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ABSTRACT 

Bilaterally symmetrical corollas have evolved independently numerous times from 

radially symmetrical ancestors and are thought to represent adaptation to specific 

pollinators. However, evolutionary losses of bilateral symmetry have occurred 

sporadically in different lineages. CYC2-like and RAD-like are genes needed for the 

normal development of bilateral symmetry in snapdragon corollas. However, exactly how 

changes in the floral symmetry patterning genes correlate with the origin and loss of 

floral bilateral remains poorly known. To address this question, a densely sampled 

phylogeny of CYC2-like genes across the order Lamiales was inferred and calibrated. The 

expression patterns of these genes in early diverging and higher core clades were also 

examined.  

The phylogeny indicated at least four independent duplications of CYC2-like genes in 

four of the five major lineages of Lamiales around the Cretaceous-Paleogene (K-Pg) 

boundary, coinciding with the initial diversification of bumble bees and euglossine bees. 

Losses of CYC2-like paralogs were common, but did not correlate with a corresponding 

loss in floral symmetry. Relaxed positive selection occurred concurrently with retention 

of duplicate genes. CYC2-like paralogs showed differential expression, and asymmetrical 

expression of individual CYC2-like genes in adaxial and lateral petals correlated with the 

independent origins of floral zygomorphy in core Lamiales. CYC2-like genes have 

duplicated recurrently. However, the retention of CYC2-like duplicates was not required 

for the maintenance of floral zygomorphy.  

CYC2-like and RAD-like genes were detected broadly in the floral meristem in early 

diverging Lamiales lineages, but were restricted to adaxial and lateral regions in the core 

Lamiales. The expression patterns of CYC2-like genes have evolved in a stepwise fashion. 

CYC2-like gene was expressed only very early in flower development in Oleaceae, while 

persistent expression of CYC2-like genes in petals originated in the common ancestor of 

Tetrachondraceae and core Lamiales. Asymmetrical expression in adaxial and lateral 

petals appeared later within the common ancestor of the core Lamiales. Similarly, 

expression of RAD-like gene in petals appeared in early diverging Lamiales or earlier, 

while asymmetrical expression in adaxial and lateral petals appeared later within 
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Plantaginaceae and Gesneriaceae. These data, along with published reports of CYC2-like 

genes expression, show that asymmetrical expression of CYC2-like gene is likely a 

derived condition that correlates with the origins of bilateral symmetry of the corolla. In 

contrast, the asymmetrical expression of RAD-like genes may be unique to the 

Plantaginaceae and Gesneriaceae lineages and is apparently not required for the 

development of bilateral symmetry. 

To evaluate the possible developmental trajectories and genetic mechanisms underlying 

independent evolutionary losses of bilaterally symmetry of the corolla, three species of 

Lamiales with radially symmetrical corollas were compared. Results indicated that each 

achieved radial symmetry in a different way. Development and expression of CYC2-like 

genes in Lycopus americanus were similar to those of their bilaterally symmetrical 

relatives. However, expanded expression of CcCYC2A correlated with a radially 

symmetrical corolla in Callicarpa cathayana. Finally, loss of CYC2A and altered 

expression of CYC2Bs may account for the early bilateral symmetry but late radial 

symmetry in Mentha longifolia. Furthermore, expression of RAD-like genes, the 

downstream target of CYC2-like genes, was not detected in either Lycopus americanus or 

Mentha longifolia, which may further explain the late radial symmetry in these two 

species. On the other hand, CcRAD in Callicarpa cathayana resembled the broad 

expression pattern in floral tissues found in the CYC2-like genes. 
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CHAPTER 1. EVOLUTION OF CYC2-LIKE GENES IN THE ORIGIN AND 

MAINTENANCE OF FLORAL SYMMETRY IN LAMIALES 

Abstract - Duplication, retention and expression of CYCLOIDEA2 (CYC2)-like genes are 

thought to affect evolution of floral symmetry. However, exactly how changes in the 

CYC-mediated pathway correlate with the origin of floral zygomorphy is poorly known. 

We infer and calibrate a densely sampled phylogeny of CYC2-like genes across the 

Lamiales and examine their expression in early diverging and higher core clades.  

Our results show at least four independent duplications of CYC2-like genes in four of the 

five major lineages of Lamiales around the Cretaceous-Paleogene (K-Pg) boundary. 

Losses of CYC2-like paralogs are common but do not affect floral symmetry. Relaxed 

positive selection correlates with retention of duplicate genes. CYC2-like paralogs show 

differential expression, and asymmetrical expression of CYC2-like in adaxial/lateral 

petals correlates with the independent origins of floral zygomorphy in core Lamiales. 

CYC2-like genes have duplicated recurrently. However, the retention of CYC2-like 

duplicates is not required for the maintenance of floral zygomorphy. The parallel 

duplications of CYC2-like genes are subsequent to the initial diversification of bumble 

bees and euglossine bees. 

Key words: CYC2-like gene, gene duplication and retention, floral symmetry, relaxed 

positive selection, Lamiales 
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Introduction 

Floral zygomorphy has evolved many times during the diversification of angiosperms 

and is thought to affect the interaction between pollinators and plants, i.e. pollination 

efficiency (Donoghue et al., 1998; Endress, 1999, 2001; Ree & Donoghue, 1999; Preston 

& Hileman, 2009). Bees, euglossine bees and bumble bees in particular, are attracted to 

zygomorphic flowers either through learning or innate preference (Møller, 1995; Neal et 

al., 1998; Rodríguez et al., 2004; Westerkamp & Claßen-Bockhoff, 2007). Correlational 

studies of floral zygomorphy and species richness show that floral zygomorphy is 

associated with several of the most species-rich angiosperm lineages (e.g. core Lamiales, 

Fabaceae, Orchidaceae), suggesting that floral zygomorphy can greatly accelerate 

speciation rates (Sargent, 2004). This hypothesis is further supported by some 

experimental evidence that shows plants with zygomorphic flowers have higher fitness 

than those with actinomorphic ones in natural conditions (Erysimum mediohispanicum, 

Brassicaceae) (Gómez et al., 2006).  

In the model species Antirrhinum majus (snapdragon, Plantaginaceae, Lamiales), the 

development of floral zygomorphy is controlled by a genetic network including two TCP 

genes, CYCLOIDEA (CYC) and DICHOTOMA (DICH) (Luo et al., 1996, 1999), and two 

MYB transcription factors (Galego & Almeida, 2002; Corley et al., 2005). TCP 

transcription factors are named for the three founding members of the gene family, CYC, 

TEOSINTE BRANCHED1 (TB1), and Proliferation Cell Factor (PCF).  Within the TCP 

family, CYC and TB1 (CYC/TB1 or ECE clade) proteins are characterized by a unique 

ECE (glutamate-cysteine-glutamate) domain (Howarth & Donoghue, 2006) in addition to 

two highly conserved TCP and R domains. ECE clade genes have duplicated extensively 

and independently in core eudicots and monocots (Howarth & Donoghue, 2006; 

Mondragón-Palomino & Theißen, 2009; Bartlett & Specht, 2011; Preston & Hileman, 

2012). Phylogenetic analyses have identified three types of ECE clade genes (CYC1, 

CYC2 or CYC2-like, and CYC3) that have resulted from two duplications at the base of 

core eudicots (Howarth & Donoghue, 2006).  However, only CYC/DICH (ECE-CYC2 

clade) and their orthologs in other core eudicot species have been shown to be involved 

in floral zygomorphy (Luo et al., 1996, 1999; Feng et al., 2006; Busch & Zachgo, 2007; 

Broholm et al., 2008; Wang et al., 2008). In snapdragon, flowers of cyc/dich double 
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mutants are actinomorphic, while flowers of cyc mutants are semipeloric (weakly-

zygomorphic or -actinomorphic) and dich mutants are zygomorphic but with less internal 

asymmetry of the adaxial petals (Luo et al., 1996, 1999). CYC and DICH are thus 

partially redundant but not identical. Both genes are expressed exclusively in the adaxial 

and adjacent lateral regions of the flowers (Luo et al., 1996, 1999). CYC/DICH regulate 

expression of the MYB transcription factor RADIALIS (RAD), which antagonizes 

another MYB protein DIVARICATA (DIV) that is thus restricted to the abaxial part of 

the flower and helps establish adaxial-abaxial asymmetry (Galego & Almeida, 2002; 

Corley et al., 2005).  

A CYC-mediated pathway has apparently been recruited independently for the 

development of floral zygomorphy in some eudicot lineages, such as Brassicaceae, 

Fabaceae and Asteraceae (Busch & Zachgo, 2007; Broholm et al., 2008; Wang et al., 

2008). Extensive investigation of the phylogeny and expression of CYC2-like genes in 

different lineages has shown that multiple copies of CYC2-like genes tend to be 

maintained in lineages with zygomorphic flowers both in rosids and asterids (Citerne et 

al., 2000, 2003; Hileman & Baum, 2003; Howarth & Donoghue, 2005; Zhang et al., 

2010). In addition, studies in Arabidopsis (Brassicaceae, rosids) and Primulina 

heterotricha (Gesneriaceae, asterids) indicate that persistent expression of CYC2-like 

genes in petals in later developmental stages is important for the development and/or 

maintenance of floral zygomorphy, as in core Lamiales (Cubas et al., 2001; Busch & 

Zachgo, 2007; Yang et al., 2012). 

It remains unclear whether the duplication of CYC2-like genes is directly correlated with 

the origin of floral zygomorphy, how important retention of CYC2-like paralogs is for the 

maintenance of floral zygomorphy, what the most likely selection regime would be for 

the retention of CYC2-like paralogs, and how conservation and diversification of CYC2-

like gene expression pattern following duplication might have led to evolutionary 

transitions of floral symmetry. Most previous comparative studies have compared 

zygomorphic flowers and derived actinomorphy within core Lamiales or floral 

zygomorphy and actinomorphy between distantly related taxa (e.g. snapdragon versus 

Arabidopsis). Surprisingly, few studies have investigated the duplication, retention and 

expression of CYC2-like genes in lineages with actinomorphic flowers closely related to 
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those with zygomorphic flowers.  Only two previous studies have investigated the 

selection regime following duplication of CYC2-like genes, showing gene retention may 

be driven by either purifying selection, as in Plantaginaceae-Antirrhineae (Hileman & 

Baum, 2003),  or by relaxed positive selection on one paralog as in Zingiberales (Bartlett 

& Specht, 2011).  

The angiosperm order Lamiales, the focus of this study, includes ca. 12% of eudicot 

diversity, including about 24,000 species in 24 families; a number of relationships 

between these families are well resolved (Schäferhoff et al., 2010; c.f. McDade et al., 

2012). The early diverging grade, including Plocospermataceae, Oleaceae + 

Carlemanniaceae, and Tetrachondraceae (Fig. 1) contains ca. 3% of the species diversity 

of Lamiales; these families are successively sister to the core Lamiales (ca. 97%). Within 

core Lamiales, Gesneriaceae + Calceolariaceae and Plantaginaceae are successive sisters 

to the remaining taxa, a clade that is sometimes called higher core Lamiales (HCL, c.f. 

Schäferhoff et al., 2010). Lamiales are a rich system for the study of floral evolution; 

zygomorphic flowers originated early in the clade, and derived actinomorphy evolved 

separately multiple times within lineages in core Lamiales.  

Here we show that multiple parallel duplications of CYC2-like genes are not correlated 

with the floral shift from actinomorphy to zygomorphy early in Lamiales.  Expression of 

CYC2-like genes is absent in petals in early diverging lineages Oleaceae; however, 

asymmetrical expression of CYC2-like genes in adaxial/lateral petals has subsequently 

evolved independently following recurrent gene duplications in major lineages within 

core Lamiales and these are directly correlated with the origin of floral zygomorphy. We 

also estimate the ages for major duplications of CYC2-like genes and test the selection 

regime on CYC2-like duplicates. 

 

Materials and Methods 

Taxon sampling – 92 species from 15 of the 23 families of Lamiales were sampled for 

this study (Supporting information Table S1). Additional sequences of CYC2-like genes 

of some Calceolariaceae, Gesneriaceae and Plantaginaceae were obtained from GenBank. 

Species for the study of gene expression were chosen on the basis of previous 
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phylogenetic findings (Schäferhoff et al., 2010), including taxa from the early diverging 

lineages like Oleaceae and from higher core Lamiales (HCL), and also representing 

CYC2-like paralogs derived from separate duplication events. 

DNA and RNA extraction - Total genomic DNA was extracted from silica-gel dried or 

fresh leaves from a single plant with DNeasy Plant Mini Kit following the manufacturer’s 

protocol (QIAGEN, USA). Plant material for RNA extraction was collected from a single 

plant in RNAlater solution (AMBION, USA) and preserved at -200 C; total RNA 

isolation used TRI Reagent® (AMBION, USA). RNA was isolated from young 

inflorescences, adaxial, lateral, and abaxial petal lobes of floral buds that are one to three 

days before anthesis, and young leaves for each species. 

Gene Isolation– CYC2-like genes were amplified from genomic DNA for most species 

with various sets of primers (Supporting information, Table S2) using GoTaq® Flexi 

DNA polymerase kits (PROMEGA, USA) with the annealing temperature Tm-50 C. For 

species in Oleaceae, paired primers CYCF2 and CYCP2R (or LCYCR) were initially 

used, and then more specific internal primers (CYC126F and CYC693R) were designed. 

CYC2-like genes in Polypremum procumbens (Tetrachondraceae) were assembled from 

four overlapping fragments amplified from RNA using SuperScript® III One-Step RT-

PCR System with Platinum®Taq (INVITROGEN, USA). For species of Lamioideae 

(Lamium spp., Stachys spp. and Pogostemon spp.), cDNA sequences were also amplified 

to compare with genomic CYC2-like sequences to confirm the presence of an intron. All 

amplified PCR products were cleaned with QIAquick Gel Extraction Kit (QIAGEN, USA) 

and subcloned to pGEM®-T Vector (Promega, USA). To obtain all possible paralogs, at 

least two sets of paired primers were used for the amplification, and at least 12 colonies 

were screened by PCR for each reaction, and plasmids extracted using 5 PRIME* 

PerfectPrep* Plasmid 96 VAC Direct Bind Kit (Fisher Scientific, USA). Clones were 

then sequenced in both directions with BigDye® Terminator v3.1 Cycle Sequencing Kit 

(Applied Biosystems, USA) and analyzed on an ABI3730 DNA sequencer (Applied 

Biosystems, USA) at the University of Missouri-St. Louis and/or the Nucleic Acid 

Facility at Pennsylvania State University. 
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Motif-based sequence analysis –The unaligned matrix was submitted to Motif-based 

sequence analysis website (MEME, Bailey & Elkan, 1994, http://meme.nbcr.net/meme/) 

to search for additional conserved motifs of CYC2-like sequences across the order 

Lamiales. 

Phylogenetic analysis – Sequencing trace files were trimmed of vector and assembled 

from both sequencing directions using Geneious Pro 6.0.5 (BioMatters, New Zealand). 

Preliminary phylogenetic analyses were conducted with the neighbor-joining algorithm in 

MEGA 5.10 (Tamura et al., 2011) for all clones. Clones of the same accession that 

formed a monophyletic clade and shared at least 99.5% identical bases were considered 

as representing the same genomic sequence and the clone with the shortest branch length 

was chosen for subsequent analyses. Reduced sequences were translated, aligned with 

MAFFT Version 7 (Katoh & Standley, 2013) in Seaview (Gouy et al., 2010), and then 

converted back to nucleotides for later manual refinement with MEGA 5.10 (Tamura et 

al., 2011). 88 models of molecular evolution were assessed with jModeltest (Darriba et 

al., 2012) to find the best fit model for phylogenetic inference. 

To test whether our new CYC2-like sequences fall into the broad CYC2 clade, we created 

an ECE-CYC dataset that included CYC sequences of representatives from major clades 

of core-eudicots (fabids, malvids, lamiids and campanulids; The Angiosperm Phylogeny 

Group, 2009).  Only the TCP and R domains could be aligned.  The final alignment 

contained 105 sequences and 234 sites. The early diverging eudicot species Aquilegia 

coerulea (Ranunculaceae) was used as outgroup based on the previous study (Howarth & 

Donoghue, 2006). The GTR+I+G model (-lnL = 9876.4542) was selected based on the 

Akaike Information Criterion (AIC). 

A second dataset included only ECE-CYC2 orthologs in Lamiales. Helianthus annuus 

(Asteraceae, campanulids), Petunia x hybrida and Solanum lycopersicum (both 

Solanaceae, lamiids) were included as outgroups, and only the conserved sequences of 

TCP domain to R domain from these species could be aligned with CYC2-like sequences 

from Lamiales for phylogenetic analyses. The aligned matrix consisted of 298 sequences 

and 1344 sites; ambiguous regions were removed for phylogenetic inference. The 

GTR+I+G model (-lnL = 55756.4228) was chosen based on AIC. 
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Maximum likelihood analyses were conducted using PhyML (Guindon et al., 2010) 

http://www.atgc-montpellier.fr/phyml/) and RAxML in CIPRES (Ludwig et al., 2002) 

with 100 bootstrap replicates. The matrices were partitioned by codon position, and 

Bayesian inference was performed using MrBayes 3.2.1 (Ronquist et al., 2012) in 

CIPRES, with the nucleotide substitution model GTR+I+G, 10,000,000 generations and 

sampling every 1,000 generations. The first 25% of the trees (2,500) were discarded as 

burn-in. A majority-rule consensus of the remaining trees was produced to assess 

Bayesian posterior probabilities (PP).  Bayesian analysis with enforced monophyly of 

HCL was also conducted using MrBayes 3.2.1 (Ronquist et al. 2012) in CIPRES with 

other settings the same as in unconstrained analyses. Trace v1.5 (Rambaut & Drummond, 

2009) was used to summarize parameter estimates for a Bayes factor comparison (Kass & 

Raftery, 1995).  

A third dataset was constructed removing sequences that had more than 50% missing 

data in the TCP domain, and some sequences from densely-sampled clades 

(Bignoniaceae, Lamiaceae and Acanthaceae).  This dataset included 195 Lamiales 

sequences and was analyzed with RAxML analysis with 100 bootstrap replicates.  A 

fourth reduced dataset included only the 154 Lamiales sequences without any missing 

data in the TCP domain; this data set was analyzed with RAxML with 100 bootstrap 

replicates, and was later used for tests of selection. 

Molecular dating – To estimate and compare the relative divergence times of major 

independent duplications, we applied a relaxed-clock Bayesian Markov chain Monte 

Carlo method as implemented in BEAST v1.7.4 (Drummond et al., 2012) with a Yule 

tree prior, GTR+I+G substitution model parameters, and both an uncorrelated relaxed 

lognormal clock (ucld) and an uncorrelated relaxed exponential clock (uced). Fossil 

calibration points from Oleaceae and Bignoniaceae were applied. The prior age of the 

Fraxinus clade that includes Olea, Osmanthus, Syringa, Philyrea, Noronhia and 

Chionanthus (Oleaceae) was set using a lognormal distribution with mean  =  1.5, standard 

deviation  =  0.5, and offset  =  37 Myr (i.e., estimated age for Fraxinus fossils) (Manchester, 

1999), thus setting a hard lower bound to the age of the group of 37 Mya.  Likewise, the 

age of Catalpa/Oroxylum from Bignoniaceae was set as 28.4 Mya based on fossils of 

Catalpa (Bignoniaceae) (Manchester, 1999). Two additional calibration points were used 
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for the nodes of Verbenaceae I/Bignoniaceae I and Verbenaceae II/Bignoniaceae II 

whose prior ages were set using an exponential distribution with mean = 1.0, offset = 

49.4 Mya (Nie et al., 2006). The MCMC chain was run for 10,000,000, 20,000,000, 

50,000,000 and 100,000,000 generations to make sure that effective sample sizes (ESS) 

were higher than 200, with tree and parameter values being saved every 1,000th 

generation. The marginal likelihoods of 2 different clock models, ucld and uced, were 

compared using a Bayes factor test for best fit (Drummond et al., 2006). 

TreeAnnotator was used to summarize the information and calculate the maximum clade 

credibility phylogenetic tree with the removal of an appropriate burn-in (the first 25% of 

the samples) after visual inspection in Tracer v1.5 (Rambaut & Drummond, 2009).  

Tests for selection - The ratio of nonsynonymous to synonymous nucleotide substitutions 

(ω = dN/dS) was used to measure selection on protein-coding sequences. If ω is more 

than 1.0, the sequences of interest are under positive selection, whereas they are under 

negative selection if ω is less than 1.0 and neutral selection if ω is equal 1.0 (Yang, 2007 

and references therein).  

To detect shifts in selection following gene duplication, we used branch-based models of 

selection in which ω varies among different branches in the phylogeny (Yang & Nielsen, 

1998; Yang, 1998). We tested four nested hypotheses of various ω values across the 

phylogeny. The analyses were implemented with CODEML in the program PAML 4.7 

(Yang, 2007). We also conducted branch-site random effects likelihood (REL) 

implemented in HyPHY to infer relaxed positive selection along all branches 

(Kosakovsky et al., 2005, 2011; Kosakovsky & Frost, 2005b).  To identify selection on 

specific sites, we employed site-models using CODEML in PAML 4.7 (Yang, 2007) and 

three different likelihood-based methods: single likelihood ancestor counting (SLAC), 

fixed effects likelihood (FEL) and a fast, unconstrained Bayesian approximation 

(FUBAR) using the Datamonkey web server (Kosakovsky & Frost, 2005a). 

Gene Expression with RT-PCR – Paralog-specific primers (Supporting information, Table 

S2) were designed for the amplification of CYC2-like paralogs using SuperScript® III 

One-Step RT-PCR System with Platinum®Taq (INVITROGEN, USA). The RT-PCR 

started with cDNA synthesis for 30 min at 600 C, and 30 cycles of regular PCR 
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amplification. Amplified products were subsequently subcloned to pGEM®-T Vector 

(Promega, USA) and sequenced to verify the specificity of primers. 

 

Results 

CYC2-like sequence properties – All sequences amplified from Oleaceae and core 

Lamioideae (Stachys and Lamium) were > 95% identical, so we inferred that they 

represented a single gene.  At least two types of CYC2-like sequences were discovered in 

Tetrachondraceae (with 77.7% sequence similarity) and also in most species within core 

Lamiales.  Most CYC2-like sequences contain no intron, but sequences from Lamiaceae-

Lamioideae have a 90-bp intron located 3’ of the R-domain. At the level of amino acid 

sequences, two new conserved motifs were discovered by MEME analysis for CYC2-like 

in Lamiales (Fig. 2, Motif 3 and Motif 7) besides the TCP, R, ECE and ending-box 

domains (Fig. 2). In addition, two new lineage-specific motifs were discovered for the 

Oleaceae clade (Fig. 2, Motif 5 and Motif 8), and three for core Lamiales members (Fig. 

2, Motif 6, Motif 9 and Motif 10). Within the conserved TCP domain, two lineage-

specific amino acid replacements were observed in helix 2 (position 50, K-N, in Oleaceae; 

and position 56, K-E in Oleaceae), a region that is thought to be important for 

dimerization of TCP protein. Furthermore, all Oleaceae sequences have an amino acid 

replacement within the characteristic motif ECE (Fig. 2, EGE, ECK or ERK). Within the 

two aligned matrices, the GC content ranges from 38.80%-56.84% with an average of 

45.91% in the ECE-CYC dataset and from 37.41%-55.14% with average of 43.21% in 

the more restricted CYC2-like dataset. 

Phylogenetic analyses of ECE-CYC genes – CYC–like sequences fall into three separate 

clades (CYC1, CYC2 or CYC2-like, and CYC3) (Fig. 3). The CYC1 clade (Bayesian 

posterior probabilities: PP 0.74, PhyML Bootstrap support: pBT<50%; RAxML 

Bootstrap support: rBT<50%) is sister to a clade (PP 0.82, pBT<50%, rBT<50%) that 

includes the CYC2 and CYC3 clades. All CYC2-like sequences amplified from this study 

are grouped with CYC/DICH from Antirrhinum majus (Plantaginaceae) in the CYC2 

(CYC2-like) clade with high Bayesian posterior probability support and moderate 

bootstrap support (PP 0.96, pBT 53%, rBT 67%). 
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Phylogenetic analyses of CYC2-like genes – All CYC2-like gene sequences from 

Lamiales form a monophyletic group with high support (PP 1, pBT 99%, rBT 97%) (Fig. 

4).  CYC2-like sequences of Tetrachondraceae plus Oleaceae form a clade (PP 1, pBT 

99%, rBT 97%) that is sister to the core Lamiales clade (PP 1, pBT 52%, rBT 50%). 

However, this sister relationship of Oleaceae and Tetrachondraceae is likely to be caused 

by rooting with a distantly related taxon Helianthus annuus (asterid II/campanulid clade). 

It is more likely that Oleaceae and Tetrachondraceae are successive sister groups to core 

Lamiales as shown by multiple chloroplast loci phylogeny of Lamiales (Fig. 1; 

Schäferhoff et al., 2010). 

Two relatively divergent CYC2-like sequences (22.3% disparity) of Polypremum 

procumbens (Tetrachondraceae) likely represent paralogs, and form a well-supported 

monophyletic clade that is sister to the sequences of Oleaceae (PP 1, pBT 99%, rBT 

100%). Within Tetrachondraceae and Oleaceae, all sequences of a species are more 

closely related to each other than to sequences of other species (e.g., Forsythia, 

Ligustrum and Olea).  Within core Lamiales, four well-supported major clades are 

recognized while the relationships among them remain unresolved (Fig. 4; 

Gesneriaceae+Calceolariaceae clade PP 1, pBT 89%, rBT 90%; Plantaginaceae clade, PP 

1, pBT 88%, rBT 92%; HCL clade Ι, PP 1 pBT 68%, rBT 76%; and HCL clade II, PP 1, 

pBT 72%, rBT 77%). 

Independent gene duplication events are found in Calceolariaceae (Calceolariaceae Ι, PP 

1, pBT 100%, rBT 100%; Calceolariaceae II, PP 1, pBT 100%, rBT 100%) and 

Gesneriaceae (Gesneriaceae Ι, PP 1, pBT 98%, rBT 100%; Gesneriaceae II, PP 0.94, pBT 

88%, rBT 95%). In Gesneriaceae Ι, species in clade A (PP 1, pBT98%, rBT 98%) lack 

Gesneriaceae II paralogs (GCYC2), but an additional duplication has occurred within this 

clade giving rise to Gesneriaceae Ιa (GCYC1a, PP 1, pBT 99%, rBT 100%) and 

Gesneriaceae Ιb (GCYC1b, PP 1, pBT 75%, rBT 69%). 

All CYC2-like sequences of Plantaginaceae form a monophyletic group with strong 

support (PP 1, pBT 88%, rBT 92%). Six well-supported subclades including Antirrhineae 

Ι (DICH, PP 1, pBT 91%, rBT 94%), Antirrhineae II (CYC, PP 1, pBT 91%, rBT 96%), 

Veronica Ι (PP 1, pBT 100%, rBT 100%), and Veronica II (PP 1, pBT 100%, rBT 100%) 
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are recognized, but the relationships among these clades remain unclear; one or more 

likely two independent duplications have occurred within the family. 

One duplication of CYC2-like genes that gave rise to CYC2A (PP 1, pBT 68%, rBT 76%) 

and CYC2B (PP 1, pBT 72%, rBT 77%) may have occurred before the diversification of 

the HCL clade (Fig. 3). We test this hypothesis with phylogenetic constraint analysis 

using MrBayes by constraining the two HCL clades as sisters, however, the Bayes factor 

comparison shows that the constrained tree (lnLc = -55163.680) is not more strongly 

supported by the data (GTR+I+G) than an unconstrained analysis (lnLu = -55163.209) 

(supporting information Fig. S1). But HCL Ι and HCL II are supported as sister clades 

with 73% and 66% RAxML bootstrap support using two reduced datasets that include 

only Lamiales sequences and less missing data (Supporting information Fig. S2, S3).  

As in the Gesneriaceae clade, CYC2-like genes have been lost multiple times within HCL 

Ι and HCL II, but subsequent duplications have sometimes restored copy number to two.  

Thunbergia mysorensis, Ruellia and Hygrophila (Acanthaceae), and Pogostemon 

(Lamiaceae) lack CYC2B paralogs in HCL II, but maintain two copies of CYC2A genes in 

HCL Ι, while Lantana, Lippia, Verbena and Glandularia (Verbenaceae), and Mentha 

(Lamiaceae) have no CYC2A paralogs in HCL Ι but two CYC2B paralogs in HCL II. 

Species with actinomorphic flowers (e.g., Buddleja, Callicarpa, Tectona, Avicennia; Fig. 

4, HCL Ι and HCL II) retain both paralogs of CYC2-like.  Conversely, species with 

conspicuously zygomorphic flowers may have only one type of CYC2-like gene as in 

Lamium and Stachys (Lamiaceae) and most taxa in Bignoniaceae (with only CYC2A). 

Molecular dating – Results from 100,000,000 generations were used for discussion as all 

ESS from these runs are higher than 200. Bayes factor analysis found that the uced model 

(lnL = -57059.1816) was a better fit for the data than the ucld model (lnL = -57082.5751, 

supporting information Fig. S4). Estimates for the most recent common ancestor of 

Gesneriaceae and Calceolariaceae ranged from 38 to 67 (mean 49.4 Mya) and 26 Mya to 

56 Mya (mean 40.1 Mya), respectively (Fig. 5). Mean estimates for CYC2A and CYC2B 

were 68.2 Mya and 71.3 Mya, respectively. Mean estimates for the most recent common 

ancestor of Polypremum paralogs was 22.1 Mya. 
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Tests for selection – Branch-based models of selection using PAML found relaxed 

positive selection in selection on CYC2A immediately following the duplication after the 

divergence of Plantaginaceae, Gesneriaceae + Calceolariaceae, and HCL (Table 1, H0 v 

H1; Fig. 4, CYC2A). HyPHY found three additional branches in Plantaginaceae and the 

HCL clade (Fig. 4: EPS1-EPS6, and sequences in red) that exhibit significant relaxed 

positive selection following more recent additional gene duplications. The TCP domain 

was found to be under strong purifying selection by all methods used.  One site in the C-

terminus of CYC2-like genes is under positive selection.  

Expression of CYC2-like genes with RT-PCR– Results of gene expression for five species 

are shown in Fig. 6. In Syringa vulgaris (Oleaceae), CYC2-like is not expressed in petal 

lobes. In core Lamiales, one CYC2-like paralog is expressed in adaxial and lateral petal 

lobes while the other paralogs are widely expressed in all petals. This asymmetrical 

expression of CYC2-like in adaxial and lateral petals in core Lamiales is correlated with 

the floral transition from actinomorphy in early diverging Lamiales to zygomorphy in 

core Lamiales. 

Two species, Mimulus ringens (Phrymaceae) and Schaueria calicotricha (Acanthaceae), 

whose two paralogs were derived from a common major duplication event, show 

conserved orthologous expression patterns. The paralog under relaxed selection (CYC2A) 

(Table 1) is highly conserved and expressed only in adaxial and lateral petal lobes across 

the higher core Lamiales (Fig. 6, CYC2A) while the other paralog is widely expressed in 

all parts of petals including abaxial petal lobes, though the expression level in abaxial 

petal lobes varies among different species (Fig. 6, CYC2B, Mimulus versus Schaueria). 

Ruellia tweediana (Ruellieae, Acanthaceae) also has two copies of CYC2-like genes (Fig. 

4), but these both fall into the CYC2A clade, which suggests that they have resulted from 

a separate nested duplication. The expression pattern of these two paralogs in Ruellia (Fig. 

6, CYC2A1 and CYC2A2) is similar to those in Schaueria calicotricha (Fig. 6, CYC2A 

and CYC2B; Acanthaceae) but there the paralogs resulted from a much more ancient 

duplication prior to the diversification of HCL (Fig. 5).  

 

Discussion 
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Multiple parallel duplications of CYC2-like genes are not correlated with the origin of 

floral zygomorphy - Gene duplication has long been postulated as an important process in 

the generation of evolutionary novelty (e.g. Ohno, 1970; Force et al., 1999). Phylogenetic 

investigations in distantly related lineages of eudicots have shown that CYC2-like genes 

have experienced multiple independent duplications, hinting that the duplication of 

CYC2-like is required in the origin of floral zygomorphy (Citerne et al., 2000, 2003; 

Hileman & Baum, 2003; Zhang et al., 2010; Tähtiharju et al., 2012).  

Our phylogenetic and molecular dating analyses of CYC2-like genes across Lamiales 

show that CYC2-like genes have duplicated extensively around K-Pg boundary and have 

been retained repeatedly in lineages with predominantly zygomorphic flowers (Fig. 4, 

Calceolariaceae, Gesneriaceae, Plantaginaceae and HCL, Fig. 5). The multiple ancient 

parallel duplications of CYC2-like genes in core Lamiales suggest that two copies of 

CYC2-like genes are probably important in the origin of floral zygomorphy in these 

lineages. Independent additional gene duplications after gene losses in Gesneriaceae, 

Acanthaceae (Ruellia, Hygrophila) and Lamiaceae (Pogostemon) have restored the two 

copies of CYC2-like genes.  

In contrast, actinomorphy does not correlate with number of copies of CYC2-like genes, 

but may instead be correlated with changes in both the regulatory and the amino acid 

coding regions. Only one CYC2-like gene is found in Oleaceae (Fig. 4) and the flowers 

are predominantly actinomorphic. However, a recent duplication of CYC2-like gene is 

found in Polypremum procumbens (Tetrachondraceae), a lineage with actinomorphic 

flowers that is sister to core Lamiales. Hence, a duplication of CYC2-like genes is 

necessary but not sufficient for the origin of floral zygomorphy. Rather, analyses of the 

expression of CYC2-like genes in Gesneriaceae showed that the acquisition of TCP 

recognition sites in the regulatory regions is critical to maintain the persistent expression 

of CYC2-like genes in the adaxial and lateral floral parts during later developmental 

changes thus to establish the bilateral symmetry (Yang et al., 2012). In addition, our 

motif analyses showed that the pattern of domains suggests that the function of the 

CYC2-like proteins in Oleaceae and Tetrachondraceae is probably quite different from 

that of the proteins in core Lamiales (Fig. 2). Therefore, changes in both cis-regulatory 
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domains in trans as well are likely to be crucial for the evolution of bilateral symmetry of 

the corollas. 

Retention of CYC2-like duplicates – CYC2-like paralogs are widely retained following 

parallel duplications and show differential expression patterns and probably functional 

divergence (Fig. 1, 4, 6; e.g. Luo et al., 1996, 1999; Yang et al., 2012). Relaxed positive 

selection may have helped preserve CYC2-like duplicates following recurrent 

duplications (Fig. 4: EPS4 to EPS6; CYC2A in HCL, CCYC1 in Calceolariaceae; Table 1). 

In HCL, the paralogs that are under positive selection show conserved expression 

patterns only in the adaxial and lateral petals (CYC2A in Mimulus, Schaueria in HCL; 

CYC2A1 in Ruellia; Fig. 4, 6). No positive selection is found following the duplications 

in Gesneriaceae or Plantaginaceae. This agrees with a previous study in snapdragon and 

its relatives that showed their disparity in the degree of purifying selection on two 

paralogs may have helped retain the duplicated CYC (Hileman and Baum 2003), which 

then suggests that the preservation of CYC2-like duplicates may actually involve multiple 

selection schemes. Further analyses are needed due to current poorly resolved 

phylogenetic relationships in Gesneriaceae and Plantaginaceae, common gene losses and 

subsequent independent duplications, and incomplete sampling in these two families (Fig. 

4). Additionally, the sites under positive selection in different lineages (different 

duplications) may vary, making it difficult, if not impossible, to detect positive selection 

with global searches.  

Losses of CYC2-like gene are common but have varied effects in shifts in floral symmetry 

in the HCL clade - Duplication and retention of CYC2-like genes may be important for 

the origin of floral zygomorphy, but retention of CYC2-like paralogs is not necessary for 

the maintenance of floral zygomorphy, i.e. species having two copies of CYC2-like may 

have actinomorphic flowers (e.g. Buddleja, Callicarpa, Tectona, Avicennia), while 

species having only one copy of CYC2-like may either have strongly zygomorphic 

flowers (e.g. CYC2A, Stachys, Lamium, Bignoniaceae), or weakly actinomorphic flowers 

(e.g. CYC2B, Mentha, Lantana, Lippia, Verbena). 

Functional analyses in snapdragon and Gesneriaceae show that duplicates of CYC2-like 

are only partially redundant (Luo et al., 1996, 1999; Yang et al., 2012). The flowers of 



	  

15 
	  

cyc mutants are weakly actinomorphic while flowers of dich mutants are conspicuously 

zygomorphic (Luo et al., 1996, 1999). The varied pattern of loss of one specific CYC2-

like paralog in HCL suggests functional divergence of CYC2-like paralogs following 

gene duplication. This hypothesis is further supported by differential expression of 

CYC2-like paralogs, with CYC2A being expressed asymmetrically in adaxial and lateral 

petals while CYC2B is expressed in all petals. Indeed, floral zygomorphy could be 

maintained by only one copy of CYC2-like genes as in dich mutants through a single 

positive autoregulatory feedback loop by forming homodimers that positively promote 

and maintain the expression of CYC2-like genes in later developmental stages (Kosugi & 

Ohashi, 2002; Yang et al., 2012). 

Conservation and diversification of CYC2-like gene expression - The shift from floral 

actinomorphy to zygomorphy is not correlated with increased copies of CYC2-like genes 

in core Lamiales, but has involved different expression of CYC2-like paralogs between 

early diverging lineages and core Lamiales (Fig. 6). CYC2-like genes in Oleaceae are 

transcribed both in vegetative and reproductive tissues, but not in petal lobes (Fig. 6, 

Syringa vulgaris). Lack of expression of CYC2-like genes in later developmental stages 

in Oleaceae species may represent the ancestral pattern of CYC2-like genes in Lamiales, 

and accounts for floral actinomorphy in the early diverging Lamiales (e.g. Oleaceae). Our 

RT-PCR data show that expression of CYC2-like paralog (CYC2A) within HCL across 

the adaxial and lateral corolla lobes also occurs in Primulina heterotricha (PhCYC1C, 

PhCYC1D, Gesneriaceae) and snapdragon (CYC and DICH) despite their different 

duplication origins, hinting at their conserved roles in determining the adaxial and lateral 

petals and relatively stronger constraint on these paralogs following parallel gene 

duplications. This conserved asymmetrical expression pattern of CYC2-like paralogs 

correlates with the development and origin of floral zygomorphy and may have played a 

critical role in the development of floral zygomorphy in core Lamiales (Fig. 1, 6). 

Expression of other CYC2-like genes varies with their separate duplication origins in 

different lineages in the core Lamiales (Luo et al., 1996, 1999; Gao et al., 2008; Preston 

& Hileman, 2009). Primulina heterotricha (Gesneriaceae) has two major types and four 

copies of ECE-CYC2 genes (PhCYC1C, PhCYC1D, PhCYC2A and PhCYC2B), none of 

which have transcripts in abaxial petals.  PhCYC1C, PhCYC1D are expressed in adaxial 
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and partly in lateral petals while in PhCYC2A and PhCYC2B no paralogs are transcribed 

(Gao et al., 2008). In Antirrhinum majus (Plantaginaceae), both copies of ECE-CYC2 

(CYC/DICH) are expressed only in adaxial petals in lateral, not in abaxial petals, and the 

expression of DICH is more confined to adaxial petals (Luo et al. 1996 1999). The 

expanded expression of CYC2B in the abaxial corolla lobes is novel in HCL. The varied 

expression patterns of CYC2-like genes in Gesneriaceae, Plantaginaceae and HCL clade 

indicates diversification of CYC2-like gene expression (e.g. Luo et al., 1996, 1999; Zhou 

et al., 2008; Preston & Hileman, 2009; Song et al., 2009). Also this varied expression 

pattern may suggest that DICH in Antirrhineae, CYC2B in HCL, and GCYC2 in 

Gesneriaceae have experienced more relaxed selective pressure (e.g. Hileman & Baum, 

2003). 

For each pair of duplicate genes, one copy is always expressed only in adaxial and lateral 

petals.  However, the expression pattern of the other copy varies from one duplicate pair 

to the other. Even after a duplication, the copy that is variably involved in floral 

development other than floral symmetry has different expression pattern from one species 

to another.  For example, expression of DICH, CYC2B, GCYC2 and GCYC1C is involved 

in the development of other parts of the flower but not floral symmetry (Hileman et al., 

2003; Song et al., 2009).  The situation is even more complex in Primulina and 

Opithandra in Gesneriaceae. Neither PhCYC2A nor PhCYC2B is expressed in petals in 

either species. However, PhCYC1C and PhCYC1D are expressed in adaxial and/or lateral 

petals in Primulina (Gao et al., 2008; Yang et al., 2012), but in all petals in Opithandra 

(Song et al., 2009). In snapdragon and its relatives, CYC is expressed primarily in adaxial 

and adjacent lateral floral parts (Luo et al., 1996, 1999; Hileman et al., 2003), but 

expanded expression of DICH in Mohavea (Plantaginaceae) is correlated with internal 

symmetry of adaxial petals and abortion of lateral stamens (Hileman et al., 2003). 

Likewise, the expression pattern of CYC2B in HCL species seems to differ somewhat 

between Mimulus and Schaueria (Fig. 6). These varied expression patterns of CYC2-like 

paralogs (DICH, CYC2B, GCYC2) in different lineages may be involved in aspects of 

floral elaboration other than floral symmetry. 

Implications for Paleogene parallel origins of floral zygomorphy in Lamiales after the 

diversification of core major bee clades – What appears to be a single origin of floral 
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zygomorphy in Lamiales may actually be underlain by at least four independent 

duplications of CYC2-like genes at different time periods (40.1-71.3Mya) (Fig. 4, 5).  The 

evolutionary transition from floral actinomorphy to zygomorphy early in Lamiales may 

thus represent multiple cryptic parallel origins of floral zygomorphy. 

Floral zygomorphy has long been thought to have evolved independently from 

actinomorphy under strong selection by specialized pollinators. Zygomorphic flowers 

conceal and protect stamens within the corolla and thus allow more precise pollination 

and/or reduce pollen wastage (Neal et al., 1998; Westerkamp & Claßen-Bockhoff, 2007). 

Zygomorphy is specifically associated with bee pollination, particularly euglossine bees 

and bumble bees, either through learning or innate preference (Møller, 1995; Neal et al., 

1998; Rodríguez et al., 2004; Westerkamp & Claßen-Bockhoff, 2007).  Based on our 

mean age estimates of major parallel duplications of CYC2-like genes in core-Lamiales 

(40.1-71.3Mya), the origin of zygomorphy may coincide with the initial diversification of 

major core bee lineages, especially those that include euglossine bees and bumble bees 

(65-75Mya) (Cardinal & Danforth, 2013). 

 

 



	  

18 
	  

References 

Bailey TL, Elkan C. 1994. Fitting a mixture model by expectation maximization to 
discover motifs in biopolymers. Proceedings of the Second International 
Conference on Intelligent Systems for Molecular Biology. Menlo Park, 
California: AAAI Press, 28–36. 

Bartlett ME, Specht CD. 2011. Changes in expression pattern of the teosinte 
branched1-like genes in the Zingiberales provide a mechanism for evolutionary 
shifts in symmetry across the order. American Journal of Botany 98: 227–243. 

Broholm SK, Tähtiharju S, Laitinen RAE, Albert VA, Teeri TH, Elomaa P. 2008. A 
TCP domain transcription factor controls flower type specification along the 
radial axis of the Gerbera (Asteraceae) inflorescence. Proceedings of the National 
Academy of Sciences of the United States of America 105: 9117–9122. 

Busch A, Zachgo S. 2007. Control of corolla monosymmetry in the Brassicaceae Iberis 
amara. Proceedings of the National Academy of Sciences of the United States of 
America 104: 16714–16719. 

Cardinal S, Danforth BN. 2013. Bees diversified in the age of eudicots. Proceedings of 
the Royal Society B: Biological Sciences 280: 20122686. 

Citerne HL, Luo D, Pennington RT, Coen E, Cronk QCB. 2003. A phylogenomic 
investigation of CYCLOIDEA-like TCP genes in the Leguminosae. Plant 
Physiology 131: 1042–1053. 

Citerne HL, Möller M, Cronk QCB. 2000. Diversity of cycloidea-like genes in 
Gesneriaceae in relation to floral symmetry. Annals of Botany 86: 167–176. 

Corley SB, Carpenter R, Copsey L, Coen E. 2005. Floral asymmetry involves an 
interplay between TCP and MYB transcription factors in Antirrhinum. 
Proceedings of the National Academy of Sciences of the United States of America 
102: 5068–5073. 

Cubas P, Coen E, Zapater JMM. 2001. Ancient asymmetries in the evolution of 
flowers. Current Biology 11: 1050–1052. 

Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new 
heuristics and parallel computing. Nature Methods 9: 772–772. 

Donoghue MJ, Ree RH, Baum DA. 1998. Phylogeny and the evolution of flower 
symmetry in the Asteridae. Trends in Plant Science 3: 311–317. 

Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. 2006. Relaxed phylogenetics and 
dating with confidence. PLoS Biol 4: e88. 



	  

19 
	  

Drummond AJ, Suchard MA, Xie D, Rambaut A. 2012. Bayesian phylogenetics with 
BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 1969–1973. 

Endress PK. 1999. Symmetry in flowers: diversity and evolution. International Journal 
of Plant Sciences 160: S3–S23. 

Endress PK. 2001. Evolution of floral symmetry. Current Opinion in Plant Biology 4: 
86–91. 

Feng X, Zhao Z, Tian Z, Xu S, Luo Y, Cai Z, Wang Y, Yang J, Wang Z, Weng L, et 
al. 2006. Control of petal shape and floral zygomorphy in Lotus japonicus. 
Proceedings of the National Academy of Sciences of the United States of America 
103: 4970–4975. 

Force A, Lynch M, Pickett FB, Amores A, Yan Y, Postlethwait J. 1999. Preservation 
of duplicate genes by complementary, degenerative mutations. Genetics 151: 
1531–1545. 

Galego L, Almeida J. 2002. Role of DIVARICATA in the control of dorsoventral 
asymmetry in Antirrhinum flowers. Genes & Development 16: 880–891. 

Gao Q, Tao J-H, Yan D, Wang Y-Z, Li Z-Y. 2008. Expression differentiation of CYC-
like floral symmetry genes correlated with their protein sequence divergence in 
Chirita heterotricha (Gesneriaceae). Development Genes and Evolution 218: 
341–351. 

Gómez JM, Perfectti F, Camacho JPM. 2006. Natural selection on Erysimum 
mediohispanicum flower shape: insights into the evolution of zygomorphy. The 
American Naturalist 168: 531–545. 

Gouy M, Guindon S, Gascuel O. 2010. SeaView version 4: a multiplatform graphical 
user interface for sequence alignment and phylogenetic tree building. Molecular 
Biology and Evolution 27: 221–224. 

Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. 
New algorithms and methods to estimate maximum-likelihood phylogenies: 
assessing the performance of PhyML 3.0. Systematic Biology 59: 307–321. 

Hileman LC, Baum DA. 2003. Why do paralogs persist? Molecular evolution of 
CYCLOIDEA and related floral symmetry genes in Antirrhineae (Veronicaceae). 
Molecular Biology and Evolution 20: 591–600. 

Hileman LC, Kramer EM, Baum DA. 2003. Differential regulation of symmetry genes 
and the evolution of floral morphologies. Proceedings of the National Academy of 
Sciences of the United States of America 100: 12814–12819. 

Howarth DG, Donoghue MJ. 2005. Duplications in CYC‐like genes from Dipsacales 
correlate with floral form. International Journal of Plant Sciences 166: 357–370. 



	  

20 
	  

Howarth DG, Donoghue MJ. 2006. Phylogenetic analysis of the ‘ECE’ (CYC/TB1) 
clade reveals duplications predating the core eudicots. Proceedings of the 
National Academy of Sciences of the United States of America 103: 9101–9106. 

Kass RE, Raftery AE. 1995. Bayes Factors. Journal of the American Statistical 
Association 90: 773–795. 

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: 
improvements in performance and usability. Molecular Biology and Evolution 30: 
772–780. 

Kosakovsky PSL, Frost SDW. 2005a. Not so different after all: a comparison of 
methods for detecting amino acid sites under selection. Molecular Biology and 
Evolution 22: 1208–1222. 

Kosakovsky PSL, Frost SDW. 2005b. Datamonkey: rapid detection of selective 
pressure on individual sites of codon alignments. Bioinformatics 21: 2531–2533. 

Kosakovsky PSL, Frost SDW, Muse SV. 2005. HyPhy: hypothesis testing using 
phylogenies. Bioinformatics 21: 676–679. 

Kosakovsky PSL, Murrell B, Fourment M, Frost SDW, Delport W, Scheffler K. 
2011. A random effects branch-site model for detecting episodic diversifying 
selection. Molecular Biology and Evolution 28: 3033–3043. 

Kosugi S, Ohashi Y. 2002. DNA binding and dimerization specificity and potential 
targets for the TCP protein family. The Plant Journal 30: 337–348. 

Ludwig T, Lindermeier M, Stamatakis A, Rackl G. 2002. Tool environments in 
CORBA-based medical high-performance computing. Future Generation 
Computer Systems 18: 841–847. 

Luo D, Carpenter R, Copsey L, Vincent C, Clark J, Coen E. 1999. Control of organ 
asymmetry in flowers of Antirrhinum. Cell 99: 367–376. 

Luo D, Carpenter R, Vincent C, Copsey L, Coen E. 1996. Origin of floral asymmetry 
in Antirrhinum. Nature 383: 794–799. 

Malcomber ST, Kellogg EA. 2004. Heterogeneous expression patterns and separate 
roles of the SEPALLATA Gene LEAFY HULL STERILE1 in grasses. The Plant 
Cell Online 16: 1692–1706. 

Manchester SR. 1999. Biogeographical relationships of North American Tertiary floras. 
Annals of the Missouri Botanical Garden 86: 472–522. 

McDade LA, Daniel TF, Kiel CA, Borg AJ. 2012. Phylogenetic placement, 
delimitation, and relationships among genera of the enigmatic Nelsonioideae 
(Lamiales: Acanthaceae). Taxon 61: 637–651. 



	  

21 
	  

Møller AP. 1995. Bumblebee preference for symmetrical flowers. Proceedings of the 
National Academy of Sciences 92: 2288–2292. 

Mondragón-Palomino M, Theißen G. 2009. Why are orchid flowers so diverse? 
Reduction of evolutionary constraints by paralogues of class B floral homeotic 
genes. Annals of Botany 104: 583–594. 

Neal PR, Dafni A, Giurfa M. 1998. Floral symmetry and its role in plant-pollinator 
systems: terminology, distribution, and hypotheses. Annual Review of Ecology 
and Systematics: 345–373. 

Nie Z-L, Sun H, Beardsley PM, Olmstead RG, Wen J. 2006. Evolution of 
biogeographic disjunction between eastern Asia and eastern North America in 
Phryma (Phrymaceae). American Journal of Botany 93: 1343–1356. 

Ohno S. 1970. Evolution by gene duplication. New York: Springer Verlag. 

Preston JC, Hileman LC. 2009. Developmental genetics of floral symmetry evolution. 
Trends in Plant Science 14: 147–154. 

Preston JC, Hileman LC. 2012. Parallel evolution of TCP and B-class genes in 
Commelinaceae flower bilateral symmetry. EvoDevo 3: 6. 

Rambaut A, Drummond AJ. 2009. Tracer v1.5. 

Ree RH, Donoghue MJ. 1999. Inferring rates of change in flower symmetry in asterid 
angiosperms. Systematic Biology 48: 633–641. 

Rodríguez I, Gumbert A, Ibarra NH de, Kunze J, Giurfa M. 2004. Symmetry is in 
the eye of the ‘beeholder’: innate preference for bilateral symmetry in flower-
naïve bumblebees. Naturwissenschaften 91: 374–377. 

Ronquist F, Teslenko M, Mark P van der, Ayres DL, Darling A, Höhna S, Larget B, 
Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: Efficient Bayesian 
phylogenetic inference and model choice across a large model space. Systematic 
Biology 61: 539–542. 

Sargent RD. 2004. Floral symmetry affects speciation rates in angiosperms. Proceedings 
of the Royal Society of London. Series B: Biological Sciences 271: 603–608. 

Schäferhoff B, Fleischmann A, Fischer E, Albach DC, Borsch T, Heubl G, Müller 
KF. 2010. Towards resolving Lamiales relationships: insights from rapidly 
evolving chloroplast sequences. BMC Evolutionary Biology 10: 352. 

Song CF, Lin QB, Liang RH, Wang YZ. 2009. Expressions of ECE-CYC2 clade genes 
relating to abortion of both dorsal and ventral stamens in Opithandra 
(Gesneriaceae). BMC Evolutionary Biology 9: 244. 



	  

22 
	  

Tähtiharju S, Rijpkema AS, Vetterli A, Albert VA, Teeri TH, Elomaa P. 2012. 
Evolution and diversification of the CYC/TB1 gene family in Asteraceae--a 
comparative study in Gerbera (Mutisieae) and sunflower (Heliantheae). 
Molecular Biology and Evolution 29: 1155–1166. 

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: 
molecular evolutionary genetics analysis using maximum likelihood, evolutionary 
distance, and maximum parsimony methods. Molecular Biology and Evolution 
28: 2731–2739. 

The Angiosperm Phylogeny Group. 2009. An update of the Angiosperm Phylogeny 
Group classification for the orders and families of flowering plants: APG III. 
Botanical Journal of the Linnean Society 161: 105–121. 

Vieira CP, Vieira J, Charlesworth D. 1999. Evolution of the cycloidea gene family in 
Antirrhinum and Misopates. Molecular Biology and Evolution 16: 1474–1483. 

Wang Z, Luo Y, Li X, Wang L, Xu S, Yang J, Weng L, Sato S, Tabata S, Ambrose 
M. 2008. Genetic control of floral zygomorphy in pea (Pisum sativum L.). 
Proceedings of the National Academy of Sciences of the United States of America 
105: 10414–10419. 

Westerkamp C, Claßen-Bockhoff R. 2007. Bilabiate flowers: the ultimate response to 
bees? Annals of Botany 100: 361–374. 

Yang Z. 1998. Likelihood ratio tests for detecting positive selection and application to 
primate lysozyme evolution. Molecular Biology and Evolution 15: 568–573. 

Yang Z. 2007. PAML 4: Phylogenetic analysis by maximum likelihood. Molecular 
Biology and Evolution 24: 1586–1591. 

Yang Z, Nielsen R. 1998. Synonymous and nonsynonymous rate variation in nuclear 
genes of mammals. Journal of Molecular Evolution 46: 409–418. 

Yang X, Pang H-B, Liu B-L, Qiu Z-J, Gao Q, Wei L, Dong Y, Wang Y-Z. 2012. 
Evolution of double positive autoregulatory feedback loops in CYCLOIDEA2 
clade genes is associated with the origin of floral zygomorphy. The Plant Cell 24: 
1834–1847. 

Zhang W, Kramer EM, Davis CC. 2010. Floral symmetry genes and the origin and 
maintenance of zygomorphy in a plant-pollinator mutualism. Proceedings of the 
National Academy of Sciences of the United States of America 107: 6388–6393. 

Zhou XR, Wang YZ, Smith JF, Chen R. 2008. Altered expression patterns of TCP and 
MYB genes relating to the floral developmental transition from initial zygomorphy 
to actinomorphy in Bournea (Gesneriaceae). New Phytologist 178: 532–543. 

 



	  

23 
	  

Tables 

Table 1. Parameter estimates under models of variable ω ratios among lineages following 

duplication of CYC2-like genes. The topology and branch-specific ω ratios are labelled in 

Fig. 4. 

Hypothesis ω2a ω2b ωcy
c 

ωdi
ch 

ωgc
yc1 

ωgc
yc2 

ωc1 ωc2 ωo -lnL LRT P 

H0: 
ω2a=ω2b=ωcyc=ωdich=ωgcyc1=
ωgcyc2=ωc1=ωc2=ωo 

0.20
625 

0.20
625 

0.20
625 

0.20
625 

0.20
625 

0.20
625 

0.20
625 

0.20
625 

0.20
625 

33831.0
46417   

H1: 
ω2a≠ω2b=ωcyc=ωdich=ωgcyc1=
ωgcyc2=ωc1=ωc2=ωo 

1.84
218 

0.20
544 

0.20
544 

0.20
544 

0.20
544 

0.20
544 

0.20
544 

0.20
544 

0.20
544 

33827.6
86253 

6.720
328 

0.009
5** 

H2: 
ω2b≠ω2a=ωcyc=ωdich=ωgcyc1=
ωgcyc2=ωc1=ωc2=ωo 

0.20
599 

0.51
355 

0.20
599 

0.20
599 

0.20
599 

0.20
599 

0.20
599 

0.20
599 

0.20
599 

33830.6
19914 

0.853
006 

0.355
7 

H3: 
ωcyc≠ωdich=ω2a=ω2b=ωgcyc1=
ωgcyc2=ωc1=ωc2=ωo 

0.20
614 

0.20
614 

0.22
131 

0.20
614 

0.20
614 

0.20
614 

0.20
614 

0.20
614 

0.20
614 

33831.0
21659 

0.049
516 

0.823
9 

H4: 
ωdich≠ωcyc=ω2a=ω2b=ωgcyc1=
ωgcyc2=ωc1=ωc2=ωo 

0.20
590 

0.20
590 

0.20
590 

0.41
960 

0.20
590 

0.20
590 

0.20
590 

0.20
590 

0.20
590 

33830.5
62609 

0.967
616 

0.325
3 

H5: 
ωgcyc1≠ωgcyc2=ω2a=ω2b=ωcyc
=ωdich=ωc1=ωc2=ωo 

0.20
631 

0.20
631 

0.20
631 

0.20
631 

0.19
805 

0.20
631 

0.20
631 

0.20
631 

0.20
631 

33831.0
39556 

0.013
722 

0.906
8 

H6: 
ωgcyc2≠ωgcyc1=ω2a=ω2b=ωcyc
=ωdich=ωc1=ωc2=ωo 

0.20
598 

0.20
598 

0.20
598 

0.20
598 

0.20
598 

0.23
809 

0.20
598 

0.20
598 

0.20
598 

33830.9
26953 

0.238
928 

0.625 

H7: 
ωc1≠ωc2=ω2a=ω2b=ωcyc=ωdich
=ωgcyc1=ωgcyc2=ωo 

0.20
731 

0.20
731 

0.20
731 

0.20
731 

0.20
731 

0.20
731 

0.10
905 

0.20
731 

0.20
731 

33828.9
09676 

4.273
482 

0.038
7** 

H8: 
ωc2≠ωc1=ω2a=ω2b=ωcyc=ωdich
=ωgcyc1=ωgcyc2=ωo 

0.20
655 

0.20
655 

0.20
655 

0.20
655 

0.20
655 

0.20
655 

0.20
655 

0.16
934 

0.20
655 

33830.8
70571 

0.351
692 

0.553
2 

χ2 df=1, α=0.05 = 3.841 
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Figure captions 

Fig. 1. Schematic phylogenetic tree of Lamiales. Bar indicates a major floral transition 

from actinomorphy to zygomorphy. Double-lines shows duplications of CYC-like genes 

within the clade. X indicates absence of expression, single plus sign (+) indicates where 

only one type of CYC2-like gene is expressed, double plus sign (++) indicates where both 

types of CYC2-like genes are expressed (Luo et al 1996 1999; Gao et al. 2008), and 

question mark (?) indicates no data is available. Abbreviations: HCL, higher core 

Lamiales; ad, adaxial petal lobes; la, lateral petal lobes; ab, abaxial petal lobes. 1 

Although two copies of CYC2-like genes are expressed in adaxial petal lobes, these two 

copies all belong to Gesneriaceae Ι, the other two CYC2-like gene copies in Gesneriaceae 

II are not expressed (Gao et al. 2008). 

Fig. 2. CYC-like protein (ECE-CYC2 clade) evolution across the Lamiales. 

Fig. 3. Phylogram from Bayesian inference of ECE-CYC sequences across the eudicots. 

Support values (Bayesian posterior probability/PhyML bootstrap/RAxML bootstrap) are 

labeled above the branches. Two duplications are indicated with grey circles.  

Fig. 4. Phylogram from Bayesian inference of CYC2-like genes of Lamiales. Support 

values (Bayesian posterior probability/PhyML bootstrap/RAxML bootstrap) are labeled 

above the branches. Ι and II indicated two copies of CYC2-like genes resulted from 

duplications. A refers to clade with additional duplication of CYC2-like in Gesneriaceae Ι. 

Species in bold in HCL Ι and HCL II clades have complete actinomorphic flowers. ω are 

the ratios of dN/dS assigned to those specific branches following CYC2-like gene 

duplications. Asterisk * indicates that CYC2A (HCL) and CYC2-like paralogs in 

Calceolariaceae I are under relaxed positive selection following gene duplication using 

branch-based model in PAML (Yang 2007). EPS1-EPS6 are branches found under 

relaxed selection using branch-site random effects likelihood (REL) model in HyPHY 

(Kosakovsky et al. 2005).  

Fig. 5. Simplified chronogram of Lamiales: maximum clade credibility tree from the 

BEAST analysis. Posterior estimates of divergence times were inferred using a uced 

model, and two fossils as minimum age constraints: an Fraxinus (Oleaceae) fossil date of 
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37 Mya (calibration C1 in Oleaceae), and a Caltapa (Bignoniaceae) fossil date of 28.4 

Mya (calibration C2 in HCLI). Two additional calibration points derived from fossil 

information for the nodes: Verbenaceae/Bignoniaceae (I and II, C3 and C4) divergence 

date of 49.4 Mya.  

Fig. 6. Gene expression of CYC2-like paralogs using RT-PCR within higher core 

Lamiales and early diverging Lamiales (Syringa vulgaris). Abbreviations: ad, adaxial 

petal lobes; la, lateral petal lobes; and ab, abaxial petal lobes.  
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Figures 
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Fig. 2. 
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Fig. 3. 
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Fig. 4a. 
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Fig. 4b. 
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Fig. 5. 
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Fig. 6. 
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Supporting information 

Table S1. Sampled taxa and GenBank accession number; 

 

VOUCHER TAXON SOURCE FAMILY 
G. Yatskievych 11-73 Polypremum procumbens L. United States Tetrachondraceae 
CHW SN9 Abeliophyllum distichum Nakai Cult. MBG, United States Oleaceae 
CHW SN2 Chionanthus virginicus L. Cult. MBG, United States Oleaceae 
CIR 1757 Comoranthus minor H. Perrier Madagarscar Oleaceae 
CHW SN11 Forsythia suspensa  (Thunb.) Vahl Cult. MBG, United States Oleaceae 
CHW SN6 Fraxinus americana L. Cult. MBG, United States Oleaceae 
2011020 Jasminum angustifolium Willd. Cult. MBG, United States Oleaceae 
CHW SN7 Jasminum nudiflorum Lindl. Cult. MBG, United States Oleaceae 
2011021 Jasminum tortuosum Willd. Cult. MBG, United States Oleaceae 
CHW SN8 Ligustrum lucidum W.T. Aiton Cult. MBG, United States Oleaceae 
CHW 699 Noronhia candicans H. Perrier Cult. MBG, United States Oleaceae 
CHW SN1 Olea europaea L. Cult. MBG, United States Oleaceae 
CHW SN3 Osmanthus fragrans  (Thunb.) Lour. Cult. MBG, United States Oleaceae 
CHW SN5 Phillyrea angustifolia L. Cult. MBG, United States Oleaceae 
CHW SN4 Syringa pekinensis Rupr. Cult. MBG, United States Oleaceae 
 Syringa vulgaris L. Cult. MBG, United States Oleaceae 
    
2011015 Ruellia tweediana Griseb. MBG Acanthaceae 

2010058 Ruellia strepens L.  
Shaw Nature Reserve, United 
States Acanthaceae 

2010066 Eranthemum pulchellum Andrews Cult. MBG, United States Acanthaceae 
2010070 Schaueria calicotricha (Link & Otto) Nees Cult. MBG, United States Acanthaceae 
2010071 Hygrophila corymbosa (Blume) Lindau Cult. MBG, United States Acanthaceae 
2011006 Acanthus mollis L. Cult. MBG, United States Acanthaceae 
2011019 Crossandra infundibuliformis (L.) Nees Cult. MBG, United States Acanthaceae 
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2012004 Thunbergia erecta (Benth.) T. Anderson Cult. MBG, United States Acanthaceae 
2012035 Thunbergia mysorensis (Wight) T. Anderson Cult. MBG, United States Acanthaceae 
T.P.Prinzie 131 Avicennia germinans (L.) L. United States Acanthaceae 
A.F. Fuentes - 5307  Mendoncia aspera Ruiz & Pav. Bolivia Acanthaceae 
RAZANATSIMA - 297  Mendoncia flagellaris (Baker) Benoist Madagascar Acanthaceae 
James S. Miller - 9268  Mendoncia hoffmannseggiana Nees Suriname Acanthaceae 

2010051 Campsis radicans (L.) Bureau 
Shaw Nature Reserve, United 
States Bignoniaceae 

2012020 Amphitecna apiculata A.H. Gentry Cult. MBG, United States Bignoniaceae 
2012021 Amphitecna tuxtlensis A.H. Gentry Cult. MBG, United States Bignoniaceae 
2012022 Anemopaegma orbiculatum (Jacq.) A. DC. Cult. MBG, United States Bignoniaceae 
2012023 Bignonia capreolata L. Cult. MBG, United States Bignoniaceae 
2012024 Catalpa speciosa Warder ex Engelm. Cult. MBG, United States Bignoniaceae 
2012025 Catalpa bignonioides Walter Cult. MBG, United States Bignoniaceae 
2012026 Crescentia cujete L. Cult. MBG, United States Bignoniaceae 
2012027 Crescentia portoricensis Britton Cult. MBG, United States Bignoniaceae 
2012028 Macfadyena tweediana Griseb. ex Lorentz Cult. MBG, United States Bignoniaceae 
2012029 Markhamia lutea (Benth.) K. Schum. Cult. MBG, United States Bignoniaceae 
2012030 Martinella obovata (Kunth) Bureau & K. Schum. Cult. MBG, United States Bignoniaceae 
2012031 Melloa quadrivalvis (Jacq.) A.H. Gentry Cult. MBG, United States Bignoniaceae 

2012032 
Phryganocydia corymbosa (Vent.) Bureau ex K. 
Schum. Cult. MBG, United States Bignoniaceae 

2012033 Tabebuia impetiginosa (Mart. ex DC.) Standl. Cult. MBG, United States Bignoniaceae 
2012034 Tanaecium crucigerum Seem. Cult. MBG, United States Bignoniaceae 
2012036 Jacaranda cuspidifolia Mart. ex A. DC. Cult. MBG, United States Bignoniaceae 
2012037 Oroxylum indicum (L.) Kurz Cult. MBG, United States Bignoniaceae 
W.D. Stevens - 28076  Paragonia pyramidata (Rich.) Bureau Nicaragua Bignoniaceae 
A.F. Fuentes - 12782  Calceolaria engleriana Kraenzl. Bolivia Calceolariaceae  
A.F. Fuentes - 12761 Calceolaria rivularis Kraenzl. Bolivia Calceolariaceae  
2009001 Teucrium chamaedrys L. Cult. MBG, United States Lamiaceae 
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2009004 Stachys byzantina C. Koch Cult. MBG, United States Lamiaceae 
2009005 Mentha longifolia (L.) L. Cult. MBG, United States Lamiaceae 
2009006 Scutellaria incana Vent. Cult. MBG, United States Lamiaceae 
2009007 Scutellaria lateriflora L. Cult. MBG, United States Lamiaceae 
2009014 Lamium maculatum L. Cult. MBG, United States Lamiaceae 
2009008 Ocimum basilicum L. Cult. MBG, United States Lamiaceae 
2009019 Origanum vulgare L. Cult. MBG, United States Lamiaceae 
2009021 Holmskioldia sanguinea Retz Cult. MBG, United States Lamiaceae 
2010005 Premna fulva Craib China Lamiaceae 
2009003 Perovskia atrplicifolia Benth. Cult. MBG, United States Lamiaceae 
2009023 Pogostemon heyneanus Benth. Cult. MBG, United States Lamiaceae 
2010002 Congea tomentosa Roxb. China Lamiaceae 
2010006 Gmelina arborea Roxb.  China Lamiaceae 
2010007 Tectona grandis fo. Abludens Koord. & Valeton China Lamiaceae 
2010054 Callicarpa cathayana H.T. Chang Cult. MBG, United States Lamiaceae 
ZW19 Pogostemon cablin (Blanco) Benth. China Lamiaceae 

2010042 Agalinis tenuifolia (Vahl) Raf. 
Shaw Nature Reserve, United 
States Orobanchaceae 

2010026 Paulownia tomentosa (Thunb.) Steud. Cult. MBG, United States Paulowniaceae 
Neil W. Snow - 6857  Sesamum triphyllum Welw. ex Asch. Botswana Pedaliaceae 

2010041 Phryma leptostachya L. 
Shaw Nature Reserve, United 
States Phrymaceae 

2010043 Mimulus ringens L. 
Shaw Nature Reserve, United 
States Phrymaceae 

2010062 Scoparia sp Cult. MBG, United States Plantaginaceae 
2012038 Schlegelia parviflora (Oerst.) Monach. Cult. MBG, United States Schlegeliaceae 
2010076 Buddleja davidii Franch. Cult. MBG, United States Scrophulariaceae  
Mary Merello - 2377 Scrophularia orientalis L. Republic of Georgia Scrophulariaceae  
Mary Merello - 2244 Scrophularia variegata M. Bieb. Republic of Georgia Scrophulariaceae  

Zhong - 2011013 Scrophularia marilandica L. 
Shaw Nature Reserve, United 
States Scrophulariaceae  
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Robert M. King - 13931  Verbascum thapsus L. United States Scrophulariaceae  
2011018 Verbascum chaixii Vill. Cult. MBG, United States Scrophulariaceae  

Adam F. Bradley - 1052 
Thomandersia laurifolia (T. Anderson ex Benth.) 
Baill. Gabon, Haut-Ogooue Thomandersiaceae 

2010045 Lippia nodiflora Cham. 
Shaw Nature Reserve, United 
States Verbenaceae 

2010050 Verbena canadensis (L.) Britt.  
Shaw Nature Reserve, United 
States Verbenaceae 

2010079 Glandularia canadensis (L.) Nutt. Cult. MBG, United States Verbenaceae 
W.D. Stevens - 30011 Citharexylum schottii Greenm. Nicaragua Verbenaceae 
A. Araujo M. - 2112  Bouchea fluminensis (Vell.) Moldenke Bolivia Verbenaceae 
W.D. Stevens - 27497 Stachytarpheta calderonii Moldenke Nicaragua Verbenaceae 
W.D. Stevens - 29615  Lantana velutina M. Martens & Galeotti Nicaragua Verbenaceae 
W.D. Stevens - 29194  Lippia myriocephala Schltdl. & Cham. Nicaragua Verbenaceae 
Charlotte M. Taylor - 
11541  Junellia seriphioides (Gillies & Hook.) Moldenke Chile Verbenaceae 
Charlotte M. Taylor - 
11607  Acantholippia trifida (Gay) Moldenke Chile Verbenaceae 
W.D. Stevens - 27257  Rehdera trinervis (S.F. Blake) Moldenke Nicaragua Verbenaceae 
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Table S2. Primers used in this study. Prefix Olea- refers to primers used specifically for 

Oleaceae; likewise, PolPRE- to the species Polypremum procumbens. Other primers were 

used for all species in core Lamiales and some Oleaceae. Asterisks (*) indicate that that 

primer is paired with CYCP2R. 

Phylogenetic 

analysis Primer Sequence: 5' to 3' 

 referenc

e 

Forward   

CYCF1 AAA GAY CGV CAC AGC AA 

(Vieira et 

al., 1999) 

CYCF2 AAR GAY MGV CAY AGC AA  

Olea-CYC126F AACCCTYAATTGGCTGCTTA  

PolPRE-CYC110F THGAYAARCCRAGYAAAAC  

PolPRE-CYC562F GCR AGR GCD AGR GCD AGR GVR AG  

PolPRE-CYC27F TGGCTGCTHACAAAWTCAAG  

PolPRE-CYC57F CAGGAGCTTAAGGAGAAGAAACAA  

PolPRE-CYC87F CATGCTGGCWGYAAGACCAAT  

PolPRE-CYC178F TGGGRGCAGATTCAAARAGG  

Reverse   

CYCP2R AAT TGA TGA ACT TGT GCT GAT 

Vieira et 

al. 1999 

LCYC1R ATG AAC TTG TGC TGA TTC  

Olea-CYC693R CGTGCTGAAATCCCAATTTT  

PolPRE-CYC562R CTY BCY CTH GCY CTH GCY CTY GC  

PolyT 

GACTCGACTCGACATCGATTTTTTTTTTTTTTTT

T  

Reverse-Transcription PCR   

Forward   

SchCALCYC2BF* ATCATCACGCCTACGAATCC  

SchCALCYC2AF2 TTCTGCAGACCAAACAAAAGG  

RueSTRCYC2A1F GACCTTCAAGAAACGCTTGG  
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RueSTRCYC2A2F AGAGCAAGGGCTAGGGAAAG  

MimRINCYC2AF

* AGCAGCCTATCGTCCATTGT  

MimRINCYC2BF2 ACAAAGGAGGAGGAGCATCA  

Olea287F TTTCCAATKTGAGCCCCTC  

Reverse   

SchCALCYC2AR2 GTGATATACGCCCATGGTGAC  

RueSTRCYC2A1R AGCTGCTTGAGGCACATTTT  

RueSTRCYC2A2R TCAGCAGCAGCAGTAGCATT  

MimRINCYC2BR

2 GGCTGAAATCCCAAGATTGA   

 

 

 

 

Fig. S1. Bayesian phylogeny of constrained dataset with enforcing monophyly of HCL; 

Fig. S2. Phylogeny of CYC2-like genes (only 195 Lamiales sequences included) rooted 

with Oleaceae using RAxML with 100 bootstrap replicates; 

Fig. S3. Phylogeny of CYC2-like genes (only 154 Lamiales sequences included) rooted 

with Oleaceae using RAxML with 100 bootstrap replicates; 

Fig. S4. Results from BEAST dating analyses using uncorrelated relaxed log-normal 

clock (ucld); 

 

Fig. S1. 
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Fig. S2. 
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Fig. S3. 
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Fig. S4. 
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CHAPTER 2. STEPWISE EVOLUTION OF COROLLA SYMMETRY CYC2-LIKE 

AND RAD-LIKE GENE EXPRESSION PATTERNS IN LAMIALES  

 

Abstract – CYC2-like and RAD-like genes are needed for the development of corolla 

bilateral symmetry in snapdragon. However, what changes in CYC2-like and RAD-like 

genes correlate with the origin of corolla bilateral symmetry early in Lamiales remain 

poorly known. The asymmetrical expression of CYC2-like and RAD-like genes during 

floral meristem development could be ancestral or derived in Plantaginaceae. We 

therefore focus primarily on the expression of CYC2-like and RAD-like genes in both 

early diverging Lamiales and core Lamiales lineages. Our results show that the 

expression of CYC2-like and RAD-like genes is detected broadly in the floral meristems 

in early diverging Lamiales lineages with radially symmetrical corolla, and is restricted to 

adaxial and lateral regions only in core Lamiales. The expression pattern of CYC2-like 

genes has evolved in stepwise fashion, in that CYC2-like genes are expressed only very 

early in development in Oleaceae; persistent expression of CYC2-like in petals originated 

in the common ancestor of Tetrachondraceae and core Lamiales, and asymmetrical 

expression in adaxial/lateral petals appeared later, in the common ancestor of the core 

Lamiales. Likewise, expression of RAD-like in petals appeared in early diverging 

Lamiales or earlier; asymmetrical expression in adaxial/lateral petals then appeared in 

Plantaginaceae and Gesneriaceae. These data and published reports of CYC2-like genes 

show that asymmetrical expression of CYC2-like is likely derived and correlates with the 

origins of corolla bilateral symmetry. In contrast, the asymmetrical expression of RAD-

like genes may be unique to Plantaginaceae and Gesneriaceae lineages and is apparently 

not required for development of bilateral symmetry in general. 

Key words - CYC2-like gene, RAD-like gene, Lamiales, co-aysmmetrical expression, 

floral symmetry 
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Introduction 

Bilaterally symmetrical corollas have evolved many times during the diversification of 

flowering plants and are associated with specialized pollination and increased species 

richness (Donoghue et al., 1998; Endress, 1999, 2001; Ree & Donoghue, 1999; Preston 

& Hileman, 2009). Most members of Lamiales have flowers that are bilaterally 

symmetrical and characterized by a single axis of symmetry. The bulk of Lamiales (core 

Lamiales, CL; Fig. 1), accounting for ca. 9% of angiosperm diversity, are characterized 

by having two-lipped (bilabiate) flowers with prominent bilateral symmetry particularly 

in the petals.  The typical two-lipped flower has three distinctive types of petal: two upper 

(adaxial or dorsal) petals, two lateral petals, and a single lower (abaxial or ventral) petal. 

Corolla bilateral symmetry originated early in Lamiaes, with species in the early 

diverging grades (EDG; e.g. Plocospermataceae, Oleaceae, Tetrachondraceae) having 

radially symmetrical corolla and the majority of core Lamiales having predominantly 

bilaterally symmetrical corollas. 

The genetic basis of corolla bilateral symmetry has been studied in detail in the model 

species Antirrhinum majus (snapdragon, Plantaginaceae, Lamiales) (Luo et al., 1996, 

1999; Galego & Almeida, 2002; Corley et al., 2005).  Development of corolla bilateral 

symmetry is controlled by a genetic network including two TCP (TEOSINTE 

BRANCHED1, CYCLOIDEA [CYC] and Proliferation Cell Factor) genes CYC and 

DICHOTOMA (DICH) (Luo et al., 1996, 1999), and two MYB transcription factors 

RADIALIS (RAD) and DIVARICATA (DIV) (Galego & Almeida, 2002; Corley et al., 

2005). CYC and DICH have originated from a recent CYC2-like gene duplication in the 

tribe Antirrhineae and are functionally partially redundant (Luo et al., 1996, 1999; 

Hileman & Baum, 2003; Feng et al., 2006; Busch & Zachgo, 2007; Broholm et al., 2008). 

Expression of both genes is restricted to the adaxial and lateral regions of the flowers 

(Luo et al., 1996, 1999). Flowers of cyc/dich double mutants are radially symmetrical, 

while flowers of cyc mutants are weakly-bilaterally symmetrical or -radially symmetrical, 

and dich mutants are conspicuously bilaterally symmetrical but with less internal 

asymmetry of the adaxial petals (Luo et al., 1996, 1999). Similarly, the Arabidopsis 

CYC2-like gene (TCP1) is also expressed asymmetrically but transiently in adaxial 

regions at the floral meristem stage, even though flowers at maturity in Arabidopsis are 
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radially symmetrical. This early asymmetrical adaxial expression pattern  is thus 

hypothesized as the ancestral expression condition of CYC2-like for both rosids and 

asterids (Costa et al., 2005; Rosin & Kramer, 2009). In contrast to CYC/DICH,  the 

asymmetrical expression pattern of TCP1 does not persist during later stages of flower 

development, which may then account for radial symmetry of the corolla as in 

Arabidopsis (Cubas et al., 2001; Busch & Zachgo, 2007). Studies comparing core 

Lamiales and Arabidopsis have further shown that the acquisition of TCP II recognition 

sites in the 5’-regulatory regions of CYC2-like genes has helped form positive regulatory 

feedback loops and thus maintain CYC2-like gene expression during later floral 

developmental stages. This persistent expression of CYC2-like genes is therefore critical 

for the development of bilateral symmetry of the corolla at maturity (Cubas et al., 2001; 

Costa et al., 2005; Busch & Zachgo, 2007; Yang et al., 2012).  

CYC/DICH affect corolla symmetry mostly through their downstream target RAD, a 

transcription factor in snapdragon (Corley et al., 2005). RAD mutants have an almost 

radially symmetrical corolla and RAD expression is up-regulated by CYC/DICH.  The 

RAD protein antagonizes DIV that is thus confined to the abaxial part of the flower, and 

helps establish adaxial-abaxial asymmetry (Galego & Almeida, 2002; Corley et al., 2005). 

In contrast to Antirrhinum, RAD-like genes in Arabidopsis are not expressed in  petals or 

in the adaxial domains of floral meristems, rather, RAD-like genes are expressed in the 

development of embryos (Costa et al., 2005; Baxter et al., 2007).  The apparently distinct 

roles of RAD-like genes in Arabidopsis and snapdragon suggest that either they have 

been co-opted to interact with CYC2-like genes in snapdragon flowers, or that the floral 

function of RAD-like was lost in Arabidopsis. 

To summarize, the asymmetrical expression of CYC2-like and RAD-like genes during 

floral meristem development could either be ancestral or derived in Plantaginaceae.  It is 

also unclear whether the persistent expression of CYC2-like genes in petals correlates 

with the origin of corolla bilateral symmetry in core Lamiales, and whether the origin of 

corolla bilateral symmetry requires coupling of CYC2-like and RAD-like gene expression. 

We therefore examined CYC2-like and RAD-like gene expression in both early diverging 

Lamiales and core Lamiales lineages, following the well-supported phylogeny of the 

order Lamiales (Schäferhoff et al., 2010). We show that CYC2-like and RAD-like genes 
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are expressed throughout the floral meristem in early diverging Lamiales lineages, and 

are confined to adaxial and lateral regions only in core Lamiales. The CYC2-like 

expression pattern has evolved in stepwise fashion, in that CYC2-like genes are expressed 

only very early in development in Oleaceae; persistent expression of CYC2-like in petals 

originated in the common ancestor of Tetrachondraceae and the remainder of the 

Lamiales, and asymmetrical expression in adaxial/lateral petals appeared later, in the 

common ancestor of the core Lamiales. Likewise, expression of RAD-like in petals 

appears in early diverging Lamiales or earlier; asymmetrical expression in adaxial/lateral 

petals then appeared in Plantaginaceae and Gesneriaceae. These data and published 

reports show that asymmetrical expression of CYC2-like gene is likely derived and 

correlates with the origins of bilateral symmetry. In contrast, the asymmetrical expression 

of RAD-like genes may be unique to Plantaginaceae and Gesneriaceae lineages and is 

apparently not required for development of bilateral symmetry in general.  Finally, we 

find no evidence for a role of CYC2-like gene in the development of staminodes, but 

suggest a possible role of RAD-like gene in the development of ovules. 

 

Materials and Methods 

Plant Materials 

On the basis of the infered evolutionary history of the CYC2-like genes (Zhong and 

Kellogg, submitted) (Figure 1), we sampled two early diverging Lamiales (EDL) species 

and one species from higher core Lamiales (HCL) for the gene expression study. We also 

collected nine additional species for phylogenetic analyses of RAD-like genes 

(Supporting information, Table S1). Ligustrum lucidum (Oleaceae, EDL lineages) is 

cultivated in temperate greenhouse at the Missouri Botanical Garden (MBG) in Missouri, 

Polypremum procumbens (Tetrachondraceae) was collected in southern Missouri and is 

growing in the greenhouse at the University of Missouri-St. Louis and Mimulus ringens 

(Phrymaceae) of the higher core Lamiales (HCL) is from Shaw Nature Reserve (MBG) in 

Missouri. Materials for RNA extraction were collected in RNAlater (AMBION, USA) 

and preserved at -200C; developing inflorescences and flowers for in situ RNA 

hybridization were fixed in FAA (100 ml: 50 ml 95% Ethanol, 10 ml 37% Formaldehyde, 
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5 ml Glacial Acetic Acid, 35 ml diethylpyrocarbonate-treated distilled-H2O (DepC-

dH2O), and dehydrated in a graded series of ethanol. Total RNA was isolated using TRI 

Reagent® (AMBION, USA). Dehydrated materials further went through a graded series 

of Histo-Clear (National Diagnostics, USA) before being embedded in Paraplast (Fisher 

Scientific, USA) for sectioning. 

Gene isolation and phylogenetic analyses of RAD-like genes 

RAD-like genes were amplified with the reverse transcriptase polymerase chain reaction 

(RT-PCR) from RNA using degenerate primers (Supporting Information, Table S2) 

designed from alignments of published RAD-like sequences from Genbank.  To infer the 

evolutionary history of RAD-like genes across Lamiales, our RAD-like gene sequences 

were aligned as amino acids with those of eudicots from Phytozome 

(http://www.phytozome.net/), GenBank (http://www.ncbi.nlm.nih.gov/) and the 1KP 

database (http://218.188.108.77/Blast4OneKP/) using MAFFT incorporated in Seaview 

(Gouy et al., 2010). Aligned amino acid sequences were then converted back to 

nucleotides for phylogenetic analyses. Maximum likelihood analyses were conducted 

using PhyML (Guindon et al., 2010) (http://www.atgc-montpellier.fr/phyml/) and 

RAxML in CIPRES (Ludwig et al., 2002) with 100 bootstrap replicates under the 

GTR+I+G model selected by jModeltest (Darriba et al., 2012). 

In situ RNA hybridization 

Paralog-specific forward primers were designed from previous genomic sequences 

(Zhong and Kellogg, unpublished data). Paralog-specific forward primers were paired 

with a universal Poly-T primer (5’-

GACTCGACTCGACATCGATTTTTTTTTTTTTTTTT-3’), and were used to amplify 

parts of the coding region and 3’-untranslated region (3’-UTR) of both CYC2-like 

paralogs and RAD-like genes.  Gene (paralog)-specific forward and reverse primers 

(Supporting information, Table S2) were then designed and used to amplify the 3’-UTR 

and a small portion of the coding region (less than 100 bps). RT-PCR used SuperScript® 

III One-Step RT-PCR System with Platinum®Taq (INVITROGEN, USA) and started 

with cDNA synthesis for 30 min at 600 C, and 35 cycles of regular PCR amplification. 

Amplified products were subsequently subcloned into pGEM®-T Vector (Promega, USA) 
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and sequenced to verify the identity and direction of the inserts. Sense and anti-sense 

probes were ca. 150-400 bps long and were generated by in vitro transcription using 

MEGAscript® T7/SP6 kits (AMBION, USA) and labeled by Digoxigenin-UTP (ROCHE, 

USA).  

Expression of CYC2-like and RAD-like genes was examined using in situ RNA 

hybridization following previous protocols for plant material (Malcomber & Kellogg, 

2004). The only difference was that purified probes that were shorter than 300 bps were 

used directly for in situ RNA hybridization without hydrolysis. In situ hybridization 

results were inspected and visualized using a compound microscope (OLYMPUS BX40) 

at the Missouri Botanical Garden. Images were adjusted for brightness, contrast and color 

balance using GIMP 2.8. 

 

Results 

Phylogenetic analyses of RAD-like genes - Trees were rooted with Aquilegia coerulea 

as the outgroup. All our amplified RAD-like sequences were grouped with the 

snapdragon RAD sequence with moderate maximum likelihood bootstrap support (68%) 

(Fig. 2).  Unlike CYC2-like genes, most species in Lamiales have only one copy of RAD-

like gene except Polypremum procumbens (Tetrachondraceae), a sister taxon to core 

Lamiales, that has two copies. 

Expression of CYC2-like genes - To determine stage- and tissue-specific expression 

patterns of CYC2-like gene and RAD-like, we conducted in situ RNA hybridizations on 

several different species from both early diverging and core Lamiales lineages.  

Ligustrum lucidum (Oleaceae, EDL) has a radially symmetrical corolla and maintains 

only one CYC2-like gene copy (LlCYC). LlCYC is expressed early in the floral meristem, 

and is not limited to the adaxial region but is widely expressed throughout the floral 

meristem (Fig. 3a, b). During initiation and development of floral parts, LlCYC gene 

transcripts are slightly detected in petals, stamens, and gynoecia but not in sepals or 

subtending leafy bracts (Fig. 3c). However, LlCYC expression is gradually down-
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regulated during flower development in petals, with no detectable expression during style 

elongation and later developmental stage (Fig. 3d, e).  

Polypremum procumbens (Tetrachondraceae, EDL) also has a radially symmetrical 

corolla and is sister to core Lamiales that have bilaterally symmetrical corollas. Unlike 

Ligustrum lucidum, this species maintains two copies of CYC2-like genes (PpCYC2A and 

PpCYC2B). Similar to LlCYC expression, PpCYC transcripts are not localized in adaxial 

regions of floral meristems but are strongly detected throughout the floral meristem and 

in sepals, but not in subtending leafy bracts (Fig. 4, a-d). PpCYCs are also expressed in 

stamens and gynoecia, and in ovules (Fig. 4, c). The major difference in expression of 

CYC2-like genes in Ligustrum (LlCYC) and Polypremum (PpCYC2A and PpCYC2B) is 

that the expression of PpCYC2A and PpCYC2B is maintained during style elongation and 

later developmental stages (Fig. 4, d). 

Mimulus ringens (Phrymaceae, CL) has a bilaterally symmetrical corolla and has two 

CYC2-like genes (MrCYC2A and MrCYC2B). During the floral meristem stages, 

MrCYC2A is expressed in the adaxial region (Fig. 5a), whereas MrCYC2B is expressed 

throughout the floral meristem (Fig. 5g). After floral organ initiation, the expression of 

MrCYC2A is found exclusively in the adaxial and partly in the lateral but not in the 

abaxial petals (Fig. 5 b, c), while MrCYC2B expression persists in all petals (Fig. 5h, i).  

Expression of RAD-like genes - Expression of Ligustrum lucidum RAD-like gene 

(LlRAD) is similar to that of the LlCYC gene from early to mid-stages of flower 

development with gene transcripts being detected in all petals and stamens but not in 

subtending leafy bracts (Fig. 6, a, b, c). However, unlike LlCYC, LlRAD expression is 

detected in the early but not late development of sepals, while LlRAD expression persists 

during the later stages of flower development in petals, stamens and gynoecia (Fig. 6, d, 

e). Unlike Ligustrum lucidum, Polypremum procumbens has two copies of RAD-like 

genes (PpRAD), but these two PpRAD genes are also strongly detected in all petals, 

stamens and ovules during the flower development, and in the early development of 

sepals but not in subtending leafy bracts as that in Ligustrum (LlRAD) (Fig. 7).  
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Transcripts of the RAD-like gene from Mimulus ringens (MrRAD) are apparently not 

confined to adaxial/lateral regions as that observed for MrCYC2A but are detected in all 

petals during flower development from early to late stages (Fig. 8, a-d). 

Evolution of co-asymmetical CYC2-like and RAD-like expression in Lamiales - To 

investigate the evolution of CYC2-like and RAD-like gene expression within Lamiales, 

we used maximum parsimony character reconstruction methods in the context of the most 

recent well-resolved Lamiales phylogeny (Fig. 9) (Schäferhoff et al., 2010). We added 

our data in early diverging Lamiales species Ligustrum lucidum, Polypremum 

procumbens and higher core Lamiales species Mimulus ringens with published 

expression patterns of snapdragon CYC, DICH and RAD (Luo et al., 1996, 1999; Corley 

et al., 2005), CYC2-like and RAD-like genes in Gratiola and Veronica (Preston et al., 

2009), CYC1C, CYC1D, CYC2A and CYC2B of Primulina heterotricha (Gao et al., 2008; 

Yang et al., 2012).  

 

Discussion 

Adaxial/abaxial asymmetry of floral organs in Plantaginaceae and Gesneriaceae is the 

result of differential expression of duplicated CYC2-like genes along the adaxial/abaxial 

axis of the flower, their persistent expression in late development, and the co-option of 

RAD-like genes to roles in floral development (Luo et al., 1996, 1999; Hileman & Baum, 

2003; Corley et al., 2005; Yang et al., 2012). CYC2-like genes specify adaxial identity to 

floral parts and are important for the development of bilateral symmetry of the corolla at 

maturity; they are expressed in adaxial organs early in floral meristem development and 

their expression persists during later developmental stages  (Cubas et al., 2001; Busch & 

Zachgo, 2007, 2009; Yang et al., 2012). In addition, CYC2-like genes influence corolla 

symmetry via their downstream RAD-like targets, which help determine lateral petal 

identity. The RAD-like protein also antagonizes the transcription factor DIV, resulting in 

abaxial petal identity (Galego & Almeida, 2002; Corley et al., 2005).  

Many studies have shown that changes in the number, expression, and interaction of 

developmental genes have likely been involved in the evolution of plant form (Theissen 

et al., 2000; Hileman et al., 2003; Hileman & Irish, 2009; Preston et al., 2011; Zhang et 
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al., 2013). However, our phylogenetic analyses of CYC2-like genes showed that  

duplications of CYC2-like genes are not correlated with the evolution of bilateral 

symmetry of the corolla (Zhong and Kellogg, unpublished data). Here we primarily focus 

on the expression of CYC2-like and RAD-like genes in early diverging Lamiales and test 

whether and how the expression and interaction of developmental genes may have 

contributed to the origin of bilateral symmetry in core Lamiales. 

Evolution of CYC2-like gene expression - Our data show stepwise evolution of CYC2-

like gene expression patterns. CYC2-like genes are expressed only in the early but not 

late developmental stages in petals in the early diverging lineage Oleaceae (Fig. 3); 

subsequently, persistent expression in all petals is followed in Tetrachondraceae, the 

sister to core Lamiales (Fig. 4), and is then followed by asymmetrical and persistent 

expression in adaxial/lateral petals in lineages within core Lamiales (Fig. 5) (Luo et al., 

1996, 1999; Gao et al., 2008; Yang et al., 2012). This restricted expression of CYC2-like 

gene in adaxial/lateral petals correlates with the origin of bilateral symmetry of the 

corolla in core Lamiales. 

We find no evidence to support the hypothesis that asymmetrical expression of CYC2-

like gene during floral meristem stages is ancestral for Lamiales (Costa et al., 2005; 

Rosin & Kramer, 2009). Instead, CYC2-like gene expression is diffuse in all petals, 

stamens and the gynoecium during early developmental stages in early diverging 

Lamiales. Previous studies hypothesized that the ancestral expression pattern of CYC2-

like gene for rosids and asterids might be restricted to the adaxial floral region during 

floral meristem stages (Costa et al., 2005; Rosin & Kramer, 2009). However, sampling 

was limited mostly to species with bilaterally symmetrical corollas. Very few species 

with radially symmetrical corollas have been sampled and their CYC2-like gene 

expression remains poorly known; exceptions are Arabidopsis and species embedded 

within clades with predominantly bilaterally symmetrical corollas. Our expression data in 

early diverging Lamiales show that broad expression of CYC2-like genes throughout the 

floral meristem is ancestral for Lamiales. Recent extended examination across 

Brassicaceae shows that adaxial expression of CYC2-like genes is absent in many 

sampled Brassicaceae species with bilaterally symmetrical corollas, suggesting that the 

transient asymmetrical expression of TCP1 observed in Arabidopsis may be derived 
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independently from asymmetrical expression in other lineages (Busch & Zachgo, 2007; 

Busch et al., 2012).  

Our findings in Tetrachondraceae indicate that the persistent expression of CYC2-like 

genes could have preceded the origin of bilateral symmetry of the corolla. The transient 

expression of TCP1 (CYC2-like) in the adaxial floral meristem in Arabidopsis during 

early developmental stages and the formation of positive regulatory feedback loops in 

Gesneriaceae indicate that persistence of the adaxial expression pattern in petals during 

later developmental stages is critical for the development and evolution of bilateral 

symmetry (Cubas et al., 2001; Costa et al., 2005; Yang et al., 2012). The formation of 

positive regulatory feedback loops is key to the persistence of CYC2-like gene expression 

in petals at maturity,  which requires the acquisition of TCP binding sites in 5’-regulatory 

regions of CYC2-like genes (Kosugi & Ohashi, 2002; Yang et al., 2012). It may be that a 

similar change in the 5’-regulatory regions of CYC2-like genes in Tetrachondraceae also 

has led to the persistent expression of CYC2-like genes in this sister species of core 

Lamiales, but without the development of bilaterally symmetrical corolla. 

Expression evolution of RAD-like gene in Lamiales - Unlike CYC2-like genes, RAD-

like genes have not duplicated extensively. Among most Lamiales only one copy of 

RAD-like is preserved, except in Polypremum procumbens (Tetrachondraceae), which 

has two copies (Fig. 2). RAD-like gene expression throughout the development of ovules 

is conserved across all sampled Lamiales, but its expression in adaxial and lateral petals 

is not conserved across core Lamiales. 

RAD-like genes are expressed in all petals in early diverging Lamiales; their bilaterally 

symmetrical expression in core Lamiales correlates with the emergence of bilateral 

symmetry of the corolla. However, neither of the homologs of RAD in Arabidopsis 

(AtRL1 and AtRL2) is expressed in petals. AtRL1 is detected in total mRNA extracted 

from 20-day-old whole plants but it is not clear where it is expressed, whereas AtRL2 is 

found in the funiculus of ovules and in embryos (Baxter et al., 2007).  The evolution of 

the expression of RAD-like genes in petals may have preceded the diversification of 

Lamiales, lamiids, or even asterids. 
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Our data also support a possible role of RAD-like genes in the development of ovules as 

indicated in the expression analysis in Arabidopsis (Baxter et al., 2007).  

Evolution of co-asymmetrical expression of CYC2-like and RAD-like genes - Our 

results show that co-asymmetrical expression in adaxial and lateral petals of CYC2-like 

and RAD-like genes may be unique to Plantaginaceae and Gesneriaceae (Fig. 8) (Corley 

et al., 2005; Zhou et al., 2008; Preston et al., 2009). In snapdragon, CYC/DICH affect 

corolla bilateral symmetry mostly through their downstream targets RAD (Corley et al., 

2005). Expression of the snapdragon CYC/DICH genes in Arabidopsis and expression 

patterns of Arabidopsis RAD-like genes indicate that the co-option of interacting CYC2 

and RAD proteins in shaping corolla symmetry may have emerged in asterids but not in 

rosids (Corley et al., 2005; Costa et al., 2005; Baxter et al., 2007; Preston & Hileman, 

2009). Our data suggest that it is very unlikely that CYC2-like transcription factors induce 

the expression of RAD-like gene during development of petals in early diverging 

Lamiales because the timing of expression of the two sets of genes are so different.  In 

Ligustrum (Oleaceae), expression of LlCYC in petals is barely detectable during late 

developmental stages, whereas LlRAD is consistently strongly expressed at these stages. 

In addition, the co-asymmetrical expression of CYC2-like and RAD-like genes in 

adaxial/lateral petals is not found in Mimulus ringens (Phrymaceae).  
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Figure captions 

Fig. 1. Duplication patterns of CYC2-like genes and floral transition from radial to 

bilateral symmetry early in Lamiales. Double lines show duplications of CYC2-like gene. 

Bar depicts floral transition from radial to bilateral symmetry; Abbreviations, CL, core 

Lamiales; HCL, higher core Lamiales. 

 

Fig. 2. Phylogeny of RAD-like sequences; sequences in the shaded box are from species 

in Lamiales. Abbreviations: adaxial, ad; abaxial, ab; lateral, l; bracts, b; sepal, s; petal, p; 

stamen, st; carpel, c; g, gynoecium adaxial sepal, ads; abaxial sepal, abs; lateral sepal, ls;  

adaxial petal; abaxial petal, abp; lateral petal, lp; lateral stamen, lst; abaxial stamen, abst. 

 

Fig. 3. RNA In situ hybridization expression of CYC2-like gene of Ligustrum lucidum 

(Oleaceae) flower at different developmental stages. (a)-(e) anti-sense; (f)-(g) sense; 

Abbreviations: adaxial, ad; abaxial, ab; lateral, l; bracts, b; sepal, s; petal, p; stamen, st; 

carpel, c; g, gynoecium adaxial sepal, ads; abaxial sepal, abs; lateral sepal, ls;  adaxial 

petal; abaxial petal, abp; lateral petal, lp; lateral stamen, lst; abaxial stamen, abst. 

 

Fig. 4. RNA In situ hybridization expression of CYC2-like genes during Polypremum 

procumbens (Tetrachondraceae) flower development. (a)-(d) anti-sense; (e)-(g) sense; 

Abbreviations: adaxial, ad; abaxial, ab; lateral, l; bracts, b; sepal, s; petal, p; stamen, st; 

carpel, c; g, gynoecium adaxial sepal, ads; abaxial sepal, abs; lateral sepal, ls;  adaxial 

petal; abaxial petal, abp; lateral petal, lp; lateral stamen, lst; abaxial stamen, abst. 

 

Fig. 5. RNA In situ hybridization expression of CYC2-like genes during Mimulus ringens 

(Phrymaceae) flower development. (a)-(c) CYC2A anti-sense; (d)-(f) CYC2A sense; (g)-

(i) CYC2B anti-sense; (j)-(k) CYC2B sense; Abbreviations: adaxial, ad; abaxial, ab; 

lateral, l; bracts, b; sepal, s; petal, p; stamen, st; carpel, c; g, gynoecium adaxial sepal, ads; 

abaxial sepal, abs; lateral sepal, ls;  adaxial petal; abaxial petal, abp; lateral petal, lp; 

lateral stamen, lst; abaxial stamen, abst. 
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Fig. 6. RNA In situ hybridization expression of RAD-like gene during Ligustrum lucidum 

(Oleaceae) flower development. (a)-(e) anti-sense; (f)-(i) sense; Abbreviations: adaxial, 

ad; abaxial, ab; lateral, l; bracts, b; sepal, s; petal, p; stamen, st; carpel, c; g, gynoecium 

adaxial sepal, ads; abaxial sepal, abs; lateral sepal, ls;  adaxial petal; abaxial petal, abp; 

lateral petal, lp; lateral stamen, lst; abaxial stamen, abst. 

 

Fig. 7. RNA In situ hybridization expression of RAD-like gene during Polypremum 

procumbens (Tetrachondraceae) flower development. (a)-(c) anti-sense; (d)-(f) sense; 

Abbreviations: adaxial, ad; abaxial, ab; lateral, l; bracts, b; sepal, s; petal, p; stamen, st; 

carpel, c; g, gynoecium adaxial sepal, ads; abaxial sepal, abs; lateral sepal, ls;  adaxial 

petal; abaxial petal, abp; lateral petal, lp; lateral stamen, lst; abaxial stamen, abst. 

 

Fig. 8. RNA In situ hybridization expression of RAD-like gene during Mimulus ringens 

(Phrymaceae) flower development. (a)-(d) anti-sense; (e)-(f) sense; Abbreviations: 

adaxial, ad; abaxial, ab; lateral, l; bracts, b; sepal, s; petal, p; stamen, st; carpel, c; g, 

gynoecium adaxial sepal, ads; abaxial sepal, abs; lateral sepal, ls;  adaxial petal; abaxial 

petal, abp; lateral petal, lp; lateral stamen, lst; abaxial stamen, abst. 
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Figures 

Fig. 1.  

 

Fig. 2.  
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Fig. 3.  
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Fig. 4.  
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Fig. 5.  
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Fig. 6.  
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Fig. 7.  
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Fig. 8.  
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Supporting information 

Table S1. Species sampled for the amplification of RAD-like genes. 

VOUCHER TAXON SOURCE FAMILY 

2010070 Schaueria calicotricha (Link & Otto) 
Nees Cult. MBG, United States Acanthaceae 

2009020 Callicarpa americana L. Cult. MBG, United States Lamiaceae 
2011014 Lindernia dubia (L.) Pennell Shaw Nature Reserve, United States Linderniaceae 
2011020 Jasminum angustifolium Willd. Cult. MBG, United States Oleaceae 
CHW SN8 Ligustrum lucidum W.T. Aiton Cult. MBG, United States Oleaceae 
2011021 Jasminum tortuosum Willd. MBG Oleaceae 
2010041 Phryma leptostachya L. Shaw Nature Reserve, United States Phrymaceae 
2010043 Mimulus ringens L. Shaw Nature Reserve, United States Phrymaceae 
G. Yatskievych 11-73 Polypremum procumbens L. United States Tetrachondraceae 
2010050 Verbena canadensis (L.) Britt.  Shaw Nature Reserve, United States Verbenaceae 
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Table S2. Primers used in this study for the amplification of RAD-like genes and locus-

specific probes for CYC2-like and RAD-like genes. 

  Primer sequence: 5' to 3' 
For RAD-like gene probes  
Forward  
LigLUC-RAD-202F AGCCAAGAAAGYGATATAACGTCAG 
LigLUC-RAD-227F GGAACAAAGGATGAGGAATCTAAG 
PolPRE-RAD-169F CCCWTCCCCAACTACAGGRC 
PolPRE-RAD-146F ACYACATTGAGRGTGGTCAT 
MimRIN_Rad214F AAATGGTAACATGATCATCAAGAGG 
MimRIN_Rad174F AAGTGCCCTTCCCCAACTAC 
  
Reverse  
LigLUC-RAD-342R TCACTTTTCATATATTGCTTCCTCC 
LigLUC-RAD-337R TTCATATATTGCTTCCTCCACAGA 
PolPRE_RAD_3UTRL TGAACATKTTAMAGACAAGAAGGAA 
PolPRE_RAD_3UTRs GATCGAGAGGTAAATCAAAGSG 
PolPRE-RAD-385R ATGCTTCCTCCATAATTTAAAACCTA 
MimRIN_Rad506R TTCCATTTGACATTGAAGATTAAGA 
MimRIN_Rad483R AGATAAATGTGAAGGAAYTCAACTGC 
PolyT GACTCGACTCGACATCGATTTTTTTTTTTTTTTTT 
  
For CYC2-like gene probes  
Forward  
LigLUC334F TTCTAACGGTCACAACATTTGC 
LigLUC489F CAAACTGCAATTCTTCACCAAA 
PolPRE_CYC2_363F ACCTGATGCAACCGAGAACT 
PolPRE_CYC2A_421F GCCCTATTTGACCAGCGTTA 
PolPRE-CYC2B-643F GTCAAAAGGCACATCGAACAT 
MimRINCYC2A_700F TCACAATCCAACCTCTGTGC 
MimRINCYC2B_764F GGGATATGGTGAGCAGCTTTAC 
  
Reverse  
PolPRE-CYC2A-604R TTCCAAAAGCCAACAGGTTC 
PolPRE-CYC2B-748R GTTTCATGCCTTGGAGGTCA 
MinRINCYC2_867R CCAGACAAAGTATTACATCCTCTGA 
PolyT GACTCGACTCGACATCGATTTTTTTTTTTTTTTTT 
  
RAD-like gene 
amplification  
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Forward  
RAD40F TGG WCC GCS AAG GAR AAC AAR G 
RAD41F  GGW CCG CSA AGG ARA ACA ARG 
RAD46FA GCS AAG GAR AAC AAR GMS TTC GA 
RAD46FB GCS AAG GAR AAC AAR GMS TTC G 
RAD44FA CC GCS AAG GAR AAC AAR GMS TTC G 
RAD44FB CC GCS AAG GAR AAC AAR GMS TT 
RAD49F AAGGARAACAARGMSTTYG 
RAD88FA GACAARGACAYNCCNGANMGKTGG 
RAD88FB GACAARGACAYNCCNGANMG 
RAD149F ARG AAG TKA AGA RRC AYT AYG 
RAD152F AAG ARR CAY TAY GAA RTT CT 
RAD154F GTK AAG ARR CAY TAY GAA RTT C 
RAD217F CCCWTYCCYAAYTACAGGRC 
  
Reverse  
RAD232R CWC SRG KDG TMM TRT AST TVG G 
RAD152R TCATARTGYCTCTTVACYTCYT 
RAD154R TCR TAR TGY YTC TTN ACY TC 
PolyT GACTCGACTCGACATCGATTTTTTTTTTTTTTTTT 
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CHAPTER 3. CONVERGENT EVOLUTION OF MATURE RADIALLY 

SYMMETRICAL COROLLAS IS DUE TO DISTINCT DEVELOPMENTAL 

GENETIC TRAJECTORIES IN THE LAMIALES 

 

Abstract - Bilaterally symmetrical corollas have evolved multiple times independently 

from radially symmetrical ancestors and are thought to represent adaptations to 

pollinators. However, evolutionary losses of bilateral symmetry have occurred 

sporadically in different evolutionary lineages, either by modification of bilaterally 

symmetrical corollas in late development, or early establishment of radial symmetry. 

Here, we integrate phylogenetic, developmental and gene expression approaches to 

evaluate the possible developmental trajectories and genetic mechanisms underlying 

independent evolutionary losses of bilaterally symmetrical corollas.  We compare three 

species of Lamiales with radially symmetrical corollas and find that each reaches radial 

symmetry in a different way. In particular, the development and expression pattern of 

CYC2-like genes in Lycopus americanus are similar to those of their bilaterally 

symmetrical relatives, expanded expression of CcCYC2A correlates with the radially 

symmetrical corolla in Callicarpa cathayana, and loss of CYC2A and altered expression 

of CYC2Bs may account for the early bilateral symmetry but late radial symmetry in 

Mentha longifolia. Furthermore, expression of RAD-like genes, the downstream target of 

CYC2-like genes are not detected in Lycopus americanus or Mentha longifolia, which 

may further explain the late radial symmetry in these two species. By contrast, CcRAD in 

Callicarpa cathayana resembles the broad expression pattern in floral tissues as CYC2-

like genes. 

Key words: Convergence, Corolla symmetry, CYC2-like genes, RAD-like genes, 

Lamiaceae 
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Introduction 

The repeated evolution of similar features among distantly related lineages has 

commonly been considered evidence of adaptation to similar selective pressures. 

However, increasing evidence shows that convergent features can arise through 

developmental constraints that may produce biased phenotypic variation upon which 

natural selection can act. To address how complex traits are repeatedly gained and lost, 

we focus on the evolution of floral symmetry in the plant order Lamiales, a group that 

accounts for about 9% of angiosperm diversity. Most species of Lamiales have two-

lipped (bilabiate) corolla with a single plane of symmetry (bilateral symmetry, 

monosymmetry or zygomorphy).  The typical two-lipped flower has three distinctive 

types of petal: two upper (adaxial or dorsal), two lateral, and one lower (abaxial or 

ventral). The androecium of typical two-lipped flowers is also bilaterally symmetrical, 

with two pairs of stamens of different lengths (didynamous stamens). However, within 

core Lamiales, a number of unrelated species or genera have almost or completely 

radially symmetrical (actinomorphic or polysymmetrical) flowers. These atypical flowers 

were previously considered to be retained from radially symmetrical ancestors while 

recent phylogenetic analyses indicate it is more likely that they were derived from 

bilaterally symmetrical flowers (e.g. Donoghue et al., 1998; Endress, 2011).  

Genes required for the normal development of bilaterally symmetrical flowers have been 

identified in Antirrhinum majus L. (Plantaginaceae, Lamiales). Two closely related TCP 

genes CYCLOIDEA (CYC) and DICHOTOMA (DICH) (Luo et al., 1996, 1999) 

demarcate the adaxial part of the flower and affect the development of floral organs along 

the adaxial-abaxial axis. Flowers of cyc/dich double mutants of snapdragon are radially 

symmetrical. These two genes are expressed exclusively in the adaxial and adjacent 

lateral regions of the flowers (Luo et al., 1996, 1999). CYC/DICH affect floral bilateral 

symmetry mostly through their downstream target, RADIALIS (RAD), a MYB 

transcription factor (Corley et al., 2005). RAD mutants also have almost radially 

symmetrical flowers, and functional analyses have indicated that RAD expression is up-

regulated by CYC/DICH. Phylogenetic analyses of CYC2-like genes and RAD-like genes 

across the Lamiales show that most members within higher core Lamiales (HCL) have 
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two copies of CYC2-like genes (CYC2A and CYC2B) but have only one copy of RAD-like 

genes. In addition, CYC2A and CYC2B result from a common duplication event after the 

divergence of Plantaginaceae and HCL and exhibit relatively conserved expression 

pattern across the higher core Lamiales in that the expression of CYC2A is confined to the 

adaxial/lateral region of the flower, whereas CYC2B is expressed broadly in floral tissues 

(Zhong and Kellogg, unpublished data).  

The mechanisms underlying convergent evolutionary losses of bilateral symmetry remain 

largely unknown, though much progress has been made in Gesneriaceae, Plantaginaceae 

and Malpighiales (Zhou et al., 2008; Reardon et al., 2009; Zhang et al., 2010; Preston et 

al., 2011). The development of derived radially symmetrical mature flowers in 

Gesneriaceae and Plantaginaceae show that most mature radially symmetrical flowers 

exhibit an early asymmetrical developmental pattern along the adaxial-abaxial flower 

axis (Zhou et al., 2008; Preston et al., 2009). For example, a flower that is radially 

symmetrical at maturity may have been bilaterally symmetrical early in development 

(Zhou et al., 2008). However, it remains poorly known whether early asymmetrical 

developmental pattern along the adaxial-abaxial axis is true for all derived radially 

symmetrical flowers at maturity within core Lamiales. Thus, In order to evaluate the 

developmental and genetic mechanisms that underlie independently derived radial 

symmetry, we integrate phylogenetic, developmental and gene expression approaches 

focusing on three Lamiaceae species (Callicarpa cathayana, Lycopus americanus and 

Mentha longifolia) in which radially symmetrical flowers have evolved independently 

(Fig. 1) (Donoghue et al., 1998).   

 

Materials and Methods 

Plant Materials 

Three Lamiaceae species - Callicarpa cathayana, Lycopus americanus and Mentha 

longifolia - were sampled; all have radially symmetrical flowers at maturity. Developing 

inflorescences and flowers were collected from the greenhouse at the Missouri Botanical 

Garden (MBG) or Shaw Nature Reserve in Missouri. Materials were collected in 

RNAlater (AMBION, USA) for RNA extraction or fixed in FAA (50 ml: 25 ml 95% 
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Ethanol, 5 ml 37% Formaldehyde, 2.5 ml Glacial Acetic Acid, 17.5 ml 

diethylpyrocarbonate-treated distilled-H2O (Depc-dH2O), and dehydrated in a graded 

series of ethanol. Dehydrated materials further went through a graded series of Histo-

Clear (National Diagnostics, USA) and a subset of tissues was embedded in Paraplast for 

in situ RNA hybridization. 

Phylogenetic analyses of CYC2-like genes in Lamiaceae 

Plant leaf material from single individual plants was collected for 10 Lamiaceae species 

(Supporting information, Table S1). CYC2-like genes were isolated with multiple sets of 

degenerate primer pairs as described in a previous study (Zhong and Kellogg, 

unpublished data). Phylogenetic analyses were conducted using RAxML (Ludwig et al., 

2002) as described by previous study (Zhong and Kellogg, unpublished data). 

Scanning Electron Microscope 

FAA-fixed inflorescence tissues were dissected as necessary to reveal internal floral 

organs, and dried with a Tousimis Critical Point Dryer. Specimens were mounted on 

stubs, sputter-coated with Argon using a Tousimis Sputter Coater, and examined using a 

scanning electron microscope (Hitachi S-2600H) at Washington University-St. Louis. 

Photographs were adjusted for brightness, contrast and color balance using GIMP 2.8. 

In situ RNA hybridization 

Total RNA was isolated using TRI Reagent (AMBION, USA). Paralog-specific forward 

primers were designed from previously published genomic sequences (Zhong and 

Kellogg, unpublished data). Paralog-specific forward primers were paired with a 

universal Poly-T primer (5’- GACTCGACTCGACATCGATTTTTTTTTTTTTTTTT-3’) 

and were used to amplify parts of the coding region and the 3’-Untranslated Region (3’-

UTR) of both CYC2-like paralogs and RAD-like genes from each species.  Gene- (paralog) 

specific forward and reverse primers (Supporting information, Table S2) were then 

designed and used to amplify only the 3’-UTR and a small portion of the coding region 

(less than 100 bps). The reverse transcriptase PCR (RT-PCR) used SuperScript® III One-

Step RT-PCR System with Platinum®Taq (INVITROGEN, USA) and started with cDNA 

synthesis for 30 minutes at 600 C, and 35 cycles of regular PCR amplification. Amplified 
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products were subsequently subcloned to pGEM®-T Vector (Promega, USA) and 

sequenced to verify the identity and direction of the inserts. Sense and anti-sense probes 

were ca. 200-400 basepairs (bps) long and were generated by in vitro transcription with 

MEGAscript® T7/SP6 kits (AMBION, USA) and labeled by Digoxigenin-UTP (ROCHE, 

USA) to facilitate later antibody binding for visualization (Malcomber & Kellogg, 2004). 

Expression of CYC2-like and RAD-like genes was examined using in situ RNA 

hybridization following previous protocols for plant material (Malcomber & Kellogg, 

2004). The only difference was that purified probes were used directly for in situ RNA 

hybridization without hydrolysis. In situ hybridization results were inspected and 

visualized using OLYMPUS BX40 at the MBG. Images were adjusted for the brightness, 

contrast and color balance using GIMP 2.8.  

 

Results 

Floral development 

Flowers of Lycopus americanus are bilaterally symmetrical during the early 

developmental stages, and initiate five sepals and petals but only four stamens (Fig. 3, a-

f). The two adaxial petals are partly fused at early developmental stages and appear as 

single petal during later developmental stages (Fig. 3, d-f). The corolla shifts from early 

bilateral to late nearly radial symmetry. In addition, the paired abaxial stamens appear to 

be well developed during early stages but this development is arrested after anthesis (Fig. 

3. d-f). 

The flowers of Mentha longifolia are also bilaterally symmetrical at the early 

developmental stages of calyx initiation (Fig. 4a). In contrast, petal symmetry changes 

from almost radially symmetrical (Fig. 4b) at very early developmental stages to clearly 

bilaterally symmetrical in later flower development (Fig. 4c, d) to nearly radially 

symmetrical before anthesis (Fig. 4e, f). In addition, petal number changes during organ 

initiation and subsequent developmental stages. Five petal primordia are initiated (Fig. 4, 

b), but the two adaxial petals subsequently fuse and appear as a single adaxial petal 

during later developmental stages (Fig. 4, c, d, e). Furthermore, the adaxial stamen is 

likely initiated but not fully developed and becomes arrested at a very early stage (Fig. 4, 
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b versus c, d, f). The stamens seem to be morphologically identical before anthesis (Fig. 4, 

f). 

In contrast to the other two species, flowers of Callicarpa cathayana appear to be truly 

tetramerous with four sepals, four petals and four stamens initiated and developed. The 

calyx is bilaterally symmetrical in very early development (Fig. 5, a) but shifts to radially 

symmetry before petal initiation (Fig. 5, b). The corolla appears to be radially 

symmetrical through petal initiation to late developmental stages (Fig. 5, c-f). Aestivation 

of petals differs between Mentha and Callicarpa, and is descending-cochlear (i.e. the 

adaxial corolla lobes are outside the others in bud) versus ascending-cochlear (i.e. the 

abaxial corolla lobes are outside the others), respectively (Fig. 4, e versus 5, e). Thus 

despite their similarity in corolla symmetry at maturity, the four-petaled radially 

symmetrical corollas of Mentha and Callicarpa differ structurally and developmentally. 

Phylogenetic analyses of CYC2-like genes in Lamiaceae 

Two major clades of CYC2-like genes (CYC2A and CYC2B) in Lamiaceae are strongly 

supported (Fig. 2; pp=1.0).  Callicarpa cathayana and Lycopus americanus both have 

CYC2A and CYC2B, whereas no CYC2A was amplified for Mentha longifolia, instead, 

two copies of CYC2-like genes isolated from Mentha longifolia both fall into the CYC2B 

clade. 

Expression of CYC2-like genes 

To determine stage- and tissue-specific expression patterns of CYC2-like genes and test if 

changes in gene expression pattern correlate with floral transitions from bilateral to radial 

symmetry, we conducted in situ RNA hybridizations on all three species. 

Lycopus americanus CYC2A (LaCYC2A) is expressed in adaxial sepals early in sepal 

initiation (Fig. 6). However, the asymmetrical expression of LaCYC2A is not detected in 

later stages of flower development with apparent LaCYC2A transcripts being detectable 

in all petals (Fig. 6). In contrast to early asymmetrical expression of LaCYC2A, Lycopus 

americanus CYC2B (LaCYC2B) expression is found widely throughout the floral 

meristem at the very early developmental stages but not in subtending leafy bracts (Fig. 
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6). After floral organ initiation, LaCYC2B is later expressed in all sepals, petals, abaxial 

stamens and gynoecium but not in bracts (Fig. 6).  

The Mentha longifolia CYC2-like gene MlCYC2B1 is expressed widely during sepal 

initiation (Fig. 7). However, MlCYC2B1 expression is subsequently down-regulated in 

later stages (Fig. 7). In contrast to the early expression of MlCYC2B1 during sepal 

initiation, the other copy of Mentha longifolia CYC2-like genes MlCYC2B2 is not 

detectable in flowers in any developmental stages and appears to be expressed in the 

development of vascular tissues (Fig. 7). 

Callicarpa cathayana (Lamiaceae) has radially symmetrical flowers and maintains two 

copies of CYC2-like gene. Both copies of Callicarpa cathayana CYC2-like genes 

(CcCYC2A and CcCYC2B) are strongly expressed at the floral meristem stages, and are 

not limited to adaxial/lateral region of the flowers but are widely transcribed throughout 

floral meristem (Fig. 8). During initiation and development of floral parts, CcCYC2A and 

CcCYC2B gene transcripts are found in sepals, petals, stamens, gynoecia but not in 

subtending leafy bracts (Fig. 8). The expression of CcCYC2s persists in petals, stamens 

and gynoecia during later stages of flower development but not in sepals (Fig. 8). 

Expression of RAD-like genes 

No RAD-like gene transcripts were isolated from extracted total RNA from Lycopus 

americanus and Mentha longifolia developing inflorescences despite using multiple 

different degenerate primers derived from the conserved MYB domain. 

The Callicarpa cathayana RAD-like gene (CcRAD) resembles the expression of 

CcCYC2s. The CcRAD expression is found throughout the meristem and is not 

asymmetrical. After organ initiation, CcRAD is evidently expressed in sepals, petals, 

stamens, and gynoecia, but not in subtending leafy bracts (Fig. 9). The expression of 

CcRAD is gradually down-regulated during later developmental stages (Fig. 9).  

 

Discussion 

Our developmental data indicate that convergent evolution of corolla radial symmetry at 

maturity is produced by distinct developmental trajectories in Callicarpa cathayana, 
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Mentha longifolia and Lycopus americanus (Fig. 10). The sepals of all species initiate in 

a bilaterally symmetrical pattern in early development. While petal initiation in Mentha 

longifolia and Lycopus americanus is also bilaterally symmetrical, it is radially 

symmetrical in Callicarpa and this radial symmetry is retained throughout development 

(Fig. 5d; Fig. 10c). Thus Callicarpa achieves radial symmetry at an earlier developmental 

stage than the other two species.  In Mentha longifolia and Lycopus americanus the four-

lobed corolla is both caused by fusion of the two adaxial petals. However, the timing of 

fusion occurs at different developmental stages, with early fusion in Mentha longifolia 

and late fusion in Lycopus americanus (Fig. 4, c versus Fig. 3, d).  Therefore, corolla 

radial symmetry at maturity is structurally and developmentally different among these 

three sampled species, which in turn indicates that divergent genetic mechanisms may 

underlie superficial similarity of corolla symmetry at maturity. 

Expression patterns of CYC2A and CYC2B appear to be broadly conserved in higher core 

Lamiales (Zhong and Kellogg, unpublished data), including Lycopus americanus as 

shown here.  CYC2-like genes share a common duplication event that occurred predating 

the diversification of higher core Lamiales and expression study show that CYC2A is 

expressed asymmetrically in adaxial/lateral petals in Mimulus ringens (Phrymaceae) and 

Schaueria calicotricha (Acanthaceae), whereas CYC2B is broadly detected in all petals 

(Zhong and Kellogg, unpublished data). Our in situ hybridization data show the same 

pattern for LaCYC2A and LaCYC2B. Though the flowers of Lycopus americanus appear 

to be almost radially symmetrical at maturity, our developmental data show that early 

developmental processes of Lycopus americanus resemble the normal development of 

typical bilaterally symmetrical lipped flowers (Endress, 1999). Therefore, early 

asymmetrical expression of LaCYC2A may account for the early adaxial-abaxial 

asymmetrical development of flowers. 

The shift to floral radially symmetrical flowers from bilaterally symmetrical ancestors 

may or may not correlate with altered expression of CYC2-like genes. In contrast to early 

asymmetrical expression of CYC2A in Lycopus and other species with conspicuously 

bilaterally symmetrical flowers in higher core Lamiales, we showed that the derived 

radially symmetrical corolla in Callicarpa cathayana correlates with the expansion of the 

expression domain of CYC2A gene to the abaxial part of the flowers. Though the relative 
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roles of CYC2A and CYC2B in patterning the floral symmetry in higher core Lamiales 

clade remain functionally unknown, Mimulus ringens CYC2A is detected exclusively in 

adaxial/lateral petals in a pattern similar to Antirrhinum CYC/DICH and Primulina 

GCYC1C/GCYC1D (Zhong and Kellogg, unpublished data) (Luo et al., 1996; Yang et al., 

2012), which thus suggests a conserved role of CYC2A in shaping floral bilateral 

symmetry. Our examination of developmental processes shows that the corolla of the 

species Callicarpa cathayana is radially symmetrical throughout flower development. 

Therefore, we infer that the expanded expression of CYC2A gene to abaxial region during 

the development of flowers may account for the derived corolla radial symmetry in 

Callicarpa cathayana. 

The ectopic expression of CcCYC2A resembles in part the CYC expression pattern in 

snapdragon back-petals mutants (Luo et al., 1999) and in Cadia (Fabaceae) with radially 

symmetrical flowers at maturity (Citerne et al., 2006). However, the back-petals mutant 

in Antirrhinum majus has expanded expression of CYC2-like gene in the lateral and 

abaxial petals at late but not early stages of flower development (Luo et al., 1999). The 

developmental trajectory of Cadia flowers is different from that of Callicarpa, and seem 

to start with a bilaterally symmetrical corolla that becomes radially symmetrical flowers 

at maturity. The expanded expression in snapdragon back-petals mutant is caused by a 

transposon insertion in cis-acting region (ca. 4.2kb upstream of start codon) that normally 

down-regulates CYC transcription during the later developmental stages in wild-type 

Antirrhinum flower (Luo et al., 1999).  

Flowers of Mentha longifolia are bilaterally symmetrical early in development, however, 

no asymmetrical expression of CYC2-like genes is detected that is correlated with the 

asymmetrical growth along adaxial-abaxial plane. Two CYC2-like genes in Mentha 

longifolia (MlCYC2B1 and MlCYC2B2) were derived from a much more recent 

duplication and show different expression patterns with one being expressed broadly 

early in the development of flowers and the other being expressed probably in the 

development of vascular tissues. CYC2A appears to be absent in this species. 

Taken together, the three sampled species with reversions to radially symmetrical 

corollas at maturity show distinct developmental trajectories, different CYC2-like gene 
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number and expression of both CYC2-like and RAD-like genes. Specifically, 

development and expression pattern of CYC2-like genes in Lycopus americanus are 

similar to those of its relatives with bilaterally symmetrical corollas.  Loss of CYC2A and 

altered expression of CYC2Bs may account for the early bilateral symmetry but late radial 

symmetry in Mentha longifolia. Expanded expression of CcCYC2A correlates with 

radially symmetrical corolla in Callicarpa cathayana. Furthermore, expression of RAD-

like genes, the downstream target of CYC2-like genes, is detected neither in Lycopus 

americanus or Mentha longifolia, which may further explain the late radial symmetry in 

these two species. In contrast, CcRAD in Callicarpa cathayana is broadly expressed like 

that CYC2-like genes. 
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Figure Captions 

Fig. 1. Character evolution of corolla symmetry using simplified phylogeny of 

Lamiaceae. Species in bold and italic are three focal species for this study with radially 

symmetrical corolla at maturity. 

Fig. 2. Phylogeny of CYC2-like genes in Lamiaceae. Numbers above the branch show 

maximum likelihood bootstrap support. Sequences in red are CYC2-like genes from three 

focal species in this study. Lycopus americanus (LycopusAME) and Callicarpa 

cathayana (CallicarpaCAT) both have CYC2A and CYC2B that derived from a relatively 

ancient duplication event predating the diversification of higher core Lamiales, whereas 

Mentha Longifolia (MenthaLON) has two copies of CYC2-like genes that were all group 

with CYC2B sequences. 

Fig. 3. Flower development of Lycopus americanus with radially symmetrical flowers at 

maturity (a)-(f); the sepals in (d) were removed. Abbreviations: adaxial, ad; abaxial, ab; 

lateral, l; bracts, b; sepal, s; petal, p; stamen, st; carpel, c; g, gynoecium adaxial sepal, ads; 

abaxial sepal, abs; lateral sepal, ls;  adaxial petal; abaxial petal, abp; lateral petal, lp; 

lateral stamen, lst; abaxial stamen, abst. 

Fig. 4. Flower development of Mentha longifolia with radially symmetrical flowers at 

maturity (a)-(f); Abbreviations: adaxial, ad; abaxial, ab; lateral, l; bracts, b; sepal, s; petal, 

p; stamen, st; carpel, c; g, gynoecium adaxial sepal, ads; abaxial sepal, abs; lateral sepal, 

ls;  adaxial petal; abaxial petal, abp; lateral petal, lp; lateral stamen, lst; abaxial stamen, 

abst. 

Fig. 5. Flower development of Callicarpa cathayana with radially symmetrical flowers at 

maturity (a)-(f); Abbreviations: adaxial, ad; abaxial, ab; lateral, l; bracts, b; sepal, s; petal, 

p; stamen, st; carpel, c; g, gynoecium adaxial sepal, ads; abaxial sepal, abs; lateral sepal, 

ls;  adaxial petal; abaxial petal, abp; lateral petal, lp; lateral stamen, lst; abaxial stamen, 

abst. 



	  

86 
	  

Fig. 6. RNA In situ hybridization expression of CYC2-like genes during Lycopus 

americanus (Lamiaceae) flower development; (a)-(e) anti-sense probe of LaCYC2A; (f)-

(g) sense probe of LaCYC2A; (h)-(k) anti-sense probe of LaCYC2B; (l)-(m) sense probe 

of LaCYC2B. Abbreviations: adaxial, ad; abaxial, ab; lateral, l; bracts, b; sepal, s; petal, p; 

stamen, st; carpel, c; g, gynoecium adaxial sepal, ads; abaxial sepal, abs; lateral sepal, ls;  

adaxial petal; abaxial petal, abp; lateral petal, lp; lateral stamen, lst; abaxial stamen, abst. 

Fig. 7. RNA In situ hybridization expression of CYC2-like genes during Mentha 

longifolia (Lamiaceae) flower development; (a)-(b) anti-sense probe of MlCYC2B1; (c)-

(d) sense probe of MlCYC2B1; (e)-(g) anti-sense probe of MlCYC2B2; (h) sense probe of 

MlCYC2B2. Abbreviations: adaxial, ad; abaxial, ab; lateral, l; bracts, b; sepal, s; petal, p; 

stamen, st; carpel, c; g, gynoecium adaxial sepal, ads; abaxial sepal, abs; lateral sepal, ls;  

adaxial petal; abaxial petal, abp; lateral petal, lp; lateral stamen, lst; abaxial stamen, abst. 

Fig. 8. RNA In situ hybridization expression of CYC2-like genes during Callicarpa 

cathayana (Lamiaceae) flower development; (a)-(e) anti-sense probe of CcCYC2A; (f)-(i) 

sense probe of CcCYC2A; (j)-(k) anti-sense probe of CcCYC2B (l)-(m) sense probe of 

CcCYC2B. Abbreviations: adaxial, ad; abaxial, ab; lateral, l; bracts, b; sepal, s; petal, p; 

stamen, st; carpel, c; g, gynoecium adaxial sepal, ads; abaxial sepal, abs; lateral sepal, ls;  

adaxial petal; abaxial petal, abp; lateral petal, lp; lateral stamen, lst; abaxial stamen, abst. 

Fig. 9. RNA In situ hybridization expression of RAD-like genes during Callicarpa 

cathayana (Lamiaceae) flower development; (a)-(d) anti-sense probe of CcRAD; (e)-(f) 

sense probe of CcRAD. Abbreviations: adaxial, ad; abaxial, ab; lateral, l; bracts, b; sepal, 

s; petal, p; stamen, st; carpel, c; g, gynoecium adaxial sepal, ads; abaxial sepal, abs; 

lateral sepal, ls;  adaxial petal; abaxial petal, abp; lateral petal, lp; lateral stamen, lst; 

abaxial stamen, abst. 

Fig. 10. Summary of floral development trajectories and gene expression pattern of three 

focal species in this study. * indicate the early expression in all sepals but not in any 

petals. 



	  

87 
	  

Figures 

Fig. 1. 
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Fig. 2. 
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Fig. 3. 
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Fig. 4. 
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Fig. 5. 
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Fig. 6. 
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Fig. 7. 
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Fig. 8. 
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Fig. 9. 
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Fig. 10. 
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Supporting Information 

Table S1. Newly sampled Lamiaceae species for the amplification of CYC2-like genes 

for this study on the convergent evolution of radially symmetrical corolla. 

VOUCHER TAXON SOURCE 

2009002 Nepeta faassenii Missouri Botanical Garden 
2009020 Callicarpa dichotoma (Lour.) K. Koch Missouri Botanical Garden 
2009025 Salvia divinorum Epling & Jativa Missouri Botanical Garden 
2010003 Vitex trifolia L. Xishuangbanna, CHINA 
2010004 Callicarpa rubella var. crenata C. P'ei Xishuangbanna, CHINA 
2010016 Isodon rugosiform (Hand.-Mazz) H.Hara Kunming, Xishan, CHINA 
2010018 Isodon adenanthus (Diels) Kudo Kunming, Xishan, CHINA 
2010020 Lycopus lucidus Turcz. Kunming, KIB, CHINA 
2010040 Lycopus americanus Muhl. Shaw Nature Reserve 
2010049 Prunella vulgaris L. Shaw Nature Reserve 

 

Table S2. Primers used for the preparation of locus-specific probes in this study. 

Abbreviations: LycAME, Lycopus americanus; CalCAT, Callicarpa cathayana; 

MenLON, Mentha longifolia. 

Name Primer sequences: 5' to 3' 

Forward  

CYC2-like genes  

LycAMECYC2A_471F TGC AGC TGA TGG ATT TCG TG 
LycAMECYC2B_377F AAG CTC AAC GAA ACC AGA AAC 
LycAMECYC2B_771F TTGGGATCACCACAAGTTCA 
LycAMECYC2A_731F ATGTTTTTGGCCTCAACTCG 
MenLON619F CGTCCAAACCCCTTACAATG 
MenLON679F TCGATCACCACAAGTTCATCA 
CalCATCYC2A_441F CAGGAACACGGGTTCTGATT 
CalCATCYC2A_811F TATGCCATTTTGGATCAGCA 
CalCATCYC2B_466F CCCTCGATCCCAACTCAGTA 
CalCATCYC2B_689F TCTTGGGATTCCAGCAAAAC 
RAD-like genes  
CalCAT_RAD_183F CTACAGGACCMCCGGAGG 
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CalCAT_RAD_171F ACCCTYTCCCAACTACAGGAC 
RAD40F TGG WCC GCS AAG GAR AAC AAR G 
RAD41F  GGW CCG CSA AGG ARA ACA ARG 
RAD44FA CC GCS AAG GAR AAC AAR GMS TTC G 
RAD44FB CC GCS AAG GAR AAC AAR GMS TT 
RAD46FA GCS AAG GAR AAC AAR GMS TTC GA 
RAD46FB GCS AAG GAR AAC AAR GMS TTC G 
RAD49F AAGGARAACAARGMSTTYG 
RAD88FA GACAARGACAYNCCNGANMGKTGG 
RAD88FB GACAARGACAYNCCNGANMG 
RAD149F ARG AAG TKA AGA RRC AYT AYG 
RAD152F AAG ARR CAY TAY GAA RTT CT 
RAD154F GTK AAG ARR CAY TAY GAA RTT C 
RAD217F CCCWTYCCYAAYTACAGGRC 
  
  
  
Reverse  
RAD-like genes  
CalCAT_RAD_3UTRL GTGGAACATTATTGCTTCATTCATAC 
CalCAT_RAD_3UTRs ATTTCRAACAACATKAATTAAAAGG 
RAD152R TCATARTGYCTCTTVACYTCYT 
RAD154R TCR TAR TGY YTC TTN ACY TC 
RAD232R CWC SRG KDG TMM TRT AST TVG G 
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Supporting information 

Table S1. Sampled taxa and GenBank accession number; 

 

VOUCHER TAXON SOURCE FAMILY 
G. Yatskievych 11-73 Polypremum procumbens L. United States Tetrachondraceae 
CHW SN9 Abeliophyllum distichum Nakai Cult. MBG, United States Oleaceae 
CHW SN2 Chionanthus virginicus L. Cult. MBG, United States Oleaceae 
CIR 1757 Comoranthus minor H. Perrier Madagarscar Oleaceae 
CHW SN11 Forsythia suspensa  (Thunb.) Vahl Cult. MBG, United States Oleaceae 
CHW SN6 Fraxinus americana L. Cult. MBG, United States Oleaceae 
2011020 Jasminum angustifolium Willd. Cult. MBG, United States Oleaceae 
CHW SN7 Jasminum nudiflorum Lindl. Cult. MBG, United States Oleaceae 
2011021 Jasminum tortuosum Willd. Cult. MBG, United States Oleaceae 
CHW SN8 Ligustrum lucidum W.T. Aiton Cult. MBG, United States Oleaceae 
CHW 699 Noronhia candicans H. Perrier Cult. MBG, United States Oleaceae 
CHW SN1 Olea europaea L. Cult. MBG, United States Oleaceae 
CHW SN3 Osmanthus fragrans  (Thunb.) Lour. Cult. MBG, United States Oleaceae 
CHW SN5 Phillyrea angustifolia L. Cult. MBG, United States Oleaceae 
CHW SN4 Syringa pekinensis Rupr. Cult. MBG, United States Oleaceae 
 Syringa vulgaris L. Cult. MBG, United States Oleaceae 
    
2011015 Ruellia tweediana Griseb. MBG Acanthaceae 

2010058 Ruellia strepens L.  
Shaw Nature Reserve, United 
States Acanthaceae 

2010066 Eranthemum pulchellum Andrews Cult. MBG, United States Acanthaceae 
2010070 Schaueria calicotricha (Link & Otto) Nees Cult. MBG, United States Acanthaceae 
2010071 Hygrophila corymbosa (Blume) Lindau Cult. MBG, United States Acanthaceae 
2011006 Acanthus mollis L. Cult. MBG, United States Acanthaceae 
2011019 Crossandra infundibuliformis (L.) Nees Cult. MBG, United States Acanthaceae 
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2012004 Thunbergia erecta (Benth.) T. Anderson Cult. MBG, United States Acanthaceae 
2012035 Thunbergia mysorensis (Wight) T. Anderson Cult. MBG, United States Acanthaceae 
T.P.Prinzie 131 Avicennia germinans (L.) L. United States Acanthaceae 
A.F. Fuentes - 5307  Mendoncia aspera Ruiz & Pav. Bolivia Acanthaceae 
RAZANATSIMA - 297  Mendoncia flagellaris (Baker) Benoist Madagascar Acanthaceae 
James S. Miller - 9268  Mendoncia hoffmannseggiana Nees Suriname Acanthaceae 

2010051 Campsis radicans (L.) Bureau 
Shaw Nature Reserve, United 
States Bignoniaceae 

2012020 Amphitecna apiculata A.H. Gentry Cult. MBG, United States Bignoniaceae 
2012021 Amphitecna tuxtlensis A.H. Gentry Cult. MBG, United States Bignoniaceae 
2012022 Anemopaegma orbiculatum (Jacq.) A. DC. Cult. MBG, United States Bignoniaceae 
2012023 Bignonia capreolata L. Cult. MBG, United States Bignoniaceae 
2012024 Catalpa speciosa Warder ex Engelm. Cult. MBG, United States Bignoniaceae 
2012025 Catalpa bignonioides Walter Cult. MBG, United States Bignoniaceae 
2012026 Crescentia cujete L. Cult. MBG, United States Bignoniaceae 
2012027 Crescentia portoricensis Britton Cult. MBG, United States Bignoniaceae 
2012028 Macfadyena tweediana Griseb. ex Lorentz Cult. MBG, United States Bignoniaceae 
2012029 Markhamia lutea (Benth.) K. Schum. Cult. MBG, United States Bignoniaceae 
2012030 Martinella obovata (Kunth) Bureau & K. Schum. Cult. MBG, United States Bignoniaceae 
2012031 Melloa quadrivalvis (Jacq.) A.H. Gentry Cult. MBG, United States Bignoniaceae 

2012032 
Phryganocydia corymbosa (Vent.) Bureau ex K. 
Schum. Cult. MBG, United States Bignoniaceae 

2012033 Tabebuia impetiginosa (Mart. ex DC.) Standl. Cult. MBG, United States Bignoniaceae 
2012034 Tanaecium crucigerum Seem. Cult. MBG, United States Bignoniaceae 
2012036 Jacaranda cuspidifolia Mart. ex A. DC. Cult. MBG, United States Bignoniaceae 
2012037 Oroxylum indicum (L.) Kurz Cult. MBG, United States Bignoniaceae 
W.D. Stevens - 28076  Paragonia pyramidata (Rich.) Bureau Nicaragua Bignoniaceae 
A.F. Fuentes - 12782  Calceolaria engleriana Kraenzl. Bolivia Calceolariaceae  
A.F. Fuentes - 12761 Calceolaria rivularis Kraenzl. Bolivia Calceolariaceae  
2009001 Teucrium chamaedrys L. Cult. MBG, United States Lamiaceae 



	  

38	  
	  

2009004 Stachys byzantina C. Koch Cult. MBG, United States Lamiaceae 
2009005 Mentha longifolia (L.) L. Cult. MBG, United States Lamiaceae 
2009006 Scutellaria incana Vent. Cult. MBG, United States Lamiaceae 
2009007 Scutellaria lateriflora L. Cult. MBG, United States Lamiaceae 
2009014 Lamium maculatum L. Cult. MBG, United States Lamiaceae 
2009008 Ocimum basilicum L. Cult. MBG, United States Lamiaceae 
2009019 Origanum vulgare L. Cult. MBG, United States Lamiaceae 
2009021 Holmskioldia sanguinea Retz Cult. MBG, United States Lamiaceae 
2010005 Premna fulva Craib China Lamiaceae 
2009003 Perovskia atrplicifolia Benth. Cult. MBG, United States Lamiaceae 
2009023 Pogostemon heyneanus Benth. Cult. MBG, United States Lamiaceae 
2010002 Congea tomentosa Roxb. China Lamiaceae 
2010006 Gmelina arborea Roxb.  China Lamiaceae 
2010007 Tectona grandis fo. Abludens Koord. & Valeton China Lamiaceae 
2010054 Callicarpa cathayana H.T. Chang Cult. MBG, United States Lamiaceae 
ZW19 Pogostemon cablin (Blanco) Benth. China Lamiaceae 

2010042 Agalinis tenuifolia (Vahl) Raf. 
Shaw Nature Reserve, United 
States Orobanchaceae 

2010026 Paulownia tomentosa (Thunb.) Steud. Cult. MBG, United States Paulowniaceae 
Neil W. Snow - 6857  Sesamum triphyllum Welw. ex Asch. Botswana Pedaliaceae 

2010041 Phryma leptostachya L. 
Shaw Nature Reserve, United 
States Phrymaceae 

2010043 Mimulus ringens L. 
Shaw Nature Reserve, United 
States Phrymaceae 

2010062 Scoparia sp Cult. MBG, United States Plantaginaceae 
2012038 Schlegelia parviflora (Oerst.) Monach. Cult. MBG, United States Schlegeliaceae 
2010076 Buddleja davidii Franch. Cult. MBG, United States Scrophulariaceae  
Mary Merello - 2377 Scrophularia orientalis L. Republic of Georgia Scrophulariaceae  
Mary Merello - 2244 Scrophularia variegata M. Bieb. Republic of Georgia Scrophulariaceae  

Zhong - 2011013 Scrophularia marilandica L. 
Shaw Nature Reserve, United 
States Scrophulariaceae  
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Robert M. King - 13931  Verbascum thapsus L. United States Scrophulariaceae  
2011018 Verbascum chaixii Vill. Cult. MBG, United States Scrophulariaceae  

Adam F. Bradley - 1052 
Thomandersia laurifolia (T. Anderson ex Benth.) 
Baill. Gabon, Haut-Ogooue Thomandersiaceae 

2010045 Lippia nodiflora Cham. 
Shaw Nature Reserve, United 
States Verbenaceae 

2010050 Verbena canadensis (L.) Britt.  
Shaw Nature Reserve, United 
States Verbenaceae 

2010079 Glandularia canadensis (L.) Nutt. Cult. MBG, United States Verbenaceae 
W.D. Stevens - 30011 Citharexylum schottii Greenm. Nicaragua Verbenaceae 
A. Araujo M. - 2112  Bouchea fluminensis (Vell.) Moldenke Bolivia Verbenaceae 
W.D. Stevens - 27497 Stachytarpheta calderonii Moldenke Nicaragua Verbenaceae 
W.D. Stevens - 29615  Lantana velutina M. Martens & Galeotti Nicaragua Verbenaceae 
W.D. Stevens - 29194  Lippia myriocephala Schltdl. & Cham. Nicaragua Verbenaceae 
Charlotte M. Taylor - 
11541  Junellia seriphioides (Gillies & Hook.) Moldenke Chile Verbenaceae 
Charlotte M. Taylor - 
11607  Acantholippia trifida (Gay) Moldenke Chile Verbenaceae 
W.D. Stevens - 27257  Rehdera trinervis (S.F. Blake) Moldenke Nicaragua Verbenaceae 
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