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Abstract  

The size and complexity of a GP representation space is defined by the set of functions 

and terminals used, the arity of those functions, and the maximal depth of candidate 

solution trees in the space. Practice has shown that some means to reduce the size or bias 

the search must be provided. Adaptable Constrained Genetic Programming (ACGP) can 

discover beneficial substructures and probabilistically bias the search to promote the use 

of these substructures. ACGP has two operating modes: a more efficient low granularity 

mode (1
st
 order heuristics) and a less efficient higher granularity mode (2

nd
 order 

heuristics). Both of these operating modes produce probabilistic models, or heuristics, 

that bias the search for the solution to the problem at hand. The higher granularity mode 

should produce better models and thus improve GP performance, but in reality it does not 

always happen.  

This research analyzes the two modes, identifies problems and circumstances where the 

higher granularity search should be advantageous but is not, and then proposes a new 

methodology that divides the ACGP search into two-tiers. The first tier search exploits 

the computational efficiency of 1
st
 order ACGP and builds a low granularity probabilistic 

model. This initial model is then used to condition the higher granularity search. The 

combined search scheme results in better solution fitness scores and lower computational 

time compared to a standard GP application or either mode of ACGP alone.  
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Dissertation 

1 Background 

Problem solving is a central theme in mathematics and computer science. Individuals 

devote considerable effort to the development of algorithms for automated problem 

solving. Deterministic algorithms work well when the problem space is tractable or the 

search space lends itself to a deterministic guided search. Once the search space gets 

large, deterministic methods experience time and processing costs that overwhelm them 

[16]. Heuristic search techniques are potentially more efficient and productive in these 

situations [4], [16]. Heuristic search of very large and complex problem domains using 

concepts from Darwin’s theory of evolution offers an interesting option. Many evolution-

based search methodologies are inspired by the selection behavior and survival outcomes 

in nature. As early as 1948, Turing proposed “genetical or evolutionary search” [4]. 

Today there are multiple nature-inspired types of evolutionary computation (EC): 

evolutionary programming, genetic algorithms (GA), evolutionary strategies, 

evolutionary computing, and genetic programming (GP). All of these techniques are 

based on the Darwinian principles and evolve a set of candidate solutions guided by a 

fitness evaluation function.  

The GP methodology differs from the other evolutionary computation schemes. Where 

most of the EC methods are typically applied to optimization problems, GP applications 

are more similar to machine learning [4]. The goal of a GP application is to evolve a set 

of computer programs and automatically improve them based on their fitness to 

accomplish a given task [3]. In other words, a GP application is an evolutionary search 

method that is adept at solving optimal instruction set problems [12]. A GP 

implementation strives to improve a set of computer programs using feedback from 

experiences with problem domain data.  

Genetic programming often represents its population of candidate solutions as variable-

sized trees. This choice of representation is mainly due to the early GP research work of 

John Koza [12] and this discussion will assume this solution model. The solution trees in 

GP applications are composed of elements from a predetermined set of functions and 

terminals. The function set consists of the operators, functions, and statements of the GP 

problem domain [12]. The members of the function set have some number of arguments. 

Members of the set of functions and terminals can be assigned to these argument 

locations. The terminal set consists of the constants supplied to the GP application and 

the variables representing data inputs [12]. These components are called terminals 

because they have no arguments, as functions do, and only appear in the leaf nodes of the 

population trees [3]. 

Several principles guide the choice of functions and terminals for a particular GP 

implementation. It is important that the set of functions and terminals be complete 

enough to represent a solution to the given problem [12]. This is referred to as the 

sufficiency property. If a necessary function or terminal is missing, the GP 

implementation may have difficulties finding a solution or only be able to find 
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suboptimal solutions. On the other hand, if the set of functions and terminals are too large 

it will generate a large and complex search space thereby impeding the probability of 

finding a viable solution. Finally, it is assumed that the members of the functions set 

accept any member of the function or terminal sets as valid arguments to avoid problems 

with invalid labelings [12]. This is called the closure property [3]. While this property is 

preferred, it cannot always be accommodated. Closure is not a problem when the 

members of the set of functions and the output values of the functions in the function set 

are all the same data type. If different data types are used in a GP application then 

constraints or other rules are necessary to support the closure property [12].  

Solutions are evolved from existing population members using genetic operators such as 

crossover, mutation, and reproduction. Crossover generates new solutions by exchanging 

genetic material, or subtrees, between two parent solutions. This process can be both 

constructive and destructive [12], [13]. When the operator combines simpler elements 

into a more successful complex structure, it is constructive. Crossover can also tear apart 

successful solutions. This latter behavior is destructive and can inhibit the search process. 

Mutation randomly modifies a sub-tree of a solution to create a new candidate solution. 

Like crossover, mutation can be both constructive and destructive [12], [13]. Normally, 

crossover and mutation are controlled using uniform probabilities and therefore they 

comprise an unbiased genetic search. Some methods that depart from this model result in 

interesting GP behavior. Reproduction is the simplest GP operator. It copies a selected 

individual into the new population unchanged [3], [12].  

Selection is the principal driver in most GP implementations [3], [12]. This mechanism 

chooses fit population members for participation in the generation of the next population 

of solutions and induces a bias toward fitter solutions. Selection works best when the 

fitness function provides graded and continuous evaluation of how well the GP search is 

progressing [3]. Fitness proportional selection exerts a strong fitness bias to the search 

process. Other selection schemes, such as tournament selection, moderate this bias, often 

in order to mitigate problems associated with premature convergence on a suboptimal 

solution [3]. The choice of selection method as a parameter can be used to improve the 

quality of the search and the fitness results of a conventional GP implementation for a 

given problem.  

The search quality and fitness results of a conventional GP application can vary with 

different choices for a number of parameters, not just selection. Often these parameter 

choices differ from problem to problem [12]. Some typical parameters whose adjustment 

can potentially impact GP search are: population size, selection method, operator 

probabilities, and initial and maximal tree size [3]. A larger population of candidate 

solutions increases the diversity of genetic material available at the cost of computing 

resources. Population diversity should help breed better candidate solutions sooner. 

Selection methods, such as tournament selection, that are not as greedy as fitness 

proportional selection prevent premature convergence and maintain diversity in the 

population of candidate solutions [3], [4]. Some problems cannot be described by smaller 

tree structures. Adjusting the minimum tree size for the initial population reduces the 

number of potential unfit or invalid solutions and potentially increases the number of 

viable solutions in the population [3]. Normally, fitness evaluation is the most 

computationally intensive operation in a GP application. Often fitness samples are 
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designated as a percent of the total population size. This value can be adjusted when large 

populations are used in a GP implementation to prevent oversampling. This adjustment 

can improve fitness convergence in large populations [3]. While proper set of parameters 

can improve GP search for specific problems, this benefit often imposes offsetting 

computational or storage costs and does not directly address the underlying issue – the 

size and complexity of the representation search space. 

The next chapter will identify a foundational issue that impacts GP performance – size 

and complexity of the representation space, along with a survey of the several proposed 

methods to deal with those issues by using or building some problem models. Chapter 3 

will identify another method that this research attempts to improve, along with 

identifying the cases when it fails to deliver. Then, Chapter 4 proposes a new strategy to 

improve that method by using a two-tiered approach. The next chapter details the new 

strategy and illustrates its effectiveness with a number of experiments. Finally, Chapter 6 

presents the conclusions of the research presented here along with a discussion of topics 

where future research work is required.  
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2 Characterization of the GP Representation Space  

One critical issue with GP application design is the selection of the members of the 

function and terminal sets. These sets should be complete enough to be able to adequately 

represent a correct solution for the problem. Unfortunately, if these sets include too many 

elements, the representation space becomes so large that the search of this large space 

impacts the performance of the GP application [3]. Methods that can help discover the 

best subset of functions and terminals thereby reducing this representation space should 

improve the performance and solution quality of a GP implementation.  

My previous work [10] quantified the combinatorial growth of the representation space in 

terms of the function elements, the terminal elements, the arity of the functions, and the 

maximum number of levels permitted in population individuals.  

                                 

  

 

                            

Equation (1) recursively calculates the size of the total set of trees from one level of 

nodes up to a maximum size identified by the variable level. This space contains every 

combination of the functions F, the terminals T, and the arity of each function arityFi for 

every tree of depth 1 up to the stated maximum depth. The size for a set of zero-size trees 

(only root nodes) is simply the magnitude of the terminal set and these are normally not 

viable solutions for any non-trivial problem. Experimentation with this equation quickly 

demonstrates that the population for this representation space will grow exponentially for 

a given set of functions and terminals as the maximum level of trees is increased. As an 

example of the scope of this problem, Table 1 lists the population growth for a GP 

component set using four binary functions and 14 terminals. 

Table 1 - GP Application Representation Space Growth 

Level Population Size

1 1.29 x 103

5 8.07 x 1058

10 4.96 x 101903

15 8.49 x 1060936

20 2.46 x 101950000
 

It is easily seen that the extremely large search spaces defined by large multi-level trees 

normally used in GP applications complicate our solution search. Genetic algorithms do 

not display as high a level of complexity as GP applications because they have a simpler 

alphabet of components (normally only two characters), position specific semantics, and 

they often use fixed-sized population members.  

Table 2 compares the growth of the representation space for a GP application using four 

binary functions and 14 terminals versus another GP implementation using five binary 

functions and 14 terminals. The inclusion of only one more binary function has an impact 

on the representation space growth which increases as the maximal tree level is increased. 

This table implies that if the set of functions and terminals is reduced to a minimal set the 
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resulting representation space will be smaller than that generated by any super set of 

functions and terminals.  

Table 2 - GP Application Representation Space Growth (4 versus 5 binary functions) 

Level 4 Functions 5 Functions

1 1.29 x 103 1.81 x 103

5 8.07 x 1058 4.38 x 1061

10 4.96 x 101903 1.61 x 102026

15 8.49 x 1060936 2.13 x 1064860

20 2.46 x 101950000 1.41 x 102075553
 

Table 3 compares the representation space size of a GP implementation using four binary 

functions and 14 terminals versus another GP implementation using three binary 

functions plus one tertiary function and 14 terminals. The substitution of the tertiary 

function for one of the binary functions has a highly significant impact on the size of the 

resulting representation space. This table implies that if the set of functions and terminals 

is reduced to a minimal set using functions with fewer arguments rather than more 

arguments, the resulting representation space will be smaller than the space generated by 

any set of functions that include higher arity functions. If the results of a higher arity 

function can be generated by combinations of lower arity functions it is computationally 

simpler to not use the higher arity function. Clearly, any reduction in the elements of the 

function set or terminal set can help reduce the representation search space. 

Table 3 - GP Application Representation Space Growth (4 binary functions versus 3 binary + 1 tertiary 

functions) 

4 Binary 3 Binary + 1 Tertiary 

Level Functions Functions

1 1.29 x 103 6.80 x 103

5 8.07 x 1058 3.40 x 10310

10 4.96 x 101903 1.33 x 1075459

15 8.49 x 1060936 1.49 x 1018336567
 

The discussion above about the GP application representation search space ignores some 

specific attributes of the search space components that can help reduce the complexity 

and thereby improve the GP search. One technique that can help constrain the size of the 

search space is restricting the solution generation process so that it can only generate 

semantically valid individuals for the given problem. One such validation technique 

utilizes the argument type requirements for the member functions to constrain which 

functions or terminals are valid as child nodes. Some functions require specific types of 

functions or terminals in particular argument locations. An example of such a function is 

the logical IF function. Normally IF is defined as a function with three arguments: the 

first argument requires a Boolean function or terminal, the other two arguments can 

normally be any function or terminal. Restricting which functions or terminals are 

selected for the first argument to the IF function can guarantee that only valid solutions 

are generated by a GP application. There may be a need to impose additional constraints 

on the operation of a GP application, this notion of enforcing particular GP 
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implementation structure constraints is the concept behind Strongly Typed GP and 

Grammar-Based GP. 

2.1 Strongly Typed GP 

Strongly Typed GP (STGP) strives to satisfy the GP closure requirement by constraining 

the selection of functions and terminals in a GP solution based on their data type for 

particular argument locations [20]. In STGP, every terminal is assigned a type and every 

function has types assigned to each of its arguments and its return value. These types then 

help constrain the random selection of functions and terminals so that only valid solutions 

are generated. These type constrains govern the initial generation of population members, 

locations and subtrees involved in crossover, and subtree generation for mutation.  

The STGP methodology is effective in improving the GP search because computational 

resources are not wasted on evaluating invalid solutions. Another positive aspect of these 

structural constraints is that they reduce the effective search space. The search space is 

reduced to only the valid solutions that can be constructed from the set of functions and 

terminals. For specific sets of functions and terminals, this space reduction can be 

significant. Consider the impact of STGP constraints on the search space size 

computation in Equation (1). The equation assumes that every function and terminal 

component is valid at any location in an individual tree. The STGP rules constrain which 

function and terminal components are valid for a given parent node function and the 

particular parent node function argument these components describe. These rules 

constrain both the initial trees and how operators generate new trees so that only valid 

trees are generated. Many of the individual trees that an unconstrained Equation (1) 

would count are not included in the search space of a STGP. The argument type rules are 

normally set prior to the start of the GP search for many STGP implementations [20]. 

This requirement is more of a reality of this technique rather than a limitation. 

2.2 Grammar Based GP 

Similar to STGP, Grammar-based GP implementations were developed to constrain the 

structure of generated solutions so that only valid solutions are generated and evaluated 

[15], [20], [24]. The most common grammar formalism is context-free grammars (CFG) 

[23]. Grammars are a natural way to express solution generation constraints. A grammar 

consists of a set of rewrite or production rules that govern the combinations of function 

and terminals. Here is an example of a grammar that enforces the structure for a 

particular GP problem: 

                 

                    

                       

                  

These grammar production rules ensure that the initial population consists of only valid 

individuals. Additionally, these rules guide the process of the GP operators of crossover 

and mutation. The extra cost of processing these rules is offset by the elimination of 
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invalid solutions in the grammar-based GP search space and the resulting search space 

can be significantly smaller than the space generated by random permutations of the 

selected function and terminal sets for a given GP problem. This smaller search space 

consisting of only valid structures helps improve the search process of a grammar-based 

GP.  

When the constraints of a grammar are considered in the context of Equation (1), the 

reduction of the representation space complexity is clear. The equation assumes that 

every function and terminal component is valid at any location in an individual tree. The 

grammar rules dictate which function and terminal components are valid for a given 

parent node function and the particular parent node function argument these components 

describe. Many of the individual trees that an unconstrained Equation (1) would count are 

not included in the search space of a CFG-GP. 

Originally, CFG-GP required that the grammar rule sequence be specified prior to 

execution of the GP search [23]. This restriction can impose a potential negative 

limitation on the GP search, and possibly ignore an optimal solution, when more than one 

set of the grammar rules is valid or when the grammar is unknown. Stochastic context-

free grammar (SCFG) is an approach that attempts to avoid this restriction [23]. In a 

SCFG the production rules are stipulated in advance in a specific production sequence, 

similar to CFG. The difference in SCFG is that each rule is assigned a probability. 

Normally these probabilities start as a uniform distribution and the rules are applied in the 

original sequence to produce individual solutions for a population. As future GP 

implementation generations are evaluated, the production rule probabilities are adjusted. 

These probability adjustments bias the sequence of production rules toward a sequence 

that produces fitter individuals and modify the sequence of the production rules. SCFG 

offer adaptability in the probabilities of the set of production rules but inferring an SCFG 

is a difficult problem [23]. Most current SCFG methods are based on a greedy search 

scheme. 

2.3 EDA-GP 

Estimation of distribution algorithm GP (EDA-GP) is another approach to resolving the 

complexity of the GP representation search space [23]. EDA-GP models the search space 

as a probability distribution and is based on EDA which were developed to solve genetic 

algorithm problems. Probabilistic incremental program evolution (PIPE) is an example of 

an EDA-GP technique [17], [19], [20], [21]. PIPE replaces the GP population with a 

hierarchy of probability tables organized into a tree structure (see Figure 1). Each table 

represents the probability that a particular function or terminal will be chosen for that 

particular location in a newly generated individual solution.  

PIPE simplifies the representation space search problem by not directly searching the 

representation space [17]. It generates a sample of search space using the probability 

model, updates the probability distribution based on the fittest solutions in this sample, 

and repeats this process until a stopping criterion is met. In each generation, individual 

solutions are bred using the probability tables at each node. A function or terminal 

primitive is chosen for a particular location based on that node’s probability table. Once a 

sample population is generated, the fitness of these new programs is computed. Finally, 

the probability table hierarchy is updated using the sample population fitness. The goal of 
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this process is to make the future generation of highly fit solutions more likely. In PIPE 

each node is treated as an independent random variable. PIPE attempts to learn the 

probability of particular functions at particular locations in the tree and therefore will 

ignore other potentially successful solutions as the options for particular nodes emerge 

[17].  

 

Figure 1 - Probabilistic incremental program evolution (adopted from [23]) 

While PIPE avoids a direct struggle with the GP representation space complexity, there 

are several nuances of this methodology that should be noted. The probability table 

hierarchy tree must be sized large enough to capture the depth of a viable solution tree. 

Next, each node’s probability table must include a probability value for every function of 

terminal in the set of primitives for the GP problem. Finally, the branches from each node 

to its child nodes are dominated by the arity of the function with the highest arity [17]. 

All of these three structural requirements must be stipulated at the start of the GP search 

and together they impose a different form of complexity in the operation of PIPE.  

One advantage of the PIPE methodology is that each node probability table is localized 

within the hierarchal tree of probability tables. This means that each individual function 

or terminal can have a different probability depending on its depth or location in the tree. 
One outcome of this behavior is that functions are more probable higher in the tree and 

terminals are more probable as the tree’s depth increases [20].  

The search space defined by Equation (1) assumes that every function and terminal 

component is valid at any location in an individual tree and has a non-zero probability of 

being selected. PIPE (and most EDA-GP) alters the selection probability of the function 

and terminal components for each node in an individual tree but normally does not 

restrict a component from being selected by reducing this probability to zero. This 

behavior means that while some individuals may have a higher probability of being 

generated, any individual in the entire search space can still be generated. The complexity 

of the representation search space is probabilistically constrained, similar to SCFG, rather 

than being physically constrained as in STGP and CFG-GP. 

The individualized nature of the selection process at each node is also a limitation of 

PIPE. Since the functions and terminals are selected for each node independent of any of 

the other nodes, PIPE cannot capture any dependencies among the elements in the 

function and terminal set. Another limitation of this methodology stems from the 

requirement that the probability table hierarchy tree must be sized large enough to 

capture the depth of a viable solution tree. This requirement imposes a physical memory 
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cost to store the probability table hierarchy tree [20] and the cost quickly increases as the 

maximal tree size and function arity increases. 

2.4 Modular Models 

Highly complex objects in biological or engineering domains often use hierarchical, 

modular structures to mitigate their complexity. This concept is easily adapted to GP 

solution structures and has been a topic of early research in genetic programming.  

The building block hypothesis [3] asserts that highly fit building blocks combine to form 

highly fit individuals in the GP population from one generation to another. These highly 

fit components are threatened by the destructive effects of the crossover operator. Early 

work by Koza [12] proposed the modularization of program code or a subtree into an 

automatically defined function (ADF). With ADF, a GP implementation can evolve 

potentially reusable components that are available for use in GP population individuals. 

Recombination operators are constrained within ADF so that an ADF subtree is swapped 

only with another individual’s ADF subtree [20].  

ADF have shown success in several problem domains and they provide a performance 

advantage when the introduction of functions will sufficiently reduce the length of 

solutions in a population. A limitation of ADF is the requirement to define the 

architecture of an individual program prior to executing a GP implementation using ADF. 

The ADF architecture must stipulate the number of function-defining branches in the 

whole program and the number of arguments for each function-defining branch. This 

requirement increases the set of initial parameters for the GP application and the 

complexity of the process.  

 

Figure 2 - Modular Model GP (adopted from [2]) 

This concept of modular models was extended by Angeline and Pollack [2]. In their 

approach, each module is stored in a library of modules and referenced in the individuals 

of the GP population. Modules that provide a fitness advantage will be referenced more 

frequently as the number of fit individual solutions increases. Modules that are no longer 

referenced probably contribute little to the fitness of individuals and can be culled from 
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the library. This technique can help constrain the physical storage needed for the 

population of solutions but adds a third category of node components – a set of function 

modules. Figure 2 shows an example where a subtree is converted to a reusable module. 

If these additional function modules are considered in Equation (1) along with the set of 

functions and terminals, the complexity of the representation space can be described by 

Equation (2). 

                                           

  

 

                            

This equation can be simplified. Some modules will not have any arguments and 

terminate a tree branch similar to the formal terminals. These modules can be combined 

with the terminals to form an augmented terminal set   . Other modules have arguments 

and can be combined with the original functions to form an augmented function set   . 

These augmented sets produce this reformulation of Equation (1). 

                                   

   

 

                             

While Equation (3) resembles Equation (1), its results are in fact different because the 

augmented set of functions and terminals reduce the number of levels necessary in 

candidate solution trees. Overall, modular models have several advantages. They can 

discover building blocks that contribute to the fitness of individual trees and encapsulate 

them in the module library for reuse. They also protect those building blocks as modules 

from the destructive effects of crossover and mutation. These advantages are offset by the 

augmented set of functions and terminals described by Equation (3) and the additional 

work of searching for modules.  

2.5 Meta-optimizing Semantic Evolutionary Search 

Another probabilistic approach was proposed by Looks [14]. The meta-optimizing 

semantic evolutionary search (MOSES), while not a GP methodology, is an evolutionary 

process that attempts to find optimal programs by optimizing the representation space of 

a given problem. The operation of MOSES is based on the premise that if an optimal 

representation space is defined for a given programming problem, a solution should be 

easily found. MOSES attempts to refine the representation space parameters for a given 

problem using the Hierarchical Bayesian Optimization Algorithm (hBOA) [18]. Some 

examples of these representation space parameters that MOSES tries to optimize are: the 

set of functions and terminals, numerical constants that modify the behavior of a 

function, weighted combination of terminals rather than use of a single terminal, or 

relative weighting of the arguments of a function. 

The operation of MOSES is a repeating two stage process shown in Figure 3. Starting 

with an initial representation space parameterization, MOSES generates the initial 

population of programs. It then chooses a set of highly fit programs as a sample for 

representation analysis. The representation analysis step uses the competent optimization 
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algorithm hBOA to refine representation space parameters. These new parameters are 

used to generate new candidate programs that are added to the population; possibly 

replacing less fit programs. These stages of sampling, representation refinement, and 

population renewal are repeated until an optimal program is generated.  

 

Figure 3 - Operational Overview of MOSES (adopted from [14]) 

While not a typical genetic programming methodology, MOSES is relevant to this 

discussion because of its process of representation space refinement. Its operation is 

designed around the concept that optimization of the representation space will eliminate 

the generation of non-productive individuals and thereby improve the ease of finding an 

optimal solution. By optimizing the representation space, MOSES reduces the size of the 

searched regions of the representation space. This search space reduction improves the 

methodology’s search capabilities and the quality of the search results.  

Each of the GP variants discussed above utilizes constraint techniques to either constrain 

or condition the GP representation space and thereby improve learning. Strongly typed 

GP and context-free grammar GP use explicit constraints that are specified prior to 

beginning the GP search process. Stochastic context-free grammar GP and estimation of 

distribution GP develop probabilistic constraints/models as the GP search progresses. 

Modular models attempt to discover highly fit components and foster their reuse as 

learning proceeds. Meta-optimizing semantic evolutionary search attempts to optimize 

the parameters that define the representation space and thus improve the GP search of 

that space. The next chapter will explore and detail operations of another similar 

methodology, Adaptable Constrained Genetic Programming, which can use explicit 

constraints and also build a probabilistic model. This methodology will be analyzed and 

then extended here. 
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3 Constrained Genetic Programming and Adaptable Constrained 

Genetic Programming 

Constrained Genetic Programming (CGP) [5] is a method that attempts to constrain the 

components and combinations of functions and terminals used in a particular GP 

application. CGP was originally developed to ensure that only valid solutions were 

generated in a GP search by designating which functions and terminals were valid for any 

given function argument position. The permissible, and/or prohibited, arguments are fed 

to CGP at start up and applied unchanged throughout an execution. These constraints can 

be either strong (absolute) constraints or weak (probabilistic) constraints. Strong CGP 

constraints stipulate which functions or terminals can be used (or not used) in a particular 

argument location. Weak CGP constraints assign probabilistic weights for each function 

and terminal in particular argument locations. Later empirical work [9] demonstrated that 

when proper CGP constraints are used, the GP application conducts a more efficient 

search and solves the problem at hand faster. The limiting factor of this method was that 

any reduction in the set of functions and terminals presented to start a CGP run required a 

trial and error discovery process as shown by Janikow and Mann [9]. CGP was then 

extended into Adaptable Constrained Genetic Programming (ACGP) [7], [8] so that the 

process of discovering which functions and terminals and which combinations of 

functions and terminals were needed to better solve a particular GP problem could be 

automatically discovered during an ACGP run.  

3.1 The Operational Aspects of ACGP 

This description of the operation of ACGP is more detailed than the discussion of the 

previous methods. The search methodology described in this dissertation is an 

improvement of ACGP therefore an understanding of ACGP’s operation is necessary to 

appreciate of the proposed methodology.  

Initially, ACGP tracks and adjusts the probability that a particular function or terminal 

component will be used in a given function argument location. This is done separately for 

the root location, and for all other locations independent of position. These heuristics 

capturing the probability of function and argument pairs are tracked in ACGP frequency 

tables. These frequencies are then used to update the actual probabilities.  

The basis for the methodology that tracks and adjusts these heuristics is grounded in the 

GP Building Block Hypothesis [13]. The GP Building Block Hypothesis asserts that GP 

operators induce fit low-order building blocks to combine and form higher-order building 

blocks, eventually converging to optimum or near-optimum solutions. While this is an 

appealing concept, it is criticized from the basis that the fitness of individual building 

blocks cannot be normally assessed outside of the context of a whole solution [13]. This 

behavior is caused by the inability to decompose most problems into subcomponents 

whose fitness can be directly measured. ACGP uses a methodology that infers the fitness 

of individual building blocks without actually computing that fitness [6]. During the 

heuristic assessment processing, ACGP tabulates the frequency of each building block in 

the fittest population individuals. It uses an assumption that those building blocks that are 

highly frequent in fit solutions contribute to the fitness of those solutions. The tabulated 

frequency counts are then used to adjust the heuristic weights that govern the selection 

that a particular building block will be used – the frequencies can be used as new 
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probabilities, but in practice the frequencies are slowly combined with previous weights 

to modify the probabilities. 

 

Figure 4 - Examples of 1st and 2nd Order Building Blocks 

Those heuristics that appear frequently in highly fit population members are reinforced 

and all other heuristics are suppressed. As these probabilities are adjusted, the search 

space is probabilistically constrained and thus the search is also constrained. ACGP has a 

set of operating parameters that control the rate of adjustment. As mentioned, adjustments 

can be applied at a constant rate or using a linearly increasing rate. Initially ACGP 

worked with 1
st
 order heuristics: the probability of a function or terminal will be chosen 

for one of a function’s arguments (block (a) in Figure 4) [7]. 1
st
 order ACGP discovered 

better information of the beneficial structures in the representation space versus a 

standard GP while also being computationally efficient [8], [9]. This concept was later 

extended to work with 2
nd

 order heuristics: the probability a combination of functions or 

terminals will be chosen to be the set of arguments of a parent function (block (b) in 

Figure 4) [11]. 2
nd

 order ACGP increases the granularity of beneficial structure 

information but this improvement comes at the cost of additional computation and 

storage [10], [11]. Further extension of this method to 3
rd

 order or greater heuristics is 

plagued by the combinatorial issues discussed in [10] and are therefore computationally 

infeasible or at least ineffective. 

Once the heuristic weights are adjusted, ACGP can generate an entirely new population 

with a regrow operator using these improved heuristics. This new regrow operator, 

introduced in ACGP [6], enhances the problem space search by restarting the population 

with an improved set of solutions. An additional benefit of the regrow is the suppression 

or minimization of introns and solution bloat [11]. Each new population is regrown using 

the starting tree size parameters for the specific GP problem implementation. Each 

heuristic assessment cycle continues to refine and improve the heuristic weights. These 

improving weights are used for, and bias the operation of, crossover, mutation, as well as 

regrow thereby making ACGP behavior in line with SCFG and different than a normal 

GP application where crossover and mutation are uniformly random rather than biased.  

A simple designed regression example will help illustrate the advantages of ACGP. The 

Bowl3 equation (Equation (4)) is intentionally designed to demonstrate ACGP search 

versus a standard GP. Additionally, its building block design highlights the informational 

advantage 2
nd

 order ACGP has over 1
st
 order ACGP. Figure 5 shows how well ACGP 

improves over a base GP implementation using either 1
st
 order heuristics or 2

nd
 order 
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heuristics. This example problem shows the fitness results averaged for 30 independent 

runs solving a regression problem for the equation: 

                                         

The training length for all three techniques in these experiments spans 500 generations. 

The downward spikes visible in the 1
st
 order and 2

nd
 order ACGP curves are caused by 

the regrowing of the population following the recurring heuristic assessment process at 

stipulated iterations (every 20 generations, in this example). The regrown populations 

exhibit better and better initial fitness following the regrow operation because each 

successive cycle uses a better set of heuristic selection weights.  

The informational learning advantage that ACGP has over a standard GP is clear. As 1
st
 

order ACGP discovers better heuristics, the heuristic information helps bias crossover, 

mutation, and regrow to use better building block combinations and therefore build better 

candidate solutions. The larger heuristics in 2
nd

 order ACGP increase its information 

regarding better building block combinations and productive search regions in the GP 

representation space. This additional information helps improve 2
nd

 order ACGP search 

and thereby its candidate solutions as seen in Figure 5. 
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Figure 5 - ACGP versus Base GP Learning Curve for Equation (4) using a Population of 500 (from [11]) 
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All of the GP searches in the experiments shown in Figure 5 above used the following 

operational parameters:  

Table 4 - GP Operational Parameters 

Function set           (protected divide) 

Terminal set {x, y, z, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5} 

Population size 500 

Generations 500 

Operators 
crossover 85%, mutation 10%, reproduction 5%, 

regrow 100% at each iteration 

Iteration length 20 generations 

Selection method Tournament, using a tournament size of 7 

Number of 

independent runs 
30 

Fitness 

sum of square errors on 100 random data points in the 

range -10 to 10 adjusted to a range of 0 to 1 with 1 

being best (When tracing fitness, the best solution at 

each generation from the 30 independent runs was 

averaged) 

ACGP heuristic 

adjustments 

Made using a linearly increasing rate based on the 

analysis of fittest 10% of the population. The rate is 

such that after x% of generations, the observed 

frequencies replace x% of the previous probabilities. 

This is referred to as a sloped training. 

All of the experiments in this document use the same parameters as listed in Table 4. Any 

variations will be identified in the discussion of the particular experiment. 

 

Figure 6 – Example Solution Trees for Equation (4) (Bowl3 Equation) 
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Figure 6 depicts an example of a minimal solution trees for this problem. Since the 

solution equation uses only variable-structure functions (‘+’ and ’*’), multiple tree 

structures yield equivalent fitness evaluations. 

Equation (4) (Bowl3) was specifically designed for this experiment because it is a good 

exemplar of the benefits of ACGP search - it possesses a particular building block 

structure in its target equation. This structure emphasizes the advantage of 2
nd

 order 

heuristics over 1
st
 order heuristics. The simplicity of this regression example makes it 

easy to demonstrate the search advantages incorporated in ACGP. The target equation is 

composed of ten desirable 1
st
 order building blocks: 

                                    
                                                  

This notation shows each 1
st
 order building block enclosed by braces. The parent function 

is on the left. The subscript of the parent function designates the argument location. The 

child element at the given argument location is designated on the right. For example, 

{+1*} means + function having its 1
st
 (left) argument labeled with the ‘*’ function. The 

1
st
 order building blocks in Equation (5) implicitly describe thirteen 2

nd
 order building 

blocks: 

                                               
                                       
                                      
                                      

This notation shows each 2
nd

 order building block in infix form enclosed by braces. The 

parent function is in the middle of the set of elements. It is flanked on either side by its 

children. However, not all of these implicit 2
nd

 order building blocks are desirable for our 

regression solution to Equation (4). Only six of these implied building blocks are 

necessary to form fit solutions (using the minimum solution trees in Figure 6): 

                                    
                                    

ACGP running only in 1
st
 order mode processes 2

nd
 order heuristics implicitly by putting 

together its 1
st
 order heuristics, but the actually desired 2

nd
 order heuristics can be 

different yet impossible to generate in the 1
st
 order mode. This differential between the 

2
nd

 order building blocks implied by the 1
st
 order building blocks and the explicit 

desirable 2
nd

 order building blocks needed for fit solutions is the informational advantage 

2
nd

 order ACGP has over 1
st
 order ACGP. Additionally, this differential is also reflected 

in both the 1
st
 order and the 2

nd
 order ACGP heuristic probabilities.  

As an example, consider the heuristics for function ‘*’ and argument x. There are three 

possible building blocks for the first argument of ‘*’ and three building blocks for the 

second argument of ‘*’ (using the image in Figure 6) but only one of each has x. 

Assuming perfect heuristic probabilities, the two 1
st
 order building blocks  (      and 

     ) will each have an ideal heuristic probability of 0.333 in 1
st
 order ACGP. When 
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running in 1
st
 order ACGP, the implied 2

nd
 order building block       , produced by 

putting together the above two 1
st
 order heuristics, will have a combined implicit 

probability of 0.111. When the explicit 2
nd

 order building blocks are considered directly 

in 2
nd

 order ACGP,       appears once out of three explicit ‘*’ building blocks; 

therefore the explicit       2
nd

 order heuristic will actually have an ideal heuristic 

probability of 0.333 in 2
nd

 order ACGP search. This heuristic probability differential 

(implied with 0.111 versus explicit with 0.333) emphasizes the informational advantage 

of 2
nd

 order ACGP over 1
st
 order ACGP. This differential is quite large and it shows 

when both modes are compared in Figure 5.  

This is an interesting observation that can be verified by experimenting with another 

regression problem that does not exhibit any differential. Consider the equation: 

                                                                      

Equation (8) is an interesting counter example for this discussion. This equation is 

constructed such that it is composed of the same ten desirable 1
st
 order building blocks 

that define Equation (4) (shown in Equation (5)). These 1
st
 order building blocks combine 

to imply the same thirteen 2
nd

 order building blocks as Equation (4) (shown in Equation 

(6)). The difference between Equation (8) and Equation (4) is that all of these implied 2
nd

 

order building blocks are actually desirable for our regression solution to Equation (8) 

and there is no information differential between the 2
nd

 order building blocks implied by 

the desired 1st order building blocks and the actual explicit 2
nd

 order building blocks in 

Equation (8).  

 

Figure 7 – An Example Solution Tree for Equation (8) (Bowl3full Equation) 

Figure 7 depicts an optimal solution tree for the Bowl3full problem (Equation (8)). Since 

the solution equation uses only variable-structure functions (‘+’ and ‘*’), multiple tree 

structures yield equivalent fitness evaluations. The desired building blocks should be 

easily discovered and, because of the variable-structure functions in the optimal solution, 

they can appear freely in the candidate solutions with equivalent fitness scores. All of the 

GP searches in the experiments shown in Figure 8 used the same operational parameters 

identified in Table 4.  

Consider the same heuristics for function ‘*’. Using the example solution in Figure 7, 

there are three 1
st
 order building blocks for the first argument of ‘*’ 

(                     ) and three 1
st
 order building blocks for the second argument of 

‘*’ (                     ). Assuming perfect heuristic probabilities, the two 1
st
 order 

heuristics for the variable x (      and      ) will each have and ideal heuristic 
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probability of 0.333 in 1
st
 order ACGP. Combining these two 1

st
 order building blocks to 

form the implied 2
nd

 order building block       produces again a combined heuristic 

probability of 0.111. When the explicit 2
nd

 order building blocks are considered directly 

in 2
nd

 order ACGP,       appears once out of nine explicit ‘*’ building blocks, 

therefore the explicit       2
nd

 order heuristic will actually have an ideal heuristic 

probability of 0.111 in 2
nd

 order ACGP search. This lack of heuristic probability 

differential (implied with 0.111 versus explicit with 0.111) shows zero informational 

advantage of 2
nd

 order ACGP over 1
st
 order ACGP. This lack of an information 

differential between the implicit and explicit 2
nd

 order building blocks would predict that 

2
nd

 order ACGP should have no advantage over 1
st
 order ACGP.  

Figure 8 shows the fitness learning curve for Equation (8) averaged over 30 independent 

runs. The ACGP methodology retains its advantage over a basic GP implementation 

because it discovers and adjusts the selection probabilities of the desirable 1
st
 and 2

nd
 

order building block. Compared to Equation (4) and Figure 5 these 1
st
 and 2

nd
 order 

ACGP results show two important differences: 

 As speculated above, due to lack of differential, there is no difference between the 

two modes in solving the problem (other than initially) 

 ACGP does not do as well with Equation (8) compared to its results with 

Equation (4) 
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Figure 8 - ACGP versus Base GP Learning Curve for Equation (8) using a Population of 500  

While successful in its current configuration, ACGP, like other GP methods, can have 

difficulties finding a solution to problems with complex structure. Assuming some 

differential does exist, the 2
nd

 order mode should perform better than the 1
st
 order mode, 

but they both may suffer due to specific problem characteristics – these building blocks 

may now be harder to find. 
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3.2 The Difficulties of ACGP Search  

Most functions used in GP applications can be organized into two general classes of 

function types: variable-structure functions and strict-structure functions. Variable-

structure functions are functions where the order of the arguments does not change the 

result of the function’s evaluation. Examples of variable-structure functions are: 

arithmetic addition, multiplication and logical AND and OR. A GP solution composed of 

variable-structure functions can evaluate to the same fitness value using many different 

structure permutations. Strict-structure functions, in contrast, evaluate to different values 

if the order of the arguments is changed. ACGP’s heuristic adjustment mechanism can 

both exploit and be deceived by the strict tree structure dictated by strict-structure 

functions. The efficacy of the heuristic adjustment process is dependent on the density of 

quality candidate solutions in the sample used to analyze the building blocks. The goal of 

the ACGP heuristic adjustment mechanism is to increase the selection probability of fit 

building blocks and suppress the probability that less fit building blocks are selected. 

Unfortunately, as stated in the previous chapter, the fitness of individual building blocks 

cannot be determined separately from the fitness of the individual population member. 

The ACGP heuristic adjustment mechanism is based on an assumption that if a building 

block occurs frequently in fit population members then it possibly contributes to the high 

fitness of those individuals and therefore it is assumed to be a fit building block [6], [7], 

[11]. This assumption driving the ACGP heuristic adjustment mechanism works well 

when relatively fit solutions are sampled for heuristic adjustment. The analysis and 

adjustment process is more successful when the target solution consists of primarily 

variable-structure functions which therefore have a higher probability of sampling highly 

fit solutions. Alternatively, when the target solution consists of more strict-structure 

functions, the structure of a highly fit candidate solution becomes more rigid and there is 

a lower probability of ACGP sampling a fit solution for heuristic analysis. When ACGP 

samples solutions with poor fitness it continues to bias the heuristic weights based on the 

discovered building block frequencies. Regrettably, these highly frequent building blocks 

are not the elements of fit solutions and therefore their heuristics will induce potentially 

random solutions and not fit solutions.  

As an example, consider the regression problem for the following equation: 

                                                         

While this problem is more complex than Equation (4), it also differs structurally by the 

inclusion of the ‘–‘ function as well as variable-structure functions (‘+’ and ‘*’), and 

scalar constants. This equation is designed to demonstrate a specific evolutionary search 

induced by complex types of problems. This function induces a rigid structure on part of 

the solution tree. This rigid tree structure requires the positioning of large subtrees in 

specific locations of a successful candidate solution (Figure 9) while ACGP does not deal 

with specific locality of its heuristics. 
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Figure 9 – An Example Solution Tree for Equation (9) (ComplexEq) 

The structural complexity of Equation (9) is also reflected in both the 1
st
 order and 2

nd
 

order building blocks that create a viable candidate solution. Equation (9) is composed of 

seventeen desirable 1
st
 order building blocks: 

                                                            
                                                 
                                                 

These 1
st
 order building blocks combine to describe thirty-nine implicit 2

nd
 order building 

blocks: 

                                                                         
                                                                  
                                                             
                                                             
                                                             
                                                             
                                                             

                                                  

Not all of these building blocks are desirable for a GP regression solution to Equation (9). 

Only twenty-one 2
nd

 order building blocks are necessary to form fit solutions: 

                                                                   
                                    

                                              
                                        

                                            
                                           

Consider the ‘*’ heuristics for the variable x in an example solution such as Figure 9. 

There are six unique building blocks for the first argument of ‘*’ 

(                                        ) out of nine total first argument building 

blocks. There are four unique building blocks for the second argument of ‘*’ 

(                            ) out of nine total second argument building blocks. 
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Assuming perfect heuristic probabilities, the two 1
st
 order building blocks for the variable 

x (               ) will each have an ideal heuristic probability of 0.111 and 0.333 in 

1
st
 order ACGP. Combining these two 1

st
 order building blocks to form the implied 2

nd
 

order building block (processed in 1
st
 order),       produces a combined heuristic 

probability of 0.037. When the explicit 2
nd

 order building blocks are considered directly 

(Figure 9),       appears once out of nine explicit ‘*’ building blocks, therefore the 

explicit       2
nd

 order heuristic will actually have an ideal heuristic probability of 

0.111 in 2
nd

 order ACGP. This small heuristic probability differential (implied with 0.037 

versus explicit with 0.111) shows a slight informational advantage of 2
nd

 order ACGP 

over 1
st
 order ACGP. This small differential between the implicit 2

nd
 order building 

blocks and the explicit 2
nd

 order building blocks would indicate an informational 

advantage for ACGP while using 2
nd

 order heuristics in learning Equation (9). However, 

something else happens in the experiment.  

Figure 10 shows the fitness learning curve for Equation (9) using a population of 1000 

individuals with averaged fitness scores of 30 independent runs for a base GP, 1
st
 order 

ACGP, and 2
nd

 order ACGP. While the fitness scores are not impressive (note the 

modified y-axis scale), the base GP application outperforms both ACGP methods, and 

due to bad performance we cannot see any potential advantage of 2
nd

 order ACGP.  
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Figure 10 – ACGP versus Base GP Learning Curve for Equation (9) using a Population of 1000  

The relatively small population of this experiment and the low probability of sampling fit 

solutions work against ACGP’s ability to discover desirable heuristics regardless of mode 

or differential. Even with a population of weak solutions, ACGP will tabulate the most 

frequent building blocks and enhance their probability of selection [1]. Unfortunately, 

without a sample of good solutions, this behavior becomes deceptive. ACGP will 

continue to tabulate the most frequent building blocks, irrespective of their contribution 

to solution fitness, and adjust their heuristic probabilities accordingly. These poor 

heuristics lead the ACGP search toward poor solutions and this behavior explains the 

ACGP fitness results in Figure 10. 
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Increasing the population size is a normal parameter modification that can improve the 

GP search for a problem like this one. As mentioned in Chapter 1, using a larger 

population is a typical method used to increase the population diversity and potentially 

produce a sample of viable solutions. Figure 11 shows the learning curve for Equation (9) 

using a population of 7000 individuals with averaged fitness scores of 30 independent 

runs. Both modes of ACGP now outperform the base GP application but 2
nd

 order ACGP 

still does not perform better than 1
st
 order ACGP despite the stated small differential. The 

increase in the population size helps ACGP sample better solutions. It is not a surprising 

result that a larger GP population will sample potentially better solutions for heuristic 

analysis [22]. The fact that the 2
nd

 order ACGP does not outperform 1
st
 order ACGP is an 

interesting observation – while we know it should. While this larger population provides 

a good sample of solutions for both ACGP modes, the population increase is not 

sufficient here to allow 2
nd

 order ACGP to utilize its differential to outperform 1
st
 order 

ACGP. Further increasing population size will decrease efficiency especially due to 

slower performance of 2
nd

 order ACGP (further discussed later). What is clearly needed 

is a method to utilize higher population with the more efficient 1
st
 order ACGP 

discovering useful coarser granularity heuristics and then using this information to bias 

the 2
nd

 order ACGP to utilize the differential.   
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Figure 11 - ACGP versus Base GP Learning Curve for Equation (9) using a Population of 7000  
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4 Statement of Research Thesis 

Consider a simple thought experiment. Before leaving the house, a man goes searching 

for his coat. He will assign some search areas a higher search priority than others; based 

on how likely successful he believes they will be based on, for example, past searches. 

While two high-priority search areas may be physically distant from each other, he treats 

them as being adjacent, skipping over the low-probability areas between them. This 

methodology reduces the complexity of his search space and helps him find his jacket 

quicker.  

This thought experiment, practiced over the years in many Artificial Intelligence 

approaches, suggests a method to find and promote desirable building blocks in an ACGP 

search. The quality of a search can be improved if it is constrained by a probabilistic map 

of the search space that reflects a productive search history, much like the search for a 

jacket described above. The characteristics of each ACGP mode suggest an operating 

scheme that can capitalize on the advantages of both modes of ACGP and mitigate their 

shortcomings.  

Normally, the ACGP search starts with uniform probability of each heuristic and is 

dependent on the quality of the solutions in the sample of individuals under ACGP 

analysis. 1
st
 order ACGP is less deceived by complex or strict structured problems than 

2
nd

 order ACGP because it searches for lower granularity building blocks. This advantage 

stems from the smaller number of 1
st
 order building blocks versus the larger number of 

2
nd

 order building blocks for a given set of functions and terminals. This lower 

complexity translates into a more computationally efficient search for 1
st
 order ACGP. 

On the other hand, 2
nd

 order ACGP offers a means of exploiting any granularity 

differential. A two-tiered search methodology using the two ACGP operating modes can 

exploit the advantages of each mode and mitigate their disadvantages. The first tier would 

search the representation space using 1
st
 order ACGP. This search will result in a 

probabilistic map of the 1
st
 order heuristics. The heuristic map will bias the use of 

productive building blocks and discourage the use of less productive ones when it is used 

to bias the 2
nd

 order ACGP search in the second tier of the method. The second tier search 

should be more efficient and attain better results because it starts in a pre-conditioned 

state that is biased toward more efficient regions of the representation space.  

The goal of this research will be the improvement of ACGP learning using a two-tiered 

search process. This method will develop a probabilistically constrained model of the 

representation search space using a less granular 1
st
 order ACGP search in an initial 

phase. Then it will use that model to discover a highly fit solution using a more granular 

2
nd

 order ACGP search on the constrained space. This two-tiered scheme should improve 

the combination of computational efficiency and fitness learning quality over standard 1
st
 

order or 2
nd

 order ACGP alone. 
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5 A Tiered ACGP Search Methodology  

The discussion in Chapter 1.1 demonstrated mathematically that the complexity of a GP 

search space is a function of the set of functions and terminals selected to develop a 

solution and the reduction of this set will reduce this complexity and improve the search 

process. While this statement appears to be a simple solution that can reduce the search 

space complexity, there is a problem in choosing which function or terminal components 

can be removed or its probability adjusted. Normally, the fitness of individual 

components cannot be easily evaluated in isolation from complete individual solutions. 

Without some method of evaluating the contribution of individual components to the 

overall fitness of candidate solutions, component pruning will be a blind process.  

The description of ACGP in Chapter 3 demonstrated that ACGP can discover desirable 

1
st
 order and 2

nd
 order building blocks. After conducting normal GP training for a set 

interval of generations (an iteration), ACGP adjusts the probability of the selection of 

particular building blocks for use in crossover, mutation and regrow. This method to 

promote the use of desirable building blocks conversely reduces the probability of using 

non-desirable building blocks. This building block probability adjustment process 

develops a probabilistic map of the representation search space that is biased toward 

some solution structures and against others. ACGP 2
nd

 order heuristics, when successful, 

provide more granular information about the desirable building block structures for a 

given problem [11]. This differential advantage over ACGP 1
st
 order heuristics is offset 

by longer computation time, increased data structure storage and processing requirements 

[10], and difficulties to properly sample the larger set of heuristics result in a potential to 

underperform ACGP 1
st
 order heuristics in complex problems as demonstrated in the 

discussion of Chapter 3.2.  

Since ACGP allows the input of a heuristic profile to condition it’s starting heuristics 

prior to initiating the search, a proposed tiered search methodology seems to be a possible 

option that could improve ACGP search. All of the experiments using this two-tier 

scheme will use the ACGP parameters described in Table 4 unless noted otherwise. Each 

baseline set of experiments using the base GP application, 1
st
 order ACGP, and 2

nd
 order 

ACGP will be run using two different population sizes. One population will match the 

larger population size of the 1
st
 tier processing. The other population will match the 

smaller size of the 2
nd

 tier processing. The rationale for these population sizes is 

explained in Chapter 5.3 following a small proof-of-concept experiment to demonstrate 

the proposed methodology. 

5.1 A Simple Experiment – the Bowl3neg Problem  

While previously shown Equation (9) demonstrates how a strictly structured target 

solution makes the GP search more difficult, its complexity induces several issues that 

combine to mask any problems that ACGP may have in a particular search. A simpler 

problem designed to exhibit strict structural behavior without additional complexity may 

help illuminate the nuances of ACGP search. Equation (13) (Bowl3neg) is a variation of 

previous Equation (4) designed to specifically demonstrate a strict structure solution 

isolated from the benefits of ACGP search. Equation (13) differs from Equation (4) by 

substituting ‘–‘ for ‘+’.  
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Figure 12 depicts an example optimal solution tree for this problem. Since this target 

equation includes ‘–‘ as well as a variable structure function (‘*’), different tree structures 

will yield different fitness evaluations. The use of a strict-structure function restricts the 

structure of viable solution trees and forces the other subtree structures into specific 

locations in a viable candidate solution.  

 

Figure 12 – An example Solution Tree for Equation (13) (Bowl3neg) 

Equation (13), like Equation (4), is designed to be a good exemplar of the benefits of 

ACGP search because it possesses the same particular building block structure 

differential that emphasizes the advantage of 2
nd

 order heuristics over 1
st
 order heuristics 

found in Equation (4). The primary difference between this equation and Equation (4) is 

the substitution of the ‘–‘ function for the ‘+’ function in this equation. This substitution 

imposes a strict structure that limits the number of possible tree permutations that have a 

top fitness score. Like Equation (4), this equation is composed of ten desirable 1
st
 order 

building blocks: 

                                      
                                 
                                

Similar to Equation (4), these 1
st
 order building blocks combine to produce thirteen 

implicit 2
nd

 order building blocks: 

                                           
                                       
                                      
                                       

Not all of these 2
nd

 order building blocks are desirable for our regression solution to 

Equation (13). Only six of these building blocks are necessary to form a fit solution, 

which mimics the behavior of Equation (4). 
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The differential between the 2
nd

 order building blocks implied by the 1
st
 order building 

blocks and the explicit desirable 2
nd

 order building blocks is the informational advantage 

2
nd

 order ACGP has over 1
st
 order ACGP.  

The 1
st
 and 2

nd
 ACGP heuristic probability analysis for this problem is similar to the 

analysis of the Bowl3 problem (Equation (4)). Consider the ‘*’ heuristics for the variable 

x. There are three building blocks for the first argument of ‘*’ and three building blocks 

for the second argument of ‘*’ in the optimal solution tree in Figure 12. Assuming perfect 

heuristic probabilities, the two 1
st
 order building blocks for the variable x 

(               ) will each have and ideal heuristic probability of 0.333 in 1
st
 order 

ACGP search. Combining these two 1
st
 order building blocks to form the implied 2

nd
 

order building block       produces a combined heuristic probability of 0.111. When 

the explicit 2
nd

 order building blocks are considered directly ‘*’ with x as both of its 

arguments appears once out of three explicit ‘*’ building blocks, therefore the explicit 

      2nd
 order building block will actually have an ideal heuristic probability of 0.333 

in 2
nd

 order ACGP search. This heuristic probability differential (implied with 0.111 

versus explicit with 0.333) emphasizes the informational advantage of 2
nd

 order ACGP 

over 1
st
 order ACGP. The primary difference with this regression problem compared to 

the Bowl3 problem (Figure 6) is that the building blocks containing the terminal elements 

for this problem must appear in a solution tree in specific locations relative to each other 

for them to contribute to the solution fitness while ACGP does not process any location 

information Most alternative building block positions will evaluate to lower fitness 

scores. This characteristic reduces the frequency of viable solutions in the overall 

representation space and therefore reduces the probability of finding viable solutions in a 

given population sample making the search more complex for both ACGP operating 

modes. 
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Figure 13 - Bowl3neg (Equation (13)) using a Population of 500 

Figure 13 shows the fitness learning curves for the Base GP, ACGP 1
st
 Order, and ACGP 

2
nd

 Order for the Bowl3neg regression problem using the same GP parameters (Table 4) 

as the experiments in Figure 5. The advantage that the ACGP 2
nd

 order heuristics have 
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over the 1
st
 order heuristics is clearly visible in this chart. This benefit is produced by the 

differential between the desired 2
nd

 order building blocks and the full set of 2
nd

 order 

building blocks implied by the desired 1
st
 order building blocks. This differential is 

similar in magnitude to the one in the Bowl3 2
nd

 order building blocks and therefore it 

implies a similar advantage. What are noteworthy in this regression problem are the 

lower fitness learning curves for both 1
st
 order and 2

nd
 order ACGP heuristics. These 

average fitness scores demonstrate the impact of the strict structure solutions in the 

search space for Bowl3neg versus the variable structure of viable solutions in the search 

space for Bowl3 has on the ACGP fitness learning for these problems.  

As discussed earlier, use of a larger population is a parameter that can be adjusted to 

improve the GP search. It can increase the diversity in the GP population at the cost of 

greater fitness computation time [3], [12]. Figure 14 shows the learning curve for a set of 

experiments using a population of 1000 to find a solution for Equation (13). These 

experiments exhibit an increased average fitness for all three methods compared to Figure 

13.  
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Figure 14 - Bowl3neg Learning Curve using a Population of 1000 

Table 5 demonstrates that an increase of the population size will also increase the 

execution time. This table also shows that 1
st
 order ACGP is faster than 2

nd
 order ACGP 

using the same set of environmental training parameters (population size, maximum 

generations, training parameters, etc.). This is an advantage for 1
st
 order ACGP that may 

be a benefit in a modified approach. 

These results suggest a technique that may mitigate the overall cost of training with a 

larger population and improve the final results. ACGP 1
st
 order could search the problem 

space using a large population for a lower number of generations. The results of that 

search would then be used to condition an ACGP 2
nd

 order search using a smaller 

population. This scheme would exploit the generality of the low granularity search 

capability of 1
st
 order ACGP. Moreover, the 1

st
 order ACGP preconditioning could 

improve the more granular 2
nd

 order ACGP search. The combined efficiencies of this 

tiered approach might yield productive results.  
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Table 5 - Comparison of Average Execution Times (Bowl3neg) 

Execution Times

500 1000

Base GP 272.83 411.77

ACGP 1st OH 46.77 88.28

ACGP 2nd OH 68.90 113.83

Population Size

 

The following experiments use the GP and ACGP parameters shown in Table 4 with the 

following exception:  

The two-tiered method uses a population of 1000 individuals for the 

first stage and 500 individuals for the second stage. The transition 

between the two stages is at 250 generations with both tiers adding up 

to 500 generations. 
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Figure 15 - Bowl3neg Learning Curve versus a Two-tiered Search using a Population of 1000 Seeding a 

Population of 500 (direct transition) 

Figure 15 shows the result of an ACGP 1
st
 order search with a population of 1000 and 

250 generation followed by an ACGP 2
nd

 order search with a population of 500 and 250 

generations superimposed on the learning curves shown in Figure 13 with the transition 

between the 1
st
 tier and the 2

nd
 tier indicated by the red line in the chart. The feed of 1

st
 

order ACGP heuristics into the 2
nd

 order ACGP runs used a direct one-to-one transition 

scheme. The output heuristics of each 1
st
 order ACGP run was fed to a corresponding 2

nd
 

order ACGP run. This result is only a marginal improvement over the original experiment 

from Figure 13. That outcome is not a surprise and it is an artifact of the direct feed of 1
st
 

order heuristics into the 2
nd

 order ACGP runs. The direct feed of 1
st
 order heuristics 

meant that every run was used in this scheme irrespective of the quality of its search. Bad 

1
st
 order ACGP runs passed bad heuristics to the second tier 2

nd
 ACGP runs and produced 

low quality results. Clearly, while this is a simple scheme, it is a suboptimal approach. 



Aleshunas, John, 2013, UMSL, p.36 

 

 
 

The simple direct feed scheme used in the experiment shown in Figure 15 can be 

modified to improve the results of this methodology. An ideal concept might suggest 

using only the best 1
st
 order heuristics to precondition the 2

nd
 order ACGP search. This 

scheme may have merit but introduces the problem of defining what a quality 1
st
 order 

heuristic solution looks like for a given problem. A simpler method may be good enough 

to demonstrate the promise of a tiered ACGP search scheme. Figure 16 shows the 

learning for a tiered search scheme where the 1
st
 order ACGP heuristics are combined 

into an input for a 2
nd

 order ACGP search by averaging 1
st
 order heuristics from 30 

independent runs. The results of this combined transition tiered scheme are shown 

superimposed over the results from Figure 13. The first stage search uses 1
st
 order ACGP 

for the initial 250 generations. The second stage uses a conditioned 2
nd

 order ACGP 

search for the final 250 generations.  
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Figure 16 - Bowl3neg Learning Curve using a Population of 500 versus a Two-tiered Search using a Population 

of 1000 Seeding a Population of 500 (combined transition) 

Figure 17 shows the results of this tiered scheme using a combined 1
st
 order ACGP 

heuristic superimposed over the results from Figure 14. Again, the first stage search uses 

1
st
 order ACGP for the initial 250 generations. The second stage uses a conditioned 2

nd
 

order ACGP search for the final 250 generations. 
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Figure 17 - Bowl3neg Learning Curve using a Population of 1000 versus a Two-tiered Search using a Population 

of 1000 Seeding a Population of 500 (combined transition) 

The outcome of a combined transition tiered search scheme using the combined average 

results of 1
st
 order ACGP with a population of 1000 to precondition a 2

nd
 order ACGP 

search with a population of 500 is effective when compared to the GP and ACGP 

searches using a population of 500 (Figure 16). The results of Figure 17 do not appear to 

be as strong. However, in practice, the cost of a method is not the number of generations 

used but the time it takes. If the learning curves are compared on a time scale rather than 

on a generational scale, the effectiveness of these results becomes more distinct.  
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Figure 18 - Bowl3neg Learning Curve using a Population of 500 versus a Two-tiered Search using a Population 

of 1000 Seeding a Population of 500(combined transition) compared on a Time Scale 

Figure 18 shows the learning curves from the experiments shown in Figure 16 with the 

average fitness scores per generation converted to average fitness scores per second (120 

second time window). The fitness scores for each run are converted into a continuous 

time scale with one score per second. Once the time-based fitness scores are processed 



Aleshunas, John, 2013, UMSL, p.38 

 

 
 

for each run, they are then averaged to produce the average fitness per second for a 

method (base GP for example). Since the different methods (base GP, 1st order ACGP, 

2nd order ACGP, Two-tier) finish at different time points. The maximum time interval 

was set to match the average Two-tier execution time. Any method that finished sooner 

(1st order ACGP using smaller population for example) just has its last run score 

extended out to the time limit before the run scores are averaged. Any method that ran 

slower is truncated. This process produces sets of average fitness scores on the same time 

scale for each set of experiments and creates a chart that demonstrates what average 

fitness score each technique achieves in each time interval. The advantage of the two-tier 

scheme, in terms of fitness and execution time, is clear. 
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Figure 19 - Bowl3neg Learning Curve for a Population of 1000 versus a Two-tiered Search using a Population of 

1000 Seeding a Population of 500 (combined transition) compared on a Time Scale 

Figure 19 shows the learning curves from the experiments shown in Figure 17 

substituting an x-axis representing time (120 seconds) for one representing the training 

generations. The advantage of the two-tier scheme, in terms of fitness and execution time, 

is more distinct. The significance of this advantage will be quantified below using 

statistical testing.  

Table 6 presents the average execution times for all of the searches shown in Figure 16 

and Figure 17. The average execution times for both of the tiered search schemes 

described above are comparable with normal ACGP execution times. The smaller search 

population of 500 individuals executes faster than the larger population but pays a 

penalty of lower average fitness for the base GP application, 1
st
 order ACGP, and 2

nd
 

order ACGP. The Two-tiered approach is faster than both base GP population sizes. Its 

execution speed is falls between the two population sizes for both versions of ACGP. 

While these values appear to be numerically distinct, do they represent statistically 

different sample outcomes?  
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Table 6 - Comparison of Average Execution Times (Bowl3neg) 

Execution Times

500 1000 1000 + 500

Base GP 272.83 411.77 -

ACGP 1st OH 46.77 88.28 -

ACGP 2nd OH 68.90 113.83 -

TT Aug (direct) - - 77.83

TT Aug (combined) - - 77.83

Population Size

 

Table 7 represents the significance test values for comparisons of the execution times for 

the set of 30 independent runs of the Two-tiered ACGP methodology versus the sets of 

30 independent runs of each of the other six GP searches shown in Table 6. These 

significance tests sample the set of execution times for each run. Each test compares 30 

execution times (one value for each run) for an experiment (base GP for example) versus 

30 execution times for the two-tier scheme. The times in each sample are the final value 

for that run. This process analyzes each run's contribution to the average execution time 

for a given technique (base GP for example) within the distribution of execution times for 

that technique. The significance tests compare each pair of samples and determine 

whether any difference in their distribution is due to normal variance or due to an actual 

difference in the distributions.  

The table shows the p-values for the Mann–Whitney U test for each of these 

comparisons. The Mann–Whitney U test is used for these tests because it is a more robust 

statistic when attempting whether one distribution is stochastically greater than another 

and does not require normally distributed samples. The U test scores are converted to p-

values which represent the null hypothesis probability that the two samples differ from 

each other based solely on chance. A low p-value (p < 5.0 x 10
-2

) indicates that the two 

samples are significantly different and that difference is not due to sample variance. 

Based on the values in Table 7, the differences of the timing averages shown in Table 6 

are significant. 

Table 7 - Bowl3neg Execution Time Sample Significance (p-values, vs. the Two-tiered method) 

Execution Times

Base GP ACGP 1st OH ACGP 2nd OH

500 1.097 x 10-6 4.860 x 10-11 8.179 x 10-4

1000 2.072 x 10-2 1.705 x 10-3 1.470 x 10-8
 

Table 8 shows that the average fitness scores for both of the tiered search schemes 

described above are an improvement over the base GP and normal ACGP average fitness 

scores for both population sizes. The combined transition tiered search scheme shows a 

significant improvement of the average fitness score incurring only a modest cost in 

average execution time for that experiment. 
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Table 8 - Comparison of Average Fitness Scores (Bowl3neg) 

Fitness Scores

500 1000 1000 + 500

Base GP 0.1752 0.4760 -

ACGP 1st OH 0.2685 0.6615 -

ACGP 2nd OH 0.6003 0.8282 -

TT Aug (direct) - - 0.6668

TT Aug (combined) - - 0.9000

Population Size

 

Table 9 represents the values of significance tests for comparisons of the fitness scores 

for the set of 30 independent runs of the Two-tiered ACGP methodology versus the sets 

of 30 independent runs of each of the other six GP searches shown in Table 8. The table 

shows the p-values for the Mann–Whitney U test for each of these comparisons. Based 

on the values in Table 9, the differences of the timing averages shown in Table 8 are 

significant. 

Table 9 - Bowl3neg Fitness Score Sample Significance (p-values, vs. the Two-tiered method) 

Fitness Scores

Base GP ACGP 1st OH ACGP 2nd OH

500 4.290 x 10-9 1.343 x 10-7 8.701 x 10-4

1000 1.002 x 10-5 1.925 x 10-3 9.658 x 10-2
 

5.2 How does this Methodology Reduce the Search Space Complexity?  

The tiered search scheme shown above appears to be a promising method to improve 

ACGP search results for problems with restricted structure quality solutions in the search 

space. This improvement of the search process is generated by a probabilistic reduction 

of the components in the initial set of functions and terminals chosen for a given problem. 

The simple experiment in Chapter 5.1 above demonstrates the efficacy of this proposed 

methodology. A description of the steps of this methodology is helpful in explaining why 

it is effective. 

Chapter 3.1 conceptually described how 1
st
 order ACGP analyzed the fittest population 

members and used building block frequency values to adjust their selection probabilities. 

These probabilities are entered in a table that stores the probability that a specific 

component will be chosen as an argument for a given function. Each of a function’s 

arguments has its own probability table. These probability tables can be thought of as a 

variant of the EDA-GP discussed in Chapter 2.3. ACGP however maintains multiple 

probability tables for each node and only reduces the set of probability tables to a single 

table for a node when the parent node function is chosen. Figure 20 illustrates how this 

process works for a component set containing four binary functions. Before the tree root 

node is populated with a function, the probability tables for all four functions are 

potentially available at each child node location. The image on the left portrays this 

situation. Once the root node is assigned a function, as in the image on the right, then 

only the two tables for each of that function’s argument locations remain available for use 

in selecting the contents of each child node. This behavior is similar to the probability 

table structure of EDA-GP (Chapter 2.3). The difference between this 1
st
 order ACGP 

and EDA-GP is that ACGP uses only a single global table. That table assigns a 
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probability to each function and terminal to be selected in a particular argument location 

for a given function. EDA-GP probability tables evolve location specific probabilities. A 

given function will be assigned different selection probabilities in different locations of 

the EDA-GP tree. This location specificity means that an EDA-GP will converge to a 

specific candidate tree structure and ignore other viable tree structures. The probability 

tables of 1
st
 order ACGP are not localized. They are global and are applied to all 

locations in a solution tree. This technique simplifies the computational overhead and 

encourages the search of diverse candidate tree structures.  

 

Figure 20 - 1st order ACGP Heuristic Weights Presented as an EDA Structure  

The 1
st
 order ACGP probabilities can also be logically visualized as a two dimensional 

table. Table 10 shows an initial unconditioned 1
st
 order ACGP probability table. A 

function or terminal (the top row) can be assigned to an argument location for a function 

(two left columns) with a uniform probability of selection (body of the table).  

Table 10 - Initial ACGP 1st Order Heuristic Weight Matrix 

Func Arg * + - / 0 1 2 3 4 5 -1 -2 -3 -4 -5 X Y Z

* 1 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056

* 2 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056

+ 1 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056

+ 2 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056

- 1 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056

- 2 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056

/ 1 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056

/ 2 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056

Root 1 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056  

This table shows the set of functions and terminals used in the Bowl3neg (Equation (13)) 

ACGP search in Chapter 5.1 as the top row of the table. The set of functions and 

terminals used in this search is: 

Function set:           (protected divide)  

Terminal set: {x, y, z, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5} 
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Each row of Table 10 corresponds to a specific function argument location or the root 

node. The functions or root are shown in the left column. The argument locations are 

shown in the second left column. In this example, all functions are binary functions hence 

the argument designations of 1 or 2. The probabilities of each row represent the selection 

probabilities for a child node of a given function argument; therefore the sum of each row 

is 1. An initial table, like this one, will begin with uniform selection probability for all 

components. This initial behavior is exactly like a standard GP application. The 

difference between a standard GP implementation and ACGP is that ACGP periodically 

interrupts normal operation, analyzes the frequency of the building blocks that make up 

fit population members, and adjusts their selection probability in this table. Those 

building blocks that occur frequently in fit solutions have their selection probability 

increased. All other building blocks have their selection probability reduced. Table 11 

presents an ACGP 1
st
 order probability table after 250 generations, or 10 iterations, of 

this adjustment process.  

Table 11 - Example ACGP 1st Order Heuristic Weight Matrix 

Func Arg * + - / 0 1 2 3 4 5 -1 -2 -3 -4 -5 X Y Z

* 1 0.047 0.134 0.133 0.127 0.021 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.041 0.260 0.241

* 2 0.024 0.136 0.210 0.073 0.013 0.020 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.042 0.255 0.232

+ 1 0.151 0.115 0.207 0.041 0.074 0.014 0.009 0.024 0.048 0.039 0.028 0.045 0.011 0.020 0.008 0.103 0.061 0.015

+ 2 0.112 0.099 0.305 0.021 0.053 0.028 0.058 0.011 0.009 0.019 0.032 0.081 0.022 0.045 0.006 0.080 0.010 0.024

- 1 0.082 0.151 0.289 0.067 0.019 0.016 0.017 0.033 0.018 0.034 0.046 0.029 0.023 0.012 0.040 0.040 0.051 0.046

- 2 0.285 0.145 0.125 0.019 0.012 0.023 0.001 0.051 0.035 0.021 0.034 0.047 0.031 0.029 0.044 0.050 0.034 0.029

/ 1 0.028 0.071 0.207 0.028 0.209 0.002 0.005 0.009 0.021 0.001 0.038 0.032 0.014 0.061 0.027 0.175 0.071 0.016

/ 2 0.092 0.073 0.215 0.015 0.022 0.109 0.016 0.019 0.027 0.033 0.014 0.152 0.070 0.033 0.033 0.044 0.001 0.044

Root 1 0.001 0.424 0.577 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001  

The discussion in Chapter 5.1 identified the set of desirable 1
st
 order building blocks in 

Equation (14). The probabilities for the ‘–‘ heuristics appear in rows six and seven. The 

‘*’ probabilities are in rows one and two. The columns of the table identify the function 

or terminal used in a particular function argument node. 

Several observations about Table 11 stand out. Initially this table was populated with 

uniform selection probabilities for four binary functions and fourteen terminals as shown 

in Table 10. After 250 heuristic adjustment iterations the probabilities are clearly not 

uniform. This matrix probabilistically eliminates nine terminals and one function (light 

purple color). While they are not completely eliminated from the component set, they 

will be selected so seldom that they can be considered eliminated. This probabilistic 

suppression of the selection of functions and terminals effectively reduces the 

representation search space derived from Equation (1).  

                                              

Several of the desirable 1
st
 order building blocks in Equation (17) have increased 

probabilities (shown in dark green). In this case ‘–‘ is a desirable Root node function and 

it also has an enhanced selection probability. While       and       are desirable, they 

are permutations and their lower selection probability is helpful. These are positive 

observations from this table but there are also some negative aspects in this set of 

heuristics.  

Two of the desirable 1
st
 order building blocks,       and      , needed to solve this 

regression problem had their selection probability reduced from the original uniform 
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value (shown in blue). While these probabilities are lower when compared to their 

starting values (0.041 and 0.042 versus 0.056), they are considerably greater than most of 

the highly suppressed values (e.g.            ) so this is not a major concern and can 

be remedied in the 2
nd

 order ACGP search. Several unneeded building blocks show 

increased selection probabilities. The Root function selection of ‘+’ and the heuristic 

      are assigned strong selection probabilities. All of the other building blocks 

highlighted in light green in the table have enhanced probabilities. While these 

observations are not optimal, they are not critical. A 1
st
 order probability matrix like this 

one is rough guidance that can helpfully seed a 2
nd

 order ACGP search.  

The 1
st
 order probability matrix in Table 11 is the combined weight matrix used to 

precondition the 2
nd

 order ACGP search of Bowl3neg ACGP search in Chapter 5.1 above. 

The modified selection probabilities in this table provide coarse guidance for the 2
nd

 

order ACGP search that produced the results of Figure 16 and Figure 17 .  

An advantage of using this coarse guidance, rather than more refined guidance, is that 

while the second stage search is constrained, it is only probabilistically constrained. The 

matrix helps the search with most of the best building blocks yet does not prevent the 

discovery of other useful elements. Additionally, the probabilistic seeding guidance 

assists the virtual search locality of productive building blocks and suppresses less 

productive ones. This behavior assists the search and improves its efficiency. The 

experiment in Chapter 5.1 demonstrated the efficacy of this method and a formal 

statement of its parameter choices should help clarify the complete concept.  

5.3 The Structure of a Two-Tiered ACGP Search Methodology  

The results of the two-tiered search scheme presented in Chapter 5.2 above are 

promising. A discussion of the parameter settings used in this method is helpful in 

understanding its advantages over unconditioned 1
st
 order or 2

nd
 order ACGP search.  

The standard GP searches (base, 1
st
 order ACGP, and 2

nd
 order ACGP) in these 

experiments with the Bowl3neg problem (Equation (13)) used the same operational 

parameters identified earlier in Table 4. The parameter exceptions for these experiments 

are the use of populations of 500 and 1000 individuals for the base GP application, 1
st
 

order ACGP and 2
nd

 order ACGP. The population sizes for these baseline experiments 

match the first and second tier populations of the two-tier approach. The fitness and 

execution time results of these comparison experiments can be compared directly with 

those of the two-tiered search scheme.  

The principal difference in parameters for the two-tiered ACGP search is that this method 

uses a population of 1000 individuals for 250 generations in 1
st
 order ACGP search. The 

output 1
st
 order heuristic matrix is then seeded to a 2

nd
 order ACGP search using a 

population of 500 individuals for 250 generations. These parameters result in strong 

execution time and fitness results but it may not be obvious why these parameters 

(population sizes and generation limits) are chosen.  

The rationale starts with the question, what constitutes a useable 1
st
 order ACGP heuristic 

matrix that can seed our second tier run? Ideally, one would prefer a well specified 

heuristic matrix that only includes the minimal desired components and suppresses 

everything else. This type of ideal heuristic matrix would provide ideal guidance for the 
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second tier run and help it find a highly fit solution quickly. The cost, in population size 

and number of generations, of discovering such an ideal heuristic would be high enough 

to negate any potential advantages for this two-tiered technique. Additionally, if the 

initial set of 1
st
 order ACGP runs can develop an ideal heuristic matrix, it has probably 

solved the problem completely thereby making the second stage of this method 

unnecessary. The concept used here is to evolve a heuristic matrix that is good enough to 

guide the 2
nd

 order ACGP search and optimize the processing costs. Conceptually, the 

population must be large enough to provide sufficient diversity yet small enough to retain 

the original 1
st
 order ACGP processing efficiency.  

The experiment in Chapter 5.1 demonstrated that a model developed using a two-tiered 

search is successful in producing the good results. Additionally, this result provides hints 

of the environmental parameters for the search. The 1
st
 order ACGP run should use a 

population large enough to produce several successful searches. The term successful in 

this case is measured by a search run that results in a best fitness score of 1.0. This group 

of successful runs does not have to be a majority of the overall set of runs, but they 

should be more than one or two runs to ensure enough diversity of heuristic information. 

Empirical results indicate that a set of runs that achieve an average fitness score in excess 

of 0.5 should contain enough runs with perfect 1.0 fitness scores. The first 

implementation of this technique tried seeding the 2
nd

 order ACGP runs with a one-to-

one set of 1
st
 order ACGP runs. The resulting fitness curve from this direct seeding 

experiment was shown in Figure 15. Analysis of this experiment revealed that any 1
st
 

order ACGP search that was not successful, never produced a successful 2
nd

 order ACGP 

search. Clearly the poor 1
st
 order heuristics did not contain sufficiently good guidance for 

the 2
nd

 order searches they seeded. The successful 1
st
 order heuristics were considerably 

more useful in seeding successful 2
nd

 order searches. This observation indicated that the 

seed heuristic should exclude any unsuccessful 1
st
 order heuristic from the set of first tier 

runs. Once the heuristics from the set of runs are pruned from the set of candidate 

heuristics the question becomes how will the set of candidates be combined into one seed 

heuristic? 

Two desired features of an effective heuristic combination scheme are that it be simple in 

operation and that it retains the proportionality of the heuristic probabilities within each 

row of function heuristic probabilities. An arithmetic average of the candidate heuristics 

proved to be a computationally simple scheme that preserved the probabilistic 

proportions in each row of the matrix. This combination technique additionally moderates 

extremely strong or extremely weak probabilities thereby preventing over aggressive 

convergence to suboptimal structures and thereby suboptimal solutions.  

This candidate evaluation process can be automated to quickly process the results from 

the first tier runs and combine them to produce a seed heuristic matrix for the set of 

second tier runs. The steps of this methodology can be described as follows: 

1) Run 1
st
 order ACGP with typical parameter settings but with half the 

number of generations than normal (using multiple independent 1
st
 order 

ACGP runs) 

2) Review the final fitness scores for the set of ACGP runs 



Aleshunas, John, 2013, UMSL, p.45 

 

 
 

a. If there are not a sufficient number of successful runs to combine 

into a seed heuristic model, increase the population size and repeat 

step 1  

b. Else, combine the final 1
st
 order heuristic matrices for the 

successful runs by computing the arithmetic average of each 

individual heuristic to produce the seed heuristic matrix 

3) Seed a set of 2
nd

 order ACGP runs with the 1
st
 order heuristic computed in 

step 2b. 

4) Analyze the final results from the two-tier search. 

Several of the parameters of this technique are expressed in conceptual terms. These 

parameters include: the population sizes for each tier’s search, the number of generations 

for each tier’s search, and what constitutes a sufficient number of successful runs. These 

parameter settings are clarified in the discussion of the empirical results in each chapter 

below. These experiments will follow a basic protocol. The experiments for the base GP 

application, 1
st
 order ACGP, and 2

nd
 order ACGP use 30 independent runs with the 

results of all runs presented as averages of the 30 runs. The two-tier methodology will 

also use 30 independent runs for each tier with each tier’s results presented as averages of 

the 30 runs. The only modification of this process is that a pruned subset of the first tier 

results is combined to form the heuristic seed for the 30 independent runs of the second 

tier.  

While the results of the two-tier search in Figure 16 and Figure 17 are apparent, it is not 

clear whether the 2
nd

 tier fitness is attributable to the search bias induced by the 1
st
 tier 

search results or the increased information of the conditioned 2
nd

 tier search. One method 

of resolving this question is to compare the two-tier search results shown in these figures 

to a two-tier search using 1
st
 order ACGP in both tiers.  
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Figure 21 – Bowl3neg Two-Tier Search (1
st

 OH to 2
nd

 OH) versus Two-Tier Search (1
st

 OH to 1
st

 OH) 
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Figure 21 compares the two-tier search using an initial 1
st
 order ACGP search that 

conditions a 2
nd

 order ACGP search to another using 1
st
 order ACGP search that 

conditions a 1
st
 order ACGP search. Using 2

nd
 order ACGP in the second tier of the tiered 

search scheme accrues additional information from the use of 2
nd

 order heuristics and 

thereby has a better average fitness score. This demonstration validates the operational 

aspects of this proposed search methodology. 

This process is simple, effective and easy to validate. The eighteen components of 

functions and terminals used in the experiment discussed in Chapter 5.2 define a very 

large representation search space. This matrix resulting from a 1
st
 order ACGP search 

probabilistically eliminates nine terminals and one function (shown in light purple color 

in Table 11). This reduction of the GP component set decreases the size of the 

representation search space by approximately 25% which computationally explains part 

of the accuracy and efficiency gains. A review of the representation space complexity 

described by Equation (1) can clarify the scope of the search space reduction achieved 

here. 

Chapter 1.1 discussed the factors that contribute to the complexity of a GP representation 

search space. This concept is summarized in Equation (1) repeated here. 

                                 

  

 

                            

This equation expresses the number of potential solutions in a GP representation space in 

terms of the number of functions, the number of terminals, the arity of each function, and 

the maximal depth of the trees. The number of terminals is additive factor for the nodes at 

each depth. While this contributes to the number of permutation structures in the search 

space, it is not the most significant factor. The functions, which trigger additional levels 

to solution trees and the arity of the functions which expand the potential permutation 

options multiplicatively, are more significant influencers. This recursive function is 

summed, at each descending level, over all of the functions in the component set.  

Eliminating a function from the GP component set has a greater impact on reducing the 

representation search space complexity than eliminating a terminal. In Equation (1), the 

quantity of possible permutation options are computed for each possible parent function 

from the set of functions for a given GP application instance. Eliminating a function from 

the component set eliminates one of these possible parent node choices and thereby 

reduces one of the elements in the summation in Equation (1). This reduces the size of 

the representation search space. If the original function set consists of n functions, 

eliminating one function will remove one element in the summation and thereby shrink 

representation search space by 1/n.  

If a function that is not needed to form a viable solution is eliminated from the original 

function set, it can cause a significant reduction in the overall complexity of the 

representation space without reducing the number of viable candidate solutions in this 

search space. Reducing the overall size of the search space without reducing the number 

of viable solutions increases the probability that the GP search will discover and exploit a 

viable solution. This should increase the efficiency of the GP search both in terms of 
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execution time and fitness score. An experiment using an ideal seed heuristic should help 

reinforce this assertion.  

5.4 An Experiment with an Ideal Search Heuristic  

The experiment in Chapter 5.1 used a 1
st
 order ACGP heuristic matrix as a seed for a 2

nd
 

order ACGP search to solve a designed regression problem. The seed matrix was an 

average of the heuristic matrices from several successful 1
st
 order ACGP searches. The 

resulting 2
nd

 order ACGP search improved in both time and fitness over standard base 

GP, standard 1
st
 order ACGP, and standard 2

nd
 order ACGP searches. Chapter 5.2 

described the mechanics of this methodology and asserted that, while the 1
st
 order seed 

matrix was not an ideal guide, it was a sufficient recommendation for a 2
nd

 order ACGP 

search.  

One advantage of using a designed problem is that the target equation is known and, as in 

this case, its building blocks are also clearly known. While these points can help analyze 

the search progress and its results, they can also be used to construct an ideal 1
st
 order 

heuristic matrix as a seed for a 2
nd

 order ACGP search experiment. The Bowl3neg 

symbolic regression problem (Equation (13)) will be used for this exercise. This 

experiment should demonstrate an upper limit of an ideal case search using the two-tiered 

methodology discussed here.  

Before constructing an ideal 1
st
 order heuristic matrix, a review of the structural 

constraints for the Bowl3neg problem will be helpful. Each row of the heuristic table 

corresponds to a specific function argument location or the root node. The function and 

terminal set used in this regression problem are: 

Function set:           (protected divide)  

Terminal set: {x, y, z, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5} 

The functions used for this regression problem are all binary functions. Fourteen 

terminals are used in the terminal set. There are ten desirable 1
st
 order building blocks 

(shown previously in Equation 14). Figure 12 represented an example of a viable solution 

tree. The frequencies of each of the desirable building blocks in this figure can be used to 

infer what their un-normalized proportional weights should be in an ideal heuristic 

matrix. All of the desirable ‘*’ building blocks should have equal weights. The ‘–‘ 

building blocks with ‘*’ as its child node should be weighted twice the value of ‘–‘ with a 

child node of ‘–‘ . Finally, each row in the table must sum to approximately 1.0. This 

information produces this ideal 1
st
 order heuristic weight matrix for Equation (13).  

Table 12 - Example Ideal ACGP 1st Order Heuristic Weight Matrix 

Func Arg * + - / 0 1 2 3 4 5 -1 2 -3 -4 -5 X Y Z

* 1 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.333 0.333 0.333

* 2 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.333 0.333 0.333

+ 1 0.001 0.001 0.001 0.001 0.999 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

+ 2 0.001 0.001 0.001 0.001 0.001 0.999 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

- 1 0.666 0.001 0.332 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

- 2 0.666 0.001 0.332 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

/ 1 0.001 0.001 0.001 0.001 0.001 0.001 0.999 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

/ 2 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.999 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Root 1 0.001 0.001 0.999 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001  
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A review of Table 12 results in several interesting observations. This table 

probabilistically eliminates eleven terminals and two functions. Since each row of 

probabilities must sum to about 1.0, four dummy values are entered in the heuristic 

matrix: {+1, 0} = 0.999, {+2, 1} = 0.999, {/1, 2} = 0.999, and {/2, 3} = 0.999 (shown in 

blue). These probabilities will be rarely chosen because their two parent functions (‘+’ 

and ‘/’) are probabilistically eliminated from consideration. Based on the discussion from 

Chapter 5.3, it is clear that this table probabilistically reduces the size of the 

representation search space by 50%. That is a significant impact.  

Feeding this 1
st
 order seed matrix to a 2

nd
 order ACGP search produces the following 

average fitness result. This experiment used the GP parameters listed in Table 4. 
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Figure 22 - ACGP 2nd Order Search Using an Ideal Heuristic versus Normal ACGP Search Using a Population 

of 500 Individuals 

The results shown in Figure 22 are dramatic. The positive impact of seeding a 2
nd

 order 

ACGP search with the ideal 1
st
 order ACGP heuristic matrix is clear. Additionally, 

behavior of a probabilistic system is also visible in this chart. Even though this search 

was preconditioned using an ideal 1
st
 order heuristic matrix, one of the 30 independent 

runs lost its solution. This is visible in Figure 22 following generation 392 and persisting 

to the end of that run. This behavior is typical of a probabilistic heuristic search and does 

not detract from the clear advantage of this methodology.  
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Figure 23 - ACGP 2nd Order Search Using an Ideal Heuristic versus Normal ACGP Search Using a Population 

of 1000 Individuals 

Figure 22 compares the ideal two-tiered methodology results to a standard base GP 

search, a standard 1
st
 order ACGP search, and a standard 2

nd
 order ACGP search using a 

population of 500 individuals. Figure 23 compares the same ideal two-tiered 

methodology results to a standard base GP search, a standard 1
st
 order ACGP search, and 

a standard 2
nd

 order ACGP search using a population of 1000 individuals. These results 

are still a strong improvement over the other searches.  

Both of these experiments demonstrate that 2
nd

 order ACGP can find a correct solution 

within a very few generations if seeded with an ideal 1
st
 order ACGP heuristic matrix. 

Table 13 shows the strong execution time advantage when a perfect heuristic is used. 

This is not a fair comparison though because the experiment using the perfect heuristic 

did not need the initial run of 250 generations to generate the seed heuristic used in the 

seeded 2
nd

 order ACGP run, therefore the time value for this experiment reflects only the 

250 generations using the perfect heuristic seed. 

Table 13 - Comparison of Average Execution Times (Bowl3neg - with Perfect heuristic) 

Execution Times

500 1000 1000 + 500

Base GP 272.83 411.77 -

ACGP 1st OH 46.77 88.28 -

ACGP 2nd OH 68.90 113.83 -

TT Aug (combined) - - 77.83

TT Aug (perfect) - - 27.07

Population Size

 

The significance tests for the perfect heuristic seed experiment sample (Table 14) are 

clear evidence that this test produced a strong result versus the experiment samples for all 

of the other experiments. As previously stated, the Mann–Whitney U test is used for these 

tests because it is a more robust statistic when attempting whether one distribution is 

stochastically greater than another. 
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Table 14 - Bowl3neg Execution Time Sample Significance versus Perfect Heuristic (p-values) 

Execution Times

Base GP ACGP 1st OH ACGP 2nd OH

500 1.698 x 10-7 2.285 x 10-10 2.894 x 10-11

1000 3.834 x 10-4 2.916 x 10-11 2.930 x 10-11
 

Table 15 shows the strong advantage in fitness score produced when a perfect heuristic is 

used. While the experiment using the perfect heuristic did not need the initial run of 250 

generations to generate the seed heuristic used in the seeded 2
nd

 order ACGP run, this 

result, unlike the execution time result, is a fair comparison because in each the best 

average fitness scores are directly comparable. These results are not dependent on the 

number of generations necessary to produce them. 

Table 15 - Comparison of Average Fitness Scores (Bowl3neg - with Perfect heuristic) 

Fitness Scores

500 1000 1000 + 500

Base GP 0.1752 0.4760 -

ACGP 1st OH 0.2685 0.6615 -

ACGP 2nd OH 0.6003 0.8282 -

TT Aug (combined) - - 0.9000

TT Aug (perfect) - - 1.0000

Population Size

 

The Mann–Whitney significance test results (Table 16) for the fitness score sample of the 

perfect heuristic experiment versus samples of each of the other experiments demonstrate 

a unmistakable advantage in using the perfect 1
st
 order ACGP heuristic as the seed for a 

2
nd

 order ACGP run. While this exercise helps understand the advantage promised by this 

two-tier search methodology, a perfect 1
st
 order heuristic is not guaranteed and may not 

be necessary. The discussion in Chapter 5.2 regarding the 1
st
 order ACGP seed heuristic 

for the Bowl3neg problem pointed out that the heuristic seed matrix (Table 11) that 

created the fitness curves shown in Figure 16 and Figure 17 did not have strong selection 

probability heuristics for all of the desirable building blocks yet it produced a strong 

result. One might wonder if this methodology is effective with more complex problems. 

The artificial ant problem is often used as a benchmark for research results and would be 

a good test for this two-tiered search methodology.  

Table 16 - Bowl3neg Fitness Score Sample Significance versus Perfect Heuristic (p-values) 

Fitness Scores

Base GP ACGP 1st OH ACGP 2nd OH

500 1.700 x 10-10 1.344 x 10-8 1.304 x 10-4

1000 8.051 x 10-7 2.870 x 10-4 1.985 x 10-2
 

5.5 Two-tiered Search Applied to the Artificial Ant Problem  

The artificial ant problem is a well-studied GP problem that dates back to Koza’s original 

work [12]. The artificial ant problem directs a GP application to evolve a program of 

instructions for a finite-state automaton (the ant). The ant must find and consume all of 

the food pellets lying along an irregular trail [12]. In the Santa Fe Trail version of this 
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problem the candidate programs are evaluated by having the ant navigate a 32 x 32 grid 

containing an irregular trail of 89 scattered food pellets.  

Figure 24 depicts a diagram of the Santa Fe Trail grid showing the path of food pellets. 

The ant starts in the upper left corner. Each candidate solution is evaluated by running the 

program for 400 time units (repeat the program execution 400 times) counting the 

number of food pellets consumed. The more pellets consumed during the execution, the 

higher the score with a perfect fitness score awarded for consuming all 89 pellets. 

 

Figure 24 - The Santa Fe Trail for the Artificial Ant Problem 

The set of functions and terminals normally used for this problem are: 

Function set:  

If-food-ahead (two arguments)  

Prog2 (two arguments)  

Prog3 (three arguments)  

Terminal set:  

Right (turns the ant right by 90° without advancing the ant)  

Left (turns the ant left by 90° without advancing the ant)  

Move (moves the ant forward in the direction it is facing, it eats 

any food in the square)  

These components are combined and manipulated by the GP application to evolve 

successful programs. It should be noted that the if-food-ahead function used in this 

problem differs from other implementations. Normally a typical GP if function has three 

arguments. The first argument is a Boolean test. Based on the value of that test one of the 

other two arguments is chosen (argument two for a true value and argument three for a 
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false value). The if-food-ahead function in the function set for the artificial ant problem 

assumes a built-in logic test for if-food-ahead and it has only two arguments for its 

resulting action based on the value of this test. Janikow [9] identified one successful 

solution to this problem (Equation (18)).  

                                         

                                                                       

Equation (18) contains five function elements and seven terminal statements. Organizing 

these logic statements into a tree structure we get the 13 node tree shown in Figure 25. 

One unmistakable structural feature of this minimal solution tree is its skewed 

construction. Some quick experimentation with this structure makes it clear that any 

alteration of this solution will significantly modify its operation and therefore its fitness 

evaluation. This observation implies that, while other program structures can produce 

successful solutions to this problem, permutations of the components will probably not 

produce successful solutions. This behavior is similar to the strict structure created by 

strict-structure functions addressed in the discussion of the Bowl3neg problem. This 

assertion implies that this problem will have similar strict solution structure behavior as 

the Bowl3neg problem.  

 

Figure 25 – An Example Solution Tree for the Artificial Ant Problem (Santa Fe Trail) 

Experimentation with the artificial ant problem verified that the strict solution structure 

created by the functions used in the component set makes it more difficult to find fit 

individuals within the population of candidate solutions. These experiments indicated that 

larger population sizes were needed to attain reasonable results. Two sets of 30 

independent runs using populations of 1000 and 2000 were made to establish the 

performance baseline for the artificial ant problem. All of the GP searches for the 

artificial ant problem used the operational parameters shown in Table 4, the set of 

functions and terminals shown above, along with the following exception for this 

problem:  

Population size: 1000 and 2000  
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The experiments (base GP application, 1
st
 order ACGP, and 2

nd
 order ACGP) using a 

population of 1000 individuals resulted in the fitness learning curves shown in Figure 26. 

The base GP implementation was only able to achieve a fitness of 0.09 using this 

population size. 1
st
 order ACGP and 2

nd
 order ACGP did better but these results were still 

modest. It is worth noting that 1
st
 order ACGP outperformed 2

nd
 order ACGP on this 

problem. It is unclear whether any information differential exists between the two ACGP 

operating modes and this may potentially explain some portion of these results.  

What can explain the fact that 1
st
 order ACGP has stronger fitness scores than 2

nd
 order 

ACGP in Figure 26? One potential explanation may be the difference in search 

granularity of the two methods with the lower granular 1
st
 order heuristics being able to 

learn its simpler heuristics quicker. Additionally, the more granular 2
nd

 order heuristics 

may not provide a considerable information advantage for this problem.  
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Figure 26 - Artificial Ant Learning Curve (population 1000) 

Similar experiments (base GP application, 1
st
 order ACGP, and 2

nd
 order ACGP) using a 

population of 2000 individuals resulted in the fitness learning curves shown in Figure 27. 

The base GP implementation achieved a better fitness score using this population size. 1
st
 

order ACGP and 2
nd

 order ACGP also improved their fitness scores. Again, 1
st
 order 

ACGP and 2
nd

 order ACGP achieved similar fitness on this problem. This fitness result 

reinforces the assertion that either the difference in search granularity of the two methods 

or the lack of an informational advantage handicaps the 2
nd

 order ACGP search for this 

problem environment.  
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Figure 27 - Artificial Ant Learning Curve (population 2000) 

The two-tiered search methodology was applied to this problem. The first stage consisted 

of 30 independent runs of 1
st
 order ACGP using a population of 2000 for 250 generations. 

The results of these runs were analyzed. Any run that was not successful was pruned 

from the heuristic set. Success was defined by the achievement of a fully fit solution for 

this problem by the completion of the run. The 1
st
 order heuristics for the successful runs 

were combined by arithmetic averaging to form the seed heuristic for the second search 

stage. The second stage consisted of 30 independent runs of 2
nd

 order ACGP seeded with 

the 1
st
 order heuristic produced by the first stage search and using a population of 2000 

for 250 generations. The results of this experiment are shown in Figure 28. This chart 

shows the two-tiered fitness learning curve superimposed on the set of results for the base 

GP application, 1
st
 order ACGP, and 2

nd
 order ACGP using a population of 2000. The 

two-tier search methodology appears to show an improvement over any of the other three 

GP searches for this problem.  
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Figure 28 - Artificial Ant Learning Curve using a Population of 2000 versus the Two-Tier 

Method using a Population of 2000 seeding a Population of 1000  
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Figure 29 shows the two-tiered fitness learning curve compared with the set of results for 

the base GP application, 1
st
 order ACGP, and 2

nd
 order ACGP using a population of 

1000. The improvement of the two-tier search methodology over any of the other three 

GP searches is very strong here.  
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Figure 29 - Artificial Ant Learning Curve using a Population of 1000 versus the Two-Tier 

Method using a Population of 2000 seeding a Population of 1000  

Earlier in this chapter it was stated that it is unclear whether any information differential 

exists between the two ACGP operating modes for this problem and that this may 

potentially explain some portion of the results for the two ACGP modes alone (Figure 26 

and Figure 27). While the results of the two-tier scheme shown in Figure 28 and Figure 

29 are good, it is not apparent whether these results are attributable to 2
nd

 order ACGP 

search in the second tier or a just biased 2
nd

 tier search using either ACGP mode. An 

experiment similar to the one shown in Figure 21 that compares the two-tier search using 

1
st
 order ACGP in the 1

st
 tier and 2

nd
 order ACGP in the 2

nd
 tier versus another two-tier 

search using 1
st
 order ACGP in both tiers may resolve this question. Figure 30 compares 

the two-tier search results from Figure 29 to a two-tier search using 1
st
 order ACGP in 

both tiers. The use of 2
nd

 order ACGP in the 2
nd

 tier is better than a 2
nd

 tier search using 

1
st
 order ACGP. This reinforces the claim that 2

nd
 order ACGP has an information 

advantage over 1
st
 order ACGP when the representation space complexity can be 

constrained.  
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Figure 30 – Artificial Ant Two-Tier Search (1st OH to 2nd OH) versus Two-Tier Search (1st OH to 1st OH) 

The results for the two-tiered search method shown in Figure 28 and Figure 29 appear to 

indicate that this technique improves the search effectiveness in a combination of search 

time and overall fitness score. This claim can be verified by reviewing the execution time 

and fitness score results directly. 
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Figure 31 - Artificial Ant Learning Curve using a Population of 1000 versus the Two-Tier Method using a 

Population of 2000 seeding a Population of 1000 compared on a time scale 

Figure 31 shows the learning curves from the experiments shown in Figure 28 

substituting an x-axis representing time (120 seconds) for one representing generations. 

The advantage of the two-tier scheme, in terms of fitness and execution time, is clear. 
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Figure 32 - Artificial Ant Learning Curve using a Population of 2000 versus the Two-Tier Method using a 

Population of 2000 seeding a Population of 1000 compared on a time scale 

Figure 32 shows the learning curves from the experiments shown in Figure 29 

substituting an x-axis representing time (120 seconds) for one representing generations. 

The advantage of the two-tier scheme, in terms of fitness and execution time, is more 

distinct. Table 17 compares the average execution time for each set of runs for each 

search method. The two-tier search is fast and improves on most of the other searches. 

Only 1
st
 order ACGP and 2

nd
 order ACGP are faster than the two-tier search method.  

Table 17 - Comparison of Average Execution Times (Artificial Ant) 

Execution Times

1000 2000 2000 + 1000

Base GP 115.07 184.50 -

ACGP 1st OH 59.23 119.33 -

ACGP 2nd OH 73.73 134.27 -

TT Aug (combined) - - 96.70

Population Size

 

When the samples of execution time values for the set of independent runs for each 

method are compared with the sample of values for the two-tier method runs (Table 18) it 

is clear that these timing results are not the result of chance. The two-tier method is only 

slower than the two ACGP searches with the smaller population. This table shows the p-

values for the Mann–Whitney U test for each of these comparisons. The Mann–Whitney 

U test is used for these tests because it is a more robust statistic when attempting whether 

one distribution is stochastically greater than another.  

Table 18 - Artificial Ant Execution Time Sample Significance (p-values, vs. the Two-tiered method) 

Execution Times

Base GP ACGP 1st OH ACGP 2nd OH

1000 2.262 x 10-6 2.618 x 10-11 4.954 x 10-11

2000 3.735 x 10-4 1.002 x 10-10 2.899 x 10-11
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Table 19 compares the average fitness scores for each set of runs for each search method 

on the artificial ant problem. Here the two-tier search improves on the fitness scores from 

all of the other search methods. The strong fitness score of the two-tier search method 

offsets any execution time advantage 1
st
 order ACGP or 2

nd
 order ACGP had in the Table 

17 results.  

Table 19 - Comparison of Average Fitness Scores (Artificial Ant) 

Fitness Scores

1000 2000 2000 + 1000

Base GP 0.0981 0.2916 -

ACGP 1st OH 0.4931 0.7626 -

ACGP 2nd OH 0.4131 0.6282 -

TT Aug (combined) - - 0.7968

Population Size

 

When the samples of fitness score values for the set of independent runs for each method 

are compared with the sample of values for the two-tier method runs it is clear that these 

fitness results (Table 20) are unmistakable learning improvements and not the result of 

chance. This table shows the p-values for the Mann–Whitney U test for each of these 

comparisons. The Mann–Whitney U test is used for these tests because it is a more robust 

statistic when attempting whether one distribution is stochastically greater than another.  

Table 20 - Artificial Ant Fitness Score Sample Significance (p-values, vs. the Two-tiered method) 

Fitness Scores

Base GP ACGP 1st OH ACGP 2nd OH

1000 4.754 x 10-9 4.298 x 10-3 6.729 x 10-4

2000 1.707 x10-5 6.688 x 10-1 8.897 x 10-2
 

Although viable solutions for the artificial ant problem require strict functional structures 

that do not lend themselves to permutations that are also viable solutions, this two-tier 

search methodology can discover solutions with better fitness than a standard GP, 1
st
 

order ACGP, or 2
nd

 order ACGP techniques and do so more efficiently. An assumption 

that drives this performance is that the population for the first stage search by 1
st
 order 

ACGP be large enough so structural diversity of the population ensures candidate 

solutions that can contribute useful building block information. Without this information, 

ACGP may bias the search toward suboptimal solutions. An experiment with the 

ComplexEq problem (Equation (9)) introduced in Chapter 3.2 should help explore the 

question of population size and building block diversity. 

5.6 Two-tiered Search Applied to a Complex Regression Problem  

A specifically constructed regression problem was introduced in Chapter 3.2 as an 

example experiment demonstrating how ACGP can have difficulties with problems 

whose viable solutions require strict structure out of a complete population of candidate 

solutions. The ComplexEq problem was defined by Equation (9) and an example solution 

tree was shown in Figure 9. As discussed in Chapter 3.2, this problem has a slight 

information advantage for 2
nd

 order ACGP versus 1
st
 order ACGP. The average fitness 

curves shown in Figure 10 and Figure 11 did not appear to support this observation.  
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The experimental results in Figure 10 and Figure 11 indicated that without a considerably 

large population ACGP search is not very successful. In fact, experiments show that, with 

populations below 2000 individuals, a base GP implementation outperforms the fitness of 

either ACGP method. Even with larger populations, 1
st
 order ACGP appears to attain 

better fitness scores than 2
nd

 order ACGP. Two factors conspire to create this behavior. 

First, the target equation is complex. Its tree depth and component organization implies a 

requirement for both larger trees and a more diverse population of those trees. 

Additionally, the inclusion of the strict-structure function ‘–‘ imposes a strict structure on 

viable candidate solutions. These two factors Increase the search complexity for 2
nd

 order 

ACGP to the point where it becomes inefficient.  

Two experiments using large populations should help demonstrate these points. Each 

experiment used 30 independent searches of either base GP application, 1
st
 order ACGP, 

or 2
nd

 order ACGP. All of the GP searches for the ComplexEq problem used the 

operational parameters listed in Table 4 with the following exceptions for this problem:  

Population size: 5000 and 10,000 
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Figure 33 - ComplexEq Average Fitness Curve (population 5000) 

Figure 33 portrays the average fitness results for the three GP methods using a population 

of 5000 individuals. The base GP application began to show fitness results soonest but its 

fitness scores also quickly stopped improving. This performance plateau can possibly be 

attributed to introns and solution bloat [3], [12], [13]. While the two versions of ACGP 

began improving later than the base GP application, their fitness results were better with 

1
st
 order ACGP achieving stronger scores than 2

nd
 order ACGP.  

The slower overall ACGP learning rates and the advantage of 1
st
 order ACGP over 2

nd
 

order ACGP appear to indicate a learning handicap ACGP has with complex solution 

structures and problems with strictly structured candidate solutions. The increased 

number of desirable 2
nd

 order heuristics in this problem (see Equation (12)) means that 

2
nd

 order ACGP will take longer to discover all of them and bias its search to use them.  
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One way this problem can be mitigated is to increase the size of the population thereby 

increasing the diversity of the population and increasing the probability of finding better 

candidate solutions in that population. 

The fitness results of the three GP searches using a population of 10,000 are shown in 

Figure 34. The base GP application is the first to show fitness improvement but then 

stalls because of the growth bloat in population members. This time 2
nd

 order ACGP has 

quick fitness gains versus 1
st
 order ACGP but eventually 1

st
 order ACGP achieves higher 

fitness scores. Before progressing on to an experiment with the two-tier search 

methodology it is worth asking the question, what are the implications of these two 

experiments and want impacts would they have on a two-tier ACGP search?  
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Figure 34 - ComplexEq Average Fitness Curve (population 10,000) 

The first observation that should be noted is that both ACGP methods are slower in 

developing the average fitness for all 30 independent runs compared to the base GP 

implementation. ACGP has difficulty discovering desirable building blocks in more 

complex problems as seen in Figure 8, Figure 14, and Figure 27. In each of these cases, 

ACGP conducts its early analysis of the building blocks and adjusts their heuristics 

without enough viable solutions in the population. Once enough viable solutions are 

available in the population, then ACGP easily discovers the desirable building blocks that 

contribute to the success of these solutions and enhances the selection probabilities for 

those building blocks. This observation indicates that the effectiveness of ACGP search is 

dependent on finding viable solutions in a given population.  

The second observation, that 1
st
 order ACGP appears to learn more successfully on this 

problem than 2
nd

 order ACGP, suggests some implications regarding the complexity of 

the two ACGP methods. Equation (1) can be used to compute the complete number of 1
st
 

order and 2
nd

 order building blocks for a given set of functions and terminals. The set of 

1
st
 order building blocks always has fewer elements than the set of 2

nd
 order building 

blocks. While this is fairly obvious, it has implications for the different complexity of 

each method’s search and how easily an ACGP search might be deceived. Since a 1
st
 

order ACGP search analyzes fewer heuristics, it has a higher probability of discovering 
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useful building blocks, even by chance. The more complex 2
nd

 order ACGP search is 

dependent on the discovery of fit solutions that contain desirable building blocks. It 

cannot rely on chance to discover them.  

An experiment with the two-tiered search methodology for the ComplexEq problem will 

attempt to capitalize on the advantage of 1
st
 order ACGP search to seed a 2

nd
 order ACGP 

search. This experiment uses the same parameters as the previous experiments with 30 

independent runs of 1
st
 order ACGP with a population of 10,000 for 250 generations. The 

result of each run is reviewed and the 1
st
 order heuristic matrix of any unsuccessful run is 

removed from the set of heuristic matrices. A successful run is defined as one that results 

in a fitness score of 1.0. The remaining 1
st
 order heuristic matrices are combined to form 

the seed heuristic. This seed is used to condition a 2
nd

 order ACGP search with a 

population of 5000 for 250 generations.  

Figure 35 shows the results of this experiment versus the other experimental results for a 

population of 5000 (Figure 33). The larger population of the 1
st
 order ACGP search 

(10,000 individuals) produces in a stronger fitness result in the initial 250 generation 

stage of the two-tier search. The 1
st
 order seed heuristic, produced by the first stage 

search, conditions the 2
nd

 order ACGP search and initializes that stage of the two-tier 

search method with a population of more viable solutions. The second stage of the two-

tier search quickly discovers useful heuristics and enhances their use even though this 

stage uses a smaller (5000 individuals) population compared to the first stage.  
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Figure 35 - ComplexEq Average Fitness Curve using a Population of 5000 versus Two-Tier Scheme using a 

Population of 10,000 seeding a Population of 5000 

Figure 36 shows the results of this experiment versus the other experimental results for a 

population of 5000 (Figure 34).  
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Figure 36 - ComplexEq Average Fitness Curve using a Population of 10,000 versus Two-Tier Scheme using a 

Population of 10,000 seeding a Population of 5000 

The two-tier ACGP search methodology results in a far better average fitness than any of 

the other three methods using a population of 10,000 individuals. The advantages of the 

two-tier ACGP search method are apparent when the average execution times and 

average fitness scores are directly compared. 
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Figure 37 - ComplexEq Average Fitness Curve using a Population of 5000 versus Two-Tier Scheme using a 

Population of 10,000 seeding a Population of 5000 compared on a time scale 

Figure 37 shows the learning curves from the experiments shown in Figure 35 

substituting an x-axis representing time (1000 seconds) for one representing generations. 

The advantage of the two-tier scheme, in terms of fitness and execution time, is clear. 
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Figure 38 - ComplexEq Average Fitness Curve using a Population of 10,000 versus Two-Tier Scheme using a 

Population of 10,000 seeding a Population of 5000compared on a time scale 

Figure 38 shows the learning curves from the experiments shown in Figure 36 

substituting an x-axis representing time (1000 seconds) for one representing generations. 

The advantage of the two-tier scheme, in terms of fitness and execution time, is more 

distinct. Table 21 compares the average execution time for each set of runs for each 

search method. The two-tier search is fast and improves on most of the other searches. 

Only 1
st
 order ACGP and 2

nd
 order ACGP are faster than the two-tier search method. 

These observations are similar to those of the other GP search problems discussed earlier.   

Table 21 - Comparison of Average Execution Times (ComplexEq) 

Execution Times

5000 10,000 10,000 + 5000

Base GP 4657.00 8620.13 -

ACGP 1st OH 737.00 1559.27 -

ACGP 2nd OH 876.63 1676.33 -

TT Aug (combined) - - 1178.43

Population Size

 

When the samples of execution time values for the set of independent runs of each 

method for this problem are compared with the sample of values for the two-tier method 

runs it is clear that these timing results are not the result of chance. The two-tier method 

is only slower than the two ACGP searches with the smaller population. Table 22 shows 

the p-values for the Mann–Whitney U test for each of these comparisons. The Mann–

Whitney U test is used for these tests because it is a more robust statistic when attempting 

whether one distribution is stochastically greater than another.  

Table 22 - ComplexEq Execution Time Sample Significance (p-values, vs. the Two-tiered method) 

Execution Times

Base GP ACGP 1st OH ACGP 2nd OH

5000 3.334 x 10-11 5.448 x 10-11 3.472 x 10-10

10,000 4.613 x 10-10 4.969 x 10-11 3.685 x 10-11
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Table 23 compares the average fitness scores for each set of runs for each search method 

on the ComplexEq problem. Here the two-tier search improves on the fitness scores from 

all of the other search methods. The strong fitness score of the two-tier search method 

offsets any execution time advantage 1
st
 order ACGP or 2

nd
 order ACGP had over the 

two-tier search in Table 21.  

Table 23 - Comparison of Average Fitness Scores (ComplexEq) 

Fitness Scores

5000 10,000 10,000 + 5000

Base GP 0.0330 0.0955 -

ACGP 1st OH 0.2669 0.7341 -

ACGP 2nd OH 0.1004 0.5675 -

TT Aug (combined) - - 1.000

Population Size

 

When the samples of fitness score values for the set of independent runs for each method 

are compared with the sample of values for the two-tier method runs it is clear that these 

fitness results are considerable learning improvements and not the result of chance. Table 

24 shows the p-values for the Mann–Whitney U test for each of these comparisons. The 

Mann–Whitney U test is used for these tests because it is a more robust statistic when 

attempting whether one distribution is stochastically greater than another.  

Table 24 - ComplexEq Fitness Score Sample Significance (p-values, vs. the Two-tiered method) 

Fitness Scores

Base GP ACGP 1st OH ACGP 2nd OH

5000 8.501 x 10-13 1.004 x 10-8 1.053 x 10-11

10,000 3.678 x 10-12 2.563 x 10-3 5.619 x 10-5
 

Although viable solutions for the ComplexEq problem require strict and complex 

functional structures that do not lend themselves to permutations that are also viable 

solutions, this two-tier search methodology can discover solutions with better fitness than 

standard GP techniques and do so more efficiently. An assumption that drives this 

performance is that the population for the first stage search by 1
st
 order ACGP be large 

enough so structural diversity of the population ensures candidate solutions that can 

contribute useful building block information. Without this information, ACGP may bias 

the search toward suboptimal solutions.  
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6 Summarization and Conclusions  

The empirical and theoretical results presented in this investigation demonstrate that 

genetic programming search of ACGP can be improved with a directed reduction of the 

representation space. This benefit mitigates issues associated with the normal over-

specification of the components used to solve a given problem. The complete 

optimization of the set of functions and terminals is not necessary to achieve quality 

results for this methodology. The advantage in evolutionary learning can be gained with a 

coarse probabilistic reduction of the set of functions and terminals.  

Chapter 1 described the factors that contribute to the normal complexity of a GP 

representation space. Past methodologies designed to optimize the search were discussed 

in Chapter 2. Adaptable Constrained Genetic Programming (ACGP) was introduced in 

Chapter 3. That discussion described how ACGP improves its evolutionary search by 

discovering desirable building blocks and probabilistically promoting their use. The 

limitations of ACGP learning was demonstrated using a regression example designed to 

illustrate these issues. Next, a case was made for a potential methodology to resolve these 

issues using a modification of normal ACGP operation. The general thesis of this 

research was stated in Chapter 4 with a description of a two-tiered modification of 

ACGP. This modified implementation of ACGP results in this operational process:  

1) Run 1
st
 order ACGP with typical parameter settings but with half the 

number of generations than normal (using multiple independent 1
st
 order 

ACGP runs)  

2) Review the final fitness scores for the set of ACGP runs  

a. If there are not a sufficient number of successful runs to combine 

into a seed heuristic model, increase the population size and repeat 

step 1  

b. Else, combine the final 1
st
 order heuristic matrices for the 

successful runs by computing the arithmetic average of each 

individual heuristic to produce the seed heuristic matrix  

3) Seed a set of 2
nd

 order ACGP runs with the 1
st
 order heuristic computed in 

step 2b  

4) Analyze the final results from the two-tier search  

This modification to normal ACGP processing capitalizes on several attributes of this 

application to improve its evolutionary search capabilities. ACGP can be run in one of 

three operational modes. Two of those modes (1
st
 order heuristic mode and 2

nd
 heuristic 

mode) provided the low-granularity and the high-granularity search processes used by the 

proposed scheme. ACGP supplies output of its discovered heuristics as probability tables. 

These probabilities can be presented to ACGP as input data that will seed and condition 

an ACGP search.  

Finally, the empirical results presented in Chapter 5  

a) Clearly describe the nature of the representation space search problem  

b) Define the steps of a two-tier search methodology using ACGP  
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c) Establish the basis for the efficacy of this two-tier ACGP search scheme  

d) Present the results of several experiments validating the efficacy and 

efficiency of this concept.  

The results of the experiments in this investigation support the viability of this method in 

improving the ACGP search results over a complex representation space.  

6.1 Summarization of experimental results  

The empirical results described in this document clarify the issues associated with 

representation space complexity and the impacts they have on ACGP search. With a 

sample of weak solutions, ACGP will tabulate the most frequent building blocks and 

enhance their probability of selection. Unfortunately, without a sample of good solutions, 

this behavior becomes deceptive. ACGP will continue to tabulate the most frequent 

building blocks, irrespective of their contribution to solution fitness, and adjust their 

heuristic probabilities accordingly. These poor heuristics lead the ACGP search toward 

poor solutions. 

The experiment with the Bowl3neg problem (Equation (13)) demonstrated how the strict-

structure functions in this problem’s target solution structure reduced the quality of a 

standard GP search and made this search more difficult than a corresponding search using 

only variable-structure functions in the target solution. Comparison of the desirable 

building blocks found in this problem with those found in the Bowl3 problem (Equation 

(4)) explained the learning advantage of 2
nd

 order ACGP has over 1
st
 order ACGP for 

both problems but did not explain the fitness score differential between the two problems. 

The only potential explanation for this behavior by ACGP was the restricted structure of 

potential candidate solutions in Bowl3neg. Application of the two-tier ACGP search 

methodology on this problem confirmed that if the representation space was reduced 

better solutions can be discovered. Probabilistically biasing the selection of desirable 

building blocks and discouraging the selection of undesirable building block effectively 

reduces the representation space and thereby makes the search more efficient. 

Additional experiments with the artificial ant problem and another more complex 

regression problem reinforced the assertions of the efficacy of the two-tier ACGP search 

methodology in improving ACGP search results. Both the artificial ant and the 

ComplexEq problem are characterized by candidate solutions with strict structure 

imposed by the desired functions used to form them. This structural constraint reduces 

the probability that a conventional GP search will be productive. The two-tiered ACGP 

search scheme will efficiently search the representation space with 1
st
 order ACGP. This 

search develops a low-granularity probabilistic map of the representation space. This map 

probabilistically constrains the representation space and conditions the higher-granularity 

2
nd

 order ACGP search of the second tier to exploit more productive regions of the 

representation space. This constrained search scheme results in improved ACGP search 

results and efficient use of computation resources. In all the experiments, this search 

scheme achieves strong fitness results with increased efficiency in its execution time 

versus a base GP, 1
st
 order ACGP, or 2

nd
 order ACGP alone.  
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6.2 Implications of the Efficacy of this Methodology 

The empirical results and analysis of the experiments in Chapter 5 demonstrate that a 

two-tiered ACGP search can be very effective. This two-tier search scheme combines the 

computational simplicity of a low-granularity method (1
st
 order heuristics) with the 

quality resolution of a higher-granularity method (2
nd

 order heuristics). This combined 

methodology exploits the strengths of the two techniques and mitigates their individual 

limitations. The low-granularity first stage search will develop a 1
st
 order ACGP 

probabilistic model that constrains the original set of functions and terminals. This model 

will condition the higher-granularity search of the second stage using 2
nd

 order ACGP. 

The conditioned second stage search will encourage the exploration of more productive 

regions of the representation space.  

6.3 Limitations of the Specific Implementation of this Methodology 

The experiments presented here show that employing ACGP in a two-tiered scheme 

improves its search capabilities for problems with complex structures. This two-tiered 

search methodology may not be a universal solution for all complex GP search problems. 

The Boolean 11-multiplexer was one problem that challenged this search scheme using 

ACGP. Analysis of the search results for this problem revealed that the scores for the 

typical fitness evaluation are contaminated by false positives. The output of a candidate 

solution is compared to the target output for the input data. It is considered a success if 

the two outputs match. No explicit verification is made to ensure that the correct input is 

presented as the output value. This contamination appears to also contaminate the ACGP 

heuristic analysis which relies on the assumption that there is dependency between the 

fitness of a candidate solution and its component building blocks. This result does not 

invalidate the principal assertions of the two-tier search scheme developed in this 

document. It does indicate the need for further work in refining ACGP’s heuristic 

analysis and adjustment processing.  

Unlike some of the other methods mentioned in Chapter 2 ACGP heuristics are not tied 

to specific locations in candidate solutions. This simplification helps the efficiency of 

ACGP processing but it can also complicate ACGP search when particular heuristics 

should be associated with specific locations in candidate solutions. Any refinement of 

heuristic locality information while retaining as much of the original processing 

efficiency could also benefit the proposed methodology.  

Chapter 5.3 describes the steps of the proposed two-tier search scheme and its associated 

parameters. While the steps of this methodology are plainly stated the selection criterion 

for operating parameters such as population sizes for each tier, the number of training 

generations for each tier, or the preparation processing of the 1
st
 tier’s heuristics are not 

as clear and remain open questions. 

6.4 Future development plans  

While the results of this research support the original thesis that using ACGP in a two-

tiered search scheme can reduce the complexity of the GP representation space and 

thereby improve ACGP’s search process, much more work is necessary to explore the 

concept of probabilistic GP representation space reduction. Better component analysis 
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can help improve the discovery of necessary and unnecessary functions and terminals in 

the specified component set. The ACGP heuristic analysis and adjustment process relies 

on the assumption that there is dependence between the fitness of a candidate solution 

and its component building blocks. When this assumption is invalidated, the heuristic 

processing becomes inefficient and potentially deceptive. This observation does not 

invalidate the principal assertions of the two-tiered ACGP search scheme developed in 

this document. It does indicate the need for further work in refining the heuristic analysis 

and adjustment process so that ACGP can conduct the two-tier search, or any search for 

that matter, in a more robust manner. These future research directions can build on the 

results of the work described in this document.  
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