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Abstract	

The problem of community structure identification has been an extensively investigated 

area for biology, physics, social sciences, and computer science in recent years for 

studying the properties of networks representing complex relationships. Most traditional 

methods, such as K-means and hierarchical clustering, are based on the assumption that 

communities have spherical configurations. Lately, Genetic Algorithms (GA) are being 

utilized for efficient community detection without imposing sphericity. GAs are machine 

learning methods which mimic natural selection and scale with the complexity of the 

network. However, traditional GA approaches employ a representation method that 

dramatically increases the solution space to be searched by introducing redundancies. 

They also utilize a crossover operator which imposes a linear ordering that is not suitable 

for community detection.  

 

The algorithm presented here is a framework to detect communities for complex 

biological networks that removes both redundancies and linearity. We also introduce a 

novel operator, named Gene Repair. This algorithm is unique as it is a flexible 

community detection technique aimed at maximizing the value of any given 

mathematical objective for the network. We reduce the memory requirements by 

representing chromosomes as a 3-dimensional bit array. Furthermore, in order to increase 

diversity while retaining promising chromosomes, we use natural selection process based 

on tournament selection with elitism. Additionally, our approach doesn’t require prior 

information about the number of true communities in the network. We apply our novel 
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algorithm to benchmark datasets and also to a network representing a large cohort of AD 

cases and controls. 

 

By utilizing this efficient and flexible implementation that is cognizant of characteristics 

for networks representing complex disease genetics, we sift out communities representing 

patterns of interacting genetic variants that are associated with this enigmatic disease. 
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Chapter 1 
 
 
 
 
 

Introduction	

Background	

Recent research has shown enormous growth in whole-genome level study of complex 

diseases such as Alzheimer’s Disease. The challenging aspect of studying these complex 

diseases involve understanding the biological effects of inherited variations in DNA 

structure between individuals. A type of highly common genetic variation is represented 

as single DNA building block alterations; such mutations have received considerable 

attention in terms of detection of a particular disease (Krishnan VG, 2003). These 

variations are characterized by single nucleotide polymorphism (SNP).  SNPs are single 

nucleotide alterations found in every 300 to 1000 nucleotides in genomic DNA and cause 

personal differences in phenotypes as well as underlying pathogenesis of many diseases 

(Human Genetic Variation [Internet], 2007). SNPs can be used as genomic markers 

revealing an individual’s susceptibility to certain disease, to produce new approaches for 

treatment, and to take prohibitive precaution. SNP association studies are widely used to 

determine possible relations between genetic variations and a given disease. The states of 

SNPs are sequenced for a number of cases exhibiting the disease and a number of normal 

controls. Many big datasets have been generated with millions of SNP markers for 

thousands of samples. Deciphering hidden patterns in SNP data proffers a prodigious 

opportunity to strengthen the understanding of functional genomics. Traditional Genome-
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Wide Association Studies (GWAS) utilize straightforward association testing, in which 

single markers are tested one at a time for associations with the disease. However, for 

most human diseases of interest, GWAS have been unable to capture the full heritability, 

likely due to the fact that complex diseases arise due to a combination of markers. 

Recently, combinatorial GWAS (cGWAS) methods have been developed, such as 

PLINK’s Fast Epistasis (Purcell, et al., 2007), which exhaustively tests every pair of 

markers for associations. Unfortunately, pairwise testing has had limited success and 

straightforward testing for every trio or higher-ordered combination is computationally 

intractable. This poses challenges for extracting and deciphering the useful information 

hidden in these datasets and undermines attempts to understand the biological processes 

that take place in organisms in relation to their genetic composition and the environment.  

 

A promising approach to test combinatorial sets of markers for association is based on the 

use of network modeling, in which markers are represented as nodes, and edges are used 

to connect pairs of markers that are correlated (Wang, et al., 2015). This is based on an 

expectation that higher-ordered patterns will appear as clusters, or communities, within 

the network. Extracting meaningful clusters from complex networks is essential for the 

use of networks in this respect.  

 

Clustering is an essential and fundamental data mining technique to reveal natural 

structures and underlying patterns. The clustering of genetic data has proven to be 

beneficial in advancing knowledge about natural structures, cellular processes, and 

understanding gene regulation.  For example, clustering gene data identifies homology, 
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which is important in vaccine design (Lizotte-Waniewski, et al., 2000). Moreover, 

network modeling and clustering are effective for mining useful information from noisy 

data, and have been widely used in diverse domains, including social sciences, physics, 

computer science, and business. 

 

Motivation	

Modeling complex systems as networks and extracting clusters from these networks is a 

promising method for mining valuable information from large datasets, but many 

challenges exist. Many clustering approaches exist, and it is not readily clear which of 

them will provide the most meaningful information for a given dataset. Also, optimally 

solving popular clustering objectives may require exponential computation time so it is 

usually necessary to utilize approximation techniques. Many approximation approaches 

exist and, in this thesis, we utilize Genetic Algorithms (GAs). GAs have many desirable 

features, but previous instantiations have included some undesirable properties. For 

example, to our knowledge, all approaches in this domain use a data representation that 

leads to redundancies that dramatically increase the search space. Also, previous GA 

approaches for clustering have utilized a generic operator that imposes linear ordering of 

the nodes, which isn’t appropriate in this domain. Furthermore, they may be improved by 

modifications of chosen operations and the use of additional operators. 

 

To overcome these issues, in this thesis, I propose a new efficient GA-based optimization 

technique that aims to identify communities based on optimizing any chosen objective 

function. Our GA is efficient in searching complex solution space, which makes it 
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suitable for a problem of such scale. The algorithm does not impose a given number of 

clusters; rather it evolves to an optimal number of clusters during the clustering phase.  

 

In short, this thesis sets the following goals: 

• Propose and implement a Genetic Algorithm for clustering a given network. 

• Create a data representation that does not introduce redundancies. 

• Introduce a novel GA operator: GARepair. 

• Identify operators and techniques that are suitable for this domain by comparing 

different representation of solutions described in the literature. 

• Develop a method that uses any arbitrary fitness function. 

• Create an efficient implementation. 

• Evaluate the performance with results from previously published GA approaches. 
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Chapter 2 
 
 
Related	Works	
 
 
To understand the proposed GA in this thesis, it is important to understand networks and 

their properties. The next subsection summarizes key points. Typical network analysis 

approaches utilize community detection, or clustering, algorithms to cluster the nodes, as 

described below. After presenting background information regarding networks and 

clustering approaches, the next section will overview GAs. 

 

Networks	

Networks are popular modeling tools in diverse fields because they can be used to 

represent many real world systems. More specifically, nodes in a network are generally 

connected to one another in a way that represents certain properties of a given domain. 

One of the most important network properties to investigate is the community structure. 

Community structure captures relationships among collections of nodes. When the nodes 

in a network are more strongly related, they are grouped together, resulting in the 

formation of a distinct community or cluster. These clusters can reveal information about 

the interaction of the central forces represented by the network and how those forces 

affect the individual nodes in the clusters. The problem of accurately detecting these 

communities is a pressing issue for extracting useful information from big data and there 

have been numerous clustering approaches proposed.  
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Properties	of	Biological	Networks	

Some biological networks tend to be highly clustered and have small node to node 

distances (Martin G., 2005). For some datasets, there are very few connected nodes and 

they end up being sparse networks comprised of a few giant chunks of densely connected 

structures. Snel, et al, (Snel, 2002) devised ways to obtain protein networks using a 

pairwise correlation technique. The resulting networks contain one giant component and 

a multitude of small disjoint clusters. Many of these small clusters were comprised of 

only one or two nodes, and are denoted as singletons and doubletons, respectively. The 

giant component in itself turned out to be a combination of sub-clusters related to each 

other by multifunctional essential linkage proteins. All of the other smaller subsets were 

reported to be homogeneous functional composition. These properties lead to difficulties 

for objective functions designed for clustering general networks and hinder the rendering 

of optimal and meaningful clustering results.  

 

Clustering	

Clustering is an unsupervised learning technique that has been widely applied in diverse 

fields such as machine learning, data mining, pattern recognition, image analysis, and 

bioinformatics. However, no single clustering algorithm is the best for all networks 

(Pirim, Ekşioğlu, Perkins, & Yüceer, 2012). The clustering algorithm should be 

intelligently chosen for the specific domain at hand. Creating clusters involves 

identifying common properties among the data objects and grouping them accordingly. A 

fundamental benefit of network clustering approaches is that pairwise relationships are 
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computed between all nodes, yet higher-ordered relationships can potentially be 

observed. For large datasets, computation of pairwise relationships may be practical, 

while systematic computations of three-way or higher relationships are likely to be 

intractable. 

 

A key to network modeling is the selection of a method to evaluate pairwise relationships 

and determine when to place an edge between two nodes. For biological datasets, this is 

commonly achieved by using Pearson’s Correlation Coefficient (PCC). PCC is a measure 

of linear correlation between two variables 𝑋 and 𝑌. It has values between -1 to +1, 

where +1 is total positive linear correlation, 0 is no correlation, and -1 is total negative 

correlation. PCC is measured for a sample using the function: 

𝑟 = 	 𝑟&' = 	
𝑛	 ∑ 𝑥+𝑦+ −	∑ 𝑥+ ∑ 𝑦+

.𝑛	 ∑𝑥+/ − (∑𝑥+)/ .𝑛	∑ 𝑦+/ − (∑𝑦+)/
 

where n is the sample size and 𝑥+ 	 ∈ 𝑋 and 𝑦+ 	∈ 𝑌 are single samples at index i. 

  

Another commonly used metric is Euclidean distance, D. The distance between two 

nodes x and y, defined by ||x - y||, is commonly used for networks representing physical 

objects. Other methods like Hamming distance could also be used for computing the 

distance.  

 

More recently a unique Customized Correlation Coefficient (CCC, pronounced as ‘triple 

C’) was designed exclusively for SNP data (Climer, Yang et. al 2014; Climer, 

Templeton, Zhang 2014).  CCC effectively accommodates genetic heterogeneity, in 
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which different subsets of individuals exhibit a given disease due to different genetic 

patterns. For SNPs with two nucleotide states, there are precisely four types of 

relationships possible for a given pair of SNPs. CCC estimates whether any one of the 

four relationships for two SNPs appears more than what would be expected, given the 

frequencies of the variants. CCC is fundamentally different from other correlation 

measures in two aspects. First, it is not a universal measure as it evaluates each portion of 

the data that exhibits a relationship and is not diminished by unrelated data that is 

uncorrelated for the pair of markers. Second, CCC returns multiple values instead of a 

single scalar. This property arises from examining four different types of relationships for 

the markers and provides an extra advantage as the type of relationship is immediately 

available.   

 

Note that all of these metrics could provide weights for edges, however, community 

detection is typically applied to networks with unweighted edges. Consequently, a 

threshold is commonly employed, and an edge is placed if the correlation or similarity 

exceeds the threshold. 

 

Though several approaches are available for clustering, difficulty arises when an 

experimental dataset is being clustered without prior knowledge about the information 

contained in the nodes or properties they emit. For example, clustering could be partial or 

complete, a partial clustering doesn’t assign all the nodes into clusters. Partial clustering 

tends to be more suitable for biological datasets (Jelili, et al., 2016), such as data 
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representing genetic markers, for which many markers may not be correlated with other 

markers. Another concern is the expected shape of the clusters, which is discussed below. 

 

The problem of accurately detecting communities is a pressing issue and there have been 

numerous different community detection approaches proposed. Some available software, 

such as DBSCAN (Martin, Hans-Peter, Jörg, & Xiaowei, 1996), are algorithmic, with no 

precise objective function defined, while others aim to optimize specific objectives. 

Several objective functions are proposed for community detection in the literature, such 

as K-Means clustering (Jain, 2010) and Newman-Girvan’s Modularity (Newman M. E., 

2006). A basic assumption of K-Means is that clusters have a relatively spherical shape, 

which may result in incomplete exploration of structural properties of the network and 

partitioning of elongated clusters. Modularity is a quantitative definition used for 

assessing the partitioning of a network into clusters that does not assume sphericity. Note 

that identification of optimal solutions for either Modularity or K-Means is NP-hard and 

consequently approximation algorithms are utilized. 

 

K-Means aims towards finding K clusters for the network with the following objective 

function:  

min66 𝑑𝑖𝑠𝑡(𝑥 − 𝑐+)
&∈<=

>

+?@

 

 

where K is the number of clusters, Si is the set of nodes in cluster i, and ci is the current 

centroid for cluster i. A widely used approximation algorithm for K-Means is Lloyd’s 
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algorithm (Lloyd, 1982). This algorithm iteratively assigns each node to one of the K 

clusters based on a provided measure, such as distance as measured by the shortest path 

between nodes. K-Means optimizes the distance criterion by minimizing the pairwise 

distances within cluster, or by maximizing the inter-cluster separation. The algorithm 

starts by randomly assigning K nodes as centers of clusters and assigns the remaining 

nodes to these centroids, based upon the chosen measure. For each iteration, the centroids 

of the current clusters are recomputed, and the remaining nodes are reassigned. Due to 

this reliance upon centroids, the algorithm tends to identify clusters that are spherical in 

shape. This sphericity assumption can be deleterious for networks with elongated and/or 

arbitrarily shaped clusters, as would be expected for most biological networks. 

Furthermore, the initial random selection of centroids yields different results for 

independent runs, rendering the algorithm unstable; and different trials may produce 

diverse results.  

	

Another proposed measure of graph partitioning quality is Modularity (Newman & 

Girvan, 2004). This measure is commonly used to quantify the performance of clustering 

algorithms against a null hypothesis. The modularity of clustering is the total number of 

intra-cluster edges, minus the expected number of such edges if the graph were a 

uniformly random multigraph subject to the given degree sequence. More specifically, 

the modularity of the graph is defined as  

 

𝑄(𝐺) ≔ 	6D
𝑙+
𝐸 −	G

𝑠𝑑+
2𝐸I

/

J
>

+?@
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Where li is the number of edges in cluster i, E is the number of edges in the entire 

network and sdi is the sum of the degrees of vertices in cluster i. If the number of intra-

cluster edges is the same as what is expected in a random multigraph, then Q = 0. Values 

approaching Q = 1 indicate a strong community structure according to this objective. In 

practice these values fall in the range of [0.3, 0.7] for what is commonly considered a 

‘strong’ community structure (Newman & Girvan, 2004). However, with this measure, it 

is difficult to compare two graphs with similar modular structure but different sizes 

because the larger graph will get a higher modularity value. For a more detailed behavior 

of the modularity, see Newman (Newman, M. E. J, 2006). 

 

(Shang, Bai, Jiao, & Jin, 2013) propose a community detection method based on the 

modularity objective function and an improved genetic algorithm (MIGA). MIGA takes 

the modularity Q as the fitness function and attempts to simplify the algorithm. MIGA 

uses prior information (the number of community structures) in the initialization, which 

makes the algorithm more targeted and improves the stability and accuracy of community 

detection.  The number of community structures is known for some real-world networks 

and this algorithm can immediately use this prior information. For population 

initialization, MIGA uses the number of community structures based on the given classes 

of the network. The class labels of nodes in each chromosome are randomly designated 

within the scope of the given classes.  

 

Evolutionary algorithms that intersperse the recombination of high quality solutions with 

periods of intensive individual optimization are named memetic algorithms (MA). This 
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method has been previously applied for community detection (Gong, Fu, Jiao, & Du, 

2011). In MAs, a meme is considered as an individual learning procedure capable of 

performing local refinements. The goal is to maximize the modularity density (Dλ) using 

the following objective function: 

𝐷L = 	6
2𝜆𝐿(𝑉+, 𝑉+) − 2(1 − 	𝜆)𝐿(𝑉+, 𝑉RS)

|𝑉+|

U

+?@

 

 

When λ = 1, Dλ is equivalent to the ratio association; when λ = 0, Dλ is equivalent to the 

ratio cut; when λ = 0. 5, Dλ is equivalent to the modularity density D. So, the general 

modularity density Dλ can be viewed as a combination of the ratio association and the 

ratio cut. Generally, optimization of the ratio association algorithm often divides a 

network into small communities, while optimization of the ratio cut often divides a 

network into large communities. However, in MA, in order to find a better individual, the 

objective function D must adjust λ, which leads to large amount of computations for Dλ. 

Consequently, this approach is unsuitable for the large datasets of interest here. 

 

Similar to MIGA and K-Means, we frequently see algorithms using prior knowledge of 

the network, namely the number of clusters. These algorithms work well with networks 

where the partition classes are known. Blindly searching the solution space would be 

expensive as a large number of K values may need to be tested. To pave our way towards 

developing a generalized optimization algorithm that does not require this prior 

information, a promising approach was to develop an appropriate Genetic Algorithm for 

this domain.  
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Genetic	Algorithms	

As previously described, Genetic Algorithms (GAs) have been used to optimize 

modularity (Newman 2006; Tasgin et al. 2007; Shang, Bai, Jiao, & Jin 2013). GAs are 

randomized search and optimization techniques guided by the principles of evolution and 

genetics. They are designed especially for exploring large solution space in polynomial 

time complexity. GAs flow towards optimal solutions by passing over suboptimal 

solutions quite rapidly due to the use of the basic tenets of evolution.  

 

Evolution theory involves a population, with selection biasing the search (controlling 

resource allocation) and mutation/crossover operators leading the search direction: 

mutation introduces random variations and crossover mixes partial solutions.  

 

GAs mimic basic evolutionary theory. The solution space is expressed in the form of 

chromosomes (strings of genes), each of which represents an entire clustering 

configuration. A collection of chromosomes is termed as a population.  Initially a 

possibly random set of solutions is generated, which is represented by a population of 

chromosomes. These chromosomes are then evaluated using a fitness function, which is 

the objective function, to assess the quality of the solutions. Then, the breeding cycle for 

generating a new generation of the population is achieved by using Selection, Crossover, 

and Mutation operators.  

 

Selection is based on the concept of “survival of the fittest”. It involves selecting a 

portion of the existing population to breed a new generation. Individual solutions are 
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selected through a fitness-based process, where fitter solutions are more likely to be 

selected. However, low-fitness individuals may be selected due to the stochastic nature of 

the algorithm. GAs define fitness over the representation of chromosomes and measure 

the quality of the solution. The fitness function is problem dependent. Furthermore, we 

could have multiple fitness functions for assessing the quality of the solution and it might 

not be immediately clear which objective is most well-suited. The fitness value of a 

solution is based on mapping of the chromosome to a solution, also called phenotype, 

meaning the observable characteristics or properties of the individual.  

 

Several selection techniques have been used in GAs. A popular technique is the Fitness 

Proportionate based solution, also known as roulette wheel selection. The fitness level 

associated with each chromosome in the population is used to associate a probability of 

selection for each individual. Usually this is done be assigning a portion of the wheel to 

each individual proportional to fitness. This is achieved by dividing the fitness of each 

individual by the total fitness of all the selections. Then a random selection is done 

similar to the roulette wheel. This selection is strongly biased towards highly fit 

individuals. A number of GAs use Tournament Selection to reduce this bias to some 

degree. Tournament selection is based on selecting a pool of random individuals and then 

having a tournament among them to select the fittest. A Tournament Size is defined to 

restrict the pool size. If the pool size is equal to the population size, it behaves as a best-

selection operator by selecting the best of all individuals. At the other extreme, restricting 

the size to just one individual causes the behavior similar to complete random selection. 

Lately, Tournament Selection has proven effective in GAs since they facilitate the 
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retention of diversity as well as converging towards the best solution. Often, two 

individuals are selected together in the Tournament. After selection of the two 

individuals, regarded as parents, they are moved further to the breeding phase.  

 

In the breeding phase, GAs utilize Crossover and Mutation operators.  Traditional 

Crossover operators use a single crossover point and all the genes after that selection 

point are exchanged between chromosomes. Other predominantly used crossover 

operators are Two-Point Crossover and Uniform Crossover. In a Two-Point crossover, 

two exchange points are selected randomly where the chromosomes are exchanged. 

Uniform Crossover uses a fixed mixing ratio between the parents. Unlike single and two-

point crossover, which mimics biological processes, the uniform crossover contributes to 

gene level intermixing rather than segment level.  

 

Eventually the crossover offspring get mutated at select points in the chromosome. A 

mutation changes the state of a gene to an alternate state. Mutation rates are predefined 

and mutation sites are randomly selected. Finally, the children are moved to the next 

generation.  

 

GAs follow two models to maintain and update the population, namely Generational 

model and Steady State model (Vavak & Fogarty, 1996). The generational model creates 

new offspring from the members of an existing population using genetic operators and 

places these offspring in a completely new population, which becomes the existing 

population for the subsequent generation. The Incremental or Steady State is different 
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than generational model in that there is typically one single new member being inserted 

into the new population at a time. A replacement/deletion strategy defines which member 

would be replaced. Standard replacement strategies are deleting the oldest and the lowest 

fitness individuals in the population.  

 

GAs are generally run until a termination criteria is reached. This could be a fixed 

number of iterations the GA will be run, having a target fitness value for the best solution 

when the algorithm would terminate, or terminating when some specified convergence is 

met. 

 

Others (Tasgin, Herdagdelen, & Bingol, 2007; Shang, Bai, Jiao, & Jin, 2013) have 

proposed GA-based algorithms for network clustering. A major problematic issue with 

existing algorithms is the representation of cluster information by labelling the vertices. 

Figure 1. (a) and (b) depict an example network with three clusters being represented by 

six distinct encodings. This representation clearly is not efficient since it expands the 

search space by an order of K! by introducing redundancies. 
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Figure 1. (a). Sample network with clustering scheme. (b). Conventional method of 

representing chromosome by labelling vertices with their cluster numbers. This 

representation yields ambiguous cluster labelling. The table shows the six distinct ways 

that the clustering indicated by colors in the network could be encoded. In general, if 

there are K clusters, then there would be K factorial (K!) possible chromosomes 

representing identical clustering of the nodes.  

 

Redundancy in representation propagates into the breeding phase introducing unwanted 

solutions. Moreover, these algorithms use conventional one-point or two-point crossover 

operators. This exchange of genes results in introducing bias towards maintaining 

linearity of structures, which is not a property of clusters. Genes that are adjacent in the 

chromosome are less likely to be separated than genes that are farther apart. The ordering 

of the genes is arbitrary and doesn’t change throughout the evolution, so this approach 

introduces an unfounded bias. In other words, biological crossover is effective as DNA 

encodes, transcribes, and translates genetic information in a linear ordering, while no 

natural linear ordering exists for edges in networks.  
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In this thesis, we introduce an efficient and flexible GA which addresses the linearity and 

ambiguous labelling issues. Our approach serves five important contributions. First, our 

novel two-level method of representing chromosomes drastically reduces redundancies in 

the solution space that are generated by other GA approaches. Second, we introduce a 

novel operator, Gene Repair, that improves evolutionary progress in this domain. Third, 

our approach is optimized for reduced memory consumption with increasing complexity 

of the networks, resulting in an efficient execution environment. Fourth, our approach is 

flexible and can be readily adapted for any arbitrary objective function. Fifth, we select 

operators, settings, and fitness function that are suitable for community detection and 

remove sphericity and linearity assumptions. We demonstrate this Efficient Reduced-Bias 

GA (ERBGA) using Modularity and compare our outcomes with previously published 

results for benchmark instances (Zhangtao & Jing, 2016). 
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Chapter 3 
 

 
 
 

Datasets	

The datasets used in our experiments are described below. They include four commonly 

cited benchmarks and a network representing genetic markers for Alzheimer’s Disease 

cases and controls. The benchmark instances utilized have previously reported clustering 

configurations, but there is no “ground truth” for the ideal clustering available for most. 

 

Football	Network	

Newman and Girvan (Newman & Girvan, 2004) introduced the United States college 

football network which is a representation of the schedule of Division I games for the 

season of year 2000. Nodes in the graph represent teams (identified by their college 

names) and links represent regular-season games between the two teams they connect. 

What makes this network interesting is that it incorporates a known community structure 

which will be called explicit community structure. The teams are divided into 

conferences containing around 8 and 12 teams each. Games are more frequent between 

members of the same conference than between members of different conferences, with 

teams playing on average about seven intra-conference games and four inter-conference 

games in the 2000 season. Inter-conference play is not uniformly distributed; teams that 

are geographically close to one another but belong to different conferences are more 

likely to play one another than teams separated by large geographic distances. This 

network is comprised of 115 nodes and 613 edges. 
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Karate	Club	

 
Karate club (Zachary, 1997) is a social network of friendship between 34 members of a 

karate club at a US university in the 1970s. This network was generated with edges 

between two individuals if they were observed to interact outside the normal activities of 

the club. It is an unweighted graph with 34 nodes and 78 pairwise links or edges. 

 

Dolphin	Network	

Dolphin (Lusseau, et al., 2003) is an undirected social network of frequent association 

between 62 dolphins in a community living off Doubtful Sound, New Zealand. The 

community was stably structured with close and long-lasting association among 

members. An edge indicates a frequent association. The dolphins were observed between 

1994 and 2001. The dataset has 62 nodes and 159 edges. 

 

Books	about	US	Politics	

Krebs compiled a network representing books about US politics published around the 

time of the 2004 presidential election and sold by the online bookseller Amazon.com 

(Krebs, 2004). Edges between books represent frequent purchase of books by the same 

buyers. The dataset has 105 nodes and 441 edges. 

 

Enron	Email	

The Enron email (Klimt & Yang, 2004) network is a social network constructed from 

email communication in a large corporation. Due to its size it has previously been 

partitioned only by algorithms such as Fast Greedy community detection. The Enron 
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corpus, a large set of email messages, was made public during the legal investigation 

concerning the Enron corporation. The raw Enron corpus contains 619,446 messages sent 

to and received by 158 Enron employees. From this email corpus a network was 

constructed in which the email addresses are represented by nodes and emails between 

two addresses are represented by links. This network contains 77849 nodes and 286379 

undirected links. Non-Enron email addresses act as sinks and sources because only 

emails from and to Enron employees were included in the corpus. The network does not 

contain an explicit community structure, but community structure has been explored 

using community detection algorithms. 

 

Alzheimer’s	Disease		

In addition to these benchmark networks, we use a biological dataset that has arisen as 

part of an ongoing research project focused on identifying the genetic markers and 

patterns associated with Alzheimer’s Disease. Genetic data from Alzheimer’s Disease 

Neuroimaging Initiative (ADNI), NIA Genetics of Alzheimer’s Disease Data Storage Site 

(NIAGADS), and the Charles F. and Joanne Knight Alzheimer’s Disease Research 

Center at Washington University (Knight ADRC) were merged to create a single file of 

SNPs for 4972 individuals. All of these centers used the same genotyping platform, 

namely the Affymetrix 660k genotyping array. Our collaborator, Dr. Carlos Cruchaga at 

Washington University School of Medicine, supervised the processing of these data by 

Zeran Li, in which she applied the CCC metric previously described and constructed a 

network of inter-correlated SNP variants. This network has properties similar to Snel’s 

protein network, which is summarized in the Properties of Biological Networks 
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subsection. We applied Breadth-First Search to extract the large connected component, 

which consists of 962 nodes and 6672 edges. 
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Chapter 4 
 
 

	

Methods 

ERBGA optimizes a given community detection objective function using a set of distinct 

islands of populations that evolve over a predefined number of iterations or generations 

(Gensize). An initial population of chromosomes (individuals) is randomly generated, and 

subsequent populations are produced using selection across evolved chromosomes. 

ERBGA is generational, where we maintain two populations, corresponding to 

generations i and i+1. Breeding operators are controlled using tuning parameters 

associated with each operator, as shown in Table 1. Our implementation accepts files in 

Graph Modeling Language (GML) (Himsolt, 2018) format. GML files are used to define 

graphs by listing node labels and mapping edges using these labels. No additional 

sampling of data is required in a phase prior to running the GA.  
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Table 1. Parameters used by ERBGA. The number of generations varied in our 
experiments as a fixed computation time was employed. For the Gene Repair Size, ‘E’ is 
the number of edges in the network. 
 

Number of Generations Gensize 1000-5000 

Population Rate Prate 0.85 

Population Size Psize 250 

Elitism Rate Erate 0.2 

Number of individuals in 

Tournament Pool 

TPool 7 

Mutation rate  Mrate 0.1 

Gene Repair Rate GRrate 0.1 

Gene Repair chance GRchance 0.05 

Gene Repair Size  GRSize |E| * GRrate 

Number of GA Islands IslandSize 5-25 

 

Network	model 

The network is defined by an undirected graph G = (V, E) with V vertices and E edges. 

The edges are denoted by an adjacency list as Adj(u) = (list of end points of edges 

incident to vertex u); thus, if vertex i has an edge to vertex j then Adj(i) will have j as a 

member in the adjacency list and vice-versa. The degree of node v is denoted by dv. 

 

This research is focused on undirected graphs, so each edge may be defined by either 

(u,v) or (v,u). We use the definition which lists the larger number first. We then generate 
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unique edge identification eid using a function j	(𝑢, 𝑣) 	= |𝑉| 	∗ 	𝑢	 + 	𝑣, where u and v 

are the endpoints. Furthermore, we define a sorted list, EdgeList comprised of unique 

edge IDs generated using j. This list is used to map chromosomes back into the network 

structure. To decode eid back to edge representation E (u, v) we use an inverse function 

j’. j’(𝑒+\) 	= 	 (𝑒+\	/	|𝑉|, 𝑒+\	%	𝑉). EdgeList facilitates a unique way of mapping the 

edges that eliminates the problems of introducing edges which were not present in the 

original network. This reduces time and space complexity, while providing consistency 

into the solutions and the chromosomes being initialized for the GA. 

 

Chromosome	representation 

In our approach, each clustering solution is defined by a set of removed edges RE = {e1, 

e2, e3, …, ep} that, when removed from the network, breaks the network to separate it into 

unconnected clusters. These separated components indicate the clustering scheme of the 

network.  

 

We define a dual layer representation of the chromosomes for representing the solution 

space (Figure 2). In contrast to the traditional approach of using cluster assignment 

numbers as previously shown in Figure 1, this representation serves to identify 

phenotypically unique individuals after breeding. With this representation technique we 

never introduce any redundant chromosomes into the population as is possible by 

conventional approaches (see Figure 1). Having the scheme independent of vertices 

maintains the uniqueness of the individual representing the solution. We also avoid some 

unwanted solutions where nodes are clustered into the same community, but these nodes 
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might not share any connections or edges among them.  

 

 

Figure 2. A dual-layer representation of an example chromosome translated to clustering 
scheme.  
 

Each chromosome is a bit string with a sequence of 0’s and 1’s. Figure 2 shows an 

example graph with 11 edges and 9 vertices. The length of each chromosome is equal to 

the number of edges in the network determined using Breadth First Search. Let the 

chromosome c: {b1b2b3…bE}, where 𝑏+ = 0 denotes the edge is present in the clustering 

scheme and 𝑏+ = 1 denotes that the corresponding edge is removed. That is to say that 

the removed edges are used to physically separate the clusters in the current clustering 

scheme. The edges are mapped from chromosomes to edges using EdgeList, where 

j’(EdgeListi) is computed for each bit at index i in the chromosome. Figure 2 shows an 
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example chromosome mapped to the edges using the EdgeList for the shown clustering 

scheme. 

 

In addition to removing redundancies in the search space, this chromosomal 

representation typically requires less memory than the conventional approach. Here we 

need one bit for each edge in 𝐸 for each chromosome, whereas the conventional 

representation requires one integer for each vertex in 𝑉. If an integer requires 64 bits of 

memory, networks with E/V less than 64 would consume less memory for our approach. 

The highest E/V value for our presented datasets is 6.94 (for the Alzheimer’s Disease 

660k network). Table 2 shows the density (E/V) and average degree for all the datasets.   

Table 2. Density and Average degree per nodes. 

Dataset E/V Avg. Degree per Node 

Karate 2.3 2.3 

Dolphin 2.6 5.1 

Political Books 4.2 8.4 

Football 5.3 10.6 

660k 6.9 6.9 

	
	

Initialization  

GA is initialized by randomly generating bit strings (chromosomes) of size equal to the 

number of edges in the network. The Random Population Rate (Prate) is the probability 

that an edge will be removed. Prate controls the minimum percentage of 1’s in the 
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chromosome. Number of such chromosomes generated is equal to the Population Size 

(Psize).  

	

	

Elitism  

Elitism refers to retaining the best individuals from the previous generation to the next 

unaltered. These ‘elite’ individuals are also included in the selection phase and may 

undergo mutations and crossovers. This strategy guarantees that the solution quality of 

the fittest individuals doesn’t decrease from one generation to the next, while facilitating 

evolution and diversity of the remainder of the population. The rate of elitism is 

controlled by a parameter defined as Elitism Rate (Erate). The number of such individuals 

is equal to Erate * Psize. This strategy works similarly to a beam search technique where all 

of the solutions chase the best solutions to improve their fitness.  

 

Selection	

Selection is used for choosing those chromosomes who will participate in the crossover 

and mutation breeding phases. We use a tournament-based selection operator that runs 

Psize/2 tournaments for each generation. For each tournament, TPool chromosomes are 

randomly selected and put into the Tournament Pool. Each of the chromosomes in TPool is 

evaluated for the fitness function value and the two best individuals move to Crossover 

phase. This process is repeated for each TPool, yielding Psize/2 pairs of chromosomes for 

the Crossover phase. 
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Uniform	Crossover 

Crossover operation in GA results with the exchange of genetic information between two 

chromosomes. As mentioned in the above section, each Tournament Selection generates 

two chromosomes. Because nodes in clusters are not linearly ordered, we arbitrarily 

generate a list of crossover points and single genes are exchanged only at these points. 

This approach breaks the linearity of traditional crossover and facilitates exploration of 

remote regions of the search space, thereby improving upon previous GA 

implementations for network detection. Figure 4 shows the difference between 

traditional crossover versus uniform crossover.  

 

Figure 4. An example showing the Traditional Crossover against the Uniform Crossover. 

	

Mutation	

The mutation operator increases the diversity of the population and helps explore the 

solution space. Like Crossover, this operator holds potential to generate or destroy high 
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rankings of individuals on the fitness landscape. We regulate the amount of mutations we 

invoke to control this behavior.  

 

After performing crossover, for every crossover offspring we randomly mutate some bits 

at multiple positions. A mutation flips the bit, resulting in adding or removing the 

corresponding edge in the network mapped by EdgeList. Mutation rate Mrate is set to 0.1, 

indicating the expected percentage of bits mutated in the chromosome. Each bit in the 

chromosome gets Mrate percentage of chance to undergo mutation. 

	

Gene	Repair	

The evolutionary processes presented cut off edges regardless of the density of the 

adjacent nodes. We observed in our initial trials that this resulted into some networks still 

being connected in a single cluster, despite the removal of a high percentage of edges 

during initialization. In particular, high-degree nodes could end up in clusters that did not 

include many of their immediate neighbors. To help alleviate this behavior, we developed 

a novel genetic operator, which we refer to as Gene Repair.  

 

After the mutation phase, the Gene Repair operator may ‘repair’ some chromosomes by 

strategically adding some previously removed edges. The basic idea is to replace some 

edges that are adjacent to high-degree nodes as it might be expected that a high-degree 

node has substantially more intra-cluster than inter-cluster edges. We use a parameter 

called Gene Repair Size (GRSize) which equals GRrate * |E|. This repair size provides the 

number of nodes which are scanned and may be repaired. The GRSize nodes with the 
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highest degree are placed in a list at the start of the search. We used Quicksort algorithm 

to construct this list. Gene Repair chance (GRchance) controls the rate at which the edges 

are inserted back into the network. We set GRchance to 0.05 in these experiments. For each 

high-degree node in the list, adjacent edges that have been removed have a GRchance 

chance of being replaced. This repair is beneficial for pushing the GA towards keeping 

high-density nodes in communities where they are connected to multiple intra-cluster 

nodes. We have observed that this strategy also helps to keep the search from getting into 

a local minimum and returning suboptimal solutions. 

 

GA	Islands	

ERBGA uses islands of populations evolving independently (Darrell, Soraya, & Robert 

B., 1998) which helps in maintaining diversity and exploring more regions of the search 

space as each population may follow unique trajectories into the search space. We use the 

best of all islands to benchmark the results. These islands function independently of the 

runs and generate different initial populations. Since the algorithm could possibly end up 

generating an initial population of low-fitness chromosomes, this strategy helps to ensure 

diversity to the global populations. ERBGA uses a varying number of island populations 

(IslandSize) in the range of 5 through 25. The best run from all the Islands was used for 

reporting the results.  

 

Efficiency	

Due to the fact that Psize, Gensize, and IslandSize are all constants, the ERBGA algorithm 

scales well and has a time complexity of 𝑂(|𝑉|	𝑙𝑔	(|𝑉|) 	+ 	|𝐸|). We have implemented 
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our algorithm using C++ and, as shown in the Results section, our implementation is 

computationally efficient. It also scales well for complex networks, requiring relatively 

low memory space as it uses bits to encode chromosomes. We optimize memory by using 

a 3-dimensional bit array to represent the chromosomes. Effective size of a G (V, E) 

dataset with population size Psize represented in memory would be population size times 

the number of bits required to represent the edges, 𝑃d+ef × (𝐸/8	 +	¬¬(𝐸	%	8)) bytes, 

where ¬ is the logical negation operator, used here to convert a positive integer to 1, 

while leaving zero at its original value. Figure 3 shows a representation of the 3D cuboid 

space. Since ERBGA is generational, generations i and i+1 flip after each generation. 

This leads to the new generation becoming the old generation for the subsequent 

iteration. On average, the memory size required to hold the population was reduced by 

85% for all the datasets. 

 

Figure 3. Representation of 3-D array that hold the bits in memory representing the 

population at generations i and i+1. In this illustration, a yellow block translates to ‘1’ 



 39 

and grey indicates a ‘0’. If the bit is ‘1’ then the edge is removed, otherwise the edge is 

untouched. This example represents two chromosomes for a network with six edges. The 

highlighted yellow block indicates that the first edge (gene) for the first chromosome is 

removed for generation i. The chromosomes are mapped back to edges using the j’ 

function. In general, a matrix has height equal to the number of chromosomes, width 

equal to the number of edges in the network, and depth equal to two. 

 

 

Fitness	Function	

ERBGA is flexible for acceptance of any community detection-based objective to 

evaluate the fitness of chromosomes. Since the data structure used for representation is an 

adjacency list, it can be easily mapped into matrix-based objective functions. Also, the 

algorithm doesn’t require prior information about the number of clusters in the network. 

If a situation arises when a particular number of clusters is desired, this can be 

accomplished by building the value into the objective function. In the experiments 

presented here, the Modularity function was optimized.  

 

Summary	

ERBGA eliminates redundancy and improves the efficiency of optimization of the given 

objective function. Its unique chromosomal representation method and 3-dimensional bit 

array storage container reduces the amount of memory consumed to represent the 

solution space.  
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Chapter 5 
 
 
 
 

Results	

In this section, we will look into some of the results of the experiments for all the datasets 

mentioned above. We used Modularity as the fitness function for the results presented 

here. The experiments were run on an i7 2.1GHz machine running Linux with 8GB of 

RAM. All of the experiments were run for exactly 48 hours. Using the parameters shown 

in Table 1, we tested four standard benchmark datasets, namely Zachary’s Karate Club 

(Zachary, 1997), Dolphin Social Network (Lusseau, et al., 2003), American College 

Football (Girvan & Newman, 2002), and US Politics Books (Krebs, 2004). We also 

tested a network, 660k, that has arisen in our research of genetic markers associated with 

Alzheimer’s Disease. Finally, in order to test the scalability of our approach, we tested a 

network comprised of email correspondence, namely Enron (Klimt & Yang, 2004). 

 

Table 3. The comparison in terms of Modularity (Q) value on all four real world 

networks. 

Network BKR MAGA-Net ERBGA 
Karate 0.420 0.419 0.420 
Dolphin 0.529 0.529 0.445 
Political Books 0.527 0.527 0.256 
Football 0.605 0.605 0.073 
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Accuracy 

We compare our results with the fitness reported for the four benchmark instances against 

MAGA-Net in the paper by Zhangtao Li (Zhangtao & Jing, 2016) and the Best-Known 

Results (BKR) across multiple diverse Modularity optimization implementations 

(Agarwal & Kempe, 2008; Noack & Rotta, 2009; Ye, Hu, & Yu, 2008; Medus, Acuna, & 

Dorso, 2005; Xu, Tsoka, & Papageorgiou, 2007; Lancichinetti, Fortunato, & Radicchi, 

2008) as shown in Table 2. ERBGA outperformed MAGA-Net when it identified the 

best-known solution for the Karate Club. Currently, our approach doesn’t perform well 

for the Football network and requires further investigations, as discussed below.  

 

Efficiency  

ERBGA computation time and memory usage are shown in Figure 5. We plot two trends 

to visualize the amount of memory consumed by the runs. As seen in the figure, memory 

is efficiently allocated as the number of nodes scale. Our implementation can run huge 

datasets like Enron email network, which consists of 78,849 nodes and 286,379 edges, 

with less than 1GB of memory. 
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Figure 5. Memory consumption trends as the nodes and edges scale. 

	

Fitness	Landscape	

In order to observe the evolutionary changes, Figures 6 – 10 present graphs that plot the 

Best solution (blue curve) and the Average of whole population (orange curve) for the 

fitness function for the island population that yielded the highest modularity value.  
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Figure 6. Modularity evolution for Karate dataset. The dataset converged to the optimal 
value at generation 749. 
                

For Karate Club, 4 out of 25 islands converged to the optimal value of 0.420. All other 

islands ended up with modularity values approximately around 0.397. Similarly, 

Dolphins Network also exhibited rapid evolution until a fitness value of 0.4. 

 

Figure 7. Dolphin social network converged to a suboptimal solution. 
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Figure 8. Political Books exhibit a delayed evolution. 

 

Figure 8 illustrates a puzzling evolution scheme that arose for Political Books. We don’t 

see rapid positive evolution until iteration 736. Since more than half of the computation 

time didn’t improve the solution, it is possible that this dataset might perform better if 

more computation time is allocated for the experiment.  
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Figure 9. Football dataset shows no improvement. 

 

As shown in Figure 9, Football dataset didn’t exhibit any improvement towards the 

solution. It is possible that it is taking longer to start making evolutionary progress than 

was observed for Political Books. Future trials with longer computation time will give 

more insight into this behavior. However, we ran side experiments with values tweaked 

to assess the sensitivities of these parameters. We observed that tweaking the Random 

Population Rate to be closer to 1 resulted in the improvement in the quality of the initial 

set of chromosomes. 
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Figure 10. 660k dataset performs average for the set parameters. 

 

660k is a dataset with fairly larger number of nodes and edges. As shown in Figure 10, 

the evolutionary trend looks similar to the results for Karate club and Dolphin networks. 

Although this dataset has not been previously evaluated using other methods, the 

evolutionary trend suggests the ERBGA results are promising.  

 

Summary	

As observed in the results for our trials, Karate did excellent and Dolphin performed well 

with the existing configuration of ERBGA and 48-hour time limit. With the exception of 

Football, the other datasets are seen to be evolving although they appear to manifest 

mixed behavior. On carefully observing Political Books we could hypothesize that the 

algorithm struggles to find the evolution point.  
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Chapter 6 
 
______________________________________________________________________________ 

	

Conclusion	

A key issue for the use of GAs for community detection is a meaningful chromosomal 

representation that properly captures phenotypic characteristics in an efficient manner. 

Previous efforts have resulted in the search space being expanded by an order of K!, 

where K is the number of communities. Here we introduce a novel representation that 

uses the removal of edges to define each possible clustering configuration exactly once in 

the search space. One drawback of our current implementation is that dense networks 

may have many edges removed yet remain connected, thus representing a single cluster. 

This behavior was observed in our initial trials for the US Politics Books, Football, 660k, 

and Enron datasets. These results suggested development of a strategy to increase 

contextual removal of edges rather than removing them randomly. We developed a novel 

operator to improve performance by considering the degree of vertices that are adjacent 

to a candidate edge. If the edge is currently set to be removed and it is incident to a vertex 

with high degree, the edge might be replaced back into the network. This strategy was 

introduced in this thesis as the Gene Repair operator which helps to break up large dense 

networks into distinct clusters by repairing potentially deleterious variants.  

 

The Gene Repair operator mimics a prevalent biological process. Cells in living 

organisms are endowed with a host of mechanisms to identify and correct mutations and 
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chromosomal damage that may arise due to environmental factors, such as radiation and 

normal metabolic activities, as well as errors during DNA replication. These types of 

changes occur frequently, and in some cases they may potentially lead to higher fitness. 

However, if such lesions are lethal for the cell and are not properly repaired, cells may 

undergo an organized cell death. Furthermore, failures of such mechanisms lie at the 

heart of the initiation of potentially cancerous cells. Fortunately, cells are empowered 

with a multitude of DNA repair mechanisms that efficiently avert these potentially fatal 

outcomes. Our Gene Repair operator attempts to improve fitness by repairing 1’s 

representing removed edges adjacent to high-degree nodes and returning them back into 

the network. 

 

Another issue for community detection using GAs is the enforcement of linearity for the 

chromosomes during crossover operations. ERBGA breaks up the linearity by randomly 

selecting genes. 

 

A broad issue for community detection is the selection of a meaningful objective 

function. The choice is dependent upon the characteristics of the particular network of 

interest. In some domains sphericity is suitable, while other domains, such as genetic 

associations with complex diseases, such a bias could be highly problematic. ERBGA 

flexibly allows any arbitrary objective, providing a convenient tool for comparing 

alternative functions.   
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Future	Work	

With the inherent qualities of ERBGA of reducing search space as well as efficient 

memory management, future work should focus on improving methods in order to 

mitigate the slow start for productive evolution, as observed for two of the benchmark 

datasets.  

 

In addition to the new Gene Repair operator, another potential approach for improving 

the breakup of the network into clusters could be realized by implementing a method to 

prioritize removal of edges instead of random deletion. Also, we are unsure whether 

completely randomized Initialization of chromosomes is desirable for this domain.  Some 

bias could be introduced into the generation of initial population which strategically 

improves early network breakup while retaining diversity.  

 

Another opportunity for improvement might be in the selection phase. The elite 

chromosomes could be given increased probabilities to be selected as a parent for 

breeding phase, perhaps by employing both Tournament Selection and Roulette 

Selection. This could potentially improve the algorithm to break out of a minima wall and 

start evolving earlier. However, such adjustments might decrease diversity.  

 

Finally, using more islands would likely increase performance; and added functionality to 

exchange chromosomes across islands after a predefined number of generations may help 

the islands evolve faster. It should be noted that these trials can be run in parallel and it 

may be possible to compute large numbers of populations, given an adequate number of 
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processors. Overall, ERBGA is an efficient approach which addresses key biases 

introduced by previous methods and holds potential for future research development. 
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