
University of Missouri, St. Louis
IRL @ UMSL

Dissertations UMSL Graduate Works

5-17-2013

GP Representation Space Reduction Using a
Tiered Search Scheme
John Joseph Aleshunas
University of Missouri-St. Louis, jalesh@webster.edu

Follow this and additional works at: https://irl.umsl.edu/dissertation

Part of the Mathematics Commons

This Dissertation is brought to you for free and open access by the UMSL Graduate Works at IRL @ UMSL. It has been accepted for inclusion in
Dissertations by an authorized administrator of IRL @ UMSL. For more information, please contact marvinh@umsl.edu.

Recommended Citation
Aleshunas, John Joseph, "GP Representation Space Reduction Using a Tiered Search Scheme" (2013). Dissertations. 311.
https://irl.umsl.edu/dissertation/311

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Missouri, St. Louis

https://core.ac.uk/display/217322311?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://irl.umsl.edu?utm_source=irl.umsl.edu%2Fdissertation%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://irl.umsl.edu/dissertation?utm_source=irl.umsl.edu%2Fdissertation%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://irl.umsl.edu/grad?utm_source=irl.umsl.edu%2Fdissertation%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://irl.umsl.edu/dissertation?utm_source=irl.umsl.edu%2Fdissertation%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=irl.umsl.edu%2Fdissertation%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://irl.umsl.edu/dissertation/311?utm_source=irl.umsl.edu%2Fdissertation%2F311&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:marvinh@umsl.edu

GP Representation Space Reduction Using a Tiered Search Scheme

John J. Aleshunas

M.S. Computer Science, Missouri University of Science and Technology, 1994

B.S. Mathematics, Carnegie-Mellon University, 1975

A Thesis Submitted to the Graduate School

at the University of Missouri – St. Louis

In partial fulfillment of the requirements for the degree

Doctor of Philosophy in Applied Mathematics (Computer Science Option)

May 2013

Advisory Committee

Cezary Z. Janikow, Ph.D.

Chairperson

Sanjiv Bhatia, Ph.D.

Uday Chakraborty, Ph.D.

Wenjie He, Ph.D.

Copyright, John J. Aleshunas, 2013

Aleshunas, John, 2013, UMSL, p.2

Abstract

The size and complexity of a GP representation space is defined by the set of functions

and terminals used, the arity of those functions, and the maximal depth of candidate

solution trees in the space. Practice has shown that some means to reduce the size or bias

the search must be provided. Adaptable Constrained Genetic Programming (ACGP) can

discover beneficial substructures and probabilistically bias the search to promote the use

of these substructures. ACGP has two operating modes: a more efficient low granularity

mode (1
st
 order heuristics) and a less efficient higher granularity mode (2

nd
 order

heuristics). Both of these operating modes produce probabilistic models, or heuristics,

that bias the search for the solution to the problem at hand. The higher granularity mode

should produce better models and thus improve GP performance, but in reality it does not

always happen.

This research analyzes the two modes, identifies problems and circumstances where the

higher granularity search should be advantageous but is not, and then proposes a new

methodology that divides the ACGP search into two-tiers. The first tier search exploits

the computational efficiency of 1
st
 order ACGP and builds a low granularity probabilistic

model. This initial model is then used to condition the higher granularity search. The

combined search scheme results in better solution fitness scores and lower computational

time compared to a standard GP application or either mode of ACGP alone.

Aleshunas, John, 2013, UMSL, p.3

Acknowledgements

There are so many people I am indebted to for helping me complete this thesis.

I would specifically like to thank my advisor, Cezary Z. Janikow, whose knowledge,

insights, and wisdom have been invaluable at various times during the past four years. As

a strong empiricist he forced me to be clear and rigorous in my work. He tolerated my

theoretical focus and kept pulling me back to the application reality. This taught me

discipline and focus.

I want to thank my dissertation committee members, Sanjiv Bhatia, Uday Chakraborty,

and Wenjie He. Because of their diverse research interests, each has contributed

important breath to my education. I value the perspective this has given me.

I owe a large intellectual debt to Daniel St. Clair, my Master’s advisor and mentor. Dr.

St. Clair showed me the wonders of machine learning and its application to real-world

problems. He started me on this path but reached the end of his life before I began this

stage. I miss his saying, “If we knew what we were doing, we wouldn’t be able to call it

research.”

Finally, and most importantly, I want to thank my wife, Pamela Aleshunas. She

encouraged me, she supported me, and, when I had doubts, she pushed me to believe in

myself. I want to thank her so very much for her continued unwavering support in all that

I do.

Aleshunas, John, 2013, UMSL, p.4

Table of Contents

Abstract ... 2

Acknowledgements ... 3

List of Figures ... 5

List of Tables .. 7

1 Background ... 8

2 Characterization of the GP Representation Space .. 11

2.1 Strongly Typed GP ... 13

2.2 Grammar Based GP .. 13

2.3 EDA-GP ... 14

2.4 Modular Models ... 16

2.5 Meta-optimizing Semantic Evolutionary Search ... 17

3 Constrained Genetic Programming and Adaptable Constrained Genetic Programming

 19

3.1 The Operational Aspects of ACGP .. 19

3.2 The Difficulties of ACGP Search ... 26

4 Statement of Research Thesis ... 30

5 A Tiered ACGP Search Methodology .. 31

5.1 A Simple Experiment – the Bowl3neg Problem ... 31

5.2 How does this Methodology Reduce the Search Space Complexity? 40

5.3 The Structure of a Two-Tiered ACGP Search Methodology 43

5.4 An Experiment with an Ideal Search Heuristic .. 47

5.5 Two-tiered Search Applied to the Artificial Ant Problem 50

5.6 Two-tiered Search Applied to a Complex Regression Problem 58

6 Summarization and Conclusions... 65

6.1 Summarization of experimental results .. 66

6.2 Implications of the Efficacy of this Methodology .. 67

6.3 Limitations of the Specific Implementation of this Methodology 67

6.4 Future development plans .. 67

Works Cited .. 69

Aleshunas, John, 2013, UMSL, p.5

List of Figures

Figure 1 - Probabilistic incremental program evolution (adopted from [23]) 15

Figure 2 - Modular Model GP (adopted from [2]) .. 16

Figure 3 - Operational Overview of MOSES (adopted from [14]) 18

Figure 4 - Examples of 1st and 2nd Order Building Blocks ... 20

Figure 5 - ACGP versus Base GP Learning Curve for Equation (4) using a Population of

500 (from [11]) ... 21

Figure 6 – Example Solution Trees for Equation (4) (Bowl3 Equation) 22

Figure 7 – An Example Solution Tree for Equation (8) (Bowl3full Equation) 24

Figure 8 - ACGP versus Base GP Learning Curve for Equation (8) using a Population of

500... 25

Figure 9 – An Example Solution Tree for Equation (9) (ComplexEq) 27

Figure 10 – ACGP versus Base GP Learning Curve for Equation (9) using a Population

of 1000 .. 28

Figure 11 - ACGP versus Base GP Learning Curve for Equation (9) using a Population of

7000... 29

Figure 12 – An example Solution Tree for Equation (13) (Bowl3neg) 32

Figure 13 - Bowl3neg (Equation (13)) using a Population of 500 33

Figure 14 - Bowl3neg Learning Curve using a Population of 1000 34

Figure 15 - Bowl3neg Learning Curve versus a Two-tiered Search using a Population of

1000 Seeding a Population of 500 (direct transition) ... 35

Figure 16 - Bowl3neg Learning Curve using a Population of 500 versus a Two-tiered

Search using a Population of 1000 Seeding a Population of 500 (combined transition) .. 36

Figure 17 - Bowl3neg Learning Curve using a Population of 1000 versus a Two-tiered

Search using a Population of 1000 Seeding a Population of 500 (combined transition) .. 37

Figure 18 - Bowl3neg Learning Curve using a Population of 500 versus a Two-tiered

Search using a Population of 1000 Seeding a Population of 500(combined transition)

compared on a Time Scale .. 37

Figure 19 - Bowl3neg Learning Curve for a Population of 1000 versus a Two-tiered

Search using a Population of 1000 Seeding a Population of 500 (combined transition)

compared on a Time Scale .. 38

Figure 20 - 1st order ACGP Heuristic Weights Presented as an EDA Structure 41

Figure 21 – Bowl3neg Two-Tier Search (1
st
 OH to 2

nd
 OH) versus Two-Tier Search (1

st

OH to 1
st
 OH) .. 45

Figure 22 - ACGP 2nd Order Search Using an Ideal Heuristic versus Normal ACGP

Search Using a Population of 500 Individuals .. 48

Aleshunas, John, 2013, UMSL, p.6

Figure 23 - ACGP 2nd Order Search Using an Ideal Heuristic versus Normal ACGP

Search Using a Population of 1000 Individuals .. 49

Figure 24 - The Santa Fe Trail for the Artificial Ant Problem .. 51

Figure 25 – An Example Solution Tree for the Artificial Ant Problem (Santa Fe Trail) . 52

Figure 26 - Artificial Ant Learning Curve (population 1000) ... 53

Figure 27 - Artificial Ant Learning Curve (population 2000) ... 54

Figure 28 - Artificial Ant Learning Curve using a Population of 2000 versus the Two-Tier

Method using a Population of 2000 seeding a Population of 1000 54

Figure 29 - Artificial Ant Learning Curve using a Population of 1000 versus the Two-Tier

Method using a Population of 2000 seeding a Population of 1000 55

Figure 30 – Artificial Ant Two-Tier Search (1st OH to 2nd OH) versus Two-Tier Search

(1st OH to 1st OH) .. 56

Figure 31 - Artificial Ant Learning Curve using a Population of 1000 versus the Two-Tier

Method using a Population of 2000 seeding a Population of 1000 compared on a time

scale... 56

Figure 32 - Artificial Ant Learning Curve using a Population of 2000 versus the Two-Tier

Method using a Population of 2000 seeding a Population of 1000 compared on a time

scale... 57

Figure 33 - ComplexEq Average Fitness Curve (population 5000) 59

Figure 34 - ComplexEq Average Fitness Curve (population 10,000) 60

Figure 35 - ComplexEq Average Fitness Curve using a Population of 5000 versus Two-

Tier Scheme using a Population of 10,000 seeding a Population of 5000 61

Figure 36 - ComplexEq Average Fitness Curve using a Population of 10,000 versus Two-

Tier Scheme using a Population of 10,000 seeding a Population of 5000 62

Figure 37 - ComplexEq Average Fitness Curve using a Population of 5000 versus Two-

Tier Scheme using a Population of 10,000 seeding a Population of 5000 compared on a

time scale .. 62

Figure 38 - ComplexEq Average Fitness Curve using a Population of 10,000 versus Two-

Tier Scheme using a Population of 10,000 seeding a Population of 5000compared on a

time scale .. 63

Aleshunas, John, 2013, UMSL, p.7

List of Tables

Table 1 – GP Representation Space Growth……………………………..…..…….…....11

Table 2 – GP Representation Space Growth (4 versus 5 binary functions)……..............12

Table 3 – GP Representation Space Growth (4 binary functions versus 3 binary

+ 1 tertiary functions)………………….…………………….…...….12

Table 4 – GP Operational Parameters……………………………………………....……22

Table 5 – Comparison of Average Execution Times……………………….…….…..….35

Table 6 – Comparison of Average Execution Times (Bowl3neg)…..…..………...….….39

Table 7 – Bowl3neg Execution Time Sample Significance (p-values)...………..........…39

Table 8 – Comparison of Average Fitness Scores (Bowl3neg)……..………….....…..…40

Table 9 – Bowl3neg Fitness Score Sample Significance (p-values)……..........................40

Table 10 – Initial ACGP 1
st
 Order Heuristic Weight Matrix…….……..……...…….….41

Table 11 – Example ACGP 1
st
 Order Heuristic Weight Matrix…...……………...…….42

Table 12 – Example Ideal ACGP 1
st
 Order Heuristic Weight Matrix….………........….47

Table 13 – Comparison of Average Execution Times (Bowl3neg - with Perfect

heuristic)…...………………………………………………….….….49

Table 14 – Bowl3neg Execution Time Sample Significance versus Perfect Heuristic (p-

values).………………………………………………………...….….50

Table 15 – Comparison of Average Fitness Scores (Bowl3neg - with Perfect

heuristic)…………………………………………………….…....….50

Table 16 – Bowl3neg Fitness Score Sample Significance versus Perfect Heuristic (p-

values)…………………………………………………..……....……50

Table 17 – Comparison of Average Execution Times (Artificial Ant)……….…….....…57

Table 18 – Artificial Ant Execution Time Sample Significance (p-values)………...…....57

Table 19 – Comparison of Average Fitness Scores (Artificial Ant)………………..…....58

Table 20 – Artificial Ant Fitness Score Sample Significance (p-values)……………..….58

Table 21 – Comparison of Average Execution Times (ComplexEq)………….….……..63

Table 22 – ComplexEq Execution Time Sample Significance (p-values)…...……....…..63

Table 23 – Comparison of Average Fitness Scores (ComplexEq)…………………....…64

Table 24 – ComplexEq Fitness Score Sample Significance (p-values)…………….……64

Aleshunas, John, 2013, UMSL, p.8

Dissertation

1 Background

Problem solving is a central theme in mathematics and computer science. Individuals

devote considerable effort to the development of algorithms for automated problem

solving. Deterministic algorithms work well when the problem space is tractable or the

search space lends itself to a deterministic guided search. Once the search space gets

large, deterministic methods experience time and processing costs that overwhelm them

[16]. Heuristic search techniques are potentially more efficient and productive in these

situations [4], [16]. Heuristic search of very large and complex problem domains using

concepts from Darwin’s theory of evolution offers an interesting option. Many evolution-

based search methodologies are inspired by the selection behavior and survival outcomes

in nature. As early as 1948, Turing proposed “genetical or evolutionary search” [4].

Today there are multiple nature-inspired types of evolutionary computation (EC):

evolutionary programming, genetic algorithms (GA), evolutionary strategies,

evolutionary computing, and genetic programming (GP). All of these techniques are

based on the Darwinian principles and evolve a set of candidate solutions guided by a

fitness evaluation function.

The GP methodology differs from the other evolutionary computation schemes. Where

most of the EC methods are typically applied to optimization problems, GP applications

are more similar to machine learning [4]. The goal of a GP application is to evolve a set

of computer programs and automatically improve them based on their fitness to

accomplish a given task [3]. In other words, a GP application is an evolutionary search

method that is adept at solving optimal instruction set problems [12]. A GP

implementation strives to improve a set of computer programs using feedback from

experiences with problem domain data.

Genetic programming often represents its population of candidate solutions as variable-

sized trees. This choice of representation is mainly due to the early GP research work of

John Koza [12] and this discussion will assume this solution model. The solution trees in

GP applications are composed of elements from a predetermined set of functions and

terminals. The function set consists of the operators, functions, and statements of the GP

problem domain [12]. The members of the function set have some number of arguments.

Members of the set of functions and terminals can be assigned to these argument

locations. The terminal set consists of the constants supplied to the GP application and

the variables representing data inputs [12]. These components are called terminals

because they have no arguments, as functions do, and only appear in the leaf nodes of the

population trees [3].

Several principles guide the choice of functions and terminals for a particular GP

implementation. It is important that the set of functions and terminals be complete

enough to represent a solution to the given problem [12]. This is referred to as the

sufficiency property. If a necessary function or terminal is missing, the GP

implementation may have difficulties finding a solution or only be able to find

Aleshunas, John, 2013, UMSL, p.9

suboptimal solutions. On the other hand, if the set of functions and terminals are too large

it will generate a large and complex search space thereby impeding the probability of

finding a viable solution. Finally, it is assumed that the members of the functions set

accept any member of the function or terminal sets as valid arguments to avoid problems

with invalid labelings [12]. This is called the closure property [3]. While this property is

preferred, it cannot always be accommodated. Closure is not a problem when the

members of the set of functions and the output values of the functions in the function set

are all the same data type. If different data types are used in a GP application then

constraints or other rules are necessary to support the closure property [12].

Solutions are evolved from existing population members using genetic operators such as

crossover, mutation, and reproduction. Crossover generates new solutions by exchanging

genetic material, or subtrees, between two parent solutions. This process can be both

constructive and destructive [12], [13]. When the operator combines simpler elements

into a more successful complex structure, it is constructive. Crossover can also tear apart

successful solutions. This latter behavior is destructive and can inhibit the search process.

Mutation randomly modifies a sub-tree of a solution to create a new candidate solution.

Like crossover, mutation can be both constructive and destructive [12], [13]. Normally,

crossover and mutation are controlled using uniform probabilities and therefore they

comprise an unbiased genetic search. Some methods that depart from this model result in

interesting GP behavior. Reproduction is the simplest GP operator. It copies a selected

individual into the new population unchanged [3], [12].

Selection is the principal driver in most GP implementations [3], [12]. This mechanism

chooses fit population members for participation in the generation of the next population

of solutions and induces a bias toward fitter solutions. Selection works best when the

fitness function provides graded and continuous evaluation of how well the GP search is

progressing [3]. Fitness proportional selection exerts a strong fitness bias to the search

process. Other selection schemes, such as tournament selection, moderate this bias, often

in order to mitigate problems associated with premature convergence on a suboptimal

solution [3]. The choice of selection method as a parameter can be used to improve the

quality of the search and the fitness results of a conventional GP implementation for a

given problem.

The search quality and fitness results of a conventional GP application can vary with

different choices for a number of parameters, not just selection. Often these parameter

choices differ from problem to problem [12]. Some typical parameters whose adjustment

can potentially impact GP search are: population size, selection method, operator

probabilities, and initial and maximal tree size [3]. A larger population of candidate

solutions increases the diversity of genetic material available at the cost of computing

resources. Population diversity should help breed better candidate solutions sooner.

Selection methods, such as tournament selection, that are not as greedy as fitness

proportional selection prevent premature convergence and maintain diversity in the

population of candidate solutions [3], [4]. Some problems cannot be described by smaller

tree structures. Adjusting the minimum tree size for the initial population reduces the

number of potential unfit or invalid solutions and potentially increases the number of

viable solutions in the population [3]. Normally, fitness evaluation is the most

computationally intensive operation in a GP application. Often fitness samples are

Aleshunas, John, 2013, UMSL, p.10

designated as a percent of the total population size. This value can be adjusted when large

populations are used in a GP implementation to prevent oversampling. This adjustment

can improve fitness convergence in large populations [3]. While proper set of parameters

can improve GP search for specific problems, this benefit often imposes offsetting

computational or storage costs and does not directly address the underlying issue – the

size and complexity of the representation search space.

The next chapter will identify a foundational issue that impacts GP performance – size

and complexity of the representation space, along with a survey of the several proposed

methods to deal with those issues by using or building some problem models. Chapter 3

will identify another method that this research attempts to improve, along with

identifying the cases when it fails to deliver. Then, Chapter 4 proposes a new strategy to

improve that method by using a two-tiered approach. The next chapter details the new

strategy and illustrates its effectiveness with a number of experiments. Finally, Chapter 6

presents the conclusions of the research presented here along with a discussion of topics

where future research work is required.

Aleshunas, John, 2013, UMSL, p.11

2 Characterization of the GP Representation Space

One critical issue with GP application design is the selection of the members of the

function and terminal sets. These sets should be complete enough to be able to adequately

represent a correct solution for the problem. Unfortunately, if these sets include too many

elements, the representation space becomes so large that the search of this large space

impacts the performance of the GP application [3]. Methods that can help discover the

best subset of functions and terminals thereby reducing this representation space should

improve the performance and solution quality of a GP implementation.

My previous work [10] quantified the combinatorial growth of the representation space in

terms of the function elements, the terminal elements, the arity of the functions, and the

maximum number of levels permitted in population individuals.

Equation (1) recursively calculates the size of the total set of trees from one level of

nodes up to a maximum size identified by the variable level. This space contains every

combination of the functions F, the terminals T, and the arity of each function arityFi for

every tree of depth 1 up to the stated maximum depth. The size for a set of zero-size trees

(only root nodes) is simply the magnitude of the terminal set and these are normally not

viable solutions for any non-trivial problem. Experimentation with this equation quickly

demonstrates that the population for this representation space will grow exponentially for

a given set of functions and terminals as the maximum level of trees is increased. As an

example of the scope of this problem, Table 1 lists the population growth for a GP

component set using four binary functions and 14 terminals.

Table 1 - GP Application Representation Space Growth

Level Population Size

1 1.29 x 103

5 8.07 x 1058

10 4.96 x 101903

15 8.49 x 1060936

20 2.46 x 101950000

It is easily seen that the extremely large search spaces defined by large multi-level trees

normally used in GP applications complicate our solution search. Genetic algorithms do

not display as high a level of complexity as GP applications because they have a simpler

alphabet of components (normally only two characters), position specific semantics, and

they often use fixed-sized population members.

Table 2 compares the growth of the representation space for a GP application using four

binary functions and 14 terminals versus another GP implementation using five binary

functions and 14 terminals. The inclusion of only one more binary function has an impact

on the representation space growth which increases as the maximal tree level is increased.

This table implies that if the set of functions and terminals is reduced to a minimal set the

Aleshunas, John, 2013, UMSL, p.12

resulting representation space will be smaller than that generated by any super set of

functions and terminals.

Table 2 - GP Application Representation Space Growth (4 versus 5 binary functions)

Level 4 Functions 5 Functions

1 1.29 x 103 1.81 x 103

5 8.07 x 1058 4.38 x 1061

10 4.96 x 101903 1.61 x 102026

15 8.49 x 1060936 2.13 x 1064860

20 2.46 x 101950000 1.41 x 102075553

Table 3 compares the representation space size of a GP implementation using four binary

functions and 14 terminals versus another GP implementation using three binary

functions plus one tertiary function and 14 terminals. The substitution of the tertiary

function for one of the binary functions has a highly significant impact on the size of the

resulting representation space. This table implies that if the set of functions and terminals

is reduced to a minimal set using functions with fewer arguments rather than more

arguments, the resulting representation space will be smaller than the space generated by

any set of functions that include higher arity functions. If the results of a higher arity

function can be generated by combinations of lower arity functions it is computationally

simpler to not use the higher arity function. Clearly, any reduction in the elements of the

function set or terminal set can help reduce the representation search space.

Table 3 - GP Application Representation Space Growth (4 binary functions versus 3 binary + 1 tertiary

functions)

4 Binary 3 Binary + 1 Tertiary

Level Functions Functions

1 1.29 x 103 6.80 x 103

5 8.07 x 1058 3.40 x 10310

10 4.96 x 101903 1.33 x 1075459

15 8.49 x 1060936 1.49 x 1018336567

The discussion above about the GP application representation search space ignores some

specific attributes of the search space components that can help reduce the complexity

and thereby improve the GP search. One technique that can help constrain the size of the

search space is restricting the solution generation process so that it can only generate

semantically valid individuals for the given problem. One such validation technique

utilizes the argument type requirements for the member functions to constrain which

functions or terminals are valid as child nodes. Some functions require specific types of

functions or terminals in particular argument locations. An example of such a function is

the logical IF function. Normally IF is defined as a function with three arguments: the

first argument requires a Boolean function or terminal, the other two arguments can

normally be any function or terminal. Restricting which functions or terminals are

selected for the first argument to the IF function can guarantee that only valid solutions

are generated by a GP application. There may be a need to impose additional constraints

on the operation of a GP application, this notion of enforcing particular GP

Aleshunas, John, 2013, UMSL, p.13

implementation structure constraints is the concept behind Strongly Typed GP and

Grammar-Based GP.

2.1 Strongly Typed GP

Strongly Typed GP (STGP) strives to satisfy the GP closure requirement by constraining

the selection of functions and terminals in a GP solution based on their data type for

particular argument locations [20]. In STGP, every terminal is assigned a type and every

function has types assigned to each of its arguments and its return value. These types then

help constrain the random selection of functions and terminals so that only valid solutions

are generated. These type constrains govern the initial generation of population members,

locations and subtrees involved in crossover, and subtree generation for mutation.

The STGP methodology is effective in improving the GP search because computational

resources are not wasted on evaluating invalid solutions. Another positive aspect of these

structural constraints is that they reduce the effective search space. The search space is

reduced to only the valid solutions that can be constructed from the set of functions and

terminals. For specific sets of functions and terminals, this space reduction can be

significant. Consider the impact of STGP constraints on the search space size

computation in Equation (1). The equation assumes that every function and terminal

component is valid at any location in an individual tree. The STGP rules constrain which

function and terminal components are valid for a given parent node function and the

particular parent node function argument these components describe. These rules

constrain both the initial trees and how operators generate new trees so that only valid

trees are generated. Many of the individual trees that an unconstrained Equation (1)

would count are not included in the search space of a STGP. The argument type rules are

normally set prior to the start of the GP search for many STGP implementations [20].

This requirement is more of a reality of this technique rather than a limitation.

2.2 Grammar Based GP

Similar to STGP, Grammar-based GP implementations were developed to constrain the

structure of generated solutions so that only valid solutions are generated and evaluated

[15], [20], [24]. The most common grammar formalism is context-free grammars (CFG)

[23]. Grammars are a natural way to express solution generation constraints. A grammar

consists of a set of rewrite or production rules that govern the combinations of function

and terminals. Here is an example of a grammar that enforces the structure for a

particular GP problem:

These grammar production rules ensure that the initial population consists of only valid

individuals. Additionally, these rules guide the process of the GP operators of crossover

and mutation. The extra cost of processing these rules is offset by the elimination of

Aleshunas, John, 2013, UMSL, p.14

invalid solutions in the grammar-based GP search space and the resulting search space

can be significantly smaller than the space generated by random permutations of the

selected function and terminal sets for a given GP problem. This smaller search space

consisting of only valid structures helps improve the search process of a grammar-based

GP.

When the constraints of a grammar are considered in the context of Equation (1), the

reduction of the representation space complexity is clear. The equation assumes that

every function and terminal component is valid at any location in an individual tree. The

grammar rules dictate which function and terminal components are valid for a given

parent node function and the particular parent node function argument these components

describe. Many of the individual trees that an unconstrained Equation (1) would count are

not included in the search space of a CFG-GP.

Originally, CFG-GP required that the grammar rule sequence be specified prior to

execution of the GP search [23]. This restriction can impose a potential negative

limitation on the GP search, and possibly ignore an optimal solution, when more than one

set of the grammar rules is valid or when the grammar is unknown. Stochastic context-

free grammar (SCFG) is an approach that attempts to avoid this restriction [23]. In a

SCFG the production rules are stipulated in advance in a specific production sequence,

similar to CFG. The difference in SCFG is that each rule is assigned a probability.

Normally these probabilities start as a uniform distribution and the rules are applied in the

original sequence to produce individual solutions for a population. As future GP

implementation generations are evaluated, the production rule probabilities are adjusted.

These probability adjustments bias the sequence of production rules toward a sequence

that produces fitter individuals and modify the sequence of the production rules. SCFG

offer adaptability in the probabilities of the set of production rules but inferring an SCFG

is a difficult problem [23]. Most current SCFG methods are based on a greedy search

scheme.

2.3 EDA-GP

Estimation of distribution algorithm GP (EDA-GP) is another approach to resolving the

complexity of the GP representation search space [23]. EDA-GP models the search space

as a probability distribution and is based on EDA which were developed to solve genetic

algorithm problems. Probabilistic incremental program evolution (PIPE) is an example of

an EDA-GP technique [17], [19], [20], [21]. PIPE replaces the GP population with a

hierarchy of probability tables organized into a tree structure (see Figure 1). Each table

represents the probability that a particular function or terminal will be chosen for that

particular location in a newly generated individual solution.

PIPE simplifies the representation space search problem by not directly searching the

representation space [17]. It generates a sample of search space using the probability

model, updates the probability distribution based on the fittest solutions in this sample,

and repeats this process until a stopping criterion is met. In each generation, individual

solutions are bred using the probability tables at each node. A function or terminal

primitive is chosen for a particular location based on that node’s probability table. Once a

sample population is generated, the fitness of these new programs is computed. Finally,

the probability table hierarchy is updated using the sample population fitness. The goal of

Aleshunas, John, 2013, UMSL, p.15

this process is to make the future generation of highly fit solutions more likely. In PIPE

each node is treated as an independent random variable. PIPE attempts to learn the

probability of particular functions at particular locations in the tree and therefore will

ignore other potentially successful solutions as the options for particular nodes emerge

[17].

Figure 1 - Probabilistic incremental program evolution (adopted from [23])

While PIPE avoids a direct struggle with the GP representation space complexity, there

are several nuances of this methodology that should be noted. The probability table

hierarchy tree must be sized large enough to capture the depth of a viable solution tree.

Next, each node’s probability table must include a probability value for every function of

terminal in the set of primitives for the GP problem. Finally, the branches from each node

to its child nodes are dominated by the arity of the function with the highest arity [17].

All of these three structural requirements must be stipulated at the start of the GP search

and together they impose a different form of complexity in the operation of PIPE.

One advantage of the PIPE methodology is that each node probability table is localized

within the hierarchal tree of probability tables. This means that each individual function

or terminal can have a different probability depending on its depth or location in the tree.
One outcome of this behavior is that functions are more probable higher in the tree and

terminals are more probable as the tree’s depth increases [20].

The search space defined by Equation (1) assumes that every function and terminal

component is valid at any location in an individual tree and has a non-zero probability of

being selected. PIPE (and most EDA-GP) alters the selection probability of the function

and terminal components for each node in an individual tree but normally does not

restrict a component from being selected by reducing this probability to zero. This

behavior means that while some individuals may have a higher probability of being

generated, any individual in the entire search space can still be generated. The complexity

of the representation search space is probabilistically constrained, similar to SCFG, rather

than being physically constrained as in STGP and CFG-GP.

The individualized nature of the selection process at each node is also a limitation of

PIPE. Since the functions and terminals are selected for each node independent of any of

the other nodes, PIPE cannot capture any dependencies among the elements in the

function and terminal set. Another limitation of this methodology stems from the

requirement that the probability table hierarchy tree must be sized large enough to

capture the depth of a viable solution tree. This requirement imposes a physical memory

Aleshunas, John, 2013, UMSL, p.16

cost to store the probability table hierarchy tree [20] and the cost quickly increases as the

maximal tree size and function arity increases.

2.4 Modular Models

Highly complex objects in biological or engineering domains often use hierarchical,

modular structures to mitigate their complexity. This concept is easily adapted to GP

solution structures and has been a topic of early research in genetic programming.

The building block hypothesis [3] asserts that highly fit building blocks combine to form

highly fit individuals in the GP population from one generation to another. These highly

fit components are threatened by the destructive effects of the crossover operator. Early

work by Koza [12] proposed the modularization of program code or a subtree into an

automatically defined function (ADF). With ADF, a GP implementation can evolve

potentially reusable components that are available for use in GP population individuals.

Recombination operators are constrained within ADF so that an ADF subtree is swapped

only with another individual’s ADF subtree [20].

ADF have shown success in several problem domains and they provide a performance

advantage when the introduction of functions will sufficiently reduce the length of

solutions in a population. A limitation of ADF is the requirement to define the

architecture of an individual program prior to executing a GP implementation using ADF.

The ADF architecture must stipulate the number of function-defining branches in the

whole program and the number of arguments for each function-defining branch. This

requirement increases the set of initial parameters for the GP application and the

complexity of the process.

Figure 2 - Modular Model GP (adopted from [2])

This concept of modular models was extended by Angeline and Pollack [2]. In their

approach, each module is stored in a library of modules and referenced in the individuals

of the GP population. Modules that provide a fitness advantage will be referenced more

frequently as the number of fit individual solutions increases. Modules that are no longer

referenced probably contribute little to the fitness of individuals and can be culled from

Aleshunas, John, 2013, UMSL, p.17

the library. This technique can help constrain the physical storage needed for the

population of solutions but adds a third category of node components – a set of function

modules. Figure 2 shows an example where a subtree is converted to a reusable module.

If these additional function modules are considered in Equation (1) along with the set of

functions and terminals, the complexity of the representation space can be described by

Equation (2).

This equation can be simplified. Some modules will not have any arguments and

terminate a tree branch similar to the formal terminals. These modules can be combined

with the terminals to form an augmented terminal set . Other modules have arguments

and can be combined with the original functions to form an augmented function set .

These augmented sets produce this reformulation of Equation (1).

While Equation (3) resembles Equation (1), its results are in fact different because the

augmented set of functions and terminals reduce the number of levels necessary in

candidate solution trees. Overall, modular models have several advantages. They can

discover building blocks that contribute to the fitness of individual trees and encapsulate

them in the module library for reuse. They also protect those building blocks as modules

from the destructive effects of crossover and mutation. These advantages are offset by the

augmented set of functions and terminals described by Equation (3) and the additional

work of searching for modules.

2.5 Meta-optimizing Semantic Evolutionary Search

Another probabilistic approach was proposed by Looks [14]. The meta-optimizing

semantic evolutionary search (MOSES), while not a GP methodology, is an evolutionary

process that attempts to find optimal programs by optimizing the representation space of

a given problem. The operation of MOSES is based on the premise that if an optimal

representation space is defined for a given programming problem, a solution should be

easily found. MOSES attempts to refine the representation space parameters for a given

problem using the Hierarchical Bayesian Optimization Algorithm (hBOA) [18]. Some

examples of these representation space parameters that MOSES tries to optimize are: the

set of functions and terminals, numerical constants that modify the behavior of a

function, weighted combination of terminals rather than use of a single terminal, or

relative weighting of the arguments of a function.

The operation of MOSES is a repeating two stage process shown in Figure 3. Starting

with an initial representation space parameterization, MOSES generates the initial

population of programs. It then chooses a set of highly fit programs as a sample for

representation analysis. The representation analysis step uses the competent optimization

Aleshunas, John, 2013, UMSL, p.18

algorithm hBOA to refine representation space parameters. These new parameters are

used to generate new candidate programs that are added to the population; possibly

replacing less fit programs. These stages of sampling, representation refinement, and

population renewal are repeated until an optimal program is generated.

Figure 3 - Operational Overview of MOSES (adopted from [14])

While not a typical genetic programming methodology, MOSES is relevant to this

discussion because of its process of representation space refinement. Its operation is

designed around the concept that optimization of the representation space will eliminate

the generation of non-productive individuals and thereby improve the ease of finding an

optimal solution. By optimizing the representation space, MOSES reduces the size of the

searched regions of the representation space. This search space reduction improves the

methodology’s search capabilities and the quality of the search results.

Each of the GP variants discussed above utilizes constraint techniques to either constrain

or condition the GP representation space and thereby improve learning. Strongly typed

GP and context-free grammar GP use explicit constraints that are specified prior to

beginning the GP search process. Stochastic context-free grammar GP and estimation of

distribution GP develop probabilistic constraints/models as the GP search progresses.

Modular models attempt to discover highly fit components and foster their reuse as

learning proceeds. Meta-optimizing semantic evolutionary search attempts to optimize

the parameters that define the representation space and thus improve the GP search of

that space. The next chapter will explore and detail operations of another similar

methodology, Adaptable Constrained Genetic Programming, which can use explicit

constraints and also build a probabilistic model. This methodology will be analyzed and

then extended here.

Aleshunas, John, 2013, UMSL, p.19

3 Constrained Genetic Programming and Adaptable Constrained

Genetic Programming

Constrained Genetic Programming (CGP) [5] is a method that attempts to constrain the

components and combinations of functions and terminals used in a particular GP

application. CGP was originally developed to ensure that only valid solutions were

generated in a GP search by designating which functions and terminals were valid for any

given function argument position. The permissible, and/or prohibited, arguments are fed

to CGP at start up and applied unchanged throughout an execution. These constraints can

be either strong (absolute) constraints or weak (probabilistic) constraints. Strong CGP

constraints stipulate which functions or terminals can be used (or not used) in a particular

argument location. Weak CGP constraints assign probabilistic weights for each function

and terminal in particular argument locations. Later empirical work [9] demonstrated that

when proper CGP constraints are used, the GP application conducts a more efficient

search and solves the problem at hand faster. The limiting factor of this method was that

any reduction in the set of functions and terminals presented to start a CGP run required a

trial and error discovery process as shown by Janikow and Mann [9]. CGP was then

extended into Adaptable Constrained Genetic Programming (ACGP) [7], [8] so that the

process of discovering which functions and terminals and which combinations of

functions and terminals were needed to better solve a particular GP problem could be

automatically discovered during an ACGP run.

3.1 The Operational Aspects of ACGP

This description of the operation of ACGP is more detailed than the discussion of the

previous methods. The search methodology described in this dissertation is an

improvement of ACGP therefore an understanding of ACGP’s operation is necessary to

appreciate of the proposed methodology.

Initially, ACGP tracks and adjusts the probability that a particular function or terminal

component will be used in a given function argument location. This is done separately for

the root location, and for all other locations independent of position. These heuristics

capturing the probability of function and argument pairs are tracked in ACGP frequency

tables. These frequencies are then used to update the actual probabilities.

The basis for the methodology that tracks and adjusts these heuristics is grounded in the

GP Building Block Hypothesis [13]. The GP Building Block Hypothesis asserts that GP

operators induce fit low-order building blocks to combine and form higher-order building

blocks, eventually converging to optimum or near-optimum solutions. While this is an

appealing concept, it is criticized from the basis that the fitness of individual building

blocks cannot be normally assessed outside of the context of a whole solution [13]. This

behavior is caused by the inability to decompose most problems into subcomponents

whose fitness can be directly measured. ACGP uses a methodology that infers the fitness

of individual building blocks without actually computing that fitness [6]. During the

heuristic assessment processing, ACGP tabulates the frequency of each building block in

the fittest population individuals. It uses an assumption that those building blocks that are

highly frequent in fit solutions contribute to the fitness of those solutions. The tabulated

frequency counts are then used to adjust the heuristic weights that govern the selection

that a particular building block will be used – the frequencies can be used as new

Aleshunas, John, 2013, UMSL, p.20

probabilities, but in practice the frequencies are slowly combined with previous weights

to modify the probabilities.

Figure 4 - Examples of 1st and 2nd Order Building Blocks

Those heuristics that appear frequently in highly fit population members are reinforced

and all other heuristics are suppressed. As these probabilities are adjusted, the search

space is probabilistically constrained and thus the search is also constrained. ACGP has a

set of operating parameters that control the rate of adjustment. As mentioned, adjustments

can be applied at a constant rate or using a linearly increasing rate. Initially ACGP

worked with 1
st
 order heuristics: the probability of a function or terminal will be chosen

for one of a function’s arguments (block (a) in Figure 4) [7]. 1
st
 order ACGP discovered

better information of the beneficial structures in the representation space versus a

standard GP while also being computationally efficient [8], [9]. This concept was later

extended to work with 2
nd

 order heuristics: the probability a combination of functions or

terminals will be chosen to be the set of arguments of a parent function (block (b) in

Figure 4) [11]. 2
nd

 order ACGP increases the granularity of beneficial structure

information but this improvement comes at the cost of additional computation and

storage [10], [11]. Further extension of this method to 3
rd

 order or greater heuristics is

plagued by the combinatorial issues discussed in [10] and are therefore computationally

infeasible or at least ineffective.

Once the heuristic weights are adjusted, ACGP can generate an entirely new population

with a regrow operator using these improved heuristics. This new regrow operator,

introduced in ACGP [6], enhances the problem space search by restarting the population

with an improved set of solutions. An additional benefit of the regrow is the suppression

or minimization of introns and solution bloat [11]. Each new population is regrown using

the starting tree size parameters for the specific GP problem implementation. Each

heuristic assessment cycle continues to refine and improve the heuristic weights. These

improving weights are used for, and bias the operation of, crossover, mutation, as well as

regrow thereby making ACGP behavior in line with SCFG and different than a normal

GP application where crossover and mutation are uniformly random rather than biased.

A simple designed regression example will help illustrate the advantages of ACGP. The

Bowl3 equation (Equation (4)) is intentionally designed to demonstrate ACGP search

versus a standard GP. Additionally, its building block design highlights the informational

advantage 2
nd

 order ACGP has over 1
st
 order ACGP. Figure 5 shows how well ACGP

improves over a base GP implementation using either 1
st
 order heuristics or 2

nd
 order

Aleshunas, John, 2013, UMSL, p.21

heuristics. This example problem shows the fitness results averaged for 30 independent

runs solving a regression problem for the equation:

The training length for all three techniques in these experiments spans 500 generations.

The downward spikes visible in the 1
st
 order and 2

nd
 order ACGP curves are caused by

the regrowing of the population following the recurring heuristic assessment process at

stipulated iterations (every 20 generations, in this example). The regrown populations

exhibit better and better initial fitness following the regrow operation because each

successive cycle uses a better set of heuristic selection weights.

The informational learning advantage that ACGP has over a standard GP is clear. As 1
st

order ACGP discovers better heuristics, the heuristic information helps bias crossover,

mutation, and regrow to use better building block combinations and therefore build better

candidate solutions. The larger heuristics in 2
nd

 order ACGP increase its information

regarding better building block combinations and productive search regions in the GP

representation space. This additional information helps improve 2
nd

 order ACGP search

and thereby its candidate solutions as seen in Figure 5.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

2
1

0

2
2

0

2
3

0

2
4

0

2
5

0

2
6

0

2
7

0

2
8

0

2
9

0

3
0

0

3
1

0

3
2

0

3
3

0

3
4

0

3
5

0

3
6

0

3
7

0

3
8

0

3
9

0

4
0

0

4
1

0

4
2

0

4
3

0

4
4

0

4
5

0

4
6

0

4
7

0

4
8

0

4
9

0

5
0

0

Fi
tn

e
ss

Generation

Bowl3 Learning Curve
population = 500, generations = 500

2nd OH
1st OH
Base

Figure 5 - ACGP versus Base GP Learning Curve for Equation (4) using a Population of 500 (from [11])

Aleshunas, John, 2013, UMSL, p.22

All of the GP searches in the experiments shown in Figure 5 above used the following

operational parameters:

Table 4 - GP Operational Parameters

Function set (protected divide)

Terminal set {x, y, z, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}

Population size 500

Generations 500

Operators
crossover 85%, mutation 10%, reproduction 5%,

regrow 100% at each iteration

Iteration length 20 generations

Selection method Tournament, using a tournament size of 7

Number of

independent runs
30

Fitness

sum of square errors on 100 random data points in the

range -10 to 10 adjusted to a range of 0 to 1 with 1

being best (When tracing fitness, the best solution at

each generation from the 30 independent runs was

averaged)

ACGP heuristic

adjustments

Made using a linearly increasing rate based on the

analysis of fittest 10% of the population. The rate is

such that after x% of generations, the observed

frequencies replace x% of the previous probabilities.

This is referred to as a sloped training.

All of the experiments in this document use the same parameters as listed in Table 4. Any

variations will be identified in the discussion of the particular experiment.

Figure 6 – Example Solution Trees for Equation (4) (Bowl3 Equation)

Aleshunas, John, 2013, UMSL, p.23

Figure 6 depicts an example of a minimal solution trees for this problem. Since the

solution equation uses only variable-structure functions (‘+’ and ’*’), multiple tree

structures yield equivalent fitness evaluations.

Equation (4) (Bowl3) was specifically designed for this experiment because it is a good

exemplar of the benefits of ACGP search - it possesses a particular building block

structure in its target equation. This structure emphasizes the advantage of 2
nd

 order

heuristics over 1
st
 order heuristics. The simplicity of this regression example makes it

easy to demonstrate the search advantages incorporated in ACGP. The target equation is

composed of ten desirable 1
st
 order building blocks:

This notation shows each 1
st
 order building block enclosed by braces. The parent function

is on the left. The subscript of the parent function designates the argument location. The

child element at the given argument location is designated on the right. For example,

{+1*} means + function having its 1
st
 (left) argument labeled with the ‘*’ function. The

1
st
 order building blocks in Equation (5) implicitly describe thirteen 2

nd
 order building

blocks:

This notation shows each 2
nd

 order building block in infix form enclosed by braces. The

parent function is in the middle of the set of elements. It is flanked on either side by its

children. However, not all of these implicit 2
nd

 order building blocks are desirable for our

regression solution to Equation (4). Only six of these implied building blocks are

necessary to form fit solutions (using the minimum solution trees in Figure 6):

ACGP running only in 1
st
 order mode processes 2

nd
 order heuristics implicitly by putting

together its 1
st
 order heuristics, but the actually desired 2

nd
 order heuristics can be

different yet impossible to generate in the 1
st
 order mode. This differential between the

2
nd

 order building blocks implied by the 1
st
 order building blocks and the explicit

desirable 2
nd

 order building blocks needed for fit solutions is the informational advantage

2
nd

 order ACGP has over 1
st
 order ACGP. Additionally, this differential is also reflected

in both the 1
st
 order and the 2

nd
 order ACGP heuristic probabilities.

As an example, consider the heuristics for function ‘*’ and argument x. There are three

possible building blocks for the first argument of ‘*’ and three building blocks for the

second argument of ‘*’ (using the image in Figure 6) but only one of each has x.

Assuming perfect heuristic probabilities, the two 1
st
 order building blocks (and

) will each have an ideal heuristic probability of 0.333 in 1
st
 order ACGP. When

Aleshunas, John, 2013, UMSL, p.24

running in 1
st
 order ACGP, the implied 2

nd
 order building block , produced by

putting together the above two 1
st
 order heuristics, will have a combined implicit

probability of 0.111. When the explicit 2
nd

 order building blocks are considered directly

in 2
nd

 order ACGP, appears once out of three explicit ‘*’ building blocks;

therefore the explicit 2
nd

 order heuristic will actually have an ideal heuristic

probability of 0.333 in 2
nd

 order ACGP search. This heuristic probability differential

(implied with 0.111 versus explicit with 0.333) emphasizes the informational advantage

of 2
nd

 order ACGP over 1
st
 order ACGP. This differential is quite large and it shows

when both modes are compared in Figure 5.

This is an interesting observation that can be verified by experimenting with another

regression problem that does not exhibit any differential. Consider the equation:

Equation (8) is an interesting counter example for this discussion. This equation is

constructed such that it is composed of the same ten desirable 1
st
 order building blocks

that define Equation (4) (shown in Equation (5)). These 1
st
 order building blocks combine

to imply the same thirteen 2
nd

 order building blocks as Equation (4) (shown in Equation

(6)). The difference between Equation (8) and Equation (4) is that all of these implied 2
nd

order building blocks are actually desirable for our regression solution to Equation (8)

and there is no information differential between the 2
nd

 order building blocks implied by

the desired 1st order building blocks and the actual explicit 2
nd

 order building blocks in

Equation (8).

Figure 7 – An Example Solution Tree for Equation (8) (Bowl3full Equation)

Figure 7 depicts an optimal solution tree for the Bowl3full problem (Equation (8)). Since

the solution equation uses only variable-structure functions (‘+’ and ‘*’), multiple tree

structures yield equivalent fitness evaluations. The desired building blocks should be

easily discovered and, because of the variable-structure functions in the optimal solution,

they can appear freely in the candidate solutions with equivalent fitness scores. All of the

GP searches in the experiments shown in Figure 8 used the same operational parameters

identified in Table 4.

Consider the same heuristics for function ‘*’. Using the example solution in Figure 7,

there are three 1
st
 order building blocks for the first argument of ‘*’

() and three 1
st
 order building blocks for the second argument of

‘*’ (). Assuming perfect heuristic probabilities, the two 1
st
 order

heuristics for the variable x (and) will each have and ideal heuristic

Aleshunas, John, 2013, UMSL, p.25

probability of 0.333 in 1
st
 order ACGP. Combining these two 1

st
 order building blocks to

form the implied 2
nd

 order building block produces again a combined heuristic

probability of 0.111. When the explicit 2
nd

 order building blocks are considered directly

in 2
nd

 order ACGP, appears once out of nine explicit ‘*’ building blocks,

therefore the explicit 2
nd

 order heuristic will actually have an ideal heuristic

probability of 0.111 in 2
nd

 order ACGP search. This lack of heuristic probability

differential (implied with 0.111 versus explicit with 0.111) shows zero informational

advantage of 2
nd

 order ACGP over 1
st
 order ACGP. This lack of an information

differential between the implicit and explicit 2
nd

 order building blocks would predict that

2
nd

 order ACGP should have no advantage over 1
st
 order ACGP.

Figure 8 shows the fitness learning curve for Equation (8) averaged over 30 independent

runs. The ACGP methodology retains its advantage over a basic GP implementation

because it discovers and adjusts the selection probabilities of the desirable 1
st
 and 2

nd

order building block. Compared to Equation (4) and Figure 5 these 1
st
 and 2

nd
 order

ACGP results show two important differences:

 As speculated above, due to lack of differential, there is no difference between the

two modes in solving the problem (other than initially)

 ACGP does not do as well with Equation (8) compared to its results with

Equation (4)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

2
1

0

2
2

0

2
3

0

2
4

0

2
5

0

2
6

0

2
7

0

2
8

0

2
9

0

3
0

0

3
1

0

3
2

0

3
3

0

3
4

0

3
5

0

3
6

0

3
7

0

3
8

0

3
9

0

4
0

0

4
1

0

4
2

0

4
3

0

4
4

0

4
5

0

4
6

0

4
7

0

4
8

0

4
9

0

5
0

0

Fi
tn

e
ss

Generations

Bowl3full Fitness Curve
population = 500, generations = 500

2nd OH

1st OH

Base

Figure 8 - ACGP versus Base GP Learning Curve for Equation (8) using a Population of 500

While successful in its current configuration, ACGP, like other GP methods, can have

difficulties finding a solution to problems with complex structure. Assuming some

differential does exist, the 2
nd

 order mode should perform better than the 1
st
 order mode,

but they both may suffer due to specific problem characteristics – these building blocks

may now be harder to find.

Aleshunas, John, 2013, UMSL, p.26

3.2 The Difficulties of ACGP Search

Most functions used in GP applications can be organized into two general classes of

function types: variable-structure functions and strict-structure functions. Variable-

structure functions are functions where the order of the arguments does not change the

result of the function’s evaluation. Examples of variable-structure functions are:

arithmetic addition, multiplication and logical AND and OR. A GP solution composed of

variable-structure functions can evaluate to the same fitness value using many different

structure permutations. Strict-structure functions, in contrast, evaluate to different values

if the order of the arguments is changed. ACGP’s heuristic adjustment mechanism can

both exploit and be deceived by the strict tree structure dictated by strict-structure

functions. The efficacy of the heuristic adjustment process is dependent on the density of

quality candidate solutions in the sample used to analyze the building blocks. The goal of

the ACGP heuristic adjustment mechanism is to increase the selection probability of fit

building blocks and suppress the probability that less fit building blocks are selected.

Unfortunately, as stated in the previous chapter, the fitness of individual building blocks

cannot be determined separately from the fitness of the individual population member.

The ACGP heuristic adjustment mechanism is based on an assumption that if a building

block occurs frequently in fit population members then it possibly contributes to the high

fitness of those individuals and therefore it is assumed to be a fit building block [6], [7],

[11]. This assumption driving the ACGP heuristic adjustment mechanism works well

when relatively fit solutions are sampled for heuristic adjustment. The analysis and

adjustment process is more successful when the target solution consists of primarily

variable-structure functions which therefore have a higher probability of sampling highly

fit solutions. Alternatively, when the target solution consists of more strict-structure

functions, the structure of a highly fit candidate solution becomes more rigid and there is

a lower probability of ACGP sampling a fit solution for heuristic analysis. When ACGP

samples solutions with poor fitness it continues to bias the heuristic weights based on the

discovered building block frequencies. Regrettably, these highly frequent building blocks

are not the elements of fit solutions and therefore their heuristics will induce potentially

random solutions and not fit solutions.

As an example, consider the regression problem for the following equation:

While this problem is more complex than Equation (4), it also differs structurally by the

inclusion of the ‘–‘ function as well as variable-structure functions (‘+’ and ‘*’), and

scalar constants. This equation is designed to demonstrate a specific evolutionary search

induced by complex types of problems. This function induces a rigid structure on part of

the solution tree. This rigid tree structure requires the positioning of large subtrees in

specific locations of a successful candidate solution (Figure 9) while ACGP does not deal

with specific locality of its heuristics.

Aleshunas, John, 2013, UMSL, p.27

Figure 9 – An Example Solution Tree for Equation (9) (ComplexEq)

The structural complexity of Equation (9) is also reflected in both the 1
st
 order and 2

nd

order building blocks that create a viable candidate solution. Equation (9) is composed of

seventeen desirable 1
st
 order building blocks:

These 1
st
 order building blocks combine to describe thirty-nine implicit 2

nd
 order building

blocks:

Not all of these building blocks are desirable for a GP regression solution to Equation (9).

Only twenty-one 2
nd

 order building blocks are necessary to form fit solutions:

Consider the ‘*’ heuristics for the variable x in an example solution such as Figure 9.

There are six unique building blocks for the first argument of ‘*’

() out of nine total first argument building

blocks. There are four unique building blocks for the second argument of ‘*’

() out of nine total second argument building blocks.

Aleshunas, John, 2013, UMSL, p.28

Assuming perfect heuristic probabilities, the two 1
st
 order building blocks for the variable

x () will each have an ideal heuristic probability of 0.111 and 0.333 in

1
st
 order ACGP. Combining these two 1

st
 order building blocks to form the implied 2

nd

order building block (processed in 1
st
 order), produces a combined heuristic

probability of 0.037. When the explicit 2
nd

 order building blocks are considered directly

(Figure 9), appears once out of nine explicit ‘*’ building blocks, therefore the

explicit 2
nd

 order heuristic will actually have an ideal heuristic probability of

0.111 in 2
nd

 order ACGP. This small heuristic probability differential (implied with 0.037

versus explicit with 0.111) shows a slight informational advantage of 2
nd

 order ACGP

over 1
st
 order ACGP. This small differential between the implicit 2

nd
 order building

blocks and the explicit 2
nd

 order building blocks would indicate an informational

advantage for ACGP while using 2
nd

 order heuristics in learning Equation (9). However,

something else happens in the experiment.

Figure 10 shows the fitness learning curve for Equation (9) using a population of 1000

individuals with averaged fitness scores of 30 independent runs for a base GP, 1
st
 order

ACGP, and 2
nd

 order ACGP. While the fitness scores are not impressive (note the

modified y-axis scale), the base GP application outperforms both ACGP methods, and

due to bad performance we cannot see any potential advantage of 2
nd

 order ACGP.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

2
1

0

2
2

0

2
3

0

2
4

0

2
5

0

2
6

0

2
7

0

2
8

0

2
9

0

3
0

0

3
1

0

3
2

0

3
3

0

3
4

0

3
5

0

3
6

0

3
7

0

3
8

0

3
9

0

4
0

0

4
1

0

4
2

0

4
3

0

4
4

0

4
5

0

4
6

0

4
7

0

4
8

0

4
9

0

5
0

0

Fi
tn

e
ss

Generation

ComplexEq Learning Curve
population = 1000, generations = 500

2nd OH

1st OH

Base

Figure 10 – ACGP versus Base GP Learning Curve for Equation (9) using a Population of 1000

The relatively small population of this experiment and the low probability of sampling fit

solutions work against ACGP’s ability to discover desirable heuristics regardless of mode

or differential. Even with a population of weak solutions, ACGP will tabulate the most

frequent building blocks and enhance their probability of selection [1]. Unfortunately,

without a sample of good solutions, this behavior becomes deceptive. ACGP will

continue to tabulate the most frequent building blocks, irrespective of their contribution

to solution fitness, and adjust their heuristic probabilities accordingly. These poor

heuristics lead the ACGP search toward poor solutions and this behavior explains the

ACGP fitness results in Figure 10.

Aleshunas, John, 2013, UMSL, p.29

Increasing the population size is a normal parameter modification that can improve the

GP search for a problem like this one. As mentioned in Chapter 1, using a larger

population is a typical method used to increase the population diversity and potentially

produce a sample of viable solutions. Figure 11 shows the learning curve for Equation (9)

using a population of 7000 individuals with averaged fitness scores of 30 independent

runs. Both modes of ACGP now outperform the base GP application but 2
nd

 order ACGP

still does not perform better than 1
st
 order ACGP despite the stated small differential. The

increase in the population size helps ACGP sample better solutions. It is not a surprising

result that a larger GP population will sample potentially better solutions for heuristic

analysis [22]. The fact that the 2
nd

 order ACGP does not outperform 1
st
 order ACGP is an

interesting observation – while we know it should. While this larger population provides

a good sample of solutions for both ACGP modes, the population increase is not

sufficient here to allow 2
nd

 order ACGP to utilize its differential to outperform 1
st
 order

ACGP. Further increasing population size will decrease efficiency especially due to

slower performance of 2
nd

 order ACGP (further discussed later). What is clearly needed

is a method to utilize higher population with the more efficient 1
st
 order ACGP

discovering useful coarser granularity heuristics and then using this information to bias

the 2
nd

 order ACGP to utilize the differential.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

2
1

0

2
2

0

2
3

0

2
4

0

2
5

0

2
6

0

2
7

0

2
8

0

2
9

0

3
0

0

3
1

0

3
2

0

3
3

0

3
4

0

3
5

0

3
6

0

3
7

0

3
8

0

3
9

0

4
0

0

4
1

0

4
2

0

4
3

0

4
4

0

4
5

0

4
6

0

4
7

0

4
8

0

4
9

0

5
0

0

Fi
tn

e
ss

Generation

ComplexEq Learning Curve
population = 7000, generations = 500

2nd OH

1st OH

Base

Figure 11 - ACGP versus Base GP Learning Curve for Equation (9) using a Population of 7000

Aleshunas, John, 2013, UMSL, p.30

4 Statement of Research Thesis

Consider a simple thought experiment. Before leaving the house, a man goes searching

for his coat. He will assign some search areas a higher search priority than others; based

on how likely successful he believes they will be based on, for example, past searches.

While two high-priority search areas may be physically distant from each other, he treats

them as being adjacent, skipping over the low-probability areas between them. This

methodology reduces the complexity of his search space and helps him find his jacket

quicker.

This thought experiment, practiced over the years in many Artificial Intelligence

approaches, suggests a method to find and promote desirable building blocks in an ACGP

search. The quality of a search can be improved if it is constrained by a probabilistic map

of the search space that reflects a productive search history, much like the search for a

jacket described above. The characteristics of each ACGP mode suggest an operating

scheme that can capitalize on the advantages of both modes of ACGP and mitigate their

shortcomings.

Normally, the ACGP search starts with uniform probability of each heuristic and is

dependent on the quality of the solutions in the sample of individuals under ACGP

analysis. 1
st
 order ACGP is less deceived by complex or strict structured problems than

2
nd

 order ACGP because it searches for lower granularity building blocks. This advantage

stems from the smaller number of 1
st
 order building blocks versus the larger number of

2
nd

 order building blocks for a given set of functions and terminals. This lower

complexity translates into a more computationally efficient search for 1
st
 order ACGP.

On the other hand, 2
nd

 order ACGP offers a means of exploiting any granularity

differential. A two-tiered search methodology using the two ACGP operating modes can

exploit the advantages of each mode and mitigate their disadvantages. The first tier would

search the representation space using 1
st
 order ACGP. This search will result in a

probabilistic map of the 1
st
 order heuristics. The heuristic map will bias the use of

productive building blocks and discourage the use of less productive ones when it is used

to bias the 2
nd

 order ACGP search in the second tier of the method. The second tier search

should be more efficient and attain better results because it starts in a pre-conditioned

state that is biased toward more efficient regions of the representation space.

The goal of this research will be the improvement of ACGP learning using a two-tiered

search process. This method will develop a probabilistically constrained model of the

representation search space using a less granular 1
st
 order ACGP search in an initial

phase. Then it will use that model to discover a highly fit solution using a more granular

2
nd

 order ACGP search on the constrained space. This two-tiered scheme should improve

the combination of computational efficiency and fitness learning quality over standard 1
st

order or 2
nd

 order ACGP alone.

Aleshunas, John, 2013, UMSL, p.31

5 A Tiered ACGP Search Methodology

The discussion in Chapter 1.1 demonstrated mathematically that the complexity of a GP

search space is a function of the set of functions and terminals selected to develop a

solution and the reduction of this set will reduce this complexity and improve the search

process. While this statement appears to be a simple solution that can reduce the search

space complexity, there is a problem in choosing which function or terminal components

can be removed or its probability adjusted. Normally, the fitness of individual

components cannot be easily evaluated in isolation from complete individual solutions.

Without some method of evaluating the contribution of individual components to the

overall fitness of candidate solutions, component pruning will be a blind process.

The description of ACGP in Chapter 3 demonstrated that ACGP can discover desirable

1
st
 order and 2

nd
 order building blocks. After conducting normal GP training for a set

interval of generations (an iteration), ACGP adjusts the probability of the selection of

particular building blocks for use in crossover, mutation and regrow. This method to

promote the use of desirable building blocks conversely reduces the probability of using

non-desirable building blocks. This building block probability adjustment process

develops a probabilistic map of the representation search space that is biased toward

some solution structures and against others. ACGP 2
nd

 order heuristics, when successful,

provide more granular information about the desirable building block structures for a

given problem [11]. This differential advantage over ACGP 1
st
 order heuristics is offset

by longer computation time, increased data structure storage and processing requirements

[10], and difficulties to properly sample the larger set of heuristics result in a potential to

underperform ACGP 1
st
 order heuristics in complex problems as demonstrated in the

discussion of Chapter 3.2.

Since ACGP allows the input of a heuristic profile to condition it’s starting heuristics

prior to initiating the search, a proposed tiered search methodology seems to be a possible

option that could improve ACGP search. All of the experiments using this two-tier

scheme will use the ACGP parameters described in Table 4 unless noted otherwise. Each

baseline set of experiments using the base GP application, 1
st
 order ACGP, and 2

nd
 order

ACGP will be run using two different population sizes. One population will match the

larger population size of the 1
st
 tier processing. The other population will match the

smaller size of the 2
nd

 tier processing. The rationale for these population sizes is

explained in Chapter 5.3 following a small proof-of-concept experiment to demonstrate

the proposed methodology.

5.1 A Simple Experiment – the Bowl3neg Problem

While previously shown Equation (9) demonstrates how a strictly structured target

solution makes the GP search more difficult, its complexity induces several issues that

combine to mask any problems that ACGP may have in a particular search. A simpler

problem designed to exhibit strict structural behavior without additional complexity may

help illuminate the nuances of ACGP search. Equation (13) (Bowl3neg) is a variation of

previous Equation (4) designed to specifically demonstrate a strict structure solution

isolated from the benefits of ACGP search. Equation (13) differs from Equation (4) by

substituting ‘–‘ for ‘+’.

Aleshunas, John, 2013, UMSL, p.32

Figure 12 depicts an example optimal solution tree for this problem. Since this target

equation includes ‘–‘ as well as a variable structure function (‘*’), different tree structures

will yield different fitness evaluations. The use of a strict-structure function restricts the

structure of viable solution trees and forces the other subtree structures into specific

locations in a viable candidate solution.

Figure 12 – An example Solution Tree for Equation (13) (Bowl3neg)

Equation (13), like Equation (4), is designed to be a good exemplar of the benefits of

ACGP search because it possesses the same particular building block structure

differential that emphasizes the advantage of 2
nd

 order heuristics over 1
st
 order heuristics

found in Equation (4). The primary difference between this equation and Equation (4) is

the substitution of the ‘–‘ function for the ‘+’ function in this equation. This substitution

imposes a strict structure that limits the number of possible tree permutations that have a

top fitness score. Like Equation (4), this equation is composed of ten desirable 1
st
 order

building blocks:

Similar to Equation (4), these 1
st
 order building blocks combine to produce thirteen

implicit 2
nd

 order building blocks:

Not all of these 2
nd

 order building blocks are desirable for our regression solution to

Equation (13). Only six of these building blocks are necessary to form a fit solution,

which mimics the behavior of Equation (4).

Aleshunas, John, 2013, UMSL, p.33

The differential between the 2
nd

 order building blocks implied by the 1
st
 order building

blocks and the explicit desirable 2
nd

 order building blocks is the informational advantage

2
nd

 order ACGP has over 1
st
 order ACGP.

The 1
st
 and 2

nd
 ACGP heuristic probability analysis for this problem is similar to the

analysis of the Bowl3 problem (Equation (4)). Consider the ‘*’ heuristics for the variable

x. There are three building blocks for the first argument of ‘*’ and three building blocks

for the second argument of ‘*’ in the optimal solution tree in Figure 12. Assuming perfect

heuristic probabilities, the two 1
st
 order building blocks for the variable x

() will each have and ideal heuristic probability of 0.333 in 1
st
 order

ACGP search. Combining these two 1
st
 order building blocks to form the implied 2

nd

order building block produces a combined heuristic probability of 0.111. When

the explicit 2
nd

 order building blocks are considered directly ‘*’ with x as both of its

arguments appears once out of three explicit ‘*’ building blocks, therefore the explicit

 2nd
 order building block will actually have an ideal heuristic probability of 0.333

in 2
nd

 order ACGP search. This heuristic probability differential (implied with 0.111

versus explicit with 0.333) emphasizes the informational advantage of 2
nd

 order ACGP

over 1
st
 order ACGP. The primary difference with this regression problem compared to

the Bowl3 problem (Figure 6) is that the building blocks containing the terminal elements

for this problem must appear in a solution tree in specific locations relative to each other

for them to contribute to the solution fitness while ACGP does not process any location

information Most alternative building block positions will evaluate to lower fitness

scores. This characteristic reduces the frequency of viable solutions in the overall

representation space and therefore reduces the probability of finding viable solutions in a

given population sample making the search more complex for both ACGP operating

modes.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

2
1

0

2
2

0

2
3

0

2
4

0

2
5

0

2
6

0

2
7

0

2
8

0

2
9

0

3
0

0

3
1

0

3
2

0

3
3

0

3
4

0

3
5

0

3
6

0

3
7

0

3
8

0

3
9

0

4
0

0

4
1

0

4
2

0

4
3

0

4
4

0

4
5

0

4
6

0

4
7

0

4
8

0

4
9

0

5
0

0

Fi
tn

e
ss

Generation

Bowl3neg Learning Curve
population = 500, generations = 500

2nd OH

1st OH

Base

Figure 13 - Bowl3neg (Equation (13)) using a Population of 500

Figure 13 shows the fitness learning curves for the Base GP, ACGP 1
st
 Order, and ACGP

2
nd

 Order for the Bowl3neg regression problem using the same GP parameters (Table 4)

as the experiments in Figure 5. The advantage that the ACGP 2
nd

 order heuristics have

Aleshunas, John, 2013, UMSL, p.34

over the 1
st
 order heuristics is clearly visible in this chart. This benefit is produced by the

differential between the desired 2
nd

 order building blocks and the full set of 2
nd

 order

building blocks implied by the desired 1
st
 order building blocks. This differential is

similar in magnitude to the one in the Bowl3 2
nd

 order building blocks and therefore it

implies a similar advantage. What are noteworthy in this regression problem are the

lower fitness learning curves for both 1
st
 order and 2

nd
 order ACGP heuristics. These

average fitness scores demonstrate the impact of the strict structure solutions in the

search space for Bowl3neg versus the variable structure of viable solutions in the search

space for Bowl3 has on the ACGP fitness learning for these problems.

As discussed earlier, use of a larger population is a parameter that can be adjusted to

improve the GP search. It can increase the diversity in the GP population at the cost of

greater fitness computation time [3], [12]. Figure 14 shows the learning curve for a set of

experiments using a population of 1000 to find a solution for Equation (13). These

experiments exhibit an increased average fitness for all three methods compared to Figure

13.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

2
1

0

2
2

0

2
3

0

2
4

0

2
5

0

2
6

0

2
7

0

2
8

0

2
9

0

3
0

0

3
1

0

3
2

0

3
3

0

3
4

0

3
5

0

3
6

0

3
7

0

3
8

0

3
9

0

4
0

0

4
1

0

4
2

0

4
3

0

4
4

0

4
5

0

4
6

0

4
7

0

4
8

0

4
9

0

5
0

0

Fi
tn

e
ss

Generation

Bowl3neg Learning Curve
population = 1000, generations = 500

2nd OH

1st OH

Base

Figure 14 - Bowl3neg Learning Curve using a Population of 1000

Table 5 demonstrates that an increase of the population size will also increase the

execution time. This table also shows that 1
st
 order ACGP is faster than 2

nd
 order ACGP

using the same set of environmental training parameters (population size, maximum

generations, training parameters, etc.). This is an advantage for 1
st
 order ACGP that may

be a benefit in a modified approach.

These results suggest a technique that may mitigate the overall cost of training with a

larger population and improve the final results. ACGP 1
st
 order could search the problem

space using a large population for a lower number of generations. The results of that

search would then be used to condition an ACGP 2
nd

 order search using a smaller

population. This scheme would exploit the generality of the low granularity search

capability of 1
st
 order ACGP. Moreover, the 1

st
 order ACGP preconditioning could

improve the more granular 2
nd

 order ACGP search. The combined efficiencies of this

tiered approach might yield productive results.

Aleshunas, John, 2013, UMSL, p.35

Table 5 - Comparison of Average Execution Times (Bowl3neg)

Execution Times

500 1000

Base GP 272.83 411.77

ACGP 1st OH 46.77 88.28

ACGP 2nd OH 68.90 113.83

Population Size

The following experiments use the GP and ACGP parameters shown in Table 4 with the

following exception:

The two-tiered method uses a population of 1000 individuals for the

first stage and 500 individuals for the second stage. The transition

between the two stages is at 250 generations with both tiers adding up

to 500 generations.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

2
1

0

2
2

0

2
3

0

2
4

0

2
5

0

2
6

0

2
7

0

2
8

0

2
9

0

3
0

0

3
1

0

3
2

0

3
3

0

3
4

0

3
5

0

3
6

0

3
7

0

3
8

0

3
9

0

4
0

0

4
1

0

4
2

0

4
3

0

4
4

0

4
5

0

4
6

0

4
7

0

4
8

0

4
9

0

5
0

0

Fi
tn

e
ss

Generation

Bowl3neg Learning Curve
population = 500, generations = 500

T-T Aug (direct)

2nd OH

1st OH

Base

Figure 15 - Bowl3neg Learning Curve versus a Two-tiered Search using a Population of 1000 Seeding a

Population of 500 (direct transition)

Figure 15 shows the result of an ACGP 1
st
 order search with a population of 1000 and

250 generation followed by an ACGP 2
nd

 order search with a population of 500 and 250

generations superimposed on the learning curves shown in Figure 13 with the transition

between the 1
st
 tier and the 2

nd
 tier indicated by the red line in the chart. The feed of 1

st

order ACGP heuristics into the 2
nd

 order ACGP runs used a direct one-to-one transition

scheme. The output heuristics of each 1
st
 order ACGP run was fed to a corresponding 2

nd

order ACGP run. This result is only a marginal improvement over the original experiment

from Figure 13. That outcome is not a surprise and it is an artifact of the direct feed of 1
st

order heuristics into the 2
nd

 order ACGP runs. The direct feed of 1
st
 order heuristics

meant that every run was used in this scheme irrespective of the quality of its search. Bad

1
st
 order ACGP runs passed bad heuristics to the second tier 2

nd
 ACGP runs and produced

low quality results. Clearly, while this is a simple scheme, it is a suboptimal approach.

Aleshunas, John, 2013, UMSL, p.36

The simple direct feed scheme used in the experiment shown in Figure 15 can be

modified to improve the results of this methodology. An ideal concept might suggest

using only the best 1
st
 order heuristics to precondition the 2

nd
 order ACGP search. This

scheme may have merit but introduces the problem of defining what a quality 1
st
 order

heuristic solution looks like for a given problem. A simpler method may be good enough

to demonstrate the promise of a tiered ACGP search scheme. Figure 16 shows the

learning for a tiered search scheme where the 1
st
 order ACGP heuristics are combined

into an input for a 2
nd

 order ACGP search by averaging 1
st
 order heuristics from 30

independent runs. The results of this combined transition tiered scheme are shown

superimposed over the results from Figure 13. The first stage search uses 1
st
 order ACGP

for the initial 250 generations. The second stage uses a conditioned 2
nd

 order ACGP

search for the final 250 generations.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

2
1

0

2
2

0

2
3

0

2
4

0

2
5

0

2
6

0

2
7

0

2
8

0

2
9

0

3
0

0

3
1

0

3
2

0

3
3

0

3
4

0

3
5

0

3
6

0

3
7

0

3
8

0

3
9

0

4
0

0

4
1

0

4
2

0

4
3

0

4
4

0

4
5

0

4
6

0

4
7

0

4
8

0

4
9

0

5
0

0

Fi
tn

e
ss

Generation

Bowl3neg Learning Curve
population = 500, generations = 500

T-T Aug (combined)

2nd OH

1st OH

Base

Figure 16 - Bowl3neg Learning Curve using a Population of 500 versus a Two-tiered Search using a Population

of 1000 Seeding a Population of 500 (combined transition)

Figure 17 shows the results of this tiered scheme using a combined 1
st
 order ACGP

heuristic superimposed over the results from Figure 14. Again, the first stage search uses

1
st
 order ACGP for the initial 250 generations. The second stage uses a conditioned 2

nd

order ACGP search for the final 250 generations.

Aleshunas, John, 2013, UMSL, p.37

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

2
1

0

2
2

0

2
3

0

2
4

0

2
5

0

2
6

0

2
7

0

2
8

0

2
9

0

3
0

0

3
1

0

3
2

0

3
3

0

3
4

0

3
5

0

3
6

0

3
7

0

3
8

0

3
9

0

4
0

0

4
1

0

4
2

0

4
3

0

4
4

0

4
5

0

4
6

0

4
7

0

4
8

0

4
9

0

5
0

0

Fi
tn

e
ss

Generation

Bowl3neg Learning Curve
population = 1000, generations = 500

T-T Aug (combined)

2nd OH

1st OH

Base

Figure 17 - Bowl3neg Learning Curve using a Population of 1000 versus a Two-tiered Search using a Population

of 1000 Seeding a Population of 500 (combined transition)

The outcome of a combined transition tiered search scheme using the combined average

results of 1
st
 order ACGP with a population of 1000 to precondition a 2

nd
 order ACGP

search with a population of 500 is effective when compared to the GP and ACGP

searches using a population of 500 (Figure 16). The results of Figure 17 do not appear to

be as strong. However, in practice, the cost of a method is not the number of generations

used but the time it takes. If the learning curves are compared on a time scale rather than

on a generational scale, the effectiveness of these results becomes more distinct.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

Fi
tn

e
ss

Seconds

Bowl3neg Learning Curve
population = 500, generations = 500

TT

2nd OH

1st OH

Base

Figure 18 - Bowl3neg Learning Curve using a Population of 500 versus a Two-tiered Search using a Population

of 1000 Seeding a Population of 500(combined transition) compared on a Time Scale

Figure 18 shows the learning curves from the experiments shown in Figure 16 with the

average fitness scores per generation converted to average fitness scores per second (120

second time window). The fitness scores for each run are converted into a continuous

time scale with one score per second. Once the time-based fitness scores are processed

Aleshunas, John, 2013, UMSL, p.38

for each run, they are then averaged to produce the average fitness per second for a

method (base GP for example). Since the different methods (base GP, 1st order ACGP,

2nd order ACGP, Two-tier) finish at different time points. The maximum time interval

was set to match the average Two-tier execution time. Any method that finished sooner

(1st order ACGP using smaller population for example) just has its last run score

extended out to the time limit before the run scores are averaged. Any method that ran

slower is truncated. This process produces sets of average fitness scores on the same time

scale for each set of experiments and creates a chart that demonstrates what average

fitness score each technique achieves in each time interval. The advantage of the two-tier

scheme, in terms of fitness and execution time, is clear.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

Fi
tn

e
ss

Seconds

Bowl3neg Learning Curve
population = 1000, generations = 500

TT

2nd OH

1st OH

Base

Figure 19 - Bowl3neg Learning Curve for a Population of 1000 versus a Two-tiered Search using a Population of

1000 Seeding a Population of 500 (combined transition) compared on a Time Scale

Figure 19 shows the learning curves from the experiments shown in Figure 17

substituting an x-axis representing time (120 seconds) for one representing the training

generations. The advantage of the two-tier scheme, in terms of fitness and execution time,

is more distinct. The significance of this advantage will be quantified below using

statistical testing.

Table 6 presents the average execution times for all of the searches shown in Figure 16

and Figure 17. The average execution times for both of the tiered search schemes

described above are comparable with normal ACGP execution times. The smaller search

population of 500 individuals executes faster than the larger population but pays a

penalty of lower average fitness for the base GP application, 1
st
 order ACGP, and 2

nd

order ACGP. The Two-tiered approach is faster than both base GP population sizes. Its

execution speed is falls between the two population sizes for both versions of ACGP.

While these values appear to be numerically distinct, do they represent statistically

different sample outcomes?

Aleshunas, John, 2013, UMSL, p.39

Table 6 - Comparison of Average Execution Times (Bowl3neg)

Execution Times

500 1000 1000 + 500

Base GP 272.83 411.77 -

ACGP 1st OH 46.77 88.28 -

ACGP 2nd OH 68.90 113.83 -

TT Aug (direct) - - 77.83

TT Aug (combined) - - 77.83

Population Size

Table 7 represents the significance test values for comparisons of the execution times for

the set of 30 independent runs of the Two-tiered ACGP methodology versus the sets of

30 independent runs of each of the other six GP searches shown in Table 6. These

significance tests sample the set of execution times for each run. Each test compares 30

execution times (one value for each run) for an experiment (base GP for example) versus

30 execution times for the two-tier scheme. The times in each sample are the final value

for that run. This process analyzes each run's contribution to the average execution time

for a given technique (base GP for example) within the distribution of execution times for

that technique. The significance tests compare each pair of samples and determine

whether any difference in their distribution is due to normal variance or due to an actual

difference in the distributions.

The table shows the p-values for the Mann–Whitney U test for each of these

comparisons. The Mann–Whitney U test is used for these tests because it is a more robust

statistic when attempting whether one distribution is stochastically greater than another

and does not require normally distributed samples. The U test scores are converted to p-

values which represent the null hypothesis probability that the two samples differ from

each other based solely on chance. A low p-value (p < 5.0 x 10
-2

) indicates that the two

samples are significantly different and that difference is not due to sample variance.

Based on the values in Table 7, the differences of the timing averages shown in Table 6

are significant.

Table 7 - Bowl3neg Execution Time Sample Significance (p-values, vs. the Two-tiered method)

Execution Times

Base GP ACGP 1st OH ACGP 2nd OH

500 1.097 x 10-6 4.860 x 10-11 8.179 x 10-4

1000 2.072 x 10-2 1.705 x 10-3 1.470 x 10-8

Table 8 shows that the average fitness scores for both of the tiered search schemes

described above are an improvement over the base GP and normal ACGP average fitness

scores for both population sizes. The combined transition tiered search scheme shows a

significant improvement of the average fitness score incurring only a modest cost in

average execution time for that experiment.

Aleshunas, John, 2013, UMSL, p.40

Table 8 - Comparison of Average Fitness Scores (Bowl3neg)

Fitness Scores

500 1000 1000 + 500

Base GP 0.1752 0.4760 -

ACGP 1st OH 0.2685 0.6615 -

ACGP 2nd OH 0.6003 0.8282 -

TT Aug (direct) - - 0.6668

TT Aug (combined) - - 0.9000

Population Size

Table 9 represents the values of significance tests for comparisons of the fitness scores

for the set of 30 independent runs of the Two-tiered ACGP methodology versus the sets

of 30 independent runs of each of the other six GP searches shown in Table 8. The table

shows the p-values for the Mann–Whitney U test for each of these comparisons. Based

on the values in Table 9, the differences of the timing averages shown in Table 8 are

significant.

Table 9 - Bowl3neg Fitness Score Sample Significance (p-values, vs. the Two-tiered method)

Fitness Scores

Base GP ACGP 1st OH ACGP 2nd OH

500 4.290 x 10-9 1.343 x 10-7 8.701 x 10-4

1000 1.002 x 10-5 1.925 x 10-3 9.658 x 10-2

5.2 How does this Methodology Reduce the Search Space Complexity?

The tiered search scheme shown above appears to be a promising method to improve

ACGP search results for problems with restricted structure quality solutions in the search

space. This improvement of the search process is generated by a probabilistic reduction

of the components in the initial set of functions and terminals chosen for a given problem.

The simple experiment in Chapter 5.1 above demonstrates the efficacy of this proposed

methodology. A description of the steps of this methodology is helpful in explaining why

it is effective.

Chapter 3.1 conceptually described how 1
st
 order ACGP analyzed the fittest population

members and used building block frequency values to adjust their selection probabilities.

These probabilities are entered in a table that stores the probability that a specific

component will be chosen as an argument for a given function. Each of a function’s

arguments has its own probability table. These probability tables can be thought of as a

variant of the EDA-GP discussed in Chapter 2.3. ACGP however maintains multiple

probability tables for each node and only reduces the set of probability tables to a single

table for a node when the parent node function is chosen. Figure 20 illustrates how this

process works for a component set containing four binary functions. Before the tree root

node is populated with a function, the probability tables for all four functions are

potentially available at each child node location. The image on the left portrays this

situation. Once the root node is assigned a function, as in the image on the right, then

only the two tables for each of that function’s argument locations remain available for use

in selecting the contents of each child node. This behavior is similar to the probability

table structure of EDA-GP (Chapter 2.3). The difference between this 1
st
 order ACGP

and EDA-GP is that ACGP uses only a single global table. That table assigns a

Aleshunas, John, 2013, UMSL, p.41

probability to each function and terminal to be selected in a particular argument location

for a given function. EDA-GP probability tables evolve location specific probabilities. A

given function will be assigned different selection probabilities in different locations of

the EDA-GP tree. This location specificity means that an EDA-GP will converge to a

specific candidate tree structure and ignore other viable tree structures. The probability

tables of 1
st
 order ACGP are not localized. They are global and are applied to all

locations in a solution tree. This technique simplifies the computational overhead and

encourages the search of diverse candidate tree structures.

Figure 20 - 1st order ACGP Heuristic Weights Presented as an EDA Structure

The 1
st
 order ACGP probabilities can also be logically visualized as a two dimensional

table. Table 10 shows an initial unconditioned 1
st
 order ACGP probability table. A

function or terminal (the top row) can be assigned to an argument location for a function

(two left columns) with a uniform probability of selection (body of the table).

Table 10 - Initial ACGP 1st Order Heuristic Weight Matrix

Func Arg * + - / 0 1 2 3 4 5 -1 -2 -3 -4 -5 X Y Z

* 1 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056

* 2 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056

+ 1 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056

+ 2 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056

- 1 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056

- 2 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056

/ 1 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056

/ 2 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056

Root 1 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056

This table shows the set of functions and terminals used in the Bowl3neg (Equation (13))

ACGP search in Chapter 5.1 as the top row of the table. The set of functions and

terminals used in this search is:

Function set: (protected divide)

Terminal set: {x, y, z, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}

Aleshunas, John, 2013, UMSL, p.42

Each row of Table 10 corresponds to a specific function argument location or the root

node. The functions or root are shown in the left column. The argument locations are

shown in the second left column. In this example, all functions are binary functions hence

the argument designations of 1 or 2. The probabilities of each row represent the selection

probabilities for a child node of a given function argument; therefore the sum of each row

is 1. An initial table, like this one, will begin with uniform selection probability for all

components. This initial behavior is exactly like a standard GP application. The

difference between a standard GP implementation and ACGP is that ACGP periodically

interrupts normal operation, analyzes the frequency of the building blocks that make up

fit population members, and adjusts their selection probability in this table. Those

building blocks that occur frequently in fit solutions have their selection probability

increased. All other building blocks have their selection probability reduced. Table 11

presents an ACGP 1
st
 order probability table after 250 generations, or 10 iterations, of

this adjustment process.

Table 11 - Example ACGP 1st Order Heuristic Weight Matrix

Func Arg * + - / 0 1 2 3 4 5 -1 -2 -3 -4 -5 X Y Z

* 1 0.047 0.134 0.133 0.127 0.021 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.041 0.260 0.241

* 2 0.024 0.136 0.210 0.073 0.013 0.020 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.042 0.255 0.232

+ 1 0.151 0.115 0.207 0.041 0.074 0.014 0.009 0.024 0.048 0.039 0.028 0.045 0.011 0.020 0.008 0.103 0.061 0.015

+ 2 0.112 0.099 0.305 0.021 0.053 0.028 0.058 0.011 0.009 0.019 0.032 0.081 0.022 0.045 0.006 0.080 0.010 0.024

- 1 0.082 0.151 0.289 0.067 0.019 0.016 0.017 0.033 0.018 0.034 0.046 0.029 0.023 0.012 0.040 0.040 0.051 0.046

- 2 0.285 0.145 0.125 0.019 0.012 0.023 0.001 0.051 0.035 0.021 0.034 0.047 0.031 0.029 0.044 0.050 0.034 0.029

/ 1 0.028 0.071 0.207 0.028 0.209 0.002 0.005 0.009 0.021 0.001 0.038 0.032 0.014 0.061 0.027 0.175 0.071 0.016

/ 2 0.092 0.073 0.215 0.015 0.022 0.109 0.016 0.019 0.027 0.033 0.014 0.152 0.070 0.033 0.033 0.044 0.001 0.044

Root 1 0.001 0.424 0.577 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

The discussion in Chapter 5.1 identified the set of desirable 1
st
 order building blocks in

Equation (14). The probabilities for the ‘–‘ heuristics appear in rows six and seven. The

‘*’ probabilities are in rows one and two. The columns of the table identify the function

or terminal used in a particular function argument node.

Several observations about Table 11 stand out. Initially this table was populated with

uniform selection probabilities for four binary functions and fourteen terminals as shown

in Table 10. After 250 heuristic adjustment iterations the probabilities are clearly not

uniform. This matrix probabilistically eliminates nine terminals and one function (light

purple color). While they are not completely eliminated from the component set, they

will be selected so seldom that they can be considered eliminated. This probabilistic

suppression of the selection of functions and terminals effectively reduces the

representation search space derived from Equation (1).

Several of the desirable 1
st
 order building blocks in Equation (17) have increased

probabilities (shown in dark green). In this case ‘–‘ is a desirable Root node function and

it also has an enhanced selection probability. While and are desirable, they

are permutations and their lower selection probability is helpful. These are positive

observations from this table but there are also some negative aspects in this set of

heuristics.

Two of the desirable 1
st
 order building blocks, and , needed to solve this

regression problem had their selection probability reduced from the original uniform

Aleshunas, John, 2013, UMSL, p.43

value (shown in blue). While these probabilities are lower when compared to their

starting values (0.041 and 0.042 versus 0.056), they are considerably greater than most of

the highly suppressed values (e.g.) so this is not a major concern and can

be remedied in the 2
nd

 order ACGP search. Several unneeded building blocks show

increased selection probabilities. The Root function selection of ‘+’ and the heuristic

 are assigned strong selection probabilities. All of the other building blocks

highlighted in light green in the table have enhanced probabilities. While these

observations are not optimal, they are not critical. A 1
st
 order probability matrix like this

one is rough guidance that can helpfully seed a 2
nd

 order ACGP search.

The 1
st
 order probability matrix in Table 11 is the combined weight matrix used to

precondition the 2
nd

 order ACGP search of Bowl3neg ACGP search in Chapter 5.1 above.

The modified selection probabilities in this table provide coarse guidance for the 2
nd

order ACGP search that produced the results of Figure 16 and Figure 17 .

An advantage of using this coarse guidance, rather than more refined guidance, is that

while the second stage search is constrained, it is only probabilistically constrained. The

matrix helps the search with most of the best building blocks yet does not prevent the

discovery of other useful elements. Additionally, the probabilistic seeding guidance

assists the virtual search locality of productive building blocks and suppresses less

productive ones. This behavior assists the search and improves its efficiency. The

experiment in Chapter 5.1 demonstrated the efficacy of this method and a formal

statement of its parameter choices should help clarify the complete concept.

5.3 The Structure of a Two-Tiered ACGP Search Methodology

The results of the two-tiered search scheme presented in Chapter 5.2 above are

promising. A discussion of the parameter settings used in this method is helpful in

understanding its advantages over unconditioned 1
st
 order or 2

nd
 order ACGP search.

The standard GP searches (base, 1
st
 order ACGP, and 2

nd
 order ACGP) in these

experiments with the Bowl3neg problem (Equation (13)) used the same operational

parameters identified earlier in Table 4. The parameter exceptions for these experiments

are the use of populations of 500 and 1000 individuals for the base GP application, 1
st

order ACGP and 2
nd

 order ACGP. The population sizes for these baseline experiments

match the first and second tier populations of the two-tier approach. The fitness and

execution time results of these comparison experiments can be compared directly with

those of the two-tiered search scheme.

The principal difference in parameters for the two-tiered ACGP search is that this method

uses a population of 1000 individuals for 250 generations in 1
st
 order ACGP search. The

output 1
st
 order heuristic matrix is then seeded to a 2

nd
 order ACGP search using a

population of 500 individuals for 250 generations. These parameters result in strong

execution time and fitness results but it may not be obvious why these parameters

(population sizes and generation limits) are chosen.

The rationale starts with the question, what constitutes a useable 1
st
 order ACGP heuristic

matrix that can seed our second tier run? Ideally, one would prefer a well specified

heuristic matrix that only includes the minimal desired components and suppresses

everything else. This type of ideal heuristic matrix would provide ideal guidance for the

Aleshunas, John, 2013, UMSL, p.44

second tier run and help it find a highly fit solution quickly. The cost, in population size

and number of generations, of discovering such an ideal heuristic would be high enough

to negate any potential advantages for this two-tiered technique. Additionally, if the

initial set of 1
st
 order ACGP runs can develop an ideal heuristic matrix, it has probably

solved the problem completely thereby making the second stage of this method

unnecessary. The concept used here is to evolve a heuristic matrix that is good enough to

guide the 2
nd

 order ACGP search and optimize the processing costs. Conceptually, the

population must be large enough to provide sufficient diversity yet small enough to retain

the original 1
st
 order ACGP processing efficiency.

The experiment in Chapter 5.1 demonstrated that a model developed using a two-tiered

search is successful in producing the good results. Additionally, this result provides hints

of the environmental parameters for the search. The 1
st
 order ACGP run should use a

population large enough to produce several successful searches. The term successful in

this case is measured by a search run that results in a best fitness score of 1.0. This group

of successful runs does not have to be a majority of the overall set of runs, but they

should be more than one or two runs to ensure enough diversity of heuristic information.

Empirical results indicate that a set of runs that achieve an average fitness score in excess

of 0.5 should contain enough runs with perfect 1.0 fitness scores. The first

implementation of this technique tried seeding the 2
nd

 order ACGP runs with a one-to-

one set of 1
st
 order ACGP runs. The resulting fitness curve from this direct seeding

experiment was shown in Figure 15. Analysis of this experiment revealed that any 1
st

order ACGP search that was not successful, never produced a successful 2
nd

 order ACGP

search. Clearly the poor 1
st
 order heuristics did not contain sufficiently good guidance for

the 2
nd

 order searches they seeded. The successful 1
st
 order heuristics were considerably

more useful in seeding successful 2
nd

 order searches. This observation indicated that the

seed heuristic should exclude any unsuccessful 1
st
 order heuristic from the set of first tier

runs. Once the heuristics from the set of runs are pruned from the set of candidate

heuristics the question becomes how will the set of candidates be combined into one seed

heuristic?

Two desired features of an effective heuristic combination scheme are that it be simple in

operation and that it retains the proportionality of the heuristic probabilities within each

row of function heuristic probabilities. An arithmetic average of the candidate heuristics

proved to be a computationally simple scheme that preserved the probabilistic

proportions in each row of the matrix. This combination technique additionally moderates

extremely strong or extremely weak probabilities thereby preventing over aggressive

convergence to suboptimal structures and thereby suboptimal solutions.

This candidate evaluation process can be automated to quickly process the results from

the first tier runs and combine them to produce a seed heuristic matrix for the set of

second tier runs. The steps of this methodology can be described as follows:

1) Run 1
st
 order ACGP with typical parameter settings but with half the

number of generations than normal (using multiple independent 1
st
 order

ACGP runs)

2) Review the final fitness scores for the set of ACGP runs

Aleshunas, John, 2013, UMSL, p.45

a. If there are not a sufficient number of successful runs to combine

into a seed heuristic model, increase the population size and repeat

step 1

b. Else, combine the final 1
st
 order heuristic matrices for the

successful runs by computing the arithmetic average of each

individual heuristic to produce the seed heuristic matrix

3) Seed a set of 2
nd

 order ACGP runs with the 1
st
 order heuristic computed in

step 2b.

4) Analyze the final results from the two-tier search.

Several of the parameters of this technique are expressed in conceptual terms. These

parameters include: the population sizes for each tier’s search, the number of generations

for each tier’s search, and what constitutes a sufficient number of successful runs. These

parameter settings are clarified in the discussion of the empirical results in each chapter

below. These experiments will follow a basic protocol. The experiments for the base GP

application, 1
st
 order ACGP, and 2

nd
 order ACGP use 30 independent runs with the

results of all runs presented as averages of the 30 runs. The two-tier methodology will

also use 30 independent runs for each tier with each tier’s results presented as averages of

the 30 runs. The only modification of this process is that a pruned subset of the first tier

results is combined to form the heuristic seed for the 30 independent runs of the second

tier.

While the results of the two-tier search in Figure 16 and Figure 17 are apparent, it is not

clear whether the 2
nd

 tier fitness is attributable to the search bias induced by the 1
st
 tier

search results or the increased information of the conditioned 2
nd

 tier search. One method

of resolving this question is to compare the two-tier search results shown in these figures

to a two-tier search using 1
st
 order ACGP in both tiers.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

2
0

1

2
1

1

2
2

1

2
3

1

2
4

1

2
5

1

2
6

1

2
7

1

2
8

1

2
9

1

3
0

1

3
1

1

3
2

1

3
3

1

3
4

1

3
5

1

3
6

1

3
7

1

3
8

1

3
9

1

4
0

1

4
1

1

4
2

1

4
3

1

4
4

1

4
5

1

4
6

1

4
7

1

4
8

1

4
9

1

5
0

1

Fi
tn

e
ss

Generation

Bowl3neg Learning Curve
population = 500, generations = 500

Two-Tier

1st OH -> 1st OH TT

Figure 21 – Bowl3neg Two-Tier Search (1
st

 OH to 2
nd

 OH) versus Two-Tier Search (1
st

 OH to 1
st

 OH)

Aleshunas, John, 2013, UMSL, p.46

Figure 21 compares the two-tier search using an initial 1
st
 order ACGP search that

conditions a 2
nd

 order ACGP search to another using 1
st
 order ACGP search that

conditions a 1
st
 order ACGP search. Using 2

nd
 order ACGP in the second tier of the tiered

search scheme accrues additional information from the use of 2
nd

 order heuristics and

thereby has a better average fitness score. This demonstration validates the operational

aspects of this proposed search methodology.

This process is simple, effective and easy to validate. The eighteen components of

functions and terminals used in the experiment discussed in Chapter 5.2 define a very

large representation search space. This matrix resulting from a 1
st
 order ACGP search

probabilistically eliminates nine terminals and one function (shown in light purple color

in Table 11). This reduction of the GP component set decreases the size of the

representation search space by approximately 25% which computationally explains part

of the accuracy and efficiency gains. A review of the representation space complexity

described by Equation (1) can clarify the scope of the search space reduction achieved

here.

Chapter 1.1 discussed the factors that contribute to the complexity of a GP representation

search space. This concept is summarized in Equation (1) repeated here.

This equation expresses the number of potential solutions in a GP representation space in

terms of the number of functions, the number of terminals, the arity of each function, and

the maximal depth of the trees. The number of terminals is additive factor for the nodes at

each depth. While this contributes to the number of permutation structures in the search

space, it is not the most significant factor. The functions, which trigger additional levels

to solution trees and the arity of the functions which expand the potential permutation

options multiplicatively, are more significant influencers. This recursive function is

summed, at each descending level, over all of the functions in the component set.

Eliminating a function from the GP component set has a greater impact on reducing the

representation search space complexity than eliminating a terminal. In Equation (1), the

quantity of possible permutation options are computed for each possible parent function

from the set of functions for a given GP application instance. Eliminating a function from

the component set eliminates one of these possible parent node choices and thereby

reduces one of the elements in the summation in Equation (1). This reduces the size of

the representation search space. If the original function set consists of n functions,

eliminating one function will remove one element in the summation and thereby shrink

representation search space by 1/n.

If a function that is not needed to form a viable solution is eliminated from the original

function set, it can cause a significant reduction in the overall complexity of the

representation space without reducing the number of viable candidate solutions in this

search space. Reducing the overall size of the search space without reducing the number

of viable solutions increases the probability that the GP search will discover and exploit a

viable solution. This should increase the efficiency of the GP search both in terms of

Aleshunas, John, 2013, UMSL, p.47

execution time and fitness score. An experiment using an ideal seed heuristic should help

reinforce this assertion.

5.4 An Experiment with an Ideal Search Heuristic

The experiment in Chapter 5.1 used a 1
st
 order ACGP heuristic matrix as a seed for a 2

nd

order ACGP search to solve a designed regression problem. The seed matrix was an

average of the heuristic matrices from several successful 1
st
 order ACGP searches. The

resulting 2
nd

 order ACGP search improved in both time and fitness over standard base

GP, standard 1
st
 order ACGP, and standard 2

nd
 order ACGP searches. Chapter 5.2

described the mechanics of this methodology and asserted that, while the 1
st
 order seed

matrix was not an ideal guide, it was a sufficient recommendation for a 2
nd

 order ACGP

search.

One advantage of using a designed problem is that the target equation is known and, as in

this case, its building blocks are also clearly known. While these points can help analyze

the search progress and its results, they can also be used to construct an ideal 1
st
 order

heuristic matrix as a seed for a 2
nd

 order ACGP search experiment. The Bowl3neg

symbolic regression problem (Equation (13)) will be used for this exercise. This

experiment should demonstrate an upper limit of an ideal case search using the two-tiered

methodology discussed here.

Before constructing an ideal 1
st
 order heuristic matrix, a review of the structural

constraints for the Bowl3neg problem will be helpful. Each row of the heuristic table

corresponds to a specific function argument location or the root node. The function and

terminal set used in this regression problem are:

Function set: (protected divide)

Terminal set: {x, y, z, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}

The functions used for this regression problem are all binary functions. Fourteen

terminals are used in the terminal set. There are ten desirable 1
st
 order building blocks

(shown previously in Equation 14). Figure 12 represented an example of a viable solution

tree. The frequencies of each of the desirable building blocks in this figure can be used to

infer what their un-normalized proportional weights should be in an ideal heuristic

matrix. All of the desirable ‘*’ building blocks should have equal weights. The ‘–‘

building blocks with ‘*’ as its child node should be weighted twice the value of ‘–‘ with a

child node of ‘–‘ . Finally, each row in the table must sum to approximately 1.0. This

information produces this ideal 1
st
 order heuristic weight matrix for Equation (13).

Table 12 - Example Ideal ACGP 1st Order Heuristic Weight Matrix

Func Arg * + - / 0 1 2 3 4 5 -1 2 -3 -4 -5 X Y Z

* 1 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.333 0.333 0.333

* 2 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.333 0.333 0.333

+ 1 0.001 0.001 0.001 0.001 0.999 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

+ 2 0.001 0.001 0.001 0.001 0.001 0.999 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

- 1 0.666 0.001 0.332 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

- 2 0.666 0.001 0.332 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

/ 1 0.001 0.001 0.001 0.001 0.001 0.001 0.999 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

/ 2 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.999 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Root 1 0.001 0.001 0.999 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Aleshunas, John, 2013, UMSL, p.48

A review of Table 12 results in several interesting observations. This table

probabilistically eliminates eleven terminals and two functions. Since each row of

probabilities must sum to about 1.0, four dummy values are entered in the heuristic

matrix: {+1, 0} = 0.999, {+2, 1} = 0.999, {/1, 2} = 0.999, and {/2, 3} = 0.999 (shown in

blue). These probabilities will be rarely chosen because their two parent functions (‘+’

and ‘/’) are probabilistically eliminated from consideration. Based on the discussion from

Chapter 5.3, it is clear that this table probabilistically reduces the size of the

representation search space by 50%. That is a significant impact.

Feeding this 1
st
 order seed matrix to a 2

nd
 order ACGP search produces the following

average fitness result. This experiment used the GP parameters listed in Table 4.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

2
1

0

2
2

0

2
3

0

2
4

0

2
5

0

2
6

0

2
7

0

2
8

0

2
9

0

3
0

0

3
1

0

3
2

0

3
3

0

3
4

0

3
5

0

3
6

0

3
7

0

3
8

0

3
9

0

4
0

0

4
1

0

4
2

0

4
3

0

4
4

0

4
5

0

4
6

0

4
7

0

4
8

0

4
9

0

5
0

0

Fi
tn

e
ss

Generation

Bowl3neg Learning Curve
population = 500, generations = 500

T-T Aug (pure)
2nd OH
1st OH
Base

Figure 22 - ACGP 2nd Order Search Using an Ideal Heuristic versus Normal ACGP Search Using a Population

of 500 Individuals

The results shown in Figure 22 are dramatic. The positive impact of seeding a 2
nd

 order

ACGP search with the ideal 1
st
 order ACGP heuristic matrix is clear. Additionally,

behavior of a probabilistic system is also visible in this chart. Even though this search

was preconditioned using an ideal 1
st
 order heuristic matrix, one of the 30 independent

runs lost its solution. This is visible in Figure 22 following generation 392 and persisting

to the end of that run. This behavior is typical of a probabilistic heuristic search and does

not detract from the clear advantage of this methodology.

Aleshunas, John, 2013, UMSL, p.49

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

2
1

0

2
2

0

2
3

0

2
4

0

2
5

0

2
6

0

2
7

0

2
8

0

2
9

0

3
0

0

3
1

0

3
2

0

3
3

0

3
4

0

3
5

0

3
6

0

3
7

0

3
8

0

3
9

0

4
0

0

4
1

0

4
2

0

4
3

0

4
4

0

4
5

0

4
6

0

4
7

0

4
8

0

4
9

0

5
0

0

Fi
tn

e
ss

Generation

Bowl3neg Learning Curve
population = 1000, generations = 500

T-T Aug (pure)

2nd OH

1st OH

Base

Figure 23 - ACGP 2nd Order Search Using an Ideal Heuristic versus Normal ACGP Search Using a Population

of 1000 Individuals

Figure 22 compares the ideal two-tiered methodology results to a standard base GP

search, a standard 1
st
 order ACGP search, and a standard 2

nd
 order ACGP search using a

population of 500 individuals. Figure 23 compares the same ideal two-tiered

methodology results to a standard base GP search, a standard 1
st
 order ACGP search, and

a standard 2
nd

 order ACGP search using a population of 1000 individuals. These results

are still a strong improvement over the other searches.

Both of these experiments demonstrate that 2
nd

 order ACGP can find a correct solution

within a very few generations if seeded with an ideal 1
st
 order ACGP heuristic matrix.

Table 13 shows the strong execution time advantage when a perfect heuristic is used.

This is not a fair comparison though because the experiment using the perfect heuristic

did not need the initial run of 250 generations to generate the seed heuristic used in the

seeded 2
nd

 order ACGP run, therefore the time value for this experiment reflects only the

250 generations using the perfect heuristic seed.

Table 13 - Comparison of Average Execution Times (Bowl3neg - with Perfect heuristic)

Execution Times

500 1000 1000 + 500

Base GP 272.83 411.77 -

ACGP 1st OH 46.77 88.28 -

ACGP 2nd OH 68.90 113.83 -

TT Aug (combined) - - 77.83

TT Aug (perfect) - - 27.07

Population Size

The significance tests for the perfect heuristic seed experiment sample (Table 14) are

clear evidence that this test produced a strong result versus the experiment samples for all

of the other experiments. As previously stated, the Mann–Whitney U test is used for these

tests because it is a more robust statistic when attempting whether one distribution is

stochastically greater than another.

Aleshunas, John, 2013, UMSL, p.50

Table 14 - Bowl3neg Execution Time Sample Significance versus Perfect Heuristic (p-values)

Execution Times

Base GP ACGP 1st OH ACGP 2nd OH

500 1.698 x 10-7 2.285 x 10-10 2.894 x 10-11

1000 3.834 x 10-4 2.916 x 10-11 2.930 x 10-11

Table 15 shows the strong advantage in fitness score produced when a perfect heuristic is

used. While the experiment using the perfect heuristic did not need the initial run of 250

generations to generate the seed heuristic used in the seeded 2
nd

 order ACGP run, this

result, unlike the execution time result, is a fair comparison because in each the best

average fitness scores are directly comparable. These results are not dependent on the

number of generations necessary to produce them.

Table 15 - Comparison of Average Fitness Scores (Bowl3neg - with Perfect heuristic)

Fitness Scores

500 1000 1000 + 500

Base GP 0.1752 0.4760 -

ACGP 1st OH 0.2685 0.6615 -

ACGP 2nd OH 0.6003 0.8282 -

TT Aug (combined) - - 0.9000

TT Aug (perfect) - - 1.0000

Population Size

The Mann–Whitney significance test results (Table 16) for the fitness score sample of the

perfect heuristic experiment versus samples of each of the other experiments demonstrate

a unmistakable advantage in using the perfect 1
st
 order ACGP heuristic as the seed for a

2
nd

 order ACGP run. While this exercise helps understand the advantage promised by this

two-tier search methodology, a perfect 1
st
 order heuristic is not guaranteed and may not

be necessary. The discussion in Chapter 5.2 regarding the 1
st
 order ACGP seed heuristic

for the Bowl3neg problem pointed out that the heuristic seed matrix (Table 11) that

created the fitness curves shown in Figure 16 and Figure 17 did not have strong selection

probability heuristics for all of the desirable building blocks yet it produced a strong

result. One might wonder if this methodology is effective with more complex problems.

The artificial ant problem is often used as a benchmark for research results and would be

a good test for this two-tiered search methodology.

Table 16 - Bowl3neg Fitness Score Sample Significance versus Perfect Heuristic (p-values)

Fitness Scores

Base GP ACGP 1st OH ACGP 2nd OH

500 1.700 x 10-10 1.344 x 10-8 1.304 x 10-4

1000 8.051 x 10-7 2.870 x 10-4 1.985 x 10-2

5.5 Two-tiered Search Applied to the Artificial Ant Problem

The artificial ant problem is a well-studied GP problem that dates back to Koza’s original

work [12]. The artificial ant problem directs a GP application to evolve a program of

instructions for a finite-state automaton (the ant). The ant must find and consume all of

the food pellets lying along an irregular trail [12]. In the Santa Fe Trail version of this

Aleshunas, John, 2013, UMSL, p.51

problem the candidate programs are evaluated by having the ant navigate a 32 x 32 grid

containing an irregular trail of 89 scattered food pellets.

Figure 24 depicts a diagram of the Santa Fe Trail grid showing the path of food pellets.

The ant starts in the upper left corner. Each candidate solution is evaluated by running the

program for 400 time units (repeat the program execution 400 times) counting the

number of food pellets consumed. The more pellets consumed during the execution, the

higher the score with a perfect fitness score awarded for consuming all 89 pellets.

Figure 24 - The Santa Fe Trail for the Artificial Ant Problem

The set of functions and terminals normally used for this problem are:

Function set:

If-food-ahead (two arguments)

Prog2 (two arguments)

Prog3 (three arguments)

Terminal set:

Right (turns the ant right by 90° without advancing the ant)

Left (turns the ant left by 90° without advancing the ant)

Move (moves the ant forward in the direction it is facing, it eats

any food in the square)

These components are combined and manipulated by the GP application to evolve

successful programs. It should be noted that the if-food-ahead function used in this

problem differs from other implementations. Normally a typical GP if function has three

arguments. The first argument is a Boolean test. Based on the value of that test one of the

other two arguments is chosen (argument two for a true value and argument three for a

Aleshunas, John, 2013, UMSL, p.52

false value). The if-food-ahead function in the function set for the artificial ant problem

assumes a built-in logic test for if-food-ahead and it has only two arguments for its

resulting action based on the value of this test. Janikow [9] identified one successful

solution to this problem (Equation (18)).

Equation (18) contains five function elements and seven terminal statements. Organizing

these logic statements into a tree structure we get the 13 node tree shown in Figure 25.

One unmistakable structural feature of this minimal solution tree is its skewed

construction. Some quick experimentation with this structure makes it clear that any

alteration of this solution will significantly modify its operation and therefore its fitness

evaluation. This observation implies that, while other program structures can produce

successful solutions to this problem, permutations of the components will probably not

produce successful solutions. This behavior is similar to the strict structure created by

strict-structure functions addressed in the discussion of the Bowl3neg problem. This

assertion implies that this problem will have similar strict solution structure behavior as

the Bowl3neg problem.

Figure 25 – An Example Solution Tree for the Artificial Ant Problem (Santa Fe Trail)

Experimentation with the artificial ant problem verified that the strict solution structure

created by the functions used in the component set makes it more difficult to find fit

individuals within the population of candidate solutions. These experiments indicated that

larger population sizes were needed to attain reasonable results. Two sets of 30

independent runs using populations of 1000 and 2000 were made to establish the

performance baseline for the artificial ant problem. All of the GP searches for the

artificial ant problem used the operational parameters shown in Table 4, the set of

functions and terminals shown above, along with the following exception for this

problem:

Population size: 1000 and 2000

Aleshunas, John, 2013, UMSL, p.53

The experiments (base GP application, 1
st
 order ACGP, and 2

nd
 order ACGP) using a

population of 1000 individuals resulted in the fitness learning curves shown in Figure 26.

The base GP implementation was only able to achieve a fitness of 0.09 using this

population size. 1
st
 order ACGP and 2

nd
 order ACGP did better but these results were still

modest. It is worth noting that 1
st
 order ACGP outperformed 2

nd
 order ACGP on this

problem. It is unclear whether any information differential exists between the two ACGP

operating modes and this may potentially explain some portion of these results.

What can explain the fact that 1
st
 order ACGP has stronger fitness scores than 2

nd
 order

ACGP in Figure 26? One potential explanation may be the difference in search

granularity of the two methods with the lower granular 1
st
 order heuristics being able to

learn its simpler heuristics quicker. Additionally, the more granular 2
nd

 order heuristics

may not provide a considerable information advantage for this problem.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

2
1

0

2
2

0

2
3

0

2
4

0

2
5

0

2
6

0

2
7

0

2
8

0

2
9

0

3
0

0

3
1

0

3
2

0

3
3

0

3
4

0

3
5

0

3
6

0

3
7

0

3
8

0

3
9

0

4
0

0

4
1

0

4
2

0

4
3

0

4
4

0

4
5

0

4
6

0

4
7

0

4
8

0

4
9

0

5
0

0

Fi
tn

e
ss

Generation

Ant Learning Curve
population = 1000, generations = 500

2nd OH

1st OH

Base

Figure 26 - Artificial Ant Learning Curve (population 1000)

Similar experiments (base GP application, 1
st
 order ACGP, and 2

nd
 order ACGP) using a

population of 2000 individuals resulted in the fitness learning curves shown in Figure 27.

The base GP implementation achieved a better fitness score using this population size. 1
st

order ACGP and 2
nd

 order ACGP also improved their fitness scores. Again, 1
st
 order

ACGP and 2
nd

 order ACGP achieved similar fitness on this problem. This fitness result

reinforces the assertion that either the difference in search granularity of the two methods

or the lack of an informational advantage handicaps the 2
nd

 order ACGP search for this

problem environment.

Aleshunas, John, 2013, UMSL, p.54

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

2
1

0

2
2

0

2
3

0

2
4

0

2
5

0

2
6

0

2
7

0

2
8

0

2
9

0

3
0

0

3
1

0

3
2

0

3
3

0

3
4

0

3
5

0

3
6

0

3
7

0

3
8

0

3
9

0

4
0

0

4
1

0

4
2

0

4
3

0

4
4

0

4
5

0

4
6

0

4
7

0

4
8

0

4
9

0

5
0

0

Fi
tn

e
ss

Generation

Ant Learning Curve
population = 2000, generations = 500

2nd OH

1st OH

Base

Figure 27 - Artificial Ant Learning Curve (population 2000)

The two-tiered search methodology was applied to this problem. The first stage consisted

of 30 independent runs of 1
st
 order ACGP using a population of 2000 for 250 generations.

The results of these runs were analyzed. Any run that was not successful was pruned

from the heuristic set. Success was defined by the achievement of a fully fit solution for

this problem by the completion of the run. The 1
st
 order heuristics for the successful runs

were combined by arithmetic averaging to form the seed heuristic for the second search

stage. The second stage consisted of 30 independent runs of 2
nd

 order ACGP seeded with

the 1
st
 order heuristic produced by the first stage search and using a population of 2000

for 250 generations. The results of this experiment are shown in Figure 28. This chart

shows the two-tiered fitness learning curve superimposed on the set of results for the base

GP application, 1
st
 order ACGP, and 2

nd
 order ACGP using a population of 2000. The

two-tier search methodology appears to show an improvement over any of the other three

GP searches for this problem.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

2
1

0

2
2

0

2
3

0

2
4

0

2
5

0

2
6

0

2
7

0

2
8

0

2
9

0

3
0

0

3
1

0

3
2

0

3
3

0

3
4

0

3
5

0

3
6

0

3
7

0

3
8

0

3
9

0

4
0

0

4
1

0

4
2

0

4
3

0

4
4

0

4
5

0

4
6

0

4
7

0

4
8

0

4
9

0

5
0

0

Fi
tn

e
ss

Generation

Ant Learning Curve
population = 2000, generations = 500

TT

2nd OH

1st OH

Base

Figure 28 - Artificial Ant Learning Curve using a Population of 2000 versus the Two-Tier

Method using a Population of 2000 seeding a Population of 1000

Aleshunas, John, 2013, UMSL, p.55

Figure 29 shows the two-tiered fitness learning curve compared with the set of results for

the base GP application, 1
st
 order ACGP, and 2

nd
 order ACGP using a population of

1000. The improvement of the two-tier search methodology over any of the other three

GP searches is very strong here.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

2
1

0

2
2

0

2
3

0

2
4

0

2
5

0

2
6

0

2
7

0

2
8

0

2
9

0

3
0

0

3
1

0

3
2

0

3
3

0

3
4

0

3
5

0

3
6

0

3
7

0

3
8

0

3
9

0

4
0

0

4
1

0

4
2

0

4
3

0

4
4

0

4
5

0

4
6

0

4
7

0

4
8

0

4
9

0

5
0

0

Fi
tn

e
ss

Generation

Ant Learning Curve
population = 1000, generations = 500

TT

2nd OH

1st OH

Base

Figure 29 - Artificial Ant Learning Curve using a Population of 1000 versus the Two-Tier

Method using a Population of 2000 seeding a Population of 1000

Earlier in this chapter it was stated that it is unclear whether any information differential

exists between the two ACGP operating modes for this problem and that this may

potentially explain some portion of the results for the two ACGP modes alone (Figure 26

and Figure 27). While the results of the two-tier scheme shown in Figure 28 and Figure

29 are good, it is not apparent whether these results are attributable to 2
nd

 order ACGP

search in the second tier or a just biased 2
nd

 tier search using either ACGP mode. An

experiment similar to the one shown in Figure 21 that compares the two-tier search using

1
st
 order ACGP in the 1

st
 tier and 2

nd
 order ACGP in the 2

nd
 tier versus another two-tier

search using 1
st
 order ACGP in both tiers may resolve this question. Figure 30 compares

the two-tier search results from Figure 29 to a two-tier search using 1
st
 order ACGP in

both tiers. The use of 2
nd

 order ACGP in the 2
nd

 tier is better than a 2
nd

 tier search using

1
st
 order ACGP. This reinforces the claim that 2

nd
 order ACGP has an information

advantage over 1
st
 order ACGP when the representation space complexity can be

constrained.

Aleshunas, John, 2013, UMSL, p.56

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

2
0

1

2
1

1

2
2

1

2
3

1

2
4

1

2
5

1

2
6

1

2
7

1

2
8

1

2
9

1

3
0

1

3
1

1

3
2

1

3
3

1

3
4

1

3
5

1

3
6

1

3
7

1

3
8

1

3
9

1

4
0

1

4
1

1

4
2

1

4
3

1

4
4

1

4
5

1

4
6

1

4
7

1

4
8

1

4
9

1

5
0

1

Fi
tn

e
ss

Generation

Ant Learning Curve
population = 1000, generations = 500

Two-Tier

1st OH -> 1st OH TT

Figure 30 – Artificial Ant Two-Tier Search (1st OH to 2nd OH) versus Two-Tier Search (1st OH to 1st OH)

The results for the two-tiered search method shown in Figure 28 and Figure 29 appear to

indicate that this technique improves the search effectiveness in a combination of search

time and overall fitness score. This claim can be verified by reviewing the execution time

and fitness score results directly.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

Fi
tn

e
ss

Seconds

Ant Learning Curve
population = 1000, generations = 500

TT

2nd OH

1st OH

Base

Figure 31 - Artificial Ant Learning Curve using a Population of 1000 versus the Two-Tier Method using a

Population of 2000 seeding a Population of 1000 compared on a time scale

Figure 31 shows the learning curves from the experiments shown in Figure 28

substituting an x-axis representing time (120 seconds) for one representing generations.

The advantage of the two-tier scheme, in terms of fitness and execution time, is clear.

Aleshunas, John, 2013, UMSL, p.57

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

Fi
tn

e
ss

Seconds

Ant Learning Curve
population = 2000, generations = 500

TT
2nd OH
1st OH
Base

Figure 32 - Artificial Ant Learning Curve using a Population of 2000 versus the Two-Tier Method using a

Population of 2000 seeding a Population of 1000 compared on a time scale

Figure 32 shows the learning curves from the experiments shown in Figure 29

substituting an x-axis representing time (120 seconds) for one representing generations.

The advantage of the two-tier scheme, in terms of fitness and execution time, is more

distinct. Table 17 compares the average execution time for each set of runs for each

search method. The two-tier search is fast and improves on most of the other searches.

Only 1
st
 order ACGP and 2

nd
 order ACGP are faster than the two-tier search method.

Table 17 - Comparison of Average Execution Times (Artificial Ant)

Execution Times

1000 2000 2000 + 1000

Base GP 115.07 184.50 -

ACGP 1st OH 59.23 119.33 -

ACGP 2nd OH 73.73 134.27 -

TT Aug (combined) - - 96.70

Population Size

When the samples of execution time values for the set of independent runs for each

method are compared with the sample of values for the two-tier method runs (Table 18) it

is clear that these timing results are not the result of chance. The two-tier method is only

slower than the two ACGP searches with the smaller population. This table shows the p-

values for the Mann–Whitney U test for each of these comparisons. The Mann–Whitney

U test is used for these tests because it is a more robust statistic when attempting whether

one distribution is stochastically greater than another.

Table 18 - Artificial Ant Execution Time Sample Significance (p-values, vs. the Two-tiered method)

Execution Times

Base GP ACGP 1st OH ACGP 2nd OH

1000 2.262 x 10-6 2.618 x 10-11 4.954 x 10-11

2000 3.735 x 10-4 1.002 x 10-10 2.899 x 10-11

Aleshunas, John, 2013, UMSL, p.58

Table 19 compares the average fitness scores for each set of runs for each search method

on the artificial ant problem. Here the two-tier search improves on the fitness scores from

all of the other search methods. The strong fitness score of the two-tier search method

offsets any execution time advantage 1
st
 order ACGP or 2

nd
 order ACGP had in the Table

17 results.

Table 19 - Comparison of Average Fitness Scores (Artificial Ant)

Fitness Scores

1000 2000 2000 + 1000

Base GP 0.0981 0.2916 -

ACGP 1st OH 0.4931 0.7626 -

ACGP 2nd OH 0.4131 0.6282 -

TT Aug (combined) - - 0.7968

Population Size

When the samples of fitness score values for the set of independent runs for each method

are compared with the sample of values for the two-tier method runs it is clear that these

fitness results (Table 20) are unmistakable learning improvements and not the result of

chance. This table shows the p-values for the Mann–Whitney U test for each of these

comparisons. The Mann–Whitney U test is used for these tests because it is a more robust

statistic when attempting whether one distribution is stochastically greater than another.

Table 20 - Artificial Ant Fitness Score Sample Significance (p-values, vs. the Two-tiered method)

Fitness Scores

Base GP ACGP 1st OH ACGP 2nd OH

1000 4.754 x 10-9 4.298 x 10-3 6.729 x 10-4

2000 1.707 x10-5 6.688 x 10-1 8.897 x 10-2

Although viable solutions for the artificial ant problem require strict functional structures

that do not lend themselves to permutations that are also viable solutions, this two-tier

search methodology can discover solutions with better fitness than a standard GP, 1
st

order ACGP, or 2
nd

 order ACGP techniques and do so more efficiently. An assumption

that drives this performance is that the population for the first stage search by 1
st
 order

ACGP be large enough so structural diversity of the population ensures candidate

solutions that can contribute useful building block information. Without this information,

ACGP may bias the search toward suboptimal solutions. An experiment with the

ComplexEq problem (Equation (9)) introduced in Chapter 3.2 should help explore the

question of population size and building block diversity.

5.6 Two-tiered Search Applied to a Complex Regression Problem

A specifically constructed regression problem was introduced in Chapter 3.2 as an

example experiment demonstrating how ACGP can have difficulties with problems

whose viable solutions require strict structure out of a complete population of candidate

solutions. The ComplexEq problem was defined by Equation (9) and an example solution

tree was shown in Figure 9. As discussed in Chapter 3.2, this problem has a slight

information advantage for 2
nd

 order ACGP versus 1
st
 order ACGP. The average fitness

curves shown in Figure 10 and Figure 11 did not appear to support this observation.

Aleshunas, John, 2013, UMSL, p.59

The experimental results in Figure 10 and Figure 11 indicated that without a considerably

large population ACGP search is not very successful. In fact, experiments show that, with

populations below 2000 individuals, a base GP implementation outperforms the fitness of

either ACGP method. Even with larger populations, 1
st
 order ACGP appears to attain

better fitness scores than 2
nd

 order ACGP. Two factors conspire to create this behavior.

First, the target equation is complex. Its tree depth and component organization implies a

requirement for both larger trees and a more diverse population of those trees.

Additionally, the inclusion of the strict-structure function ‘–‘ imposes a strict structure on

viable candidate solutions. These two factors Increase the search complexity for 2
nd

 order

ACGP to the point where it becomes inefficient.

Two experiments using large populations should help demonstrate these points. Each

experiment used 30 independent searches of either base GP application, 1
st
 order ACGP,

or 2
nd

 order ACGP. All of the GP searches for the ComplexEq problem used the

operational parameters listed in Table 4 with the following exceptions for this problem:

Population size: 5000 and 10,000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

2
1

0

2
2

0

2
3

0

2
4

0

2
5

0

2
6

0

2
7

0

2
8

0

2
9

0

3
0

0

3
1

0

3
2

0

3
3

0

3
4

0

3
5

0

3
6

0

3
7

0

3
8

0

3
9

0

4
0

0

4
1

0

4
2

0

4
3

0

4
4

0

4
5

0

4
6

0

4
7

0

4
8

0

4
9

0

5
0

0

Fi
tn

e
ss

Generation

ComplexEq Learning Curve
population = 5000, generations = 500

2nd OH

1st OH

Base

Figure 33 - ComplexEq Average Fitness Curve (population 5000)

Figure 33 portrays the average fitness results for the three GP methods using a population

of 5000 individuals. The base GP application began to show fitness results soonest but its

fitness scores also quickly stopped improving. This performance plateau can possibly be

attributed to introns and solution bloat [3], [12], [13]. While the two versions of ACGP

began improving later than the base GP application, their fitness results were better with

1
st
 order ACGP achieving stronger scores than 2

nd
 order ACGP.

The slower overall ACGP learning rates and the advantage of 1
st
 order ACGP over 2

nd

order ACGP appear to indicate a learning handicap ACGP has with complex solution

structures and problems with strictly structured candidate solutions. The increased

number of desirable 2
nd

 order heuristics in this problem (see Equation (12)) means that

2
nd

 order ACGP will take longer to discover all of them and bias its search to use them.

Aleshunas, John, 2013, UMSL, p.60

One way this problem can be mitigated is to increase the size of the population thereby

increasing the diversity of the population and increasing the probability of finding better

candidate solutions in that population.

The fitness results of the three GP searches using a population of 10,000 are shown in

Figure 34. The base GP application is the first to show fitness improvement but then

stalls because of the growth bloat in population members. This time 2
nd

 order ACGP has

quick fitness gains versus 1
st
 order ACGP but eventually 1

st
 order ACGP achieves higher

fitness scores. Before progressing on to an experiment with the two-tier search

methodology it is worth asking the question, what are the implications of these two

experiments and want impacts would they have on a two-tier ACGP search?

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

2
1

0

2
2

0

2
3

0

2
4

0

2
5

0

2
6

0

2
7

0

2
8

0

2
9

0

3
0

0

3
1

0

3
2

0

3
3

0

3
4

0

3
5

0

3
6

0

3
7

0

3
8

0

3
9

0

4
0

0

4
1

0

4
2

0

4
3

0

4
4

0

4
5

0

4
6

0

4
7

0

4
8

0

4
9

0

5
0

0

Fi
tn

e
ss

Generation

ComplexEq Learning Curve
population = 10,000, generations = 500

2nd OH

1st OH

Base

Figure 34 - ComplexEq Average Fitness Curve (population 10,000)

The first observation that should be noted is that both ACGP methods are slower in

developing the average fitness for all 30 independent runs compared to the base GP

implementation. ACGP has difficulty discovering desirable building blocks in more

complex problems as seen in Figure 8, Figure 14, and Figure 27. In each of these cases,

ACGP conducts its early analysis of the building blocks and adjusts their heuristics

without enough viable solutions in the population. Once enough viable solutions are

available in the population, then ACGP easily discovers the desirable building blocks that

contribute to the success of these solutions and enhances the selection probabilities for

those building blocks. This observation indicates that the effectiveness of ACGP search is

dependent on finding viable solutions in a given population.

The second observation, that 1
st
 order ACGP appears to learn more successfully on this

problem than 2
nd

 order ACGP, suggests some implications regarding the complexity of

the two ACGP methods. Equation (1) can be used to compute the complete number of 1
st

order and 2
nd

 order building blocks for a given set of functions and terminals. The set of

1
st
 order building blocks always has fewer elements than the set of 2

nd
 order building

blocks. While this is fairly obvious, it has implications for the different complexity of

each method’s search and how easily an ACGP search might be deceived. Since a 1
st

order ACGP search analyzes fewer heuristics, it has a higher probability of discovering

Aleshunas, John, 2013, UMSL, p.61

useful building blocks, even by chance. The more complex 2
nd

 order ACGP search is

dependent on the discovery of fit solutions that contain desirable building blocks. It

cannot rely on chance to discover them.

An experiment with the two-tiered search methodology for the ComplexEq problem will

attempt to capitalize on the advantage of 1
st
 order ACGP search to seed a 2

nd
 order ACGP

search. This experiment uses the same parameters as the previous experiments with 30

independent runs of 1
st
 order ACGP with a population of 10,000 for 250 generations. The

result of each run is reviewed and the 1
st
 order heuristic matrix of any unsuccessful run is

removed from the set of heuristic matrices. A successful run is defined as one that results

in a fitness score of 1.0. The remaining 1
st
 order heuristic matrices are combined to form

the seed heuristic. This seed is used to condition a 2
nd

 order ACGP search with a

population of 5000 for 250 generations.

Figure 35 shows the results of this experiment versus the other experimental results for a

population of 5000 (Figure 33). The larger population of the 1
st
 order ACGP search

(10,000 individuals) produces in a stronger fitness result in the initial 250 generation

stage of the two-tier search. The 1
st
 order seed heuristic, produced by the first stage

search, conditions the 2
nd

 order ACGP search and initializes that stage of the two-tier

search method with a population of more viable solutions. The second stage of the two-

tier search quickly discovers useful heuristics and enhances their use even though this

stage uses a smaller (5000 individuals) population compared to the first stage.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

2
1

0

2
2

0

2
3

0

2
4

0

2
5

0

2
6

0

2
7

0

2
8

0

2
9

0

3
0

0

3
1

0

3
2

0

3
3

0

3
4

0

3
5

0

3
6

0

3
7

0

3
8

0

3
9

0

4
0

0

4
1

0

4
2

0

4
3

0

4
4

0

4
5

0

4
6

0

4
7

0

4
8

0

4
9

0

5
0

0

Fi
tn

e
ss

Generation

ComplexEq Learning Curve
population = 5000, generations = 500

TT

2nd OH

1st OH

Base

Figure 35 - ComplexEq Average Fitness Curve using a Population of 5000 versus Two-Tier Scheme using a

Population of 10,000 seeding a Population of 5000

Figure 36 shows the results of this experiment versus the other experimental results for a

population of 5000 (Figure 34).

Aleshunas, John, 2013, UMSL, p.62

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0

2
0

0

2
1

0

2
2

0

2
3

0

2
4

0

2
5

0

2
6

0

2
7

0

2
8

0

2
9

0

3
0

0

3
1

0

3
2

0

3
3

0

3
4

0

3
5

0

3
6

0

3
7

0

3
8

0

3
9

0

4
0

0

4
1

0

4
2

0

4
3

0

4
4

0

4
5

0

4
6

0

4
7

0

4
8

0

4
9

0

5
0

0

Fi
tn

e
ss

Generation

ComplexEq Learning Curve
population = 10,000, generations = 500

TT

2nd OH

1st OH

Base

Figure 36 - ComplexEq Average Fitness Curve using a Population of 10,000 versus Two-Tier Scheme using a

Population of 10,000 seeding a Population of 5000

The two-tier ACGP search methodology results in a far better average fitness than any of

the other three methods using a population of 10,000 individuals. The advantages of the

two-tier ACGP search method are apparent when the average execution times and

average fitness scores are directly compared.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

2
0

0

2
2

0

2
4

0

2
6

0

2
8

0

3
0

0

3
2

0

3
4

0

3
6

0

3
8

0

4
0

0

4
2

0

4
4

0

4
6

0

4
8

0

5
0

0

5
2

0

5
4

0

5
6

0

5
8

0

6
0

0

6
2

0

6
4

0

6
6

0

6
8

0

7
0

0

7
2

0

7
4

0

7
6

0

7
8

0

8
0

0

8
2

0

8
4

0

8
6

0

8
8

0

9
0

0

9
2

0

9
4

0

9
6

0

9
8

0

1
0

0
0

Fi
tn

e
ss

Seconds

ComplexEq Learning Curve
population = 5000, generations = 500

TT

2nd OH

1st OH

Base

Figure 37 - ComplexEq Average Fitness Curve using a Population of 5000 versus Two-Tier Scheme using a

Population of 10,000 seeding a Population of 5000 compared on a time scale

Figure 37 shows the learning curves from the experiments shown in Figure 35

substituting an x-axis representing time (1000 seconds) for one representing generations.

The advantage of the two-tier scheme, in terms of fitness and execution time, is clear.

Aleshunas, John, 2013, UMSL, p.63

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

2
0

0

2
2

0

2
4

0

2
6

0

2
8

0

3
0

0

3
2

0

3
4

0

3
6

0

3
8

0

4
0

0

4
2

0

4
4

0

4
6

0

4
8

0

5
0

0

5
2

0

5
4

0

5
6

0

5
8

0

6
0

0

6
2

0

6
4

0

6
6

0

6
8

0

7
0

0

7
2

0

7
4

0

7
6

0

7
8

0

8
0

0

8
2

0

8
4

0

8
6

0

8
8

0

9
0

0

9
2

0

9
4

0

9
6

0

9
8

0

1
0

0
0

Fi
tn

e
ss

Seconds

ComplexEq Learning Curve
population = 10,000, generations = 500

TT

2nd OH

1st OH

Base

Figure 38 - ComplexEq Average Fitness Curve using a Population of 10,000 versus Two-Tier Scheme using a

Population of 10,000 seeding a Population of 5000compared on a time scale

Figure 38 shows the learning curves from the experiments shown in Figure 36

substituting an x-axis representing time (1000 seconds) for one representing generations.

The advantage of the two-tier scheme, in terms of fitness and execution time, is more

distinct. Table 21 compares the average execution time for each set of runs for each

search method. The two-tier search is fast and improves on most of the other searches.

Only 1
st
 order ACGP and 2

nd
 order ACGP are faster than the two-tier search method.

These observations are similar to those of the other GP search problems discussed earlier.

Table 21 - Comparison of Average Execution Times (ComplexEq)

Execution Times

5000 10,000 10,000 + 5000

Base GP 4657.00 8620.13 -

ACGP 1st OH 737.00 1559.27 -

ACGP 2nd OH 876.63 1676.33 -

TT Aug (combined) - - 1178.43

Population Size

When the samples of execution time values for the set of independent runs of each

method for this problem are compared with the sample of values for the two-tier method

runs it is clear that these timing results are not the result of chance. The two-tier method

is only slower than the two ACGP searches with the smaller population. Table 22 shows

the p-values for the Mann–Whitney U test for each of these comparisons. The Mann–

Whitney U test is used for these tests because it is a more robust statistic when attempting

whether one distribution is stochastically greater than another.

Table 22 - ComplexEq Execution Time Sample Significance (p-values, vs. the Two-tiered method)

Execution Times

Base GP ACGP 1st OH ACGP 2nd OH

5000 3.334 x 10-11 5.448 x 10-11 3.472 x 10-10

10,000 4.613 x 10-10 4.969 x 10-11 3.685 x 10-11

Aleshunas, John, 2013, UMSL, p.64

Table 23 compares the average fitness scores for each set of runs for each search method

on the ComplexEq problem. Here the two-tier search improves on the fitness scores from

all of the other search methods. The strong fitness score of the two-tier search method

offsets any execution time advantage 1
st
 order ACGP or 2

nd
 order ACGP had over the

two-tier search in Table 21.

Table 23 - Comparison of Average Fitness Scores (ComplexEq)

Fitness Scores

5000 10,000 10,000 + 5000

Base GP 0.0330 0.0955 -

ACGP 1st OH 0.2669 0.7341 -

ACGP 2nd OH 0.1004 0.5675 -

TT Aug (combined) - - 1.000

Population Size

When the samples of fitness score values for the set of independent runs for each method

are compared with the sample of values for the two-tier method runs it is clear that these

fitness results are considerable learning improvements and not the result of chance. Table

24 shows the p-values for the Mann–Whitney U test for each of these comparisons. The

Mann–Whitney U test is used for these tests because it is a more robust statistic when

attempting whether one distribution is stochastically greater than another.

Table 24 - ComplexEq Fitness Score Sample Significance (p-values, vs. the Two-tiered method)

Fitness Scores

Base GP ACGP 1st OH ACGP 2nd OH

5000 8.501 x 10-13 1.004 x 10-8 1.053 x 10-11

10,000 3.678 x 10-12 2.563 x 10-3 5.619 x 10-5

Although viable solutions for the ComplexEq problem require strict and complex

functional structures that do not lend themselves to permutations that are also viable

solutions, this two-tier search methodology can discover solutions with better fitness than

standard GP techniques and do so more efficiently. An assumption that drives this

performance is that the population for the first stage search by 1
st
 order ACGP be large

enough so structural diversity of the population ensures candidate solutions that can

contribute useful building block information. Without this information, ACGP may bias

the search toward suboptimal solutions.

Aleshunas, John, 2013, UMSL, p.65

6 Summarization and Conclusions

The empirical and theoretical results presented in this investigation demonstrate that

genetic programming search of ACGP can be improved with a directed reduction of the

representation space. This benefit mitigates issues associated with the normal over-

specification of the components used to solve a given problem. The complete

optimization of the set of functions and terminals is not necessary to achieve quality

results for this methodology. The advantage in evolutionary learning can be gained with a

coarse probabilistic reduction of the set of functions and terminals.

Chapter 1 described the factors that contribute to the normal complexity of a GP

representation space. Past methodologies designed to optimize the search were discussed

in Chapter 2. Adaptable Constrained Genetic Programming (ACGP) was introduced in

Chapter 3. That discussion described how ACGP improves its evolutionary search by

discovering desirable building blocks and probabilistically promoting their use. The

limitations of ACGP learning was demonstrated using a regression example designed to

illustrate these issues. Next, a case was made for a potential methodology to resolve these

issues using a modification of normal ACGP operation. The general thesis of this

research was stated in Chapter 4 with a description of a two-tiered modification of

ACGP. This modified implementation of ACGP results in this operational process:

1) Run 1
st
 order ACGP with typical parameter settings but with half the

number of generations than normal (using multiple independent 1
st
 order

ACGP runs)

2) Review the final fitness scores for the set of ACGP runs

a. If there are not a sufficient number of successful runs to combine

into a seed heuristic model, increase the population size and repeat

step 1

b. Else, combine the final 1
st
 order heuristic matrices for the

successful runs by computing the arithmetic average of each

individual heuristic to produce the seed heuristic matrix

3) Seed a set of 2
nd

 order ACGP runs with the 1
st
 order heuristic computed in

step 2b

4) Analyze the final results from the two-tier search

This modification to normal ACGP processing capitalizes on several attributes of this

application to improve its evolutionary search capabilities. ACGP can be run in one of

three operational modes. Two of those modes (1
st
 order heuristic mode and 2

nd
 heuristic

mode) provided the low-granularity and the high-granularity search processes used by the

proposed scheme. ACGP supplies output of its discovered heuristics as probability tables.

These probabilities can be presented to ACGP as input data that will seed and condition

an ACGP search.

Finally, the empirical results presented in Chapter 5

a) Clearly describe the nature of the representation space search problem

b) Define the steps of a two-tier search methodology using ACGP

Aleshunas, John, 2013, UMSL, p.66

c) Establish the basis for the efficacy of this two-tier ACGP search scheme

d) Present the results of several experiments validating the efficacy and

efficiency of this concept.

The results of the experiments in this investigation support the viability of this method in

improving the ACGP search results over a complex representation space.

6.1 Summarization of experimental results

The empirical results described in this document clarify the issues associated with

representation space complexity and the impacts they have on ACGP search. With a

sample of weak solutions, ACGP will tabulate the most frequent building blocks and

enhance their probability of selection. Unfortunately, without a sample of good solutions,

this behavior becomes deceptive. ACGP will continue to tabulate the most frequent

building blocks, irrespective of their contribution to solution fitness, and adjust their

heuristic probabilities accordingly. These poor heuristics lead the ACGP search toward

poor solutions.

The experiment with the Bowl3neg problem (Equation (13)) demonstrated how the strict-

structure functions in this problem’s target solution structure reduced the quality of a

standard GP search and made this search more difficult than a corresponding search using

only variable-structure functions in the target solution. Comparison of the desirable

building blocks found in this problem with those found in the Bowl3 problem (Equation

(4)) explained the learning advantage of 2
nd

 order ACGP has over 1
st
 order ACGP for

both problems but did not explain the fitness score differential between the two problems.

The only potential explanation for this behavior by ACGP was the restricted structure of

potential candidate solutions in Bowl3neg. Application of the two-tier ACGP search

methodology on this problem confirmed that if the representation space was reduced

better solutions can be discovered. Probabilistically biasing the selection of desirable

building blocks and discouraging the selection of undesirable building block effectively

reduces the representation space and thereby makes the search more efficient.

Additional experiments with the artificial ant problem and another more complex

regression problem reinforced the assertions of the efficacy of the two-tier ACGP search

methodology in improving ACGP search results. Both the artificial ant and the

ComplexEq problem are characterized by candidate solutions with strict structure

imposed by the desired functions used to form them. This structural constraint reduces

the probability that a conventional GP search will be productive. The two-tiered ACGP

search scheme will efficiently search the representation space with 1
st
 order ACGP. This

search develops a low-granularity probabilistic map of the representation space. This map

probabilistically constrains the representation space and conditions the higher-granularity

2
nd

 order ACGP search of the second tier to exploit more productive regions of the

representation space. This constrained search scheme results in improved ACGP search

results and efficient use of computation resources. In all the experiments, this search

scheme achieves strong fitness results with increased efficiency in its execution time

versus a base GP, 1
st
 order ACGP, or 2

nd
 order ACGP alone.

Aleshunas, John, 2013, UMSL, p.67

6.2 Implications of the Efficacy of this Methodology

The empirical results and analysis of the experiments in Chapter 5 demonstrate that a

two-tiered ACGP search can be very effective. This two-tier search scheme combines the

computational simplicity of a low-granularity method (1
st
 order heuristics) with the

quality resolution of a higher-granularity method (2
nd

 order heuristics). This combined

methodology exploits the strengths of the two techniques and mitigates their individual

limitations. The low-granularity first stage search will develop a 1
st
 order ACGP

probabilistic model that constrains the original set of functions and terminals. This model

will condition the higher-granularity search of the second stage using 2
nd

 order ACGP.

The conditioned second stage search will encourage the exploration of more productive

regions of the representation space.

6.3 Limitations of the Specific Implementation of this Methodology

The experiments presented here show that employing ACGP in a two-tiered scheme

improves its search capabilities for problems with complex structures. This two-tiered

search methodology may not be a universal solution for all complex GP search problems.

The Boolean 11-multiplexer was one problem that challenged this search scheme using

ACGP. Analysis of the search results for this problem revealed that the scores for the

typical fitness evaluation are contaminated by false positives. The output of a candidate

solution is compared to the target output for the input data. It is considered a success if

the two outputs match. No explicit verification is made to ensure that the correct input is

presented as the output value. This contamination appears to also contaminate the ACGP

heuristic analysis which relies on the assumption that there is dependency between the

fitness of a candidate solution and its component building blocks. This result does not

invalidate the principal assertions of the two-tier search scheme developed in this

document. It does indicate the need for further work in refining ACGP’s heuristic

analysis and adjustment processing.

Unlike some of the other methods mentioned in Chapter 2 ACGP heuristics are not tied

to specific locations in candidate solutions. This simplification helps the efficiency of

ACGP processing but it can also complicate ACGP search when particular heuristics

should be associated with specific locations in candidate solutions. Any refinement of

heuristic locality information while retaining as much of the original processing

efficiency could also benefit the proposed methodology.

Chapter 5.3 describes the steps of the proposed two-tier search scheme and its associated

parameters. While the steps of this methodology are plainly stated the selection criterion

for operating parameters such as population sizes for each tier, the number of training

generations for each tier, or the preparation processing of the 1
st
 tier’s heuristics are not

as clear and remain open questions.

6.4 Future development plans

While the results of this research support the original thesis that using ACGP in a two-

tiered search scheme can reduce the complexity of the GP representation space and

thereby improve ACGP’s search process, much more work is necessary to explore the

concept of probabilistic GP representation space reduction. Better component analysis

Aleshunas, John, 2013, UMSL, p.68

can help improve the discovery of necessary and unnecessary functions and terminals in

the specified component set. The ACGP heuristic analysis and adjustment process relies

on the assumption that there is dependence between the fitness of a candidate solution

and its component building blocks. When this assumption is invalidated, the heuristic

processing becomes inefficient and potentially deceptive. This observation does not

invalidate the principal assertions of the two-tiered ACGP search scheme developed in

this document. It does indicate the need for further work in refining the heuristic analysis

and adjustment process so that ACGP can conduct the two-tier search, or any search for

that matter, in a more robust manner. These future research directions can build on the

results of the work described in this document.

Aleshunas, John, 2013, UMSL, p.69

Works Cited

1 Aleshunas, John. Building Block Emergence in Genetic Programming (unpublished). University of

Missouri - Saint Louis, Saint Louis, MO, 2011.

2 Angeline, Peter J., Pollack, Jordan B. Competitive Environments Evolve Better Solutions for Complex

Tasks. In Proceedings of the 5th International Conference on Genetic Algorithms, ICGA-93 (Urbana-

Champaign, IL 1993), Morgan Kaufmann, 264 - 270.

3 Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert E., and Francone, Frank D. Genetic Programming -

An Introduction. Morgan Kaufmann, San Francisco, 1998.

4 Eiben. A. E., Smith, J. E. Introduction to Evolutionary Computing. Springer-Verlag, Berlin, 2003.

5 Janikow, Cezary Z. A methodology for processing problem constraints in genetic programming.

Computers & Mathematics with Applications, Volume 32, Issue 8 (October 1996), Pages 97-113.

6 Janikow, Cezary Z. ACGP/CGP lil-gp 1.2;1.02 A User’s Manual. University of Missouri - Saint Louis,

Saint Louis, 2008.

7 Janikow, Cezary Z. ACGP: Adaptable Constrained Genetic Programming. In O'Reilly, Una-May, Yu,

Tina, and Riolo, Rick L., ed., Genetic Programming Theory and Practice (II). Springer, New York,

2005.

8 Janikow, Cezary Z., Deshpande, Rahul A. Adaptation of representation in genetic programming. In

Smart Engineering System Design: Neural Networks, Fuzzy Logic, Evolutionary Programming,

Complex Systems, and Artificial Life (ANNIE'2003) (Saint Louis, MO 2003), ASME Press, 45 - 50.

9 Janikow, Cezary Z., Mann, Christopher J. CGP Visits the Santa Fe Trail – Effects of Heuristics on GP.

In GECCO '05 (Washington, D.C. 2005), ACM.

10 Janikow, Cezary Z., Aleshunas, John. Cost-benefit Analysis of Using Heuristics in ACGP. In 2011

IEEE Congress on Evolutionary Computation (New Orleans, LA 2011), IEEE.

11 Janikow, Cezary Z., Aleshunas, John, Hauschild, Mark W. Second-Order Heuristics in ACGP. In ACM

Genetic and Evolutionary Computation Conference (GECCO) (Dublin, Ireland 2011), ACM.

12 Koza, John R. Genetic Programming. MIT Press, Cambridge, 1992.

13 Langdon, William B. and Poli, Riccardo. Foundations of Genetic Programming. Springer-Verlag,

Heidelberg, 2002.

14 Looks, Moshe. Competent Program Evolution. Washington University, Saint Louis, 2006.

15 McKay, Robert I., Hoai, Nguyen Xuan, Whigham, Peter Alexander, Shan, Yin, O’Neill, Michael.

Grammar-based Genetic Programming: a survey. In Genetic Programming and Evolvable Machines.

Springer, Berlin, 2010.

16 Michalewicz, Zbigniew, Fogel, David B. How to Solve It: Modern Heuristics. Springer-Verlag, Berlin,

2004.

17 Ondas, Radovan, Pelikan, Martin, and Sastry, Kumara. Genetic Programming, Probabilistic Incremental

Program Evolution, and Scalability. In Advances in Intelligent and Soft Computing. Springer, Berlin,

2006.

18 Pelikan, Martin, Goldberg, David E. Hierarchical Bayesian Optimization Algorithm. Studies in

Fuzziness and Soft Computing, Volume 170/2005 (2005), 105-129.

19 Pelikan, Martin, Goldberg, David E., and Lobo, Fernando. A Survey of Optimization by Building and

Using Probablistic Models. University of Illinois as Urbana-Champaign, Urbana, IL, 2000.

20 R. Poli, W. B. Langdon, and N. F. McPhee. A Field Guide to Genetic Programming. Creative

Commons, San Francisco, 2008.

21 Salustowicz, Rafal, Schmidhuber, Jurgen. Probabilistic incremental program evolution. Evolutionary

Computation, Vol. 5, No. 2 (1997), Pages 123-141.

22 Sastry, Kumara, O'Reilly, Una-May, Goldberg, David E., Hill, David. Building-Block Supply in Genetic

Programming. University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, 2003.

23 Shan, Yin, McKay, Robert, Essam, Daryl, Abbass, Hussein. A Survey of Probabilistic Model Building

Genetic Programming. University of New South Wales, Canberra, NSW, Australia, 2006.

Aleshunas, John, 2013, UMSL, p.70

24 Whigham, P. A. Grammatically-Based Genetic Programming. In Proceedings of the Workshop on

Genetic Programming: From Theory to Real-World Applications (Tahoe City, CA 1995).

	University of Missouri, St. Louis
	IRL @ UMSL
	5-17-2013

	GP Representation Space Reduction Using a Tiered Search Scheme
	John Joseph Aleshunas
	Recommended Citation

	tmp.1491254998.pdf.6I3V6

