is present and the protein is likely to be functional in a non-

plant expression system. 

 E. coli is a common secondary metabolite production system as it is easy to transform 

and can produce high titres of product in small volumes of culture. Proteins can be 

synthesized in E. coli, purified, and then combined with an external source of substrate 

to determine protein function and product identity. The techniques for cloning and 

expressing plant-derived terpene synthases in E. coli are well established (Augustin et 

al., 2015a; Zhuang et al., 2012). E. coli cultures have been used to produce terpene 

synthases for a variety of terpenes, such as the defense compound β-caryophyllene 

(Norris, 2013) and several S. bicolor sesquiterpenes (Zhuang et al., 2012).  

A limiting factor of sesquiterpene production in E. coli is the cost of the substrate. Pure 

FPP is costly to manufacture, and large quantities are required to create measurable 

amounts of sesquiterpenes. An alternative to exogenous supplementation with FPP is 

producing it in a microbial expression system alongside a sesquiterpene synthase. An E. 

coli vector containing the mevalonate pathway (pBbA5c-MevT(CO)-TI-MBIS(CO, ispA), 

referenced as pBbA5c-Mev) has been used to produce large volumes of sesquiterpenes 

in E. coli cultures (Peralta-Yahya et al., 2011). This vector contains all the genes of the 

MEV pathway necessary to convert acetyl-CoA into FPP, including acetyl-CoA 

transferase, 3-hydroxy-3-methylglutaryl (HMG)-CoA synthase, HMG-CoA reductase, 

mevalonate kinase, phosphomevalonate kinase, mevalonate diphosphate 

decarboxylase, isoprenyl diphosphate isomerase, and farnesyl pyrophosphate synthase 
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(Fig. 11). Overexpression of this pathway results in an accumulation of FPP in the cytosol 

of E. coli cells which can then be acted upon by a co-expressed terpene synthase, 

producing terpenes directly in the cell culture. Co-expression of the MEV pathway and a 

terpene synthase has been used to produce the alternative fuels farnesol and 

bisabolane and the artemisinin precursor amorphadiene (Martin et al., 2003; Peralta-

Yahya et al., 2011; Wang et al., 2010). 

Figure 11: pBbA5c-Mev contains the mevalonate pathway for FPP biosynthesis. HMG = 
3-

hydroxyl-3-methylglutaryl, PM = phosphomevalonate, MD = mevalonate diphosphate, ID 
= isoprenyl diphosphate. Plasmid map adapted from sequence information from Peralta-
Yahya et al., 2011 and assembled in CLC Sequence Viewer 7. 

In this study, I present the characterization of a novel terpene synthase found in S. 

bicolor. Enzymatic activity of Sobic.001G339000 was confirmed by expressing the gene 

in E. coli both alone and alongside pBbA5c-Mev. The terpene product of 

Sobic.001G339000 was analyzed for chemical formula and structure using GC-MS and 

liquid chromatography - mass spectrometry (LC-MS) techniques.  
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3.5 Experimental Procedures 

3.5.1 Insertion of the terpene synthase gene into E. coli 

The terpene synthase Sobic.001G339000 was commercially synthesized (Genewiz) with 

E. coli-optimized codons in the vector pUC57. The gene was amplified using the primers 

and PCR parameters detailed in Sup. Tables S3.1 and S3.2 and purified by gel extraction 

(Qiagen). The gene was ligated into the expression vector pET28a(+) using NotI and NheI 

restriction sites and then transformed into the E. coli DH5α cell line by the heat shock 

method. The insertion in pET28a(+) was confirmed using Sanger sequencing and the 

vector was transformed into the E. coli expression strain BL21 Star (DE3) by the heat 

shock method.  

3.5.2 Production of the terpene synthase in E. coli  
 
Lysogeny broth (LB media) containing 50 µg/ml kanamycin was inoculated with BL21 

Star (DE3) E. coli cells containing Sobic.001G339000 inside the pET28a(+) vector. BL21 

Star (DE3) was also transformed with the empty vector pET28a(+) to serve as a negative 

control and cultured. Cultures were incubated for 12 h at 37˚C, 200 rpm, prior to 

inducing protein expression by the addition of 0 mM, 0.5 mM, 1 mM, 5 mM, and 10 mM 

isopropyl β-D-1-thiogalactopyranoside (IPTG). Induced cultures were incubated for 24 h 

at 15˚C, 200 rpm. Samples from induced E. coli were analyzed by SDS-PAGE on a 10% 

mini-PROTEAN TGX gel (Bio-Rad) to confirm that protein of the correct size was 

produced and to determine the ideal concentration of IPTG. Control cultures containing 

untransformed pET28a(+) underwent the same treatment. Once expression was 

confirmed, the above induction cycle was repeated using the optimal concentration of 1 

mM IPTG. Protein was isolated using TALON metal affinity resins as described by 

Augustin et al., 2015. Protein stocks were frozen and stored at -80˚C. 

3.5.3 Assessment of terpene synthase activity by in vitro enzyme assay 

Enzyme assays were performed using the terpene-specific substrates FPP, GPP, and 

GGPP at a concentration of 10 mM along with the isolated protein. The substrate and 
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enzyme were combined in a buffer solution containing 500 mM 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES), 1 M MgCl2, and 200 mM dithiothreitol (DTT) with 

a 500 µL hexane overlay. Each assay was replicated three times with two negative 

controls, one with protein rendered non-functional by boiling and one with protein 

isolated from BL21 Star (DE3) transformed with the empty vector pET28a(+). Solutions 

were incubated at 30˚C for 2 hours and the reaction was halted using 500 mM 

ethylenediaminetetraacetic acid (EDTA). The hexane overlay was removed, subjected to 

centrifugation, and concentrated under N2 to 100 µl for GC-MS analysis. 

3.5.4 Assessment of terpene synthase activity by in vivo enzyme assay 

The transformed plasmid pET28a(+) containing Sobic.001G339000 was transformed into 

the E. coli strain BL21 Star (DE3) alongside the vector pBbA5c-Mev, which contains all 

the genes involved in the MEV pathway. The transformation was confirmed using the 

primers and PCR protocol detailed in Sup. Tables S3.1 and S3.2. The two-vector strain of 

E. coli was inoculated into 5 mL of Terrific Broth (TB) media containing 1% v/v glycerol, 

50 µg/ml kanamycin, and 32 µg/ml chloramphenicol. Control cultures, including 

pET28a(+) containing Sobic.001G339000, empty vector pET28a(+), and a two-vector 

strain containing empty vector pET28a(+) and pBbA5c-Mev, were also inoculated. 

Cultures were grown for 12 hours at 37˚C, 200 rpm. A 1 mL hexane overlay was added 

to each culture prior to induction of expression with 1 mM IPTG. Induced cultures were 

grown for 72 h at 28˚C, 200 rpm. The hexane overlay was removed, concentrated to 100 

µl under N2, and analyzed by GC-MS. The cell culture was extracted in 1 mL increments 

using a solution of 5 mL 3:2 hexanes:isopropanol and 20 µl acetic acid. The extracted cell 

culture was concentrated to 100 µl using N2 and analyzed by GC-MS.  

3.5.5 Optimization of the terpene extraction protocol 

The two vector strain of BL21 Star (DE3) containing Sobic.001G339000 in pET28a(+) 

alongside pBbA5c-Mev was inoculated into 5 mL TB media containing 1% v/v glycerol, 

50 µg/ml kanamycin, and 32 µg/ml chloramphenicol. Control cultures consisted of 

untransformed pET28a(+) alongside pBbA5c-Mev. Cultures were grown for 12 h at 37˚C, 
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200 rpm. Protein expression was induced with 1 mM IPTG and cultures were grown for 

72 h at 28˚C, 200 rpm. Extraction of the in vivo enzyme assay cell culture was conducted 

using three different solvent systems: 3:2 hexanes:isopropanol, ethyl acetate, and 

chloroform. Culture was combined with solvent in glass culture tubes at a 1:1 ratio, 

vortexed, and sonicated in a sonication bath for 10 minutes. Tubes were then 

centrifuged for 5 minutes at 1000 rpm to remove cell debris. The organic layer was 

removed and concentrated to 100 µl using N2.  

Cell pellets were extracted using two solvent systems: methanol and 3:2 

hexanes:isopropanol. 5 mL of cell culture was collected in a glass culture tube and 

centrifuged for 5 minutes at 3000 rpm to collect cells. All media was removed and 1 mL 

of solvent was added. The cell pellet was resuspended, briefly vortexed, and then 

sonicated for 10 minutes in a sonication bath. Tubes were then centrifuged for 5 

minutes at 1000 rpm and the supernatant filtered by syringe though a 0.22 µm filter to 

remove cell debris. The filtered product was then concentrated to 100 µl using N2 and 

analyzed by GC-MS. 

3.5.6 GC-MS analysis of enzyme assay products and extraction method tests 

The prepared samples were injected in 1 µl aliquots by a 7683B autosampler into a 

7890A Agilent gas chromatograph coupled with a 5975C Agilent mass spectrometer 

(Agilent Technologies). A full scan method was run with helium as a carrier gas at a flow 

rate of 1.1 mL/min. The scan measured masses between 50 and 500 amu. Ion 

separation was conducted with a Phenomenex Zebron ZB-5MSi column (30 m x 250 µm 

internal diameter x 0.25 µm film). Inlet temperature was 250˚C. Samples were run with 

a temperature gradient starting at an initial temperature of 50˚C held for 3 minutes, 

then increasing to 160˚C at a rate of 35˚C/min, then increasing to 170˚C at a rate of 

1.4˚C/min, and lastly ramping to 300˚C at a rate of 120˚C/min and holding for 2 minutes. 

Detected products were analyzed using MassHunter (Agilent Technologies) and the 

National Institute of Standards and Technology mass spectral database v2.0 (NIST). 
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Quantitation of enzyme assay products and cell extracts was conducted using a guaiol 

(Sigma-Aldrich) standard curve (curve range: 0.224 ng/µL to 4000 ng/µL). 

3.5.7 Mass production of the terpene synthase  

One litre cell cultures containing the dual plasmid system were prepared for extraction 

of metabolites with a protocol adapted from Peralta-Yahya et al., 2011. Cultures 

containing 5 mL of TB media, 50 µg/ml kanamycin and 32 µg/ml chloramphenicol, and 

1% v/v glycerol were inoculated with the dual plasmid strain of BL21 Star (DE3) 

containing both pBbA5c-Mev and Sobic.001G339000 in pET28a(+). Cultures were grown 

for 12 h at 37˚C, 200 rpm, and used to inoculate a 50 mL culture of TB media with the 

same antibiotic concentrations. The 50 mL culture was grown for 12 h at 37˚C, 200 rpm, 

and used to inoculate a 1 L culture of TB media containing the same antibiotic 

conditions and grown for 12 h at 37˚C, 200 rpm. The 1 L culture was divided into two 

500 mL cultures and an additional 500 mL of TB media supplemented with antibiotics 

was added. Protein expression was induced with 1 mM IPTG and cultures were grown 

for 72 hours at 28˚C, 200 rpm.  

For metabolite extraction, two volumes of 3:2 hexanes:isopropanol were added to one 

volume of cell culture which was then vortexed and sonicated in a sonication bath for 10 

minutes. The hexanes:isopropanol overlay was removed, centrifuged at 3000 rpm for 10 

minutes, and dried down to 5 mL under N2 gas. Samples were then stored at -20˚C. 

3.5.8 Purification of terpene product by reversed-phase solid phase extraction 

The SPE column was prepared by inserting a small glass wool frit (Ohio Valley Speciality) 

into the base of a 20 mm x 500 mm column, topped with a 1.5 cm layer of white quartz 

sand (Thermo Fisher Scientific). Air pockets in the glass and sand were removed by 

adding 10 mL of 50% methanol to the column and allowing it to flow through. Once 

clear of air, 60 mL of 50% methanol was slowly added to the column. 25 g of C-18 

reverse phase silica gel with a 90 Å pore size (Sigma-Aldrich) was poured in small 

increments into the methanol and allowed to settle at the base of the column, with 
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frequent tapping to remove air pockets. The solvent was drained until it was 5 mm 

above the silica gel.  

Aliquots (~100 µL) of extracted cell culture were diluted to 10 mL in 50% methanol and 

added to the SPE column by glass pipette. Solvent was drained until the entire sample 

was loaded into the gel. The column was then rinsed with approximately 1 column 

volume (50 mL) of 50% methanol followed by 75% methanol. These were collected as 

complete fractions and discarded. The column was then rinsed with 50 mL of 100% 

methanol, which was collected in 10 mL fractions. These fractions were re-extracted 

with 10 mL of pure hexanes to remove any residual glycerol, and then analyzed by GC-

MS as described in section 3.5.6. Fractions containing the product of interest were dried 

completely under N2 gas for long-term product storage. The above process was 

repeated until all the cell culture extract was purified. 

3.5.9 Determination of terpene product chemical formula by direct infusion 

Purified terpene product was analyzed by high resolution mass spectrometry using a 

Triversa Nanomate (Advion Biosciences) to infuse samples into a Q Exactive mass 

spectrometer (Thermo Fisher Scientific). The terpene product and standard guaiol were 

prepared in 80% methanol with either no supplementation, 0.1% formic acid, or 0.1% 

100 mM ammonium acetate. Data were collected using a full MS scan in positive ion 

mode at a resolution of 140, 000 at m/z 50 to 750. Spray voltage was 1.7 kV and gas 

pressure was 0.5 psi. The capillary temperature was held at 250˚C and the S-lens radio 

frequency at 60. Collision energy was increased from 0 to 30 V as peaks were detected. 

Data was analyzed using Xcalibur 3.1.  

3.6 Results 

3.6.1 Expression of Sobic.001G339000 in E. coli 

Induction testing confirmed that E. coli containing Sobic.001G339000 synthesized a 

protein distinct from control cultures when expression was induced with IPTG. Protein 

expression peaked at concentrations of 1 mM, with no observable increase at 5 mM or 
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10 mM concentrations. Once expression was confirmed, protein was purified from 1 L 

cultures induced at 1 mM IPTG. Based on the predicted amino acid sequence, the 

terpene synthase was expected to be 66.74 kDa. A protein of this size was isolated from 

induced cultures (Fig. 12). Control and pre-induction samples contained the expected 

range of proteins but no detectable quantity of the terpene synthase. Post-TALON 

purification samples contained a HIS-tagged protein of the expected size.  

Figure 12: Confirmation of protein expression 
and isolation. Protein expression was induced at 
1 mM IPTG in control cultures and cultures 
containing Sobic.001G339000 (TPS). Cultures 
underwent TALON purification to isolate the TPS 
protein, mass 66.74 kDa (arrow). 

. 

 

 

 

3.6.2 GC-MS analysis of in vitro enzyme assay products 

The candidate terpene synthase produced detectable compounds when combined in an 

enzyme assay with FPP as a substrate (Sup. Fig. S3.1). No compounds were detected 

when the terpene synthase was combined with the substrates GPP or GGPP (Sup. Fig. 

S3.2, S3.3). Based on mass spectra and retention time analysis, the detected compound 

was most similar to the sesquiterpene alcohol guaiol. The retention time of the pure 

guaiol standard differed from that of the unknown terpene by 0.8 minutes, indicating 

that the compounds are not identical (Sup. Fig. S3.4). The second most-similar 

compound to the unknown terpene was the sesquiterpene alcohol β-eudesmol, though 

the retention time differed by 0.2 minutes and the fragmentation patterns were 

dissimilar (Fig. 13). The mass spectra data indicated that the terpene synthase product 

shared a precursor ion mass of 222.2 Da with guaiol and β-eudesmol, though that may 

also be a fragment of a larger molecule. All three compounds share molecular ions at 
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m/z = 59.0, characteristic of sesquiterpene alcohols. The terpene produced by 

Sobic.001G339000 could not be conclusively identified using either the NIST database or 

comparison to available standards. 

Figure 13: Comparison of unknown terpene synthase product (TPS) to standards by GC-
MS. The retention time (A) and mass spectra of the unknown terpene synthase product 
(B) were compared to the standards guaiol (C) and β-eudesmol (D) by GC-MS analysis. 
Standards were purchased from Sigma-Aldrich. Mass spectra after background 
subtraction are shown. 

3.6.3 GC-MS analysis of in vivo enzyme assay products 

The expression of Sobic.001G339000 alongside pBbA5c-Mev produced compounds 

similar to those produced in the FPP-supplemented in vitro enzyme assay. The in vivo 

product had a retention time and fragmentation pattern identical to that of the in vitro 
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product (Fig. 14). The fragmentation pattern of both compounds contained molecular 

ions at m/z = 59.0, 107.0, 148.9, 189.0 and 222.1 (Fig 14B, 14C). The detection of the ion 

m/z = 59.0 supports the classification of the unknown compound as a terpene alcohol, 

as this peak is associated with the 2-hydroxyisopropyl group commonly seen in terpene 

alcohols (Dickschat et al., 2017). It can be concluded that an in vivo enzyme assay 

conducted in live E. coli cultures produces the same compound as purified protein 

combined with substrate in a controlled enzyme assay. 

Figure 14: Comparison of in vivo and in vitro enzyme assay products by GC-MS. In vitro 
and in vivo enzyme assays were extracted using hexanes. (A) Comparison of the 
retention time of in vivo and in vitro enzyme assay products. (B, C) The mass spectra of 
in vivo (B) and in vitro (C) enzyme assay products were compared. Mass spectra after 
background subtraction are shown. 
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3.6.4 Optimization of terpene extraction protocol 

Extraction of the cell culture for the unknown terpene was successful with 3:2 

hexanes:isopropanol, chloroform, and ethyl acetate. Hexanes:isopropanol was the most 

efficient extraction solvent, yielding approximately 107 ng/µL of terpene product, more 

than either ethyl acetate (91 ng/µL) or chloroform (51 ng/µL) (Fig. 15). Cell pellet 

extracts were found to contain less of the unknown terpene than cell culture extracts 

and to be an inefficient source of product. Hexanes:isopropanol extraction of cell pellets 

yielded approximately 47 ng/µL, while methanol only yielded 1 ng/µL.  

Figure 15: Analysis by GC-MS of extraction method testing for maximum terpene yield. 
Guaiol (A) was used as a standard to quantitate the concentration of the unknown 
terpene product (B) after extraction of cell cultures and pellets with chloroform, ethyl 
acetate, methanol, and hexanes:isopropanol.  

 

3.6.5 Purification of terpene product by reversed-phase solid phase extraction 

Application of concentrated cell culture extract to a SPE column resulted in significant 

removal of contaminants. As illustrated in Fig. 16, background products of E. coli cellular 

metabolism, such as indole, were washed from the column prior to collection of the 

terpene synthase product in 100% methanol. The compound eluted in fractions 4 and 5, 

which is between 30 mL and 50 mL of the 100% methanol wash. 
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The terpene synthase product was prone to degradation when stored in less than 75% 

MeOH. Samples which were prepared for chromatography by dilution in 50% MeOH and 

stored at either -20˚C or -80˚C overnight showed either no presence or severally 

depleted concentrations of the terpene synthase product when analysed by GC-MS the 

following day (data not shown).  

Figure 16: GC-MS 
analysis of 
purification of cell 
extracts by reversed-
phase solid phase 
extraction. 
Contaminants such as 
indole (A) were 
removes from cell 
culture by SPE, 
isolating the terpene 
synthase product (B). 

 

3.6.6 Chemical formula and structure determination by direct infusion 

No peaks of interest were detected in unsupplemented or ammonium acetate-

supplemented terpene synthase product samples using direct infusion mass 

spectrometry. Samples supplemented with 0.1% formic acid had a possible precursor 

ion peak at 223.2043 Da, identical to the precursor ion peak of the guaiol standard 

supplemented with 0.1% formic acid (Fig. 17). From this it could be concluded that 

either 1) the terpene synthase product had a mass identical to guaiol or 2) the terpene 

synthase product was larger than guaiol and the 223.2043 Da ion peak is a fragment of 

the true precursor ion. Based on previous GC-MS analysis the terpene synthase product 

had a precursor ion mass of 222.2, which would be equivalent to 223.2 when the 

compound becomes protonated during infusion.  

 Both guaiol and the terpene synthase product formed fragment ions, particularly at 

217.1033 Da, 205.1939 Da, 195.0867 Da, 173.0566 Da, 173.0775 Da, and 157.0827 Da 

(Sup. Fig. 3.5). Once collision energy was increased above 0 V, the 223.2043 Da peak in 
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the guaiol standard and terpene synthase product was undetectable while the fragment 

ion peaks remained strong (data not shown).  

 

Figure 17: Mass 

spectra of guaiol 

and the terpene 

synthase product 

during Q Exactive 

direct infusion. 

Guaiol (A) and the 

terpene synthase 

product (B) were 

analyzed by direct 

infusion MS using 

a Q Exactive. A 

precursor ion peak 

at 223. 2043 Da (*) 

is apparent when 

no collision energy 

is applied.  

 

 

Long-term exposure to formic acid, the acidification agent used during direct infusion, 

resulted in degradation of the terpene product.  

3.7 Discussion 

The putative terpene synthase Sobic.001G339000 acted upon FPP and produced a 

compound that was not identifiable by the NIST database or by comparison to available 

standards. Sobic.001G339000 had no activity when combined with GPP or GGPP, though 

it is possible that a terpene was produced in quantities below the detection limits of the 

GC-MS. The action of the terpene synthase upon FPP alone supported the conclusion 

that Sobic.001G339000 was a sesquiterpene synthase. 
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 The terpene product was unidentifiable using the NIST database though it appeared to 

be similar to the sesquiterpene alcohols guaiol and β-eudesmol, which both have the 

chemical formula C15H26O and exact mass of 222.1984 Da. The difference in the 

retention times and fragmentation patterns between guaiol, β-eudesmol and the 

unknown terpene product were significant and the identity of the unknown terpene 

could not be concluded from GC-MS analysis alone. Repeated GC-MS analysis of the 

terpene product consistently resulted in a possible precursor ion peak of 222.2 Da, the 

approximate mass of guaiol, β-eudesmol and a plethora of other sesquiterpenes. If 

222.2 Da is the mass of the unknown terpene, it may share a chemical formula with 

guaiol and β-eudesmol. A search of the online NIST Chemistry WebBook yielded 400 

compounds with the chemical formula C15H26O, though none of the available mass 

spectra were identical to that of the unknown terpene (NCBI Resource Coordinators, 

2017). 

The extreme degradation of the unknown terpene product when stored in less than 75% 

methanol or in a solution with formic acid suggested that it was highly unstable. This 

instability made characterization difficult as acidic and polar environments were often 

required for analysis, such as during direct infusion MS, LC-MS or HPLC. Direct infusion 

MS of the terpene product had results similar to GC-MS analysis, with a clear ion peak at 

mass 223.2043 Da identical to the standard guaiol. While this further supports the 

conclusion that the unknown terpene product shares a mass and molecular formula 

with guaiol, the labile nature of the compound and its propensity for degradation in 

polar and acidic solvents could mean that this detected peak is a fragment of a larger 

molecule which had fractured before entering the mass spectrometer. Further analysis, 

such as nuclear magnetic resonance spectroscopy, would be required to confirm that 

the peak is in fact the precursor ion and that the unknown terpene product has a mass 

of 222.2 Da and a chemical formula of C15H26O. 
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3.8 Supplementary Information 

3.8.1 Supplementary Figures 

 
Figure S3.1: GC-MS analysis of the products of FPP-supplement enzyme assays. Enzyme 

assays of His-tag purified Sobic.001G339000 were incubated with FPP and buffer 

solution for 2 hours and extracted with hexanes. A unique peak (*) was found in assays 

with active protein which is not found in the inactivated protein or negative controls. TPS 

= terpene synthase. 
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Figure S3.2: GC-MS analysis of the products of GPP-supplement enzyme assays. 

Enzyme assays of His-tag purified Sobic.001G339000 were incubated with GPP and 

buffer solution for 2 hours and extracted with hexanes. No unique peaks were detected. 

TPS = terpene synthase. 

Figure S3.3: GC-MS analysis of the products of the GGPP-supplement enzyme assays. 

Enzyme assays of His-tag purified Sobic.001G339000 were incubated with GGPP and 

buffer solution for 2 hours and extracted with hexanes. No unique peaks were detected. 

TPS = terpene synthase. 
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Figure S3.4: GC-MS analysis of the products of FPP-supplemented enzyme assays. The 
retention time of guaiol (A) and the product of enzyme assays with active terpene 
synthase (TPS) (B) were compared by GC-MS analysis.  

 

 

 

 

 

 

 

 

 

 

 

Figure S3.5: Direct infusion MS analysis of the terpene product. The standard guaiol (A) 
and the unknown terpene product (B) were analyzed by direct infusion into a Q Exactive 
MS/MS system. The resulting fragmentation patterns were compared in search of the 
unknown terpene product precursor ion.  
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3.8.2 Supplementary Tables 

Table S3.1: Primer sequences 

Insertion into pET28a(+) 

Gene/Plasmid Primer Position 5' - 3' Sequence 

Sobic.001G339000 5' with added 
NheI restriction 
site 

TATATAGCTAGCATGGCCGCCGCACGTGAGGT 

Sobic.001G339000 3' with added 
NotI restriction 
site  

CACACAGCGGCCGCTTAAAAAGGAATCGGTTCGTCCAGC 

Confirmation of insertion into E. coli 
Gene/Plasmid Primer Position 5' - 3' Sequence 

pBbA5c-Mev 5' Trc promoter CACTGCATAATTCGTGTCGCTCAA 
pBbA5c-Mev 3' Trc promoter GGTTGAAGCTGATGTCCGGAAAGT 
 

Table S3.2: PCR parameters 

Application Polymerase PCR Parameters 

Amplification of E. coli-
optimized genes for insertion 
into pET28a(+) expression 
vector 

Q5 DNA polymerase 98˚C for 30 sec, then 35 cycles 
of 98˚C for 10 sec, 52˚C for 20 
sec, 72˚C for 1 min, and a final 
5 min at 72˚C 

Confirmation of gene/vector 
insertion 

Taq DNA Polymerase  95˚C for 5 min, then 30 cycles 
of 94˚C for 30 sec, 52˚C for 30 
sec, and 72˚C for 2 min, and a 
final 5 min at 72˚C 
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Chapter 4: The effect of clustered genes on the terpene synthase product 

4.1 Summary  

Terpene biosynthetic gene clusters can contain a variety of enzyme-producing genes 

and regulatory elements. The putative S. bicolor terpene biosynthetic gene cluster under 

investigation in this study includes a sesquiterpene synthase, a cytochrome P450, and a 

galacturonosyltransferase. The gene cluster was transiently expressed in Nicotiana 

benthamiana and Spodoptera frugiperda (Sf9) insect cell lines for protein production. 

Products of both heterologous expression systems were analyzed by GC-MS and LC-MS 

to determine if the clustered genes interact to produce a terpene product that is unique 

from the actions of the terpene synthase alone. A potential modified product of the 

gene cluster was identified in transfected N. benthamiana by Q Exactive LC-MS analysis. 

4.2 Significance  

In this study a putative terpene biosynthetic gene cluster was expressed in two 

heterologous expression systems and the metabolic profiles were compared using GC-

MS and LC-MS analysis. A potential product of the gene cluster was identified and a 

protocol was developed for future gene cluster expression and chemical analysis. 

4.3 Contributions 

Development of the LC-MS protocols for the Eksigent/Q Exactive LC-MS system and 

compilation of resulting data was done by Dr. Bradley Evans. Development of protocols 

for the QTRAP 6500 LC-MS system was done by Megan Augustin. The transfection and 

RNA extraction of the first replicate of N. benthamiana transient expression was done 

by Julie Gauthier. 

4.4 Introduction 

Gene clustering cannot be concluded based on the physical proximity of biosynthetic 

genes alone. Their coordinated function must be verified. One way to confirm a putative 

gene cluster is expression in a heterologous system to determine if they are involved in 

the same biosynthetic pathway. Multiple expression systems exist, however host 
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selection is a critical factor of terpene biosynthetic cluster analysis. When expressing a 

eukaryotic gene in a prokaryotic system such as E. coli, proteins can be misfolded and 

sequestered in inclusion bodies to protect the cell from damage (Brückner and Tissier, 

2013). Codon usage issues also affect synthesis of plant-based proteins in non-plant 

systems, as microbial hosts lack the necessary pools of tRNA (Moriyama and Powell, 

1998). As such, eukaryotic systems including N. benthamiana and S. frugiperda (Sf9) 

insect cells are better suited to expressing genes with plant-optimized codons. These 

expression platforms are more costly to maintain than their microbial counterparts but 

offer a reduced likelihood of protein synthesis errors. 

N. benthamiana is an effective terpene synthase expression system as it contains all the 

necessary cellular machinery to process plant-based compounds, ensuring that 

expressed proteins are properly folded and active (Bach et al., 2014). A secondary 

benefit of this expression system is that terpenes can be synthesized directly in plant 

tissues, as N. benthamiana naturally produces the terpene precursor FPP (Brückner and 

Tissier, 2013). It is also possible to transfect N. benthamiana with multiple genes at once 

by bacterial infiltration (Bach et al., 2014). An entire pathway can be expressed in a 

single leaf, provided the required substrate is present in sufficient quantities, which 

eliminates the need to isolate each protein individually and combine them in an in vitro 

enzyme assay. Complete metabolic pathways have been transfected into N. 

benthamiana for expression of terpenes such as artemisinin (Farhi et al., 2011), 

casbene, levopimaradiene, and cembratienol (Brückner and Tissier, 2013). Regulatory 

elements from the S. bicolor gene cluster producing the cyanogenic glucoside dhurrin 

have been transiently expressed in tobacco, and complete S. bicolor clusters have been 

transfected into other plant species such as Zea mays (Darbani et al., 2016; Song et al., 

2004). The protocols for transfection and regulation of gene expression in N. 

benthamiana are well-established and make it a suitable host for S. bicolor gene cluster 

expression (Fischer et al., 2004).  
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An alternative to a tobacco expression system is S. frugiperda Sf9 insect cells. Sf9 cells 

are another eukaryotic expression system widely used to produce enzymes that are not 

amenable to other, more cost-effective systems. For expression in Sf9 cells, a gene of 

interest is inserted into a baculovirus transfer vector that homologously recombines 

with a linearized baculovirus, resulting in the expression of the recombinant protein 

(Chang et al., 2018). The protein can then be harvested and used for downstream 

analysis. 

S. frugiperda can be used to express plant-based proteins as it has a low codon-usage 

bias and is able to supply the necessary tRNAs (Landais et al., 2003). The Sf9 insect cell 

expression system has been used repeatedly in the Kutchan lab to produce proteins 

such cytochromes P450 (Díaz Chávez et al., 2011; Gesell et al., 2009; Kilgore et al., 2016) 

and transaminases (Augustin et al., 2015b). Sf9 cells can also be infected with multiple 

recombinant viruses and express a complete pathway in a single culture, as has been 

done with the verazine biosynthetic pathway (Augustin et al., 2015b). 

In this chapter, the putative S. bicolor gene cluster containing a terpene synthase 

(Sobic.001G339000), cytochrome P450 (Sobic.001G338900) and 

galacturonosyltransferase (Sobic.001G338400) was expressed in both N. benthamiana 

and Sf9 cells. Gene activity was compared both within and between systems.  

4.5 Experimental Procedures 

4.5.1 Extraction of gene cluster from S. bicolor tissues 

S. bicolor was grown in the Donald Danforth Plant Science Center greenhouses under 14 

hours of light, 28˚C in the day and 22˚C at night, and 40-100% humidity. Leaf, stem, and 

root tissues were collected from plants aged 2, 4, 6, 8, 10, and 12 weeks and frozen in 

liquid nitrogen. As the gene cluster of interest showed the highest expression in seedling 

root tissues (Section 2.6.3), RNA was extracted from 2-week old roots using the RNeasy 

Plant Mini Kit (Qiagen). RNA quality was confirmed using a Bioanalyzer 2100 (Agilent 

Technologies) and quantity was determined using a NanoDrop 2000 (Thermo Fisher 
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Scientific). RNA was converted to cDNA using the SuperScript III First Strand Synthesis 

System (Invitrogen). 

Fulllength genes were amplified from cDNA using nested PCR. Primers listed in Sup. 

Table S4.1 were designed from the S. bicolor BTx623 genome, and PCR parameters were 

as detailed in Sup. Table S4.2. PCR products were purified by gel extraction (Qiagen). 

The extracted genes were transformed into a pJet vector using the restriction sites BglII 

and EcoRI (Sobic.001G339000 and Sobic.001G338900) and BglII and XmaI 

(Sobic.001G338400) and transformed into DH5α by heat shock. Insertion was confirmed 

by Sanger sequencing.  

4.5.2 Expression of the gene cluster in N. benthamiana 

The transfer vector pMDC32 was prepared for transfection without the use of the 

Gateway cloning system (Invitrogen) by removal of the toxic cassette. The cassette was 

flanked by the restriction sites AscI and SacI and digestion of pMDC32 with these 

enzymes followed by blunt end ligation (CloneJeET PCR cloning kit, Thermo Fisher 

Scientific) resulted in a functional vector with no toxic component. The multiple cloning 

site from pET28a(+) was amplified using the primers and PCR parameters described in 

Sup. Tables S4.1 and 4.2. The PCR product was digested using the KpnI restriction 

enzymes and purified by gel extraction (Qiagen). The pMDC32 vector without the toxic 

cassette was digested with KpnI, purified by phenol:chloroform extraction, ligated to the 

multiple cloning site from pET28a(+),and transformed into the E. coli DH5α cell line by 

the heat shock method. The insertion of the multiple cloning site was confirmed with 

Sanger sequencing.  

Sobic.001G339000, Sobic.001G338900, and Sobic.001G338400 were PCR amplified from 

the pJet cloning vector, digested, purified by gel extraction (Qiagen), inserted into the 

modified pMDC32 vector using the restriction enzymes SalI and ApaI, and then 

transformed into the E. coli DH5α cell line by the heat shock method. The primers and 

PCR parameters used are detailed in Sup. Tables S4.1 and S4.2. The insertion was 
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confirmed using Sanger sequencing. Vectors containing the genes of interest were 

transformed into the Agrobacterium tumefaciens strain GV3101 pMP90 (Koncz and 

Schell, 1986) by electroporation using a 0.2 cm cuvette at a resistance of 400 Ω, 

capacitance of 25 µF, and a voltage of 2 kV. The silencing suppressor plasmid p19HA, 

derived from the p19 protein of the tomato bushy stunt virus with a hemaglutinin tag, 

was also independently inserted into GV3101 pMP90 (Dunoyer et al., 2004). After 

electroporation, 600 µL of LB media was added to each sample which was then 

incubated at 28˚C, 200 rpm, for 3 hours. Transformed cultures were spread on solid LB 

media plates containing 25 µg/mL rifampicin, 40 µg/mL gentamycin, and 50 µg/mL 

kanamycin. The gene combinations transformed into A. tumefaciens are detailed in 

Table 2. The silencing suppressor p19HA was transfected alongside each combination of 

vectors to reduce the likelihood of gene silencing. Transformation was confirmed using 

the primers and PCR protocols detailed in Sup. Tables S4.1 and S4.2. The bacteria were 

then added to infiltration media containing 1 M 2-(N-morpholino)ethanesulfonic acid 

(MES) pH 5.6, 1 M MgCl2, and 100 mM acetosyringone to a density of OD600. Once 

mixed, the solution was incubated at room temperature for 2 hours. 1 mL of each gene 

combination was injected with a needleless syringe into the abaxial surface of 14-day 

old N. benthamiana leaves. 

Each gene combination was injected in triplicate and the entire experiment was 

repeated four times. Transfected plants were transferred to a growth chamber under 16 

hours of light, 22˚C and 50% humidity for 72 h. 50 mg of tissue was harvested and flash 

frozen in liquid nitrogen for RT-PCR. 200 mg of tissue was harvested and frozen for 

metabolite analysis.  
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Table 2: Combination of vectors used to transfect N. benthamiana. TPS = terpene 
synthase (Sobic.001G339000), P450 = cytochrome P450 (Sobic.001G338900), GT = 
galacturonosyltransferase (Sobic.001G338400). p19HA = silencing suppressor. All genes 
are in the modified pMDC32 vector.  

Infection Number Vector Combination 

1 Empty pMDC32 + p19HA 

2 TPS, P450, GT, p19HA 

3 TPS, P450, p19HA 

4 TPS, GT, p19HA 

5 P450, GT, p19HA 

6 TPS, p19HA 

7 P450, p19HA 

8 GT, p19HA 

 

4.5.3 Confirmation of gene expression in N. benthamiana by RT-PCR 

RNA was extracted from 50 mg of frozen transfected tissues using the RNeasy Plant Mini 

Kit (Qiagen) and treated with DNAse using the Ambion TURBO DNA-free kit. RNA was 

then converted to cDNA using the SuperScript III First Strand Synthesis System 

(Invitrogen) or M-MLV reverse transcriptase (Thermo Fisher Scientific). Expression of the 

genes of interest was confirmed using the gene-specific primers and PCR parameters 

detailed in Sup. Tables S4.1 and S4.2. RNA quality was confirmed using the N. 

benthamiana tubulin gene TUA6. 

4.5.4 Metabolite analysis of transfected N. benthamiana by GC-MS and LC-MS 

Metabolites from replicates 1 and 2 were extracted from transfected leaf tissue by 

grinding frozen tissue in 70% ethanol, thoroughly vortexing, boiling for ten minutes, and 

then precipitating at -20˚C for 12 hours. Samples were then prepped for GC-MS and LC-

MS by filtration through a 0.22 µm syringe filter. Metabolites from replicates 3 and 4 

were prepared for analysis by suspending 200 mg frozen leaf tissue in 200 µL 80% 
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methanol in 1.5 mL round-bottom Safe-Lock eppendorf tubes. A stainless steel bead was 

added and samples were disrupted in a TissueLyser II (Retsch) at 20 Hz for 10 minutes. 

Samples were centrifuged at 16 000 g for 3 minutes and the supernatant was filtered 

through 0.8 µm Vivaclear Mini clarifying filters (Sartorius Stedim Biotech). 

The prepared samples from replicates 1 and 2 were first analysed using a 7890A Agilent 

gas chromatograph coupled with a 5975C Agilent mass spectrometer (Agilent 

Technologies) as described in section 3.4.6. Detected products were analyzed using 

MassHunter (Agilent Technologies) and the NIST database (v2.0). 

The samples from replicates 1 and 2 were also analyzed using a Prominence UFLC-XR 

(Shimadzu) LC system coupled with a QTRAP 6500 (AB Sciex Instruments) for MS/MS 

analysis. Samples were injected into a Phenomenex Gemini C-18 NX column (150 x 2.00 

mm, 5 µM, 110 Å). Solvents were injected with a flow rate of 0.5 ml/min on the 

following binary gradient (Solvent A: 10% methanol, 0.1% acetic acid v/v in H2O. Solvent 

B: 0.1% acetic acid v/v in 100% methanol): Solvent B was held at 0% for 2 min, then 0-

95% from 3-20 min, then 95-0% from 21-28 min. Scan parameters included a Turbo Ion 

Spray at 550˚C and 5500 volts. Analysis included an Enhanced Product Ion (EPI) scan in 

the positive mode for masses of 223, 225, 239, 416, and 438 Da and a Neutral Loss scan 

for 176 and 194 Da. Masses were selected based on the possible modifications to the 

standard guaiol that could occur due to actions of a cytochrome P450 and 

galacturonosyltransferase (Sup. Table 4.3). Structures were predicted using ChemDraw 

Standard 12.0 (PerkinElmer). Retention times and fragmentation patterns of transfected 

leaves were compared to the guaiol standard (Sigma-Aldrich) and control tobacco leaves 

using Analyst 1.6 (AB Sciex Instruments). 

The samples from replicates 3 and 4 were analyzed using an Eksigent LC (AB Sciex 

Instruments) coupled to a Q Exactive mass spectrometer (Thermo Fisher Scientific) to 

scan with high mass accuracy. Replicate 3 was analyzed using the solvents 10 mM 

ammonium bicarbonate (Solvent A) and 95% acetonitrile:10mM ammonium 

bicarbonate (Solvent B) and replicate 4 was analyzed using the solvents H2O:0.1% 
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formic acid (Solvent A) and 95% acetonitrile:10mM ammonium bicarbonate (Solvent B). 

Both replicates were run on the same gradient: Solvent A held at 98% from 0 to 120 

seconds, decreased from 98% to 0% from 120 to 1020 seconds, held at 0% from 1020 to 

1140 seconds, and increased to 98% from 1140 to 1200 seconds, and held at 98% until 

1800 seconds and the end of the cycle. Replicate 3 was analyzed using a hydrophilic 

interaction liquid chromatography (HILIC) column (Higgins Analytical, Inc), 150 mm x 0.5 

mm, and a polymeric reversed phase (PLRP-S) column (Higgins Analytical, Inc), 100 Å, 

100 mm x 0.5 mm. Replicate 4 used the same HILIC column and a TARGA C-18 column 

(Higgins Analytical, Inc), 3 µm, 150 mm x 0.5 mm. Data was analyzed using Scaffold 

Elements 1.4.2 (Proteome Software) and Xcalibur (Thermo Fisher Scientific).  

4.5.5 Expression of the complete cluster in S. frugiperda  

Sobic.001G339000, Sobic.001G338900, and Sobic.001G338400 were amplified from the 

pJet vector using the primers and PCR parameters detailed in Sup. Tables S4.1 and S4.2. 

PCR amplified genes were digested using the restriction enzymes BglII and EcoRI 

(Sobic.001G339000, Sobic.001G338900) and BglII and XmaI (Sobic.001G338400),  

purified by gel extraction (Qiagen), and ligated into pVL1392, which was then 

transformed into the E. coli cell line DH5α by the heat shock method. The insertion was 

confirmed by Sanger sequencing.  

The insect cell line produced from S. frugiperda ovarian tissues (Sf9) was grown in TC-

100 media supplemented with 10% fetal bovine serum until they reached the log phase 

of growth at a density of 2 x 106 cells/mL with over 95% viability. Cells were removed 

from confluent growth flasks and seeded on a 24 well plate with approximately 8 x 105 

cells/well. Sobic.001G339000, Sobic.001G338900, and Sobic.001G338400 in pVL1392 

were then introduced dropwise into the insect cell line in the combinations described in 

Table 3, alongside the linearized baculovirus Autographa californica nuclear 

polyhedrosis virus (AcMNPV), using the Bac-N-Blue Transfection Kit (Thermo Fisher 

Scientific). Viral amplification occurred for 15 days at 27˚C, with the viral supernatant 

added to a fresh plate of Sf9 cells every 4 days. The presence of the gene of interest in 
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the viral supernatant was confirmed by PCR using the primers and parameters listed in 

Sup. Tables S4.1 and S4.2. 

Table 3: Viral combinations used to infect Sf9 cells. TPS = terpene synthase 
(Sobic.001G339000), P450 = cytochrome P450 (Sobic.001G338900), GT = 
galacturonosyltransferase (Sobic.001G338400), CPR = cytochrome P450 reductase from 
Eschscholzia californica. 

Infection Number Vector Combination Substrate 

1 TPS FPP 

2 P450, CPR TPS Product 

3 GT FPP 

4 TPS, P450, CPR FPP 

5 TPS, GT FPP 

6 TPS, P450, GT, CPR FPP 

 

Viral supernatant (2.5 mL) was then added to fresh Sf9 cells which had been grown in 50 

mL of suspension media (TC-100, 10% FBS, 0.1% Poloxamer 188 solution) at 27˚C, 140 

rpm to a density of 2 x 106 cells/mL, centrifuged (900 rcf for 10 minutes) to collect, and 

resuspended in 7.5 mL of suspension media. The mixture was incubated for 1 hour at 

27˚C, 80 rpm. Suspension media was added to a final volume of 50 mL. The viral stock 

multiplied for 4 days at 27˚C, 140 rpm before supernatant was collected by 

centrifugation (3000 rcf for 10 minutes) and stored at 4˚C. 

Sf9 cells were prepared for protein expression in 50 mL of suspension media as 

described above and collected by centrifugation (900 rcf for 10 minutes). Cells were 

resuspended in 7.5 mL of suspension media to which viral supernatant was added. For 

single infections, 2.5 mL of viral supernatant was added. For double infections, 1.25 mL 

was added, for triple 0.83 mL, and 0.625 mL for quadruple infections. For every infection 

involving a cytochrome P450 a virus containing the E. californica cytochrome P450 

reductase (CPR) and 2 mg/L hemin stock was added. The 10 mL solutions were 

incubated for 1 hour at 27˚C, 80 rpm. Suspension media was added to a total of 50 mL 
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and cultures were grown for 4 days at 27 ˚C, 140 rpm. Protein collection occurred as 

described in Gesell et al., 2009 using a solution of 100 mM Tricine and 5 mM thioglycolic 

acid at pH 7.5. Protein expression was confirmed by SDS-PAGE on a 10% mini-PROTEAN 

TGX gel (Bio-Rad). Protein was stored at -80˚C.  

4.5.6 Assessment of gene clustering by in vitro enzyme assay 

Enzyme assays were performed using the terpene precursor FPP at a concentration of 

10 mM or the purified Sobic.001G339000 terpene product at a concentration of 1500 

pmol. The isolated protein from Sf9 cultures was used as an enzyme source. Enzyme 

assays included the combinations of proteins and substrate described in Table 2. The 

substrate and enzyme were combined in a buffer solution containing 500 mM HEPES, 1 

M MgCl2, and 200 mM DTT with a 500 µL hexane overlay. Each combination was 

replicated five times. A protein sample rendered non-functional by boiling and the CPR 

from E. californica served as a negative control. The entire enzyme assay was repeated 

three times. Solutions were incubated at 30˚C for 4 hours and the reaction was halted 

using 500 mM ethylenediaminetetraacetic acid (EDTA). The hexane overlay was 

removed, purified by centrifugation, and all five replicates of each gene combination 

were concentrated under N2 gas to 100 µl. Samples were then analyzed by GC-MS and 

LC-MS. 

4.5.7 Analysis of enzyme assay products 

Prepared enzyme assay samples were analyzed by GC-MS using a 7890A Agilent gas 

chromatograph coupled with a 5975C Agilent mass spectrometer (Agilent Technologies) 

as described in section 3.5.6. Mass spectra and retention times of detected products 

were analyzed using MassHunter (Agilent Technologies) and the NIST database (v2.0).  

Samples were prepared for LC-MS analysis by filtration through a 0.22 µm syringe filter. 

Samples were injected in 5 µL aliquots into a QTRAP 6500 LC-MS/MS system using the 

same specifications and binary gradient as detailed in section 4.5.4. The retention times 
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and fragmentation patterns of active protein samples were compared to thenon-

functional protein and CPR controls using Analyst 1.6 (AB Sciex Instruments). 

4.6 Results 

 
4.6.1 Confirmation of expression in N. benthamiana by RT-PCR 

Transfected leaf extracts were processed to obtain RNA. RT-PCR was performed on each 

extract using primers for Sobic.001G339000, Sobic.001G338900, and 

Sobic.001G3384000. A tubulin gene (TUA6) from N. benthamiana was used as a control. 

RT-PCR confirmed that the transfected genes were expressed in the expected N. 

benthamiana leaf tissue. Each combination of vectors was expressed correctly in 

multiple replicates (Fig. 18). A faint band was visible in samples that were not expected 

to express the galacturonosyltransferase. N. benthamiana contains several putative 

galacturonsytransferases that have sequence similarities to the transfected gene which 

may be detected by RT-PCR (Bombarely et al., 2012) 

Figure 18: Confirmation of expression in N. benthamiana by RT-PCR of transfected leaf 
tissues. Gene is indicated at the top of the figure, with TPS = terpene synthase, P450 = 
cytochrome P450, GT = galacturonosyltransferase, tub = tubulin positive control. 
Samples were ground under liquid nitrogen prior to RNA extraction and cDNA synthesis. 
Expected products for each transfection event are: A) Tubulin control only B) TPS, P450, 
GT C) TPS, P450 D) TPS, GT E) P450, GT F) TPS alone G) P450 alone H) GT alone. 
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4.6.2 Metabolite analysis of transfected N. benthamiana by GC-MS and LC-MS 

Transfected leaf tissues expressing the gene combinations described in Table 2 were 

extracted using 80% methanol and analyzed by GC-MS. GC-MS analysis provided limited 

results. All transfected tissues had similar metabolite profiles to both empty vector 

controls and untransfected tobacco leaves (Sup. Fig. S4.1). While several compounds 

present in tobacco leaves were detected, such as catechol and its precursor phenol, 

pyridine, ethanone, and the nicotine isomer anabasine (Xu et al., 2004), no 

sesquiterpene alcohols or similar compounds were detected. LC-MS analysis using the 

QTRAP 6500 system provided similar results with no unique peaks detected in 

transfected tissues compared to the controls (data not shown). 

Samples from the third and fourth transient expression experiments were extracted 

using 80% methanol and analyzed by LC-MS. Whole metabolome analysis using the 

Eksigent/Q Exactive LC-MS system detected over 3,600 metabolites using the 

HILIC/TARGA C-18 column combination and over 7,600 using the HILIC/PLRP-S columns. 

Comparison of expressed genes to control tissues found a metabolite unique to tissues 

expressing the terpene synthase in conjunction with either the cytochrome P450 alone, 

the galacturonosyltransferase alone, or the cytochrome P450 and 

galacturonosyltransferase together. Similar peaks at low intensity were detected in 

tissues expressing the terpene synthase alone. The metabolite had an exact mass of 

631.1999 Da and eluted through the HILIC column (Fig. 19). Analysis in Scaffold 

Elements predicted that this compound is ikarisoside F with a mass accuracy score of 

0.86 and an identity score of 0.798. A carbon composition of 27 +/- 4 was determined 

based on the intensity of the 12C peak at 631.1999 Da compared to the intensity of the 

13C isotope peak at 632.2031 (Fig. 20).  

Attempts to repeat the analysis of the leaf extracts were futile as the majority of 

observed peaks were sharply degraded or lost within days of collection. Further analysis 

of the observed 631.1999 Da peak by LC-MS/MS was not possible as the peak was too 

degraded to obtain useful data.  
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Figure 20: Metabolite analysis of transfected N. benthamiana by LC-MS detected a 
unique metabolite of 631.1999 Da. Transfected leaf tissues were analyzed using an Q 
Exactive LC-MS system. Peaks of interest (A) and the exact mass of these peaks (B) were 
screened for using Scaffold Elements and Xcalibur. The ratio of C12 to C13 isotopes was 
used to calculate a carbon count of 27 +/- 4 (C).TPS = terpene synthase product, P450 = 
cytochrome P450, GT = galacturonosyltransferase.  
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4.6.3 Confirmation of protein expression in Sf9 cells 

The expression of protein in Sf9 cells was confirmed by SDS-PAGE. The expected mass of 

the terpene synthase was 66.75 kDa, the cytochrome P450 was 57.59 kDa, the 

galacturonosyltransferase was 62.63 kDa, and the CPR used as a control and co-

expressed with the cytochrome P450 was 78.77 kDa. As Sf9 cells often do not produce 

enough recombinant protein to detect using SDS-PAGE, several of the samples did not 

show clear bands at the appropriate sizes (Fig. 21). A band of approximately 66.75 kDa is 

faintly visible in all samples. A band around the same size as the 63 kDa ladder marker is 

noticeably thicker in samples which are contain the 62.63 kDa 

galacturonosyltransferase. Poorly separated bands appear between 55 and 60 kDa, 

possibly attributed to the cytochrome P450. The CPR expressed alongside the 

cytochrome P450 was not detected outside control samples. 

 

 

 

 

 

 

 

 

 

Figure 21: SDS-PAGE analysis of recombinant protein expression in Sf9 cells. The areas 

where bands are expected are indicated by arrows. Black = CPR, 78.77 kDa, green = TPS 

(Sobic.001G339000, terpene synthase), 66.75 kDA, Orange = GTrans (Sobic.001G338400, 

galacturonosyltransferase), 62.63 kDa, and blue = cytochrome P450 

(Sobic.001G338900), 59.59 kDa. 
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4.6.4 Metabolite analysis of Sf9 cell enzyme assay products 

The metabolite content of enzyme assays produced from recombinant proteins was 

similar to those of control CPR and inactivated protein under both GC-MS (data not 

shown) and LC-MS analysis (Sup. Fig. 4.2-4.7). No unique peaks were detected that 

could be attributed to the actions of the recombinant proteins. 

4.7 Discussion 

None of the expected products of enzyme assays using recombinant protein produced 

by Sf9 insect cells were detected by GC-MS or LC-MS. SDS-PAGE was conducted to 

confirm protein expression but the majority of expected bands were unclear. Sf9 cells 

often do not produce enough protein for detection by SDS-PAGE, especially when 

expressing multiple proteins in a single culture, so negative SDS-PAGE results do not 

always indicate that no protein was produced. Sf9 cells contain several proteases that 

can degrade recombinant proteins before they are collected (Gotoh et al., 2001). 

Adjusting the time of protein harvest could reduce the percentage of protein that is 

degraded. It is also possible that the plant-derived proteins may be misfolded and non-

functional when synthesized in insect cells, or that protein is not being produced in large 

enough quantities for an enzyme assay. In this case, concentrating the protein and using 

alternative isolation methods could improve detection. Detection could also be 

improved by elucidating compound structure prior to analysis of enzyme assays by 

targeted LC-MS, as an accurate mass is needed to ensure assay products are detected.  

While genes transfected into N. benthamiana were expressed, as confirmed by RT-PCR, 

no measurable amount of the unknown terpene product was detected using GC-MS or 

QTRAP 6500 LC-MS analysis. Several secondary metabolites were detected by GC-MS in 

leaf tissues extracted using the both the ethanol and methanol extraction protocols, and 

the product of the terpene synthase is known to be soluble in these solvents, so it is 

unlikely that the lack of product is due to extraction methodology. A possible 

explanation is that the transfected N. benthamiana did not synthesize enough terpene 

product to be detectable by GC-MS, as this equipment is significantly less sensitive than 
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LC-MS systems with electrospray ionization capabilities (Alder et al., 2006). Low 

accumulation of a sesquiterpene product could be due to plants having an inadequate 

amount of the FPP precursor in transfected tissues (Yu and Utsumi, 2009). Previous 

studies have overcome the issue of limited precursor availability by localizing enzyme 

activity to the mitochondria, where there is a larger store of FPP (Kappers et al., 2005), 

or by overexpressing a FPP synthase alongside the targeted genes (Wu et al., 2006). A 

more labor-intensive solution would be to generate transgenic lines of N. benthamiana 

to express the desired gene combinations. Transgenic plants would be able to grow and 

express the genes of interest for a longer period of time than transfected plants, and 

large tissue samples would be extracted, increasing the metabolite content for GC-MS 

(Ali et al., 2017). 

Another potential reason that no sesquiterpene product was detected in transfected 

tissues is that tobacco plants may be converting the terpene product to another 

metabolite. While GC-MS analysis may not be able to detect low quantities of 

metabolites, LC-MS is several orders of magnitude more sensitive and should have no 

such issues. However, the LC-MS protocol used in this study is a highly targeted analysis 

that detects ions of a specific mass. If the terpene product is not within the programmed 

range of masses, it is unlikely it will be detected. Plant-based enzymes are known to 

produce variable products when expressed in different systems due to variations in 

native enzymes and cellular machinery. A geraniol synthase from Ocimum basilicum 

produced different minor products (citronellol, linalool, and nerol) when expressed in 

Vitis vinifera, N. benthamiana, E. coli, and S. cerevisiae (Fischer et al., 2013). Enzyme 

activity depends on the cellular environment, and plant-based expression systems 

contain a tremendous number of native enzymes which can interfere with transfected 

gene activity. A potential solution to this issue is to express the targeted genes in both 

N. benthamiana and an alternative expression system, such as Sf9 cells as was done in 

this study, and compare metabolite content. 
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The whole metabolome analysis of leaf extracts by Q Exactive LC-MS using a HILIC 

column detected over 3,600 metabolites. Screening for differences between controls 

and tissues expressing the genes of interest found one metabolite that could be the 

result of transfected genes. The predicted identity of this metabolite was ikarisoside F, a 

flavonoid from the roots of Epimedium species with the chemical formula C31H36O14 

(Zhang et al., 2005). However, the mass of ikarisoside F differs by 1.008 Da from the 

mass of the detected metabolite and the identity score of the match was less than 80% 

accurate. It is likely that the identified metabolite is a compound which is similar in mass 

to ikarisoside F, but not identical. Mass spectra analysis determined that the identified 

metabolite contains 27 carbon atoms, +/- 4, which would be expected for a base 

sesquiterpene structure modified by the addition of a sugar such as glucose (180.16 Da) 

and a sugar acid such as galacturonic acid (194.14 Da) (NCBI Resource Coordinators, 

2017).  

Identification of this metabolite by a more targeted Q Exactive LC-MS analysis was 

inhibited by degradation of the product. Many samples which had clear peaks 

immediately post-collection showed degraded peaks or an absence of peaks within 

days, despite being stored at -80˚C.While a methanol-water solution is commonly used 

during plant tissue extractions, up to 8% of compounds from extracts stored in 

methanol could be derived from a reaction between the solvent and extracted 

metabolites (Sauerschnig et al., 2017). The reaction between extract and solvent can 

occur immediately upon contact or over time, even when stored at -80˚C. The previous 

observation that the unknown terpene product degraded when stored in less than 75% 

MeOH or in 0.1% formic acid suggested that the compound of interest was highly labile 

and likely subject to degradation over time when in the presence of both a reactive 

solvent and the chemical activities of other extracted plant compounds. Generation of 

fresh tissues expressing the genes of interest is necessary for further analysis. 

Transgenic N. benthamiana may be a more efficient and consistent source of tissue than 

transfected leaves. 
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4.8 Supplementary Information 

4.8.1 Supplementary Figures 

 

 

 

 

 

 

 

 

 

Figure S4.1: GC-MS analysis of transfected leaf tissues. Leaf tissues expressing the 

genes indicated in the legend were extracted with 70% ethanol, ground in liqud nitrogen, 

and analyzed by GC-MS. Selected metabolites observed included phenol (A), catechol (B), 

pyridine (C), anabasine (D), and ethanone (F). Guaiol standard is indicated by (E). TPS = 

terpene synthase product, P450 = cytochrome P450, GT = galacturonsyltransferase. 
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Figure S4.2: LC-MS analysis of Sf9 cell enzyme assay products. EPI scan at mass 223 Da. 

Protein collected from Sf9 cells were combined in an in vitro enzyme assay. The activity 

of the terpene synthase (TPS) on FPP was compared to the control cytochrome P450 

reductase (CPR) and inactivated protein by targeted LC-MS analysis. CPS = counts per 

second. 

 

 

 

 

 

 

 

 

 

Figure S4.3: LC-MS analysis of Sf9 cell enzyme assay products. EPI scan at mass 225 Da. 

Protein collected from Sf9 cells were combined in an in vitro enzyme assay. The activity 

of the terpene synthase (TPS) on FPP was compared to the control cytochrome P450 

reductase (CPR) and inactivated protein by targeted LC-MS analysis. CPS = counts per 

second. 
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Figure S4.4: LC-MS analysis of Sf9 cell enzyme assay products. EPI scan at mass 238 Da. 

Protein collected from Sf9 cells were combined in an in vitro enzyme assay. The activity 

of the cytochrome P450 (P450) on purified terpene product was compared to the activity 

of the control cytochrome P450 reductase (CPR) and inactivated protein. CPS = counts 

per second. 

 

 

 

 

 

 

 

Figure S4.5: LC-MS analysis of Sf9 cell enzyme assay products. EPI scan at mass 238 Da. 

Protein collected from Sf9 cells were combined in an in vitro enzyme assay. The activity 

of the terpene synthase (TPS) and cytochrome P450 (P450) on FPP was compared to the 

activity of the control cytochrome P450 reductase (CPR) and inactivated protein. CPS = 

counts per second. 
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Figure S4.6: LC-MS analysis of Sf9 cell enzyme assay products. EPI scan at mass 415 Da. 

Protein collected from Sf9 cells were combined in an in vitro enzyme assay. The activity 

of the terpene synthase (TPS) and galacturonosyltransferase (GT) on FPP was compared 

to the activity the control cytochrome P450 reductase (CPR) and inactivated protein. CPS 

= counts per second. 

 

 

 

 

 

 

 

 

Figure S4.7: LC-MS analysis of Sf9 cell enzyme assay products. EPI scan at mass 431 Da. 

Protein collected from Sf9 cells were combined in an in vitro enzyme assay. The activity 

of the terpene synthase (TPS), cytochrome P450 (P450), and galacturonosyltransferase 

(GT) on FPP was compared to the activity of the control cytochrome P450 reductase 

(CPR) and inactivated protein. CPS = counts per second. 
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Figure S4.8: LC-MS analysis of Sf9 cell enzyme assay products. Neutral Loss scan at 

mass 194 Da. Protein collected from Sf9 cells were combined in an in vitro enzyme assay. 

The activity of the terpene synthase (TPS), cytochrome P450 (P450), and 

galacturonosyltransferase (GT) on FPP was compared to the control inactivated protein. 

CPS = counts per second. 

 

 

 

 

 

 

 

 

 

 

 

4.8.2 Supplementary Tables 
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Table S4.1: Primer sequences  

Gene Isolation from S. bicolor RNA 

Gene Primer Position 5' - 3' Sequence 

Sobic.001G339000 5' UTR  TGTGAGAGAGAGATGGCTGCTGCGA 

Sobic.001G339000 3' UTR AGGATGGTACCCTAGAAGGGAATCG 

Sobic.001G339000 5' gene-specific 
with added BglII 
restriction site 

AGAGAGATCTATGGCTGCTGCGAGAGAGGTTGA
TG 

Sobic.001G339000 3' gene-specific 
with added EcoRI 
restriction site 

AGAGGAATTCCTAGAAGGGAATCGGTTCATC 

Sobic.001G338900 5' UTR TCCATTTCCTCCAGGATCGGAATAG 

Sobic.001G338900 3' UTR CTTGGCTCAACTTGGTTGCATCTGC 

Sobic.001G338900 5' gene-specific 
with added BglII 
restriction site 

ATATATAGATCTATGGAGCTAATAAGCACAACCA
CTG 

Sobic.001G338900 3' gene-specific 
with added EcoRI 
restriction site 

CACACAGAATTCCTACATGGGTACTTGATACGGC
GAG 

Sobic.001G338400 5' UTR  GCTCTGGTTTAGTTCTTGCGT 

Sobic.001G338400 3' UTR TGAAGCATCCAGCTTCAATGCCAT 

Sobic.001G338400 5' gene-specific 
with added BglII 
restriction site 

ATATATAGATCTATGCTTCGTGGGGCGGGGCA 

Sobic.001G338400 3' gene-specific 
with added XmaI 
restriction site 

GTGTGTCCCGGGCTAATGCAACATACACTCTCTA
ACAT 

Amplification of pET28a(+) multiple cloning site 

Gene Primer Position 5' - 3' Sequence 

MCS 5' with added KpnI 
restriction site 

ATATAAGGTACCATCATCACAGCAGCGGCCTGG
T 

MCS 3' with added KpnI 
restriction site 

CACACGGTACCTAGCAGCCGGATCTCAGTGGT 

Amplification for insertion into pMDC32 

Gene Primer Position 5' - 3' Sequence 

Sobic.001G339000 5' with added SalI 
restriction site 

TATATAGTCGACATGGCTGCTGCGAGAGAGGTT
GATG 

Sobic.001G339000 3' with added ApaI 
restriction site  

GAGAGAGGGCCCCTAGAAGGGAATCGGTTCATC
AAGC 

Sobic.001G338900 5' with added SalI 
restriction site 

ATATATGTCGACATGGAGCTAATAAGCACAACC
ACTG 

Sobic.001G338900 3' with added ApaI 
restriction site  

CACACAGGGCCCCTACATGGGTACTTGATACGG
CGAG 

Sobic.001G338400 5' with added SalI 
restriction site 

ATATATGTCGACATGCTTCGTGGGGCGGGGCA 

Sobic.001G338400 3' with added ApaI CACACAGGGCCCCTAATGCAACATACACTCTCTA
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restriction site  ACAT 

Confirmation of RNA expression/insertion into A. tumefaciens/ baculovirus recombination 

Gene Primer Position 5' - 3' Sequence 

Sobic.001G339000 5' Mid-gene AAGGATGAAGAGATTGGAG 

Sobic.001G339000 3' Mid-gene AGTTGACATTCCTTCTTCC 

Sobic.001G338900 5' Mid-gene ATCATCTGCTACGGCAAC 

Sobic.001G338900 3' Mid-gene GTGTTGTTGATTGGGATC 

Sobic.001G338400 5' Mid-gene GTTTCATGTGGTCACTGAC 

Sobic.001G338400 3' Mid-gene TTTCCACTGCTCCAATGAC 

N. benthamiana TUA6  5' Mid-gene ACAATTTACCCTTCACCACAG 
N. benthamiana TUA6 3' Mid-gene GGCTGATAGTTAATACCACACTTG 
Amplification for insertion into pVL1392 

Gene Primer Position 5' - 3' Sequence 

Sobic.001G339000 5' with added BglII 
restriction site 

ACACACAGATCTATGGCTGCTGCGAGAGAGGTT
GATG 

Sobic.001G339000 3' with added EcoRI 
restriction site  

AGAGGAATTCCTAGAAGGGAATCGGTTCATC 

Sobic.001G338900 5' with added BglII 
restriction site 

ATATATAGATCTATGGAGCTAATAAGCACAACCA
CTG 

Sobic.001G338900 3' with added EcoRI 
restriction site  

CACACAGAATTCCTACATGGGTACTTGATACGGC
GAG 

Sobic.001G338400 5' with added BglII 
restriction site 

ATATATAGATCTATGCTTCGTGGGGCGGGGCA 

Sobic.001G338400 3' with added XmaI 
restriction site  

GTGTGTCCCGGGCTAATGCAACATACACTCTCTA
ACAT 

 

Table 4.2: PCR Parameters 

Application Polymerase PCR Parameters 

Amplification of gene cluster 
from S. bicolor cDNA 

Q5 High-Fidelity 
DNA polymerase 

98˚C for 30 sec, then 35 cycles of 98˚C for 
10 sec, 58˚C for 20 sec, 72˚C for 1 min, and 
a final 5 min at 72˚C 

Amplification of gene cluster 
from pJet cloning vector for 
transformation into pMDC32 
and pVL1392 

Q5 High-Fidelity 
DNA polymerase 

98˚C for 30 sec, then 35 cycles of 98˚C for 
10 sec, 58˚C for 20 sec, 72˚C for 1 min, and 
a final 5 min at 72˚C 

Confirmation of 
Agrobacterium transformation 

Taq DNA 
Polymerase  

95˚C for 5 min, then 30 cycles of 94˚C for 
30 sec, 52˚C for 30 sec, and 72˚C for 2 min, 
and a final 5 min at 72˚C 

Confirmation of gene 
expression in N. benthamiana 

Taq DNA 
Polymerase  

95˚C for 5 min, then 30 cycles of 94˚C for 
30 sec, 52˚C for 30 sec, and 72˚C for 2 min, 
and a final 5 min at 72˚C 

Confirmation of baculovirus 
recombination 

Q5 High-Fidelity 
DNA polymerase 

98˚C for 30 sec, then 35 cycles of 98˚C for 
10 sec, 58˚C for 20 sec, 72˚C for 1 min, and 
a final 5 min at 72˚C 
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Table 4.3: Masses targeted for LCMS and predicted structural modifications 
 

Mass (Da)  Modification  

223  H+  

225  Loss of a double bond  

239 OH, H+  

416 OH+galacturonic acid, H+ 

438  OH+OH+galacturonic acid, H+ 

NL 176  Loss of galacturonic acid from glycosidic bond  

NL 194  Loss of complete galacturonic acid  
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Chapter 5: Concluding remarks and future directions 
 

Upon completion of this project, a putative S. bicolor terpene synthase was expressed in 

E. coli and found to produce an unidentified terpene product when combined with FPP. 

The activity of the terpene synthase on FPP suggested that the enzyme produced a 

sesquiterpene. GC-MS and direct infusion MS analysis determined that the unknown 

terpene product was similar in composition to sesquiterpene alcohols, such as guaiol 

and β-eudesmol, with a molecular weight of 222.2 Da and the molecular formula 

C15H26O. Further structural analysis, such as NMR, would confirm the composition of the 

unknown terpene product. 

The terpene synthase gene was also expressed in two heterologous expression systems, 

N. benthamiana and Sf9 insect cells, alongside a cytochrome P450 and 

galacturonosyltransferase hypothesized to be clustered with the terpene synthase. The 

goal of these experiments was to determine whether the clustered genes modify the 

terpene product. Enzyme assays of protein produced in Sf9 cells generated no 

observable metabolites. Replication of this experiment with modified procedures, such 

as an earlier harvest of cells, could improve protein activity. This would be an ideal 

system for identifying the products of the putative gene cluster as Sf9 cells have less 

interference in analysis by background metabolism than N. benthamiana. 

An unknown metabolite detected in transfected N. benthamiana tissues was a potential 

result of the activity of the cluster. The compound, which was only detectable using Q 

Exactive LC-MS with a HILIC column, most closely annotated as the flavonoid ikarisoside 

F. However, the difference in exact mass indicated that the unknown metabolite and 

ikarisoside F are not identical. Mass spectra analysis determined that the unknown 

metabolite likely contains between 23 and 31 carbons, which is within the expected 

range for a sesquiterpene modified by a sugar group. Further analysis was limited by the 

rapid degradation of the metabolite post-extraction and replication of the experiment 

coupled with a targeted MS approach could potentially better elucidate the structure. 
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Transgenic N. benthamiana that expresses the gene cluster and overexpresses the 

precursor FPP may be necessary to generate large volumes of the metabolite of interest. 

Transgenic N. benthamiana has been used to characterize terpenoids in other species 

such as Saliva officinalis , and while the time from infection to collection is much longer 

than during transient expression, stable transgenic lines can be tested multiple times 

and provide more consistent data (Ali et al., 2017). 

Long-term goals for this project could include determining where in the plant this 

terpene synthase is expressed. Gene expression data indicates that it is highly expressed 

in root tissues of young plants (Makita et al., 2015), but more specific information about 

timing of expression and location could be used to determine terpene function in 

planta. One possible avenue to pursue is the use of matrix-assisted laser desorption 

ionization (MALDI) mass spectrometry to target specific masses in root tissues. MALDI 

imaging has been used to localize the activity of Vitex agnus-castis diterpenoids to fruit 

and leaf trichomes, resulting in functional characterization of the genes and 

identification of additional enzymes involved in their biosynthetic pathway (Heskes et 

al., 2018). 

The protocols developed in this study for terpene characterization and gene cluster 

analysis can be applied to other clusters and metabolites. There are many 

uncharacterized terpene synthases present in S. bicolor and determination of their 

products and biosynthesis pathway could lead to advancements in terpene production 

for fuels and other purposes. Engineering of S. bicolor as a better source of food or fuel 

will not be possible unless more resources are devoted to the elucidation and 

manipulation of its biosynthetic pathways. 
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