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Abstract 

Learning is a basic and important component of behavior yet we have very 

little empirical information about the interaction between mechanisms of 

learning and evolution. In our work, we are testing hypotheses about the 

neurogenetic mechanisms through which animal learning abilities evolve. 

We are able to test this directly by using experimentally evolved populations of 

flies, which differ in learning ability. These populations were previously evolved 

within the lab by creating worlds with different patterns of change following 

theoretically predicted effects on which enhanced learning will evolve. How has 

evolution acted to modulate genes and gene expression in the brain to 

accomplish the behavioral differences observed in these populations? We report 

results from work characterizing the differences in gene expression in the brains 

of populations of Drosophila that evolved in environments favoring learning 

from paired populations evolving under control conditions. Using olfactory 

conditioning in the t-maze, we first show that flies which evolved enhanced 

learning in an oviposition context also have a generalized enhanced learning 

ability. We dissected brains from flies following experience learning in the t-

maze and analyzed pooled samples using RNAseq. We completed a factorial 

design of comparing the brains of flies from high learning populations with 

control populations and in each of two conditions: after conditioning and without 

conditioning. Following differential gene expression analysis, we found 

differences within known suites of genes as well as novel transcripts. We have 

also found evidence of predicted trade-offs between immune response and 



	

cognitive capacity. We present these data, as well as results from gene ontology 

analyses. 

Combining predictions from behavioral ecology with experimental 

evolution is a powerful approach to assessing the suites of genetic and 

neurological changes associated with the evolution of complex behavioral 

traits, like learning. By analyzing the genomic mechanisms of what has evolved 

under experimental conditions, we can make a great step forward in 

understanding the evolution of learning and of plasticity in general.  

 

 

 

 

 

 

 

 

 

 

 



	

 

 

 

 

Chapter 1 

Historical background 

 

 

 

 

 

 

 

 

 

 

 

 

 



	

1.1 Introduction 

In this chapter, I give a brief overview on the history of studies of learning and 

memory, particularly with regards to Drosophila and mechanisms. I then discuss 

theoretical and experimental aspects of the evolution of learning and 

approaches from experimental evolution. Finally, I give an overview of some 

proposed trade-offs and interactions with learning, primarily with the immune 

system. 

 

1.2 Early days in memory research 

The concept of learning as we know it is a process that provides an organism 

with the capacity to store information from experiences and later on retrieve that 

information as needed. Although the study of learning and memory have 

historically formed separate fields, learning can be studied from the perspective 

of memory since both terms require the capacity for information storage and 

retrieval. The field of memory has been thoroughly dissected since the early 19th 

century and a great deal of understanding regarding its subtleties has been 

achieved.   

Thanks to the advent of technology and multidisciplinary collaborations, the way 

memory operates and the molecular mechanisms involved have been dissected 

and are better understood. Although, in order to achieve our current molecular 

understanding, it took over a century of debate starting with debates for 

instance, on whether memory was stored in the brain or in the heart ventricles, 



	

and more modernly, if the brain was a system of independent brain regions 

responsible for different behaviors or not (1).  

Perhaps the most known theories about learning and memory are those 

originally proposed by Pavlov in which he proposes the concept of classical 

conditioning describing that an organism can learn to associate a cue formerly 

neutral with either a positive or negative reward (2). The Pavlovian paradigm 

opened the field to studying the conditioning phenomena under different 

contexts and sensory modalities. Contextually speaking, conditioning can either 

be aversive or appetitive. Aversive conditioning involves something like a 

shocking experience such as electric or mechanical shock or a poor-tasting 

food, while appetitive involves some sort of reward such as access to sucrose, a 

safe location, or a potential mate ((90). Conditioning has been studied from all 

sensory perspectives: olfactory, auditory, visual and spatial orientation. Due to 

challenges with the techniques required to study each modality, aversion 

learning has ended up being the preferred context in which to work, leaving 

appetitive learning virtually untouched for half a century and revisited in the late 

1980’s and mid 1990’s (3,4). Olfactory and spatial orientation received more 

attention originally, yielding great breakthroughs for long asked questions in the 

field.  Over time a much deeper understanding of aversive olfactory memory 

formation and consolidation was achieved when compared to the other 

modalities (5).  In 1949 “The organization of behavior” by Hebb was published 

and it proposed a mechanism in which brain cells function and cooperate with 

each other in order to provide a basis for learning (6,7). 



	

1.2.1 The Hippocampus and the Mushroom Bodies (MB) 

Thanks to the spatial orientation memory research taking place in the mid 

1900’s, it was proven that certain brain regions are responsible for behavioral 

capacities.  More specifically, it was shown that the hippocampus plays an 

active role in spatial memory and memory associations in mammals (8). This 

finding suggested that there must be an ancestral brain region playing the role 

of the mammalian hippocampus in simpler organisms, such as invertebrates. 

Memory had already been studied and observed in invertebrates but not yet in 

such depth nor from such anatomical perspective. In 1974, Quinn and Benzer 

showed that D. melanogaster learns to avoid electric shock (9). This opened the 

doors to forward genetics in memory on fruit flies and led to the identification of 

the first known mutant named “dunce” which possessed a learning deficiency 

(10).  Simultaneously in the 1970’s, more invertebrate animal models were used 

to study memory and continued the search for the hippocampus ancestral 

organ. It was concluded through the honeybee that the mushroom bodies 

(MBs), particular structures present within the brain of different species of 

invertebrates, are responsible for the memory and spatial orientation capacities 

(11,12). By 1985, Heisenberg had shown that the MBs play a role in olfactory 

memory in D. melanogaster (13). 

 

1.2.2 Learning Phases 

Thanks to the technical foundation laid at this point in time, the different memory 

phases were already dissected and better understood. For instance, it was 



	

determined that there exist different forms of memories, for instance 

consolidated memories and memories that do not require consolidation. 

Consolidation is the process in which information learned through an experience 

is transferred, in mammals, from the hippocampus into the cerebral cortex 

(5,14,15). The consolidation independent memory is also known as short-term 

memory (STM) and there is debate whether a consolidation independent mid-

term memory (MTM) exists (5,14,15). The consolidation dependent learning 

events have been dissected into two different kinds, protein synthesis 

dependent and protein synthesis independent. These were discovered thanks to 

the use of anesthetics, which are known to have an amnesia-inducing effect if 

exposed at the time of consolidation. Organisms that exhibit resistance to the 

deleterious effects that anesthetics have on memory are believed to have what 

is known as anesthesia resistant memory (ARM). Organisms possessing the 

normal consolidation dependent memory that becomes ablated when exposed 

to anesthetics is called long-term memory (LTM) (5,14,15).  This form is protein 

synthesis dependent, and this synthesis becomes disturbed when exposure to 

anesthetics occurs during consolidation (5,14,15,16). 



	

Figure 1.1 Learning Phases. This figure depicts the time course of the different 

proposed forms of memory. The x-axis gives the time from the experience that 

is learned. The y-axis is memory retention, from perfect retention of the learned 

information to no retention and forgetting. Short-Term Memory (STM) forms 

immediately and also degrades quickly. Anesthesia resistant memory (ARM) is 

observed as quick as STM but decays after the 24 hour range and is a protein 

independent process. It is believed to be an alternate information retrieval 

mechanism independent from LTM, which is protein dependent. LTM requires a 

longer consolidation period of about 5 hours, but has a much longer retention 

duration. (20) 

 

 

 

 

 



	

The understanding of the subtleties of each memory phase has allowed for the 

thorough design of protocols that better elicit certain kinds of memory based on 

the length, intensity and repetition of conditioning protocols. It is known that for 

STM, conditioning happens through a relatively short exposure and a few 

repetitions suffice. 

It has been established that ARM is induced with a massed conditioning 

protocol, which entails six or more consecutive conditioning cycles. A spaced 

conditioning protocol is required for LTM, which entails six or more conditioning 

cycles with 10 minute rest periods between each conditioning cycle 

(5,15,16,21).  

 

1.2.3 Molecular and technological breakthroughs 

Due to the advent of technology in the genetics, molecular biology and 

biochemistry fields, molecular work took place with the aims of unraveling the 

mechanisms involved in the learning deficient drosophila mutant found by 

Quinn. It was determined that the first learning deficient mutant “Dunce” (dnc) 

lacked a cyclic adenosine monophosphate (cAMP) diesterase (17,18) and the 

other learning deficient mutant “Rutabaga” (rut) lacked Ca2/calmodulin-sensitive 

adenylyl cyclase activity (19). At the time, these were huge accomplishments 

given the techniques and amounts of labor to screen the genome and actually 

pinpoint the mutations. These findings shed light over a pathway that involves a 

nuclear protein known as the cAMP recognition element binding protein (CREB). 

This pathway has been known to be highly involved with the capacity to learn, 



	

but it is now known that it is only involved on LTM. [Figure1.2] 

During the 1990’s, the technological momentum that started a decade earlier 

had only gotten stronger and facilitated an even greater advent in molecular, 

genetic and cellular understanding in the field, allowing for the development of 

transgenic tools and novel gene expression techniques that changed the nature 

and scope of research in the field. In 1998, Dubnau and Tully released a 

thorough review of the state of the field in regards to gene discovery. In this 

review, they thoroughly explain how the pathways involved in learning had been 

tested and proven by generating mutants unable to learn and later on partially 

rescuing their capacity to learn by injecting cDNA encoding the healthy gene 

being studied. It is this same paper in which the term of vertical integration, the 

translational potential of the discoveries made in D. melanogaster, is proposed 

(20). 

 

 

 

 

 

 

 

 

 

 



	

 

Figure 1.2 Memory Pathways  

 

The above diagram depicts the pathway for memory formation and known 

genes related to each stage. fasII, linote, latheo, volado and leonardo are genes 

known to be involved in the capacity to acquire new information. Dopamine is 

related to triggering unconditioned stimuli (US) acquisition of information, 

whereas acetylcholine is related to conditioned stimuli (CS) acquisition of 

information. The genes Rutabaga, Dunce and Nf1 are related to the capacity to 

consolidate the acquired information into STM. Amnesiac is necessary to further 

consolidate the STM information into MTM. It is believed that an organism either 

has ARM or LTM, which are the longer spanning memory forms. ARM is 

contingent on the radish and PKC genes, whereas LTM is contingent on CREB, 

NOTCH, Stauffen/Pumillio, crammer and nebula (20). 

 

 

 

 



	

1.2.4 The evolution of learning 

Brains are the products of evolution, and there are many theories that propose 

when learning should evolve (and they all revolve around patterns of change). 

While there are many comparative studies of learning, direct studies of evolution 

are much more rare. Conditioning ability was artificially selected in the late 

1980’s, with high learning flies and poor learning flies selected in each of those 

directions(90). About two decades later, Moore released “The evolution of 

learning”, an extensive compendium that identifies the multiple possible kinds of 

learning viewed from multiple perspectives and on multiple organisms. It also 

explores the distinctions between each kind of learning and the possible 

evolutionary relationship between them (22). Shortly after, at the beginning of 

the 2000’s, Mery and Kawecki released “Experimental evolution of learning 

ability in fruit flies” in which they show that D. melanogaster populations kept 

under certain conditions more favorable for learning showed a greater capacity 

to make the right choice under the oviposition paradigm. They showed that after 

only 14 generations, there is a significant difference in the experimental 

populations (23).  

While incredibly important, this work considered only one form of environmental 

change, and the richness of earlier theoretical work still requires addressing. 

Considering only one form of change actually presents a paradox, especially 

since change can both promotes and inhibit the evolution of learning. Learning 

is still accurate in an unchanging environment for instance, yet too much change 

makes learning of little use.  (24). Dunlap & Stephens (2009) solve this 



	

paradoxical problem of change by splitting change into two components: the 

certainty of using a particular behavior and the reliability of the cues being used 

for learning when to employ a given behavior. In other words, it doesn’t only 

matter if the environment changes, but it also matters if the correct signals are 

being delivered and properly processed in order to lead to the right decision 

making. Through an NSF grant, their hypothesis was more fully tested by 

evolving nine treatments of 12 replicates each of populations of flies under a 

gradient of the two aforementioned variables, the environmental certainty and 

the reliability of the best action being taken. The environmental certainty was 

manipulated by changing probability that eggs placed on either pineapple or 

orange flavored agar would result in fitness: being reared for the next 

generation. The second type of change, reliability, was manipulated through the 

quinine pairing in the first phase that could then inform the females’ later 

placement of eggs. A reliable quinine pairing would indicate accurately where 

not to place eggs in the second phase. On that same 2009 paper, Dunlap 

proposed what is known as the flag model (24) (See figure 1.3). 

 

 

 

 

 

 

 



	

 

 

 

 

Figure 1.3 Flag Model (24) 

This model is a visual organization of the two variables used in the experimental 

evolution design, the environmental certainty and the reliability of the best action 

taken. Based on the ratios of each, the theory would predict either greater 

learning or unlearned preference to evolve. 

 

 

 

 

 

 

 



	

 

   

Around the same time, Keene and Wadell delivered another review in which over 

37 memory related genes had been identified in D. melanogaster. This paper 

reviews useful genetic tools that had been developed by designing transgenic 

lines that provide the capacity to the researcher to control turning genes on or 

off based on temperature or light exposure and also to visualize different cellular 

events through the expression of a reporter gene in a particular cell type (21). 

 

1.2.5 Evolve and Re-Sequence (E&R) 

Once again thanks to technological improvements, high-throughput sequencing, 

also known as next generation sequencing (NGS), was developed. The field of 

bioinformatics experienced a great leap forward due to the greater 

computational power achieved at the time. NGS opened the possibility to 

sequence entire genomes in short periods of time and at accessible prices to 

the average researcher. That changed the scope of analysis and dissection of 

behavior from the genetic and genomic perspective (25). The conversation 

towards further dissecting the evolution of cognitive traits started to happen, 

which unraveled another discussion on whether the technology was available for 

this analysis at that point (26, 27, 28, 29). One important application that 

combines the experimental evolution approach with NGS is known as “evolve 

and re-sequence” (E&R). E&R basically proposes sequencing a population 

before and then again after experimentally evolving it. Using this approach, one 



	

can gain understanding of the gene dynamics taking place in the evolutionary 

process and also better understand how the different selective pressures affects 

the organism at a molecular level (30,31). 

 

1.2.6 Energetic and Life History Trade-offs in the Evolution of Learning 

Learning and cognitive capacities are complex mechanisms that require a great 

deal of energy and investment from an evolutionary perspective. In order to 

evolve such mechanisms, an organism must benefit from such investment with 

the ultimate goal of surviving and reproducing.  

To understand the evolution of cognition, the field has looked into brain size for 

correlation with cognitive capacity. From that perspective, the expensive tissue 

hypothesis (ETH) was developed when observing the gut vs. relative brain size 

ratio in primates and humans (40). The ETH refers to the economics regarding 

the allocation of resources based on the metabolic costs each tissue type has. 

There has been quite a great deal of controversy in regards to the ETH, and 

alternative hypothesis have been formulated due to conflicting results under 

different contexts and model organisms (41,42,43). Ectothermic animals are 

believed to be the most applicable group for studying such purposes due to the 

greater cost for them to maintain brain tissue (44). 

 One alternative hypothesis is known as the “energetic trade-off” (ETOH) 

hypothesis, which states that in order to allocate more resources to the brain, 

other systems become compromised such as reproductive success, fecundity 

or even development (41). Therefore, ETOH assumes that two expensive 



	

systems do not co-evolve due to the energetic conflicts. Tissues such as gut 

and brains have been negatively correlated and confirmed in cichlids and 

anurans, supporting the ETOH (44,45,46). Relative brain size has also been 

compared and correlated with other traits, such as sexual traits (47), mate 

search (48), gender (49), fecundity (50) and innate immunity (51). In some cases 

the correlation has been negative, and in other cases the correlation has been 

positive, such as in the case of sexual traits.  

In the case of innate immunity, it has been observed through the tissue graft 

rejection paradigm in guppies that innate immunity is negatively correlated with 

brain size, but not adaptive immunity (51). 

 

1.2.7 Innate Immunity in Drosophila 

Innate immunity is a complex system that a host has evolved to protect itself 

against infection from foreign organisms (32). The broadness of immunity 

achieved by an organism may provide the fitness an organism requires to 

survive given the conditions in the environment. Insects are much simpler than 

mammals in many ways, yet insect innate immunity is very complex and highly 

conserved. This is the reason why D. melanogaster has been a great tool for its 

dissection (33). A great deal of understanding has been achieved in mammal 

immunity thanks to D. melanogaster (34, 35, 36). 

It has been determined that at the time of infection, the innate immune system 

detects the molecular signatures on each organism through the pathogen-

associated molecular patterns (PAMPS) through the pattern recognition 



	

receptors (PRR).  This then leads to the expression of antimicrobial peptides 

(AMPs) in fat cells to then be released into the haemolymph for pathogen 

recognition and clearance (35, 37, 38). We now know of seven families of AMPs: 

Attacins, Cecropins, Defensin, Diptericin, Drosocin, Drosomycin and 

Metchnikowin (39). 

There is recent findings from a different research group with pre-print evidence 

of AMP’s being involved in LTM modulation (86). 

It has been hypothesized that an evolutionary trade-off exists between memory 

and immunity. Because of that hypothesis, it has been tested and observed in 

both D. melanogaster and B.terrestris, that there is no trade-off but actually a 

positive relationship between learning and immune response (91,92). 

 

 

 

 

 

 

 

 

 

 

 

 



	

 

Chapter 2 

2.1 Introduction 

Having the capacity to recall information from past experiences is an 

adaptation that allows organisms to make decisions in order to ensure 

survival. It is also a process that has captivated fascination in humans since 

ancient times (1). Many breakthroughs have been achieved in regards to 

dissecting learning and its basic theoretical intricacies. Pavlov’s associative 

and classical conditioning paved the way for scientists of multiple 

backgrounds to tackle the subjects of learning and memory during the first 

half of the 20th century (2).  During the second half of the 20th century, a 

technological advent led to a great leap in discoveries. Many interdisciplinary 

and translational efforts dissected the function of different parts of the brain 

and were able to pinpoint that the hippocampus is responsible for memory 

association and spatial orientation in mammals. These efforts also 

determined that insects have the mushroom bodies (MB) which serve the 

same function as the hippocampus. The MB occupy a great percentage of 

the actual brain in many insects such as D.melanogaster (8,11,12,13,21). 

Through ambitious and labor intensive techniques, science has created a 

breach that each decade has exponentially deepened along side the greater 

computational power achieved in the fields of electronics and computer 

science (9,17,18,19,20,21,25).  A great deal of molecular work has been 

successfully accomplished, dissecting the learning pathways and its 



	

mechanisms (20, 21). Thanks to this work, the kinds of learning and various 

gene pathways that are involved in each kind of learning are now understood 

(20). Once the field was set for a genomic conversation of learning to take 

place, the subject of how learning evolved came to be. The theory suggests 

that this learning adaptation only takes place when it is economically 

favorable for an organism to invest in the machinery involved with the 

capacity to learn. In other words, there has to be a reward for being able to 

recall former experiences, and in nature this reward comes in the form of 

vertical gene transfer or procreation. Mery and Kawecki showed that D. 

melanogaster can evolve learning in only 14 generations based on the rate of 

change of the environment (23).  Cognitive tissue is believed to be an 

expensive investment though, therefore evolving such machinery happens 

only under conditions that require proper decision making, such as a highly 

changing environment (24,44,45,46). Additionally, the right decision-making 

is contingent on the execution of the action, which can be contingent on the 

proper signal processing capacities. This awareness allowed for the theory of 

the evolution of cognition (24). This theory states that both the rate of change 

in the environment and the certainty of the best action taken determine 

whether learning or non-learning (innate-bias) will be favored.  The theory 

was tested under the oviposition paradigm by experimentally evolving 

populations of wild D. melanogaster under gradients of the aforementioned 

variables.  The rate of change in the environment was controlled and lines of 

flies were evolved based on different parameters (see figure 1.3 Flag model). 



	

 

The model was first tested in 2009, in which populations with different 

learning capacities was allowed to be evolved (24). As the techniques of 

Next-Gen Sequencing (NGS) have matured, Evolve and Resequence can be 

applied to more experimental systems. (25,26,27,28,29). E&R refers to 

sequencing an organism before and after submitting it to experimental 

evolution treatment (30,31). The recently evolved high-learning lines from the 

factorial experimental evolution test of the flag model provide an excellent 

opportunity to apply these genomic techniques to experimental evolution of 

a complex phenotype. 

 

 

 

 

 

 



	

 

Figure 2.1.2 Flower Chart: The flower diagram breaks down the experimental 

design in order to dissect the gene dynamics with regard to both 

experimental evolution treatment and actual learning. The differentially 

expressed genes between control and experimentally evolved populations 

are the ones expected to be related to the experimental evolution treatment. 

The differentially expressed genes when comparing the experimentally 

evolved population before and after learning are expected to be related to 

the actual process of learning. Only two overlapping petals are shaded 

because in this work we only focus on the results of the evolved vs. controls 

and evolved vs. evolved conditioned. 

 

 

 

 

 



	

 

The lines of flies evolved under the constantly changing environment with the 

highest reliability of best action were found to have evolved higher cognitive 

capacities.  In order to test whether these lines of flies had evolved a general 

capacity for higher learning across contexts, the experimental populations 

were behaviorally tested for short-term memory (STM) using a different 

paradigm and two novel stimuli to see if the higher cognition transferred to a 

different context. The experimental populations showed greater learning than 

their control pairs (see Figure 2.3.1.1). 

Because mushroom bodies are associated with memory in D. melanogaster, 

we collected whole brains for the analysis.  In order to accommodate RNA 

Pool-Seq, we collected a minimum of 40 brains per sample. Samples were 

collected immediately after learning was shown. RNA was purified and 

mRNA libraries were prepared in-house.  Libraries were sent for High-output 

sequencing to the DNA core at the University of Missouri in Columbia. 

Samples were sequenced using a NextSeq platform aiming for >35 million 

reads per sample. The resulting data was ~35GB that were first aligned to 

the D. melanogaster genome (UCSC dm3) and then analyzed through 

Cufflinks & DE basespace workflow to unveil the statistically significant 

differentially expressed (DE) genes between treatments. Once the lists of DE 

genes were ready, they were submitted for gene ontological analysis using 

GOrila (52, 53) (see Figures 2.3.3.1.1.- 2.3.3.2.5).



	

Figure 2.1.3 Experimental Design: Flies were conditioned against 4-

Methycyclohexane (MCH) and allowed to consolidate for 30 minutes. Flies 

were immediately tested and individuals that showed learning were 

separated and immediately put in ice for their brains to be dissected. Within 

30 minutes, samples were kept in -80 ˚C until 40 brains were reached per 

sample. RNA purification and validation were performed, followed by mRNA 

library prep for Illumina sequencing. Libraries were sequenced and aligned, 

followed by differential expression (DE) analysis that unveiled novel and 

notable genes. The DE data allowed for the ontological analysis, which 

unveiled immune related processes further tested through an oral bacterial 

infection mortality assay and qPCR. 

 



	

These analyses yielded a great deal of information, including novel genes, 

annotated genes of uncertain function, and known genes highly involved in 

different processes and functions. In this Chapter, I report on the most 

outstanding results, which mainly relate to an observed learning-innate 

immunity co-evolution and potential immune trade-offs observed after 

learning took place. 

These findings require addressing the work that has taken place to assess 

the evolution of cognition from a relative brain-size perspective. We know 

that a bigger brain is capable of greater cognition, but cognitive tissue is 

expensive and brain-size has shown patterns of fluctuations based on 

different evolutionary conditions. What is known as the energetic trade-off 

hypothesis (ETOH), which is an alternative for the expensive tissue 

hypothesis (ETH), proposes that energetic investment in biological systems 

follow economic dynamics and constraints based on resource availability 

and allocation (40, 41). 

 It has been observed through the tissue graft rejection paradigm in guppies 

evolved for greater brain size that innate immunity is negatively correlated 

with brain size, but not adaptive immunity (51). Our results conflict with those 

findings, as we have observed an actual co-evolution of innate immunity 

alongside cognition. As mentioned, , D.melanogaster immunity is very 

complex, making it a suitable model organism to study immunity in 

mammals, and a great deal of understanding about human immunity has 

been achieved thanks to D.melanogaster (33, 34, 35, 36).  



	

 

2.2 Materials and Methods 

2.2.1 Experimental evolution 

Populations were evolved following the ‘flag model’ framework (See figure 

1.3). This theory uses components of change in the environment to predict 

when learning is favored evolutionary: the certainty with which the best 

action in a given environment changes and the reliability of cues available for 

learning (78,79).  Wild-caught populations of flies were evolved using an 

oviposition aversion learning paradigm, as maternal choice of where to lay 

eggs has a large effect on fitness. Our lab is maintaining populations of flies 

with evolved enhanced learning, currently at over 150 generations of 

selective pressure. 

2.2.2 Behavioral testing 

3-5 day old females were sexed into populations of 30 individuals in new 

food agar vials using ice treatment to immobilize flies. Flies were then 

allowed to recover at 24˚C and >60% humidity for 4 days before testing to 

diminish any physiological/cognitive effects caused by the ice treatment. All 

testing occurred in an environmental chamber under red LED light 

conditions. 12 populations were tested on each possible treatment: non-

conditioned, conditioned against 4-Methylcyclohexane (MCH), and 

conditioned against 3-Octanol (OCT). Flies were conditioned using 3 

consecutive STM conditioning cycles. (See figure 2.2.2.1) 

 



	

 

 

Figure 2.2.2.1 One STM conditioning cycle: Depicted above is the sequence 

of events in one conditioning cycle. Starting with coupled aversive 

mechanical shock with odor A. Mechanical shock was delivered by vortexing 

the flies at 2000 RPM for one second every five seconds for the entire 

coupled stimuli (CS+). Starting second 61, odor A and mechanical shock are 

replaced by activated charcoal filtered air for a whole rest minute. Starting 

second 120, flies are exposed to odor B without any aversive stimulus and is 

known as non-coupled stimuli (CS-). Starting second 180, filtered air is 

delivered for a whole rest minute. One STM conditioning protocol  requires 

three consecutive STM conditioning cycles taking a total of 12 minutes.  

 

 

 

 



	

 

This 4 minute protocol is repeated 3 consecutive rounds for a total of 12 

minutes with 3 paired CS+ conditioning events and 3 unpaired CS- events. 

Populations of conditioned flies were then allowed to rest for 30 minutes. 

Following this resting period, populations were loaded one at a time into the 

t-maze and simultaneously exposed to both olfactory cues, one from each 

direction. Flies making each choice, MCH and OCT, were removed from the 

maze within each choice vial and frozen. These flies were then counted, 

allowing us to quantify the learning capacities of the experimentally evolved 

populations in the t-maze context.  

 

2.2.3 Sample Collection 

A subset of flies from the behavioral testing was then used in sample 

collection. These flies were first behaviorally tested for their capacity to make 

the right choice upon conditioning using the t-maze. As soon as the choice 

consistent with learning was observed, flies were placed on ice and their 

brains were dissected within 30 minutes of testing. The tissue was 

homogenized using RNase-free pestles (Fisher Scientific, Waltham, 

Massachusetts) and stored in ~10μl of Trizol (Life Technologies, Carlsbad, 

California) per brain and left to incubate at room temperature for 5 minutes. 

Then, the Trizol volume was doubled and samples were stored at -80˚C. 

A total of 16 samples was collected. First, 8 samples were collected during 

the Fall and Spring of 2016, each containing 40 brains. The lines used were 



	

the experimentally evolved populations for higher learning (J2 & J10) with 

their respective controls (C2 & C10) both before learning (samples J2-O, C2-

O, J10-O, C10-O) and after learning (samples J2+O, C2+O, J10+O, C10+O). 

These 40 brain-containing samples were used for downstream RNA-Seq 

purposes. During the fall of 2017 the same 8 samples were collected again 

following the exact same protocol, but this time aiming for 20 brains each to 

perform qPCR and RNA-Seq validation.  

 

2.2.4 RNA purification 

Total RNA was purified with the RNeasy mini kit (Qiagen, 

Hilden, Germany) using the manufacturer’s protocol. RNA quantity 

and quality were assessed using an Epoch Nanospec (BioTek, Winooski, 

Vermont), a Qubit 2.0 Fluorometer (Life Technologies, Carlsbad, California) 

and a 2100 Bioanalyzer (Agilent Technologies, Santa Clara, California). 

 

2.2.5 mRNA library preparation 

mRNA libraries were prepared from 350ng of total RNA per sample using the 

TruSeq Stranded mRNA LT Sample Prep Kit (Illumina, San Diego, California) 

following the manufacturer’s protocol using 13 PCR amplification cycles. 

mRNA libraries were quantified and qualified using Qubit 2.0 Fluorometer 

and Agilent 2100 Bioanalyzer. 

 



	

2.2.6 RNA-Seq 

High-throughput sequencing services were performed at the University of 

Missouri DNA Core Facility. A single 75 bp paired-end high-output Illumina 

Nextseq run was performed, yielding >35 million reads per sample with Q30 

scores >96%.  

 

2.2.7 Bioinformatics 

 2.2.7.1 Alignment and DE 

Alignment was performed using STAR 2.5(73), and then validated using 

bowtie Differential expression was performed using Cufflinks assembly & DE 

(Basespace Workflow) 2.1.0 (74) with the UCSC dm3 reference genome.  An 

RNA-Seq Heatmap was generated from the Cufflinks assembly and a DE list 

of significant filtered genes using DESeq2 (75).  

2.2.7.2 Ontologic analysis 

Gene ontology analysis was performed using Gorilla (52,53). Significantly 

differentially expressed genes with a p-value < ~5.21 x 10-2 were run against 

the background gene list of ~9300 genes. From this, ~5700 genes were 

associated with GO terms. 

Visualization diagrams were produced with REViGO using the GOrilla 

generated GO terms and p-values with similarity=0.9. The Whole Uniprot 

database was selected for GO term reference and the simRel score for 



	

semantic similarity measures (77). 

 

2.2.7.3 Novel gene analysis 

Novel gene analysis was performed using the integrative genomic viewer 

(IGV)(75), as explained in Thorvaldsdottir, Robinson and Mesirov 2012 (76). 

2.2.7.4 Gene Network analysis 

The network plot was generated using esyN as in (89) to assess public data 

looking for interactions and processes in biological systems. 

2.2.8 qPCR 

For RNA-Seq validation purposes, qPCR was performed on cDNA as 

explained in Taylor, S. 2010 (87). 

Reverse transcription was performed using ProtoScript II First Strand cDNA 

Synthesis Kit (NEB, Ipswich, Massachusetts) following manufacturers 

protocols using 48.8ng of starting total RNA per sample. Using a CFX96 Bio-

Rad (Hercules, California). The RNA had been collected from 20 brains per 

sample using the same protocol used for the RNA-Seq. 

Luna Universal Probe One-Step RT-qPCR Kit (NEB, Ipswich, Massachusetts) 

was used following manufacturers protocol using a 1:32 dilution of the 

cDNA. Primers were designed using the NCBI Primer-Blast tool as explained 

in (68 and 87) and value oligos were ordered at 25nm and lyophilized from 

Invitrogen (Carlsbad, California).  



	

 

Primers used: 

AttC 

AttC_F_2:   TAAGCAAGGCCGTTGGAACT        

AttC_R_2:  GCCGTGTCCATGATTGTTGTAG  

Dro 

Dro_F_1: GCATACCGCGGAGAAGTCAT     

Dro_R_1: CGATGGGAACCCCTCATTGT  

GAPDH 

GAPDH_F:TTATCAACGAGACGCACGAG 

GAPDH_R:ACGGCCAAGATCAAGGTATG 

2.2.9 Functional Tests of Observed Differences 

Following the RNA-Seq results, we conducted an additional experiment 

testing the function of the observed immune effects.   

2.2.9.1 Infection Mortality Assay 

We performed an oral infection protocol as in Apidianakis and Rahme, 2009 

(67) on both evolved and control populations by knocking 6 replicates of 10 

females into a vial with 2% agar and 5% sucrose covered with a Whatman 

filter paper disc wetted with 170ul of 5% sucrose solution containing 6.4 x 

109 PA01 bacterial cells previously pelleted from 4ml at OD600=1.6. Flies were 



	

kept at 24˚C, >60% humidity, and surviving flies were counted two times 

daily for 3 weeks. 

2.2.9.2 Bacterial Stocks 

For each experiment, PA01 cultures were freshly inoculated in LB agar plates 

from glycerol stocks kept at -80˚C under a sterile hood. Single colonies were 

then picked after 24 hours of incubation at 37˚C. 5ml of LB media was 

inoculated and left to incubate at 37˚C in a circular shaking incubator at 

120rpm using a ridged Erlenmeyer flask for 24 hours. Subculturing would 

follow by first diluting (1:100-1:200) overnight cultures in 5ml of LB media 

until an OD600 of 0.05 would be reached. Then 95 ml of LB media were added 

and left to incubate at 37˚C in a circular shaking incubator until an OD600 of 

~3 was reached. 1ml of media at OD600=3 contains ~3-5x109 bacterial 

cells.(67) 

 

 

 

 

 

 

 



	

 

2.2.10 Analysis  and Data 

2.2.10.1 Behavioral Confirmation of Experimentally Evolved Effects 

For behavioral testing, we performed a repeated measures ANOVA, with 

repeated measures on each replicate line, nested within evolutionary 

treatment (high learning, or control), and a main effect of the pairing of the 

conditioned stimulus. Here we specifically predict a significant interaction 

between CS+ pairing and evolutionary history.   

 

2.2.10.2 Infection Mortality Assay: 

For the infection mortality assay, we performed a repeated measures 

ANOVA, on the mean numbers of flies alive within each line, with a repeated 

measure of with repeated measure of time. These measures were performed 

on data normalized from the individual time points of mortality across the 

vials. Here, the mean of each control line or evolved high learning line was 

normalized against its own non-infection control vials. This allowed each line 

to serve as its own control for infection. 

 

 

 



	

2.2.10.3 qPCR: Relative gene expression was calculated using the 

double delta Ct method, which compares an internal housekeeping gene 

(GAPDH) with a target gene using CFX manager software from Bio-Rad 

(Hercules, California). 

2.2.10.4 RNA-Seq: Alignment was performed using STAR 2.5.1, which 

uses a seed search followed by clustering, stitching and scoring (73). Gene 

Ontology analysis was performed using GOrilla as in 52, 53. 

2.2.10.5 Data access: All sequencing data will be submitted to NCBI 

Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) at the 

time of submission of this work to a journal for publishing. 

 

 

 

 

 

 

 

 

 



	

2.3 Results 

2.3.1 Behavioral testing 

The ANOVA revealed a statistically significant effect of the CS+, indicating 

that the pairing of the odorant with mechanical shock affected behavior. We 

also found the predicted interaction between evolutionary history, or 

selection type, and CS+. As shown in Figure 2.3.1.1., high learning flies show 

a strong difference in choice of MCH following different conditioning 

pairings, whereas the control lines do not show this difference in behavior.  

 

Table 2.3.1.1. Repeated measures ANOVA of the behavioral testing. 



	

 

Figure 2.3.1.1. Behavioral Testing: Significantly greater learning was 

observed on experimental populations than on control populations. High 

learning is on the right vs. controls on the left. The greater the slope between 

the points, the greater the behavioral difference between lines. 

 

 

 

 

 

 

 

 



	

2.3.2 Differential Expression  

The differential expression analysis revealed a difference in 19 significantly 

differentially expressed genes  related to the experimental evolution 

treatment and 91 significantly differentially expressed genes related to 

learning. The significance threshold used was q<0.005. From which, I 

focused on a subset of genes in figure 2.3.2.1 

 

 

 

 

 

 

 

 

 



	

 

Figure 2.3.2.1 Innate Immunity DE: J02O & J10O are evolved populations 

that chose OCT without conditioning. C02O &  C10O are the paired controls 

for each evolved population that chose OCT without conditioning. J02plusO 

& J10plusO are the evolved populations that chose OCT after conditioning. 

C02plusO & C10plusO are the paired controls for each evolved population 

that chose OCT after conditioning. The top cluster on the chart (AttC, DptB, 

CecA1, Dpt, Dro) includes all immune-related genes that show an increased 

expression in the experimental evolution treatment. Interestingly, the same 

cluster of genes shows significant repression upon conditioning on the 

evolved population, suggesting a potential energetic trade-off between 

learning and innate immunity.  

The bottom cluster (TotA and TotC) contains stress response genes involved 

in energy metabolic processes (84). Mco1 is a plasma membrane-bound 

multicopper oxidase that oxidizes substrates in the heamolymph (85). 



	

2.3.3 Gene Ontology  

 2.3.3.1 Experimental evolution for greater learning (Evolved vs. 

Controls) 

The ontological processes unveiled related to the experimental evolution 

treatment are listed in 2.3.3.1 GO Experimental Evolution Process Table. 

Three main processes were unveiled through the ontological analysis. The 

main process was response to bacterium and immune response, mainly 

associated with genes Dro, AttC, DptB, TotA and TotC. The second one is 

chitin-metabolic process, which is related to glucosamine-containing 

compound metabolic process and amino sugar metabolic process based on 

the genes involved (CG34282, CG14645, CG34220). The third one is stress 

response related, including UV and heat response, with genes TotA and TotC 

associated with such GO processes. 

 

 

 

 

 

 

 

 

 



	

 

2.3.3.1 GO Experimental Evolution Process Table  

Description 
FDR q-
value 

Enrich
ment Genes 

response to 
bacterium 

4.73E-
03 24.5 

Dro, AttC, DptB, TotA, 
TotC  

response to other 
organism 

1.87E-
02 16.14 

Dro, AttC, DptB, TotA, 
TotC  

response to 
external biotic 
stimulus 

1.28E-
02 16.05 

Dro, AttC, DptB, TotA, 
TotC  

response to biotic 
stimulus 

9.64E-
03 16.05 

Dro, AttC, DptB, TotA, 
TotC  

multi-organism 
process 

2.84E-
02 12.3 

Dro, AttC, DptB, TotA, 
TotC  

defense response 
to Gram-positive 
bacterium 

2.84E-
02 47.36 Dro, AttC, DptB 

humoral immune 
response 

3.35E-
02 42.62 Dro, AttC, DptB 

chitin metabolic 
process 

7.27E-
02 31.57 

CG34282, CG14645, 
CG34220  

glucosamine-
containing 
compound 
metabolic process 

8.43E-
02 28.9 

CG34282, CG14645, 
CG34220 

cellular response 
to UV 

7.80E-
02 113.66 TotC, TotA  

amino sugar 
metabolic process 

7.26E-
02 28.41 

CG34282, CG14645, 
CG34220 

antibacterial 9.52E-
94.72 Dro, AttC 



	

humoral response 02 

response to 
external stimulus 

9.87E-
02 7.78 

Dro, AttC, DptB, TotC, 
TotA   

aminoglycan 
metabolic process 

9.43E-
02 24.01 

CG34282, CG14645, 
CG34220 

cellular response 
to heat 

2.40E-
01 54.12 TotA , TotC 

response to UV 
2.47E-

01 51.66 TotA,  TotC 

defense response 
to bacterium 

2.47E-
01 16.24 Dro, DptB 

cellular response 
to light stimulus 

2.41E-
01 49.42 TotA, TotC 

immune response 
3.10E-

01 14.45 Dro, DptB 

 



	

Figure 2.3.3.1.1. GO Experimental evolution Process GOrilla Flowchart. This 

flowchart shows the relationship between GO processes and depicts the p-

value using the color scale bar on top. It was generated simultaneously with 

GO Experimental Evolution Process Table 2.3.3.1 and is a different visual 

representation of the same results. 

 



	

Figure 2.3.3.1.2 GO experimental evolution process ReViGO Plot.  This figure 

was also generated using the data from GO Experimental Evolution Process 

Table 2.3.3.1 and it depicts the same results in a different visual 

representation. X and Y axes are irrelevant, and the color coding denotes p-

value as explained by the color legend. 

 

 

 

 

 



	

In contrast to the vast processes being evolved, the sole ontological function 

observed upon experimental evolution treatment was chitin binding with the 

associated genes CG34282, CG14645, and CG34220 (Table 2.3.3.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



	

2.3.3.2 GO Experimental Evolution Function Table 

Descriptio
n 

FDR q-
value 

Enrichme
nt Genes 

chitin 
binding 

1.88E-
01 32.17 

CG34282, 
CG14645, 
CG34220 

 

 

 

 

 

 

 

 



	

Figure 2.3.3.1.3 GO Experimental evolution Process Gorilla Flowchart.  This 

flowchart shows the relationship between GO functions and depicts the p-

value using the color scale on the top. It was generated simultaneously with 

GO Experimental Evolution Function Table 2.3.3.2 and is a different visual 

representation of the same results. 

 



	

 

Figure 2.3.3.1.4 GO Experimental Evolution Function ReViGO Plot. This plot 

was generated using the data from GO Experimental Evolution Function 

Table 2.3.3.2 and it depicts the same results in a different visual 

representation. X and Y axes are irrelevant, and color coding denotes p-

value as explained by the color legend. 

 

 



	

 

 2.3.3.2 Learning GO Process (Evolved vs Evolved Conditioned) 

The main ontological processes observed after learning took place were 

translation related and sensory perception of smell related. It is important to 

point out the ribosomal protein genes involved with this translational 

difference upon learning, which are RpL38, RpS4, RpS30, RpL32, RpS2, 

RpL36A & RpS25 (Table 2.3.3.2.1). 

 

 

 

 

 

 

 

 

 

 

 

 



	

2.3.3.2.1 GO Learning Process Table 

Description 
FDR q-
value 

Enrichme
nt Genes 

cytoplasmic 
translation 

6.52E-
03 12.6 

RpL38, RpS4, RpS30, 
RpL32, RpS2, RpL36A, 
RpS25 

translation 
6.19E-

01 5.7 

RpL38, RpS4, RpS30, 
RpL32, RpS2, RpL36A, 
RpS25 

peptide 
biosynthetic 
process 

4.13E-
01 5.7 

RpL38, RpS4, RpS30, 
RpL32, RpS2, RpL36A, 
RpS25 

amide biosynthetic 
process 

3.94E-
01 5.48 

RpL38, RpS4, RpS30, 
RpL32, RpS2, RpL36A, 
RpS25 

peptide metabolic 
process 

3.25E-
01 4.69 

RpL38, RpS4, RpS30, 
RpL32, RpS2, RpL36A, 
RpS25, CG40470 

cellular amide 
metabolic process 

4.90E-
01 4.3 

RpL38, RpS4, RpS30, 
RpL32, RpS2, RpL36A, 
RpS25, CG40470 

sensory perception 
of smell 

5.64E-
01 10.01 

Arr1, Obp56g, Obp56f, 
Obp56e 

 

 

 

 

 



	

 

 

Figure 2.3.3.2.1 GO Learning-Process Gorilla Flow Chart.  This chart shows 

the relationship between GO processes and depicts the p-value using the 

color scale on the top. It was generated simultaneously with GO Learning 

Process Table 2.3.3.2.1 and is a different visual representation of the same 

results. 



	

  

Figure 2.3.3.2.2 GO Learning Process ReViGO Plot.  This plot was generated 

using the data from GO Learning Process Table 2.3.3.2.1 and it depicts the 

same results in a different visual representation. X and Y axes are irrelevant, 

and color coding denotes p-value as explained by the color legend. 

 

 

 

 

 



	

 

Regarding the ontological functions observed after learning took place, 

several structural constituents of the ribosome were pointed out. Ribosomal 

proteins are extremely abundant and often come up as significant in RNA-

Seq experiments reason why these could potentially be false positives. 

Regardless, the ribosomal protein genes RpS4, RpS30, RpL32, RpS2, 

RpL36A, RpS25 came up as significantly differentially expressed. 

Additionally, carboxylic-ester hydrolase activity was shown, with the genes 

CG10175, bmm, Glt, CG5966, being associated (Table 2.3.3.2).  

 

 

 

 

 

 

 

 

 

 



	

 

 

2.3.3.2.2 GO Learning Function Table 

Description 
FDR q-
value 

Enrich
ment Genes 

structural 
constituent of 
ribosome 

1.35E-
01 6.84 

RpS4, RpS30, 
RpL32, RpS2, 
RpL36A, 
RpS25 

carboxylic 
ester hydrolase 
activity 

9.96E-
02 10.69 

CG10175, 
bmm, Glt, 
CG5966, 

 

 

 

 

 

 

 

 

 

 



	

 

Figure 2.3.3.2.3: Easy Network Diagram. This diagram shows the relationship 

of the candidate gene involved in the act of learning, CG5966, with the 

Staufen protein pathway, which is a very well known pathway involved in 

LTM (20). CG5966 encodes for an mRNA that when folded has affinity to the 

Staufen protein coding sequence (88). 

 

 

 

 

 

 

 

 

 



	

 

 

Figure 2.3.3.2.4 GO Learning Function Gorilla Flow Chart.  This chart shows 

the relationship between GO functions and depicts the p-value using the 

color scale on the top. It was generated simultaneously with GO Learning 

Function Table 2.3.3.2 and is a different visual representation of the same 

results. 

 

 



	

 

Figure 2.3.3.2.5 GO Learning Function ReViGO Plot.  This plot was 

generated using the data from GO Learning Function Table 2.3.3.2 and it 

depicts the same results in a different visual representation. X and Y axes are 

irrelevant, and color coding denotes p-value as explained by the color 

legend. 

 

 

 

 



	

 

2.3.4 qPCR  

Figure 2.3.4.1 Dro qPCR. Shows the difference in Drosocin (Dro) gene 

expression on control populations C2 and evolved J2. Controls before 

learning (C2-O Blue) have a certain expression which increases upon 

experimental evolution treatment (J2-0 Teal). Although after learning its 

expression decreases (J2+O Pink). 

 

 

 

 



	

 

Figure 2.3.4.2 AttC qPCR. Depicts the changes in gene expression of the 

Attacin C (AttC) gene, on both Controls (C2) and evolved (J2) populations, 

Controls before learning (C2-O Blue) show a certain expression level 

whereas the evolved  (J2-O Teal) show a much greater expression before 

learning, The evolved populations after learning (J2+O) show a decrease in 

the expression of this immune related gene. 

 

 

 



	

2.3.5 Infection Mortality Assay 

The results of the statistical analysis can be found in table 2.3.5.1. Here we 

find a significant effect of time: mortality changed with time. We also find a 

significant interaction between time and the evolutionary history: flies in 

control lines died more frequently with time than flies in evolved populations. 

 

 

 

 

 

 

 

 

 

 

 

 

 



	

Table 2.3.5.1 Repeated Measures Analysis of Variance (ANOVA) of infection 

mortality. 

  

Effects of greater mortality due to oral bacterial infection were evident in 

multiple instances on the control populations as suggested by the RNA-Seq 

results. The experimental evolution treatment may have aided in the 

evolution of a stronger innate immune response observed on the 

experimental populations. (Figure 2.3.5.1). 

 

 

 

 

 



	

Figure 2.3.5.1 Infection mortality Assay.  The red scatter plot depicts 

mortality of control populations, while the blue scatter plot depicts mortality 

of experimentally evolved populations. Control populations showed a 

significantly greater mortality due to oral bacterial infection with P.aeruginosa 

(PA01). 

 

 

 

 

 



	

2.3.6 Experimental evolution for higher learning novel and notable DE gene 

table (Controls vs Evolved) 

Novel genes marked with (-) 

gene_id gene locus p_value q_value 

XLOC_0
00963 CG16826 chr2L:13347772-13349020 5.00E-05 

0.02760
53 

XLOC_0
03789 AttC chr2R:9281209-9286873 5.00E-05 

0.02760
53 

XLOC_0
03885 Dro chr2R:10633465-10634219 5.00E-05 

0.02760
53 

XLOC_0
04225 Dpt chr2R:14753269-14753765 5.00E-05 

0.02760
53 

XLOC_0
04226 DptB chr2R:14754635-14755890 5.00E-05 

0.02760
53 

XLOC_0
05009 

CG34220 
-DCBP4 chr2R:5920792-5937571 5.00E-05 

0.02760
53 

XLOC_0
05345 Cyp6a8 chr2R:10774675-10776515 5.00E-05 

0.02760
53 

XLOC_0
05965 CG3906 chr2R:19398808-19399748 5.00E-05 

0.02760
53 

XLOC_0
06438 

- Col 
chr2RHet:3264997-3265575 5.00E-05 

0.02760
53 

XLOC_0
07184 

CG14125 
-CDBP1, 
CG43896 
-CDBP2 chr3L:11967436-11976864 5.00E-05 

0.02760
53 

XLOC_0
09600 

- Vil 
chr3LHet:482665-483521 5.00E-05 

0.02760
53 

XLOC_0
09685 

CG14645 
-DCBP3 chr3R:160600-165636 5.00E-05 

0.02760
53 



	

XLOC_0
10547 CG34282 chr3R:14520973-14521504 5.00E-05 

0.02760
53 

XLOC_0
10656 TotA chr3R:16692570-16697735 5.00E-05 

0.02760
53 

XLOC_0
10657 TotC chr3R:16698709-16699302 5.00E-05 

0.02760
53 

XLOC_0
12855 CG7567 chr3R:25412958-25413826 5.00E-05 

0.02760
53 

XLOC_0
13370 

- Mar 
chrM:12733-14057 5.00E-05 

0.02760
53 

XLOC_0
15950 

- Isa 
chrX:21539025-21539933 5.00E-05 

0.02760
53 

XLOC_0
15980 CR41602 chrXHet:184013-196434 5.00E-05 

0.02760
53 

 

 

 

 

 

 

 

 

 

 

 

 

 



	

2.3.6 Novel genes 

 2.3.6.1  Gene id: XLOC_006438 

  Gene Name: (-) Novel unnamed gene #1, now “Collana” (COL). 

Locus: chr2RHet:3264997-3265575 

CG41363 is a gene that has been withdrawn from flybase. We have 

transcripts of that gene on both controls and evolved populations. Although, 

we only have the read TCONS_00017446 on the evolved populations. This is 

because it is one of the most significantly differentially expressed novel 

constructs. Based on the pattern of constructs obtained, there is 

resemblance of TCONS_00017446 and TCONS_00017447 being two exons 

alternatively spliced out on the controls but conserved on the evolved lines 

(see Figure 2.4.1.2). 

Further proteomic analysis will be performed on the sequence encoded in 

TCONS_00017446 and TCONS_00017447, plus further genomic analysis on 

the potential novel gene experimentally evolved for higher learning formerly 

annotated as CG41363 that we will now refer to as Collana (COL). 

 

 

 

 

 

 

 



	

 

 

 

 

 

 

Figure 2.3.6.1. TCONS_00017446. Depicts the DE construct. 

 

 

 

 

 

 



	

 

 

 

 

Figure 2.3.6.2. Collana.Shows a broader genomic area of the construct on 

figure 2.3.6.1, allowing for the visualization of adjacent reads captured when 

sequencing, exposing what resembles to be a gene potentially differentially 

spliced on the evolved populations than on the controls.  

 

 

 

 

 

 

 

 

 



	

2.3.6.2 Gene id: XLOC_009600 

Gene Name: (-) Novel unnamed gene #2, now Vilca (VIL) 

Locus: chr3LHet:482665-483521 

It appears that there are two novel genes in this region. One that encodes 

5’→3’  and one that encodes 3’→5’. The 3’→5’ is the one most differentially 

expressed, with construct TCONS_00026107 being expressed on the evolved 

but not controls. 

On the evolved, 3’→5’ seems to be composed of TCONS_00026109,260108, 

26107, 26064, 26063, 26062 and 260106. On the controls the 3’→5’ is 

composed of TCONS_00026217,26216,26173,26172,26171. 

 

 



	

 

 

  
Figure 2.3.6.2.1 TCONS_00026107. Depicts in blue the DE construct 
TCONS_00026107 on evolved populations but not on controls. 

 

 

 

 

 

 

 

 

 
 



	

 

Figure 2.3.6.2.2 Vilca. Shows the adjacent genomic region from construct 

TCONS_00026107. Unveiling other constructs resembling exons from the 

same gene but differentially spliced in evolved population than controls. 

Notice the genome reference does not have a gene annotated on such loci. 

 

 

 

 

 

 

 

 

 



	

 

Figure 2.3.6.2.3 Vilca TSS. Depicts in blue the DE construct from a very close 

perspective allowing one to observe the codon possibilities based on the 

genomic sequence. There are initiation codons depicted in bright green 

coding 3’->5’ being a potential translationtion start sites (TSSs).  

 

 

 

 

 

 

 

 

 

 



	

2.3.6.3 Gene ID: XLOC_013370 

  Gene Name: (-) Novel unnamed gene #3, now Marko (MAR) 

  Locus: chrM:12733-14057 

In this case we see the differential splicing of construct TCONS_00037059 

and 37058 on the controls, but constructs are conserved on the evolved 

(Figure 2.3.6.3.1). There is evidence of a TSS that matches the 5’→3’ sense 

(Figure 2.3.6.3.2). 

 

 

 

 

 

 

 

 

 

 



	

 

Figure 2.3.6.3.1. TCONS_00037059. Depicts in blue the DE constructs 

TCONS_00037059 and 37058 on evolved populations but not on the 

controls. 

 

 

 

 

 

 

 

 

 

 

 

 



	

 

 

Figure 2.3.6.3.2. Marko TSS. Depicted in green a potential TSS on the first 

exon of the novel construct set on a 5’-->3’ sense. 

 

 

 

 

 

 

 

 

 

 

 

 

 



	

 

2.3.6.4Gene ID: XLOC_015950 

  Gene Name: (-) Novel unnamed gene #4, now Isa 

  Locus: chrX:21539025-21539933 

This transcript seems to be a single coding gene not previously annotated, 

but that has been lost on the evolved lines.  

 

 

 

 

 

 

 

 

 



	

 

Figure 2.3.6.4.1 Isa. Depicts the 3’ end of the DE construct and allows for the 

visualization of a potential translation TSS when coded 3’!5’. 

 

 

 

 

 



	

Figure 2.3.6.4.2. Isa TSS. Depicts the 5’ end of the DE construct and allows 

for the viualization of a potential translation start site when coding 5’!3’.  

 

 

 

 

 

 

 

 

 

 

 



	

2.3.7 Chitin binding genes 

 2.3.7.1 Gene ID: XLOC_007184 

  Gene name: CG14125 & CG43896, now Dunlap Chitin Binding 

Protein #1 & #2 

  Locus: chr3L:11967436-11976864 

Controls use a different TSS than the evolved populations. This is a Chitin 

binding protein and the longer transcript observed on controls, potentially 

leads to the chitin binding domain blocked or somehow disturbed when 

protein is folded. 

 

 

 

 

 

 

 

 



	

Figure 2.3.7.1.1. DCBP1. Depicts the DE construct and shows the longer  

isoform on the controls. 

 

 

 

 

 

 

 

 

 

 

 

 



	

 

Figure 2.3.7.1.2. DCBP1 TSS. Depicts both isoforms observed on controls 

and evolved populations. It also allows for the visualization of the translation 

start site. 

 

 

 

 

 

 

 

 

 

 

 

 

 



	

2.3.7.2 Gene ID: XLOC_009685 

  Gene Name: CG14645, now Dunlap Chitin Binding Protein #3 

(DCBP3) 

  Locus: chr3R:160600-165636 

This is another Chitin Binding Protein, and controls show a construct much 

longer than the actual encoded gene, which could have its chitin binding 

capacity truncated or compromised somehow. 

 

 

 

 

 

 

 

 

 



	

 

Figure 2.3.7.2.1 DCBP3. Depicts the DE construct TCONS_0026262  which 

is normaly expressed on the evolved population but on the controls seems to 

be a longer isoform which could again have the chitin binding domain 

compromised when protein folding. 

 

 

 

 

 

 

 

 

 

 



	

 

2.3.7.3 Gene ID: XLOC_005009 

  Gene Name: CG34220, now Dunlap Chitin Binding Protein #4 

(DCBP4) 

  Locus: chr2R:5920792-5937571 

Apparently, the controls have a different isoform of this chitin binding 

protein, potentially truncating the chitin-binding domain in turn affecting its 

activity. The gene CG43220 is expressed three times more in the evolved 

lines. 

 

 

 

 

 

 

 



	

 

Figure 2.3.7.3.1. DCBP4. Depicts the DE constructs observed on both 

control and evolved populations, showing a different isoform present on the 

controls potentially affecting the chitin binding domain and affecting its 

activity. 

 

 

 

 

 

 

 

 



	

2.3.7.4 Gene ID: XLOC_010547 

 Gene Name: CG34282, now Dunlap Chitin Binding Protein 5 (DCBP5) 

 Locus: chr3R:14520973-1452150 

This chitin binding protein has 3 single nucleotide polymorphisms (SNPs) on 

J10. It would be interesting to check if the mutations fall in the chitin-binding 

domain or if they facilitate the chitin binding capacity in any way. 

 

 

 

 

 

 

 

 

 

 



	

Figure 2.3.7.4.1. DCBP5. Depicts the potential single nucleotide 

polymorphisms SNPs only on the evolved J10 but not controls. 

 

 

 

 

 

 

 

 

 

 

 

 

 



	

 

2.3.7 Learning novel and notable DE gene table (Evolved vs Evolved 

Conditioned) 

gene_id gene locus p_value q_value 

XLOC_0
00017 

Hop chr2L:295121-297449 5.00E-
05 

0.0097
8727 

XLOC_0
00065 

Lsp1beta chr2L:898499-901316 5.00E-
05 

0.0097
8727 

XLOC_0
00620 

Glt chr2L:8672662-8679812 5.00E-
05 

0.0097
8727 

XLOC_0
01047 

CG34166 chr2L:14743192-
14743879 

5.00E-
05 

0.0097
8727 

XLOC_0
01240 

Arr1 chr2L:18078268-
18081307 

5.00E-
05 

0.0097
8727 

XLOC_0
01411 

CG2617 chr2L:20682367-
20714599 

5.00E-
05 

0.0097
8727 

XLOC_0
01524 

CG1416 chr2L:21757852-
21795447 

5.00E-
05 

0.0097
8727 

XLOC_0
02087 

Rack1 chr2L:7821033-7827405 5.00E-
05 

0.0097
8727 

XLOC_0
02101 

RpL36A chr2L:8041105-8042909 5.00E-
05 

0.0097
8727 

XLOC_0
02211 

RpS2 chr2L:9896264-9897552 5.00E-
05 

0.0097
8727 

XLOC_0
03282 

CG8343 chr2R:2064522-2068224 5.00E-
05 

0.0097
8727 



	

XLOC_0
03528 

trpl chr2R:5641201-5653023 5.00E-
05 

0.0097
8727 

XLOC_0
03789 

AttC chr2R:9281018-9286873 5.00E-
05 

0.0097
8727 

XLOC_0
04219 

Dpt chr2R:14753269-
14753765 

5.00E-
05 

0.0097
8727 

XLOC_0
04220 

DptB chr2R:14754895-
14755672 

5.00E-
05 

0.0097
8727 

XLOC_0
04279 

Obp56e chr2R:15599599-
15600437 

5.00E-
05 

0.0097
8727 

XLOC_0
04692 

RpL38 chr2R:402892-403963 5.00E-
05 

0.0097
8727 

XLOC_0
05585 

CG43202 chr2R:14267775-
14269611 

5.00E-
05 

0.0097
8727 

XLOC_0
05616 

CG15096 chr2R:14695860-
14704000 

5.00E-
05 

0.0097
8727 

XLOC_0
05674 

Obp56g chr2R:15670971-
15671548 

5.00E-
05 

0.0097
8727 

XLOC_0
05969 

CG10332,IM18 chr2R:19488436-
19489296 

5.00E-
05 

0.0097
8727 

XLOC_0
06242 

- chr2R:11589835-
11590261 

5.00E-
05 

0.0097
8727 

XLOC_0
06659 

Hsp83 chr3L:3192968-3197631 5.00E-
05 

0.0097
8727 

XLOC_0
06988 

Cp15 chr3L:8721580-8722166 5.00E-
05 

0.0097
8727 

XLOC_0
07198 

RpL10Ab,snoRNA:
Psi18S-920 

chr3L:11815950-
11819002 

5.00E-
05 

0.0097
8727 



	

XLOC_0
07226 

Lsp2 chr3L:12122492-
12124969 

5.00E-
05 

0.0097
8727 

XLOC_0
07286 

RpS4 chr3L:13034855-
13037334 

5.00E-
05 

0.0097
8727 

XLOC_0
07935 

- chr3L:24527385-
24527997 

5.00E-
05 

0.0097
8727 

XLOC_0
08514 

Hsp26 chr3L:9368479-9370527 5.00E-
05 

0.0097
8727 

XLOC_0
08671 

Muc68D chr3L:11760318-
11765261 

5.00E-
05 

0.0097
8727 

XLOC_0
08990 

Dbp73D,PGRP-
SB1 

chr3L:16717777-
16723918 

5.00E-
05 

0.0097
8727 

XLOC_0
09107 

CG3819 chr3L:18913529-
18915208 

5.00E-
05 

0.0097
8727 

XLOC_0
09666 

- chr3LHet:493182-493910 5.00E-
05 

0.0097
8727 

XLOC_0
10424 

CG5399 chr3R:11520962-
11522864 

5.00E-
05 

0.0097
8727 

XLOC_0
10686 

CG4783 chr3R:15754998-
15834234 

5.00E-
05 

0.0097
8727 

XLOC_0
10735 

RpS30 chr3R:16676237-
16677149 

5.00E-
05 

0.0097
8727 

XLOC_0
10985 

Ela chr3R:20690853-
20693456 

5.00E-
05 

0.0097
8727 

XLOC_0
11033 

CG5107,CR43457,
CR45651 

chr3R:21327305-
21331769 

5.00E-
05 

0.0097
8727 

XLOC_0
11133 

CG31077 chr3R:22822662-
22889921 

5.00E-
05 

0.0097
8727 



	

XLOC_0
11220 

CG33346,CG9989 chr3R:24494943-
24497750 

5.00E-
05 

0.0097
8727 

XLOC_0
11370 

CG18673 chr3R:27088319-
27089600 

5.00E-
05 

0.0097
8727 

XLOC_0
11835 

RpS25 chr3R:7040749-7045786 5.00E-
05 

0.0097
8727 

XLOC_0
11919 

Hsp70Ba chr3R:8291174-8293498 5.00E-
05 

0.0097
8727 

XLOC_0
12342 

ninaE chr3R:15711976-
15713928 

5.00E-
05 

0.0097
8727 

XLOC_0
12457 

CG31174,CG3414
8,CR45046,fit 

chr3R:17690889-
17710369 

5.00E-
05 

0.0097
8727 

XLOC_0
12596 

Hsp68 chr3R:19880015-
19883212 

5.00E-
05 

0.0097
8727 

XLOC_0
12945 

CG7829 chr3R:25642459-
25643486 

5.00E-
05 

0.0097
8727 

XLOC_0
12968 

RpL32 chr3R:25869062-
25872039 

5.00E-
05 

0.0097
8727 

XLOC_0
13166 

- chr3R:9865529-9866117 5.00E-
05 

0.0097
8727 

XLOC_0
13213 

- chr3R:20970950-
20971352 

5.00E-
05 

0.0097
8727 

XLOC_0
13925 

CG5966 chrX:5882823-5886673 5.00E-
05 

0.0097
8727 

XLOC_0
14057 

GIIIspla2 chrX:8046980-8053646 5.00E-
05 

0.0097
8727 

XLOC_0
14218 

Pa1 chrX:11252871-11262142 5.00E-
05 

0.0097
8727 



	

XLOC_0
14354 

Rtc1,Yp3 chrX:13651194-13655989 5.00E-
05 

0.0097
8727 

XLOC_0
14524 

CG4928 chrX:16807212-16834906 5.00E-
05 

0.0097
8727 

XLOC_0
00669 

Mco1 chr2L:9416587-9426363 0.0001 0.0160
687 

XLOC_0
01806 

CG16712 chr2L:3696217-3696658 0.0001 0.0160
687 

XLOC_0
01984 

Tig chr2L:6412314-6423310 0.0001 0.0160
687 

XLOC_0
02063 

CG15818 chr2L:7410908-7412229 0.0001 0.0160
687 

XLOC_0
02627 

CG5953,mir-
4943,snoRNA:Me2
8S-C1237 

chr2L:16508077-
16532877 

0.0001 0.0160
687 

XLOC_0
04838 

CG30497,CG4509
3 

chr2R:3624521-3670142 0.0001 0.0160
687 

XLOC_0
09141 

CG9451 chr3L:19491296-
19493898 

0.0001 0.0160
687 

XLOC_0
10327 

CG9297 chr3R:9597216-9605039 0.0001 0.0160
687 

XLOC_0
11459 

CG43131 chr3R:934399-934900 0.0001 0.0160
687 

XLOC_0
12017 

- chr3R:9866305-9867449 0.0001 0.0160
687 

XLOC_0
12556 

CG10175 chr3R:19347985-
19356708 

0.0001 0.0160
687 

XLOC_0
14797 

CG13360,CR44469 chrX:678305-685119 0.0001 0.0160
687 



	

XLOC_0
00214 

CG3523 chr2L:3056372-3144836 0.00015 0.0221
219 

XLOC_0
02487 

NimB2 chr2L:13963506-
13967299 

0.00015 0.0221
219 

XLOC_0
04843 

cathD chr2R:3709615-3711074 0.00015 0.0221
219 

XLOC_0
06259 

- chr2R:14905725-
14906154 

0.00015 0.0221
219 

XLOC_0
13133 

- chr3R:5905596-5906102 0.00015 0.0221
219 

XLOC_0
14191 

CG2145 chrX:10820299-10823788 0.00015 0.0221
219 

XLOC_0
05343 

Cyp6a8 chr2R:10774675-
10776515 

0.0002 0.0279
636 

XLOC_0
08342 

BG642312,CG427
14 

chr3L:6225561-6227182 0.0002 0.0279
636 

XLOC_0
08844 

bmm chr3L:14769595-
14779512 

0.0002 0.0279
636 

XLOC_0
13352 

- chr3RHet:2368982-
2369528 

0.0002 0.0279
636 

XLOC_0
07568 

CG7589 chr3L:17463226-
17467617 

0.00025 0.0340
696 

XLOC_0
11268 

Obp99a,ppk19,ppk
30 

chr3R:25490500-
25501143 

0.00025 0.0340
696 

XLOC_0
01867 

hoe1 chr2L:4908580-4932384 0.0003 0.0393
878 

XLOC_0
04280 

Obp56f chr2R:15600899-
15601481 

0.0003 0.0393
878 



	

XLOC_0
09381 

- chr3L:798617-799293 0.0003 0.0393
878 

XLOC_0
03105 

- chr2L:14485046-
14485525 

0.00035 0.0428
193 

XLOC_0
03472 

CR44274 chr2R:4830999-4831800 0.00035 0.0428
193 

XLOC_0
04193 

CG45087 chr2R:14424271-
14426921 

0.00035 0.0428
193 

XLOC_0
11453 

CG2016 chr3R:782720-787073 0.00035 0.0428
193 

XLOC_0
13302 

CG40198 chr3RHet:2503742-
2506152 

0.00035 0.0428
193 

XLOC_0
13908 

CG12239 chrX:5686172-5688576 0.00035 0.0428
193 

XLOC_0
09359 

CG40470 chr3L:23826868-
23983366 

0.0004 0.0473
231 

XLOC_0
10632 

CG14297,Rh2 chr3R:14723842-
14726741 

0.0004 0.0473
231 

XLOC_0
13041 

chp chr3R:27022635-
27036452 

0.0004 0.0473
231 

 

 

 

 

 

 

 



	

2.4 Discussion 

We found a large number of differentially expressed genes both in 

comparison of evolved high learning flies and their control lines, and how 

expression of genes changed after conditioning. Gene ontology analyses 

revealed expected patterns from learning, but also unexpected strong effects 

of immune function and chitin binding function. An experimental comparison 

of high learning lines and control lines under infection by a bacterial 

pathogen revealed that this difference in expression of immune genes is also 

functional: high learning lines of flies survived longer than control flies. 

A total of four potential novel genes have been identified and placeholder 

names have been assigned. Each of these potential novel genes show 

different isoform expression patterns on both evolved and control 

populations and also potential translation start sites (TSS). (See 2.3.6 Novel 

genes). Also,  total of five chitin binding proteins have been identified and 

placeholder names have been assigned. Each of these chitin binding 

proteins show different isoform expression patterns (See 2.3.7 chitin binding 

genes).  

 

Upon DE analysis, it became evident that innate immunity was being 

affected by the experimental evolution (see Figure 2.3.2.1).  

Once GO analyses were complete, it became clear that the experimental 



	

evolution treatment for greater learning also led to the co-evolution of greater 

innate immunity and humoral immune response, supporting the positive 

evolutionary relationship between learning and immunity formerly observed 

in experimentally evolved populations of D.melanogaster and B.terrestris (91, 

92). Even more interestingly, once learning was observed, innate immunity 

became repressed on the experimental populations, which could be the first 

molecular evidence for a cognition-innate immunity energetic trade-off (see 

figure 2.3.2.1). 

Additionally, through the GO analysis other functions and processes were 

unveiled. Several chitin-binding proteins have been pinpointed as the sole 

ontological function differentially expressed on the experimental populations.  

These findings at first were confusing, as chitin molecules were not expected 

to be found within D.melanogaster brains. However, it has been shown that 

higher eukaryotes do express chitinases and chitin synthetases for the 

biosynthesis and degradation of hyaluronic acid, which seems to require a 

chitin primer when synthesized (55, 56, 57) (see Figures 2.3.3.1.1, 2, 3 & 4). 

It has also been shown that chitin has a neurodegenerative effect. It tends to 

agglomerate in neurons and has been found in Alzheimer’s disease (AD) 

brain samples (58, 59, 60). These data together suggest that the chitin-

binding proteins expressed on the greater learning populations may provide 

some sort of neuro-protection from chitin agglomeration, perhaps ensuring 

the proper functioning of neurons and aiding in the greater cognitive 

capacities observed.  



	

Furthermore, when observing the ontological results of the experimentally 

evolved population before and after learning, it was revealed that in regards 

to processes, there is greater translation, peptide metabolism and sensory 

perception of smell upon learning. This makes sense as the learning events 

will trigger gene expression, and the learning is taking place through 

olfaction. With regard to function, structural constituents of the ribosome and 

carboxylic ester hydrolase activity were revealed upon learning in the 

experimental populations (see Figures 2.3.3.2.1, 2 ,4 & 5). 

Structural constituents of the ribosome are known to have an effect on the 

fidelity of translation (62,63). Five structural constituents of the ribosome 

have been determined to be expressed upon learning: ribosomal protein s4, 

L38, S30, L32, S2, L36A and S25. To our knowledge, this is the first time 

these specific structural components of the ribosome have been associated 

with learning. At the same time, its important to point out the fact that due to 

their ubiquitious expression, ribosomal proteins often come as significant 

although they may be false positive reuslts. Carboxylesterases (CarEs) are a 

family of enzymes known to be involved in the process of insecticide 

detoxification in insects (61). CarEs have also been associated with 

pheromone, cholesterol and fatty acid metabolism, as well as with heroin 

and cocaine (64). The main genes related are brummer (bmm) and Glutactin 

(Gln). Brummer is a known lipase that regulates fat storage and availability in 

D. melanogaster. It is known to lead to obesity when repressed and to 

deplete fat reservoirs when over expressed (65). It is possible that proper 



	

phospholipid biosynthesis and storage may confer a greater neuronal 

connectivity due to better insulation. Glutactin is a CarEs that resembles an 

Acetylcholine esterase but lacks the catalytic serine residue (66). It is 

possible that through this mechanism of arresting Acetylcholine, its 

availability is being fine-tuned. Additionally, the gene CG5966 was 

associated with the CarEs GO function and is a gene encoding for a lipase, 

but its RNA has been co-immunoprecipitated with the Staufen protein (88). 

The relationship was addressed through the easy Network (esyN) tool based 

on former publications (88,89). The Staufen/Pumillio pathway have been 

already determined to play a role in LTM, and the interactions of these RNAs 

may play a role in the fine-tuning of its availability or range of interactions 

(20). 

 

Our discoveries regarding the cognition/innate immunity co-evolution 

contradict those regarding artificial selection for relative brain size vs. innate 

immunity discovered in guppies (51). Because of the theoretical controversy, 

we further tested innate immunity by orally infecting both control and 

experimental populations with a P.Aeruginosa strain, PA01. This species was 

selected since it is known to produce PAMPs that are recognized by the 

Diptericin (Dpt) gene, which encodes for an AMP for systemic recognition 

and clearance in D. melanogaster. The Dpt gene is one of the innate 

immunity significantly DE genes in the experimental populations (54). The 

experimental populations showed significant greater innate immunity than 



	

controls as suggested by the RNA-Seq results (see Figure 2.3.5.1).  

 

2.4.1 RNA-Seq validation 

qPCR was performed on cDNA reverse transcribed from RNA previously 

purified from 20 brains per sample collected following the same protocols 

than for the RNA-Seq. Gene expression patterns support the greater 

immunity observed upon experimental evolution for greater learning.  

Although, regarding the energetic trade off observed after learning, some 

immune genes had a different expression pattern. This could be due to the 

smaller sample size used per population in the validation leading to potential 

bias or non-representative population results since our populations were 

evolved from a wild caught population, from Fenn Valley MI, and have a 

great deal of variance. Due to the labor-intensive nature of the research and 

the time constraints posed by the timeline a Masters Thesis has, sample size 

was reduced in half to 20 brains per sample. There are a few elements to 

consider also, such as the fact that sample collection for RNA Seq took 

place through the fall of 2016 and the spring of 2017 whereas sample 

collection of brains for RNA-Seq validation took place during the fall of 2017. 

There is evidence of rapid seasonal evolution of innate immunity in D. 

melanogaster, which means that innate immunity may oscillate in 10 month 

cycles and should be accounted for in future experimental design furthering 

these discoveries (69). There is also evidence of decreased learning and 

increased fecundity during the fall and increased learning during the spring in 



	

wild D. melanogaster populations (70). The sample collection timeline does 

coincide with the learning and innate immunity discoveries on wild 

populations of D. melanogaster and the trend observed in the results of the 

RNA-Seq and the validation through qPCR. Additionally there are small 

subtleties in the rearing of D. melanogaster populations that can have drastic 

effects. Subtleties such as food quality and egg per vial ratio are believed to 

have trans-generational effects on up to 5 generations in the future, and 

effects on parental investment made by the female at the time of oviposition 

(71,72). Those two variables are unfortunately subject to human error and 

one single mishap can have serious repercussions. 

 

 

 

 

 

 

 

 



	

2.5 Future Directions 

With regard to the chitin-binding neuroprotective hypothesis as an 

experimentally evolved trait for greater learning, further liquid-

chromatography mass-spectrometry (LCMS) work could be of great value. If 

the chitin binding proteins are actually preventing the chitin primer from 

agglomerating in the neurons and that is having a neuro-protective effect on 

the flies conferring them greater learning, then the haemolymph of the 

evolved population could have greater levels of chitin primers than the 

controls. PhD Candidate Michael Manino from Dr. Alexei Demchenko’s lab at 

the chemistry department at the University of Missouri-St. Louis devised a 

synthesis protocol for a chitin primer to be used as a standard when 

observing the levels of chitin binding proteins in the haemolymph of both 

control and experimentally evolved populations. Once again due to time 

constraints I was not able to execute those experiments. I look forward to 

someone accomplishing this future direction. 

 

In another direction, average relative brain size per population will be 

determined with the aid of immuno-histochemistry and confocal microscopy.  

This is currently in progress at the Dunlap lab under Cell and Molecular 

Biology Masters Student Mladen Senicar. Through confocal microscopy and 

immunohistochemistry, chitin binding domains can be localized in both 

experimental and control populations using an anti-Chitin Binding Domain 



	

(anti-CBD) Monoclonal Antibody as the primary antibody. Also, technology 

has allowed for mRNA localization and visualization through tagged cDNA 

probes targeting the mRNAs of interest (80). Hopefully someone will observe 

where these mRNAs and chitin binding domains are localizing as well as their 

relative concentrations within the MB. 

 

In regard to the novel and notable genes listed and discussed, each 

candidate in my opinion is worth further dissection through novel genome 

editing tools, such as CRISPR-Cas9, to further understand their actual 

function and involvement in the capacity to learn and the actual process of 

learning. 

One cost-effective and potential way to investigate gene function could be 

through the oral delivery of custom designed polyamides for the genes of 

interest. It has been shown to be an effective treatment for gene expression 

control allowing for the gain or loss of gene function in D.melanogaster (81). 

Dr. James Bashkin from the chemistry department at the University of 

Missouri-St. Louis is an expert in the polyamide field and an advisor eager to 

support furthering these discoveries and able to design and synthesize these 

polyamides to target the genes of interest. 

 

Further testing of the innate immunity-learning trade-offs observed in the 

RNA-Seq is already in progress under Biochemistry and Biotechnology 



	

Masters student Jill Lee as her Masters Thesis.  

Thanks to Dr. Lon Chubiz’s guidance and generous support, the DNA 

libraries for Whole Genome Sequencing (WGS) of the experimentally evolved 

populations and their controls is also in progress. This will allow us to 

perform other kinds of genomic analyses and compare with the 

transcriptomic data unveiled in this work.  

 

The furthest this study can be taken would be re-evolving all populations 

making certain changes in the experimental evolution protocol in order to 

account for noise sources that caused trouble in this study. Sources of noise 

such as the wild populations with high variability, exposure to unknown 

volatiles through the cocktails of organic volatiles present in the orange and 

pineapple odors used and exposure to potential different sugar sources as 

potential sources of bacterial exposure. The flies themselves carry an 

extensive microbiome and under different conditions such as rich caloric 

agar media bacterial growth conditions can be optimal for exponential 

growth and un-balances to take place, all potentially affecting the evolution 

of D. melanogaster innate immunity (82).  

 

Designing artificial wild type populations with known allelic frequencies 

based on the percentage of females present and carrying specific alleles of 

interest in each population could be great for future work. Like this, we could 



	

isolate different mechanisms through which learning may evolve and we will 

be able to further dissect the subtle effects based on the known genomic 

past. This can now be achieved thanks to the Drosophila Genome Reference 

Panel (DGRP). The DGRP lines have been fully sequenced and are available 

to researchers. Also, if high-throughput automation is available, selective 

pressure should rather be used under the associative aversive and appetitive 

olfactory paradigm using an automated T-maze instead of evolving them 

under the oviposition paradigm. As matter of fact, as an RA in the Dunlap 

lab, I built and furthered the automated T-maze as in Jiang, H. 2015 (83). 

More units can be replicated and experimental evolution under this alternate 

paradigm may be closer to reality.  
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2.7 Supplementary material 

Supplementary Bioanalyzer Gel view of ribosomal bands in total RNA used 

for RNA Seq 

 

 

 



	

 

 

 

Suplemental Alignment Report: 

 



	

 



	

 

 

 

 

 

 

 

 

 

 

 

 

 



	

 

 

 

Supplemental RNA Seq Report (Evolved vs Control) Aligned using STAR 

 

 

 

 

 



	

 

 

 

 



	

 

 

 

 

 

 

 

 

 

 

 

 



	

Supplemental RNA Seq Report (Evolved vs Control) Aligned using Bowtie 

 

 



	

 

 

 



	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	

 

Supplemental qPCR 

 

 

Two evolved populations (J2&10) were analyzed with their respective 

controls (C2&10), both before (-O) and after learning (+O). Controls before 

learning (Blue), Evolved (Teal), Evolved after learning (Pink) and Controls after 

learning (Red). 

Innate immunity is confirmed to be an evolved trait alongside with greater 

learning, there is conflict with the immune energetic trade-off after learning. 
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