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ABSTRACT 

The tropical root crop cassava is cultivated for its large starchy storage roots. 

Understanding critical processes in root tuberization is essential if improvement programs 

are to secure future yields for farmers. Studies were undertaken to identify critical 

components of storage root development at the anatomical and gene expression levels. 

Two types of roots were identified from greenhouse-grown stem cuttings: basal roots, 

which develop from the stem cut end and are prolific in nature, and nodal roots, which 

originate from the region of the buried axillary bud and are limited to 3-5 per node. Only 

nodal roots develop to produce storage organs. Anatomical sectioning was performed to 

determine the origin of both root types. Basal roots were seen to develop from the 

cambium of the semi-woody stems, while nodal roots originated from deep within the 

secondary xylem or pith regions. This data contradicts accepted knowledge that storage 

roots develop from a subset of the fibrous roots. As a result, it is proposed here that 

storage and basal/fibrous roots are fundamentally different organs, originate through 

different rhizogenic processes, and are committed to their different developmental fates 

from initiation onwards. cDNA microarray analysis was performed on roots at different 

stages of storage root development. Gene Set Enrichment Analysis revealed up-

regulation of the jasmonic acid biosynthesis pathway during the initiation stage of 

tuberization. K-means clustering identified three clusters of up-regulated genes at storage 

root initiation and later developmental stages, while Heatmap analysis revealed major 

latex allergen Hev b 4 proteins to be highly up-regulated at the initiation stage. Three 

candidate genes seen to be highly up-regulated at the later starch filling stages were 

identified as possible homologues of Mec1, cassava ATDI21 and ENOD40-like genes. 



RT-PCR analysis revealed their enhanced expression in storage roots compared to fibrous 

roots and leaves. Mec1 has previously been associated with cassava storage roots, but no 

reports exist for the involvement of ATDI21 or ENOD40. The homologues of the latter 

two genes require further characterization to determine their functional role in storage 

root development. Integration of anatomical studies with functional genomics tools has 

provided new knowledge of root tuberization in cassava and identified new avenues of 

research.  
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Project Summary 

Cassava storage roots play an important role in the world as a source of human 

food, animal feed and biofuels in more than 90 countries. The cassava tuberization 

process is a key mechanism that allows the plant to form storage roots to store very 

large quantities of starch, firstly for the benefit of the plant and fo r  exploitation by 

humans. The yield component of cassava production is highly dependent on the s ize 

and number of storage roots per plants. This finite number of storage roots (3 to 14) 

is not only limited by genetic factors, but also by nutritional and environmental 

conditions. There are thus underlying, unknown molecular mechanisms in the 

young plant that drive the developmental switch from root to storage organ .  

Anatomical studies allow us to gain knowledge on storage root formation especially at 

the tissue level, including information on the origin of root initiation from the earliest 

stages of development. Transcriptome analysis is another  way to approach this 

question and increase understanding of the molecular mechanisms involved, all  

of which are important for future genetic improvement of cassava.  

Intellectual merit: The main goal of this thesis is to describe the process of 

storage root formation including the molecular mechanisms driving tuberization of 

cassava storage roots. Anatomical studies increased knowledge of root formation in 

cassava at the early stages to determine the process of switching nodal roots to storage 

roots. Gene expression profiling provides a  powerful way to identify sets of genes 

that initiate and regulate initiation of storage root development and that play a role in 

subsequent steps leading to production of mature storage roots. The hypothesis of the 

present work is that this switch is correlated to a set of molecular changes triggered 
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by an unknown mechanism(s). A  cDNA microchip containing 4,129 cassava unigenes 

a n d  19,808 unigenes of leafy spurge, a close relative species of cassava, was utilized 

to screen for regulatory genes and pathways involved in storage root tuberization. 

The integration of histological observations and microarray data over the early 

developmental stages of storage root formation pinpoint specific processes in which 

the developmental switch occurs. Specifically, comparisons of gene expression 

profiles was developed for four developmental stages of root formation, from prior to 

the storage root formation to maturation of storage roots, in order to identify a subset of 

biochemical pathways and regulated genes involved in root tuberization. Three putative 

candidate genes involved in storage root development are validated for their expression in 

five organs of the cassava plant.  

 

Identification of key gene-regulated processes in storage root formation has 

significant implications for improvement programs targeting important quality traits in 

cassava, such as starch modification, fortified nutrition, post harvest shelf life and 

yield.  
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Chapter 1. Research background, goal and specific objectives 

 

INTRODUCTION 

Cassava (Manihot esculenta Crantz, Euphorbiaceae) is a staple crop in more than 90 

countries in the world (CGIAR, 2014). It also is a major source of low- cost 

carbohydrates for populations in the tropics and is used in many fresh and processed 

forms for animal feed and as a source of biofuel (El-Sharkawy, 2003; Howeler et al., 

2013, CGIAR, 2014). The cassava storage root is considered to be a  modified 

adventitious root, enlarged to become a starch storage organ that is utilized by the plant 

for survival under adverse conditions (Barlow, 1994). As a crop, cassava is propagated 

from cuttings obtained from the woody stems of plants from the previous growing cycle. 

Plants establish from such cuttings by formation of adventitious fibrous roots from the 

basal region of the cut stem and development of the shoot system through axillary bud 

growth. Photosynthates produced in the developing canopy are translocated downwards 

and stored as starch within the large, specialized storage root organs. The process of 

storage root modification from the fibrous to storage state is called tuberization. 

Tuberization is a complex, poorly understood developmental process that requires the 

interaction of genetic, environmental and biochemical factors. Kizito (2006) showed 

that the growth pattern of cassava roots can be modified by changing the nutrient 

availability. For example, limiting mineral nutrients in a hydroponic system can 

induce storage root formation. This information raises the question of what is the 

internal tuberization trigger that induces the signal for storage root formation in 
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cassava and what approach can we take to elucidate these apparently complicated 

processes? 

 

To enhance cassava crop quality and yield, it is important to understand the 

regulatory mechanisms of storage root initiation and tuberization. Cabral et al. 

(2000) demonstrated the existence of five different tissue layers in storage roots. The 

swelling of a root committed to becoming a storage organ occurs through secondary 

growth development to cause the proliferation of secondary xylem parenchyma in which 

starch is stored. Although cassava does not possess storage proteins as seen in potato 

(patatin) or sweet potato (sporamin), some minor cassava root protein genes have been 

identified to have a parenchyma-specific expression pattern in the storage roots 

(Cabral et al., 2000; de Souza et al., 2002; Beltran et al., 2010). Furthermore, the 

opaque-2 (O2) transcription factors regulating endosperm-specific storage protein 

genes in maize were found to be differentially expressed in cassava storage roots (de 

Souza et al., 2003). The Mec1 gene coding for Pt2L4 glutamic acid-rich protein and a 

putative RING Zinc Finger and LEA protein genes were reported to be strongly induced 

in secondary xylem parenchyma of the cassava storage root (de Souza et al., 2004). 

Moreover, de Souza et al. (2006) also reported that the RNA expression patterns of 

Mec1, encoding a glutamic acid-rich protein (Pt2L4), were correlated with maturation 

of the secondary xylem parenchyma in storage roots. Surprisingly, however, its 

promoter has been found in transgenic plants to express in a much wider range of 

tissues types (Beltran et al., 2010). Therefore, the regulatory mechanism of storage 

root formation still needs to be established at the molecular level. 



5 
 

 

One way to study the regulatory mechanism of cassava tuberization is to 

analyze the gene expression profile of storage roots in comparison to non-tuberized 

roots. Microarray is an effective technology in evaluating the transcriptome of storage 

root formation. In 2007, Dr. Anderson (USDA, ND) isolated the cassava cDNA 

library from the model cassava cultivar 60444 (Lokko et al., 2007). A total of 4,129 

cassava cDNAs as well as 19,808 cDNAs of leafy spurge (Euphorbia esula), a 

closely related species to cassava, were printed onto a microchip for microarray 

analysis. Utilizing such microarray in collaboration with the USDA laboratory may 

help elucidate the regulatory mechanism of cassava tuberization. 

 

RESEARCH BACKGROUND AND SIGNIFICANCES 

Cassava (Manihot esculenta Crantz) is a semi-perennial starchy root crop, which 

belongs to the family Euphorbiaceae (Kizito, 2006). It ranks second in terms of 

global production after maize (Howeler et al., 2013; CGIAR, 2014). Although in  

developing countries the consumption of cassava is mainly in the form of processed 

flour such as farina and tapioca, it is also used in a wide range of industries including 

paper, adhesive, textiles, and as a source for the production of ethanol biofuel (Howeler 

et al., 2013). In Africa, cassava is the most important staple food after maize and 

serves as a food security crop for many sub-Saharan populations (Kizito, 2006; Howeler 

et al., 2013). A major reason for the popularity of cassava is the high starch content 

of  i t s  storage roots. Even though cassava is very valuable for more than 700 

hundred million people, numerous constraints limit its potential productivity. The 



6 
 

most important of these are biotic stresses such as viruses, bacteria, mites and 

mealybugs (El-Sharkawy, 2003). Moreover, a major problem is the rapid postharvest 

physiological deterioration of the storage roots, which restricts distribution to markets 

and development of cassava as an industrial crop. (Huang et al., 2001; Reilly et al., 

2007; Howeler et al., 2013; Vanderschuren et al., 2014).  

 

The above constraints are being addressed by conventional breeding programs. 

However, as cassava sets limited seeds and is highly heterozygous, traditional cassava 

breeding systems take a long time to release improved new varieties (8-12 years) 

(O'Hair, 1995). Genetic modification via transgenic technologies is, therefore, a 

suitable approach to addressing these problems but requires effective candidate 

genes and tissue-specific promoters to generate desired phenotypes within the targeted 

genetic backgrounds. The storage root is the most important part of cassava for 

consumers, with the yield determined by the fresh and dry weigh per planting area, in 

addition to the number of storage roots produced per plant (El-Sharkawy, 2003). 

Thus a major target for cassava improvement via genetic modification is to study the 

processes involved in storage root development and thereby identify potential genes 

and control elements of interest to increase cassava productivity. 

 

External and internal signals must be involved in order to switch a fibrous root, 

which is a source organ, into a storage root, which is a sink organ. The tuberization 

process in cassava is probably a complex mechanism, involving several phases with 

environmental and other biological factors affecting many genes. The storage root of 
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cassava is not a modified stem as in the case of potato, but it is a modified root that 

develops to become a large sink for the storage of starch (Shewry, 2003). Because 

the number of tuberous roots is limited and because they are established early in the 

growth of the plant, there must be a particular trigger(s) to initiate changes in the 

morphology and structure of a limited number of fibrous roots such that they develop 

into storage organs. A cascade of regulatory processes required to develop these organs 

and permit the storage of starch will follow this. Presently,  t h e  triggering system and 

tuberization process are poorly understood. Increasing knowledge of the genetic and 

molecular basis of the regulatory mechanism of tuberization will be of great 

advantage to manipulate the number and the filling of these roots and thus the yield of 

cassava. 

 

Biology of cassava rooting system 

The cassava root system consists of two different adventitious root types: fibrous roots 

to absorb water and nutrients, and storage roots to store starch (Medina et al., 2007; 

Lebot, 2009). Vegetative propagation of cassava using mature woody stem cuttings, 

called stakes, leads to the development of adventitious roots from the nodes near the 

cut edges (nodal root). Thin fibrous roots also form at the base of the cutting (basal 

root). Both nodal roots and basal roots are considered to function as for absorption of 

nutrients and water from the soil at this early stage of development (El-Sharkawy, 

2003). Unknown mechanisms cause a subset of the roots to  develop secondary growth 

of xylem parenchyma to store starch and enlarge their size (de Souza et al., 2003). 

This secondary xylem parenchyma tissue continuously develops until the storage 
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roots reach maturity. Mature storage roots consist of three layers: bark, peel, and flesh, 

which botanically are called periderm, cortex (cortical parenchyma and phloem), and 

xylem (xylem vessel, trachieds) and secondary xylem parenchyma. The starch storage 

tissue includes inner xylem layer, which has radially distributed xylem vessels (Lebot, 

2009). The size and shape of storage roots are also dependent on environment 

condition and cultivars (Kizito, 2006; Lebot, 2009). 

 

The physiological processes in relation to tuberization in cassava  

Cassava has a high yield potential when growth conditions are optimum and plants  

are  cultivated under optimized methods and conditions. A harvest index (the ratio of 

storage root mass to total plant biomass) higher than 0.5 can be achieved, and 

typically 6-12 storage roots are produced per plant at a planting density of 10,000 

plants/ha (El-Sharkawy, 2003). The photosynthetic rate of the leaf canopy also affects 

the harvest index of cassava because the association between yield and leaf 

photosynthesis depends on the biological control of carbon assimilation in cassava (El-

Sharkawy, 2003). 

 

Cassava root-specific gene identification 

As improvement of economic traits in cassava depends on the quality and the number 

of tuberous storage roots per plant, understanding the tuberization mechanism in 

cassava is required for a genetic modification approach. Storage proteins that are 

specifically expressed in storage organs of other economically important tuber crops 

have been identified (Shewry, 2003), but not in the case of cassava. Although 
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cassava has no known root specific storage protein, certain metabolically important 

proteins have been identified in this organ. However, the biological function of the 

most abundant root specific protein in cassava storage roots remains unclear. De 

Souza et al. (2002) isolated and first identified the Pt2L4 protein (glutamic acid-rich 

protein) because expression of this protein could be detected in the xylem storage 

tissues but not in  the peel (periderm plus cortex) layer of the tuberized roots and not 

in the leaf. Characterization of a cDNA sequence of Mec1, which is the gene 

encoding for Pt2L4 protein, showed expression in vascular tissues of the storage root 

and might therefore be related to maturation of the secondary xylem parenchyma cells 

(de Souza et al., 2003; 2004; 2006).  Zhang et al. (2003) identified two cassava storage 

root-specific cDNAs (c15 related to cytochrome P450 proteins and c54 related to Pt2L4 

proteins) via differential screening and isolated its promoters for characterization in 

transgenic cassava plants. The results demonstrated the two promoters were related to 

vascular expression and secondary growth of storage root in cassava. Beltran et al. 

( 2010) expressed a truncated version of the Mec1 promoter in cassava and found 

strong expression in the root xylem parenchyma. However, in both studies expression 

of the transgenic marker gene also showed in other vascular tissues throughout the plant 

including leaves and stems (Beltran et al., 2010). Co-expression of Pt2L4 proteins in 

both secondary xylem parenchyma of the cassava storage root and vascular tissues in 

stem indicated the role of Mec1 gene in secondary growth of xylem development and is 

not specific to the root in cassava. Additionally, the promoter of GBSSI gene was 

characterized in cassava and was shown to be a good candidate for cassava storage root-

specific gene (Putten et al., 2012). Attempts to identify storage root-specific genes in 



10 
 

cassava have proven difficult because the gene expression in the storage roots also 

showed in the stem, especially in xylem tissues.  

 

Molecular mechanism model of cassava tuberization  

The first attempt to develop a model for root tuberization in cassava was reported in 

2007. Medina et al. (2007) studied the storage root system using in vitro cultures of 

cassava roots and demonstrated two types of fibrous roots: primary and secondary 

fibrous roots. Under their conditions, stem segments of cassava produce primary 

roots in vitro that can behave like storage organs. Anatomical analysis of storage 

organ-derived primary roots in vitro showed that  proliferation and enlargement of 

parenchymatous cells occurred in the middle of the cortex and caused radial 

expansion to form storage root-like organs (Medina et al., 2007). Moreover, 

Wechkrajang et al. (2006) characterized anatomical changes and protein profiles in 

adventitious and storage roots. Importantly, their results showed that initiation of 

starch deposition in t he  primary adventitious root occurs at 35 days after 

transplanting. These results may indicate the time and site of the initiation of 

tuberization processes. Carvalho (2010) studied a genome analysis in cassava 

biodiversity using the microarray technique. He proposed a model for cassava 

tuberization based on the domestication hypothesis, whereby a growth habit change 

in cassava is due to the process of domestication, which affects both flowering and 

storage root development patterns. This is based on the observation that mos t  wild 

cassava grows in forested,  shaded conditions and produce non-tuberous roots with 
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complete flowering. Conversely, domestic varieties, which are planted under open field 

conditions, produced tuberous roots with fewer flowers (Carvalho, 2010). 

 

Gene expression analysis in storage roots of cassava. 

A transcriptome analysis of gene expression during the process of storage root 

development is required to advance our understanding of its regulation. Several tools 

are currently available to facilitate functional genomic analysis in cassava such as a 

genetic map, cDNA libraries, and expressed sequence tags (EST) library (Anderson 

et al., 2004; Lokko et al., 2007; Raji et al., 2009; Sojikul et al., 2010; Mitprasat et 

al., 2011; Yang et al., 2011). Moreover, a draft sequence of the cassava genome is 

currently available to access for cassava genome analysis 

(http://www.phytozome.net/cassava). An effective genetic transformation system has 

been developed for characterizing target genes including siRNA technology to facilitate 

gene knockdowns and for over-expression of desired genes in cassava (Taylor et al., 

2012; Zainuddin et al., 2012). 

 

Transcriptome analysis using microarray  

Microarray technology is a high throughput genome-wide analysis method (Hardiman, 

2004; Nguyen and Williams, 2006; Wang et al., 2008). Several microarray platforms 

have been developed to study genetic and cellular processes. The similarities and 

differences among these platforms depend on large data set manipulation and the 

complexity of their experimental target expression (Hardiman, 2004).  Time-series 

microarrays provide information as multiple expression profiles at each time point for 

http://www.phytozome.net/cassava).
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continuous cellular processes. This technique has been routinely applied to identify 

expression patterns, detect differentially expressed genes, and construct gene networks 

(Bar-Joseph, 2004; Hardiman, 2004; Opgen-Rhein and Strimmer, 2007; Nguyen and 

Williams, 2006; Wang et al., 2008). However, the limited sampling problems in the 

time-series microarrays cause increased potential for misleading analysis (Churchill, 

2002; Jørstad et al., 2007). Wang et al. (2008) developed short time-series 

microarrays to enhance the accuracy of data-series analysis, with limited sampling and 

address simplification-based approaches for integration of multi-source information. 

Lokko et al. (2007) characterized an 18,166 EST dataset for cassava for drought-

responsive genes and demonstrated that these ESTs can be useful for developing 

microarrays and gene-derived molecular markers. Carvalho (2010) has also 

performed a cDNA- microarray platform in collaboration with USDA Fargo to 

demonstrate genomic analysis in cassava biodiversity and showed the transcriptomic 

diversity between wild and domesticated cassava. 

  

The mechanism of tuber formation in potato was reported to be dependent on the 

regulation of two plant growth hormone families: Gibberellic acid (GA) and 

Jasmonic acid (JA), and the light quality conditions that regulate expression of GA-

responsive plant growth and flowering (Vreugdenhil, 2004; Gottgens and Hedden, 

2009). DELLA proteins also appear to be a critical factor in the regulation of GA 

expression in tuber formation (Carvalho, 2010; James Anderson, pers. com.). 

Furthermore, Yang et al. (2011) used a 60-mer oligonucleotide microarray 

representing 20,840 cassava genes to identify differentially expressed transcripts in 
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three types of cassava roots; fibrous roots, developing storage roots, and mature 

storage roots. This expression profiling of cassava storage root revealed an active 

process of glycolysis and gluconeogenesis involving sucrose and starch metabolism. 

However, all the above information is not sufficient to explain the tuberization process 

in cassava. 

 

Although several research studies have generated informative data including 

new microarray platforms to increase understanding of many biological processes in 

plants, the tuberization mechanism in cassava still remains largely unknown. 

Knowledge of the genetic factors affecting storage root formation is required to 

explain how the y interact with the external environment to switch fibrous roots to 

become tuberous roots. This research project aims to identify these critical 

components for storage root formation in cassava. 

 

GOAL AND SPECIFIC OBJECTIVES 

The goal of this research was to generate knowledge on cassava storage root formation in 

both anatomical and molecular contexts and to elucidate the molecular mechanism of 

cassava tuberization.  

 

This research studied the anatomy and transcriptome profiles across different 

developmental stages of cassava storage root formation with the following specific 

objectives: 
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Objective 1. Determination of the anatomical change in specific root types causing 

storage root development by histology technique 

The process of storage root development remains unclear at the anatomical 

and molecular levels. Anatomical studies of the various tissues involved in storage 

root formation provided understanding of where and when a specific type of root 

switches development into a storage root. This objective used anatomical investigations 

to study rhizogenesis from cassava stem.   

 

The outcome of this objective was identification of the type of roots that 

have the potential to form storage tissues for further study of the underlying gene 

expression profiles in Objective 2. The process of the early xylem parenchyma 

development may reveal the specific time and zone for the switch to tuberization and 

lead to finding the triggering mechanism in the tuberization process. The anatomy and 

structure of cassava storage roots are also informative in elaborating the model of 

starch storage cell formation at the initiation point of storage root development.  

 

Objective 2. Study of the transcriptome profiling of the tuberization process using 

microarrays 

Our previous experiments attempted to determine the patterning of storage 

root formation using histology to define the type of root that is competent to 

become storage roots and also define the particular time and space where 

development switches from fibrous root to storage root. Information about the 

molecular triggering of this switching process is lacking. I hypothesized that 
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tuberization of cassava roots is triggered by the product of specific genes at a 

particular time and space. The goal of this objective was to identify the major 

biochemical pathways and/or subset of genes involved in the tuberization process. 

This research was undertaken in collaboration with scientists at USDA laboratory in 

Fargo, ND, who have expertise in microarray analysis and gene expression profiling 

in leafy spurge (Euphorbiaceae esula), a Euphorbiaceous species related to cassava. A 

microchip containing cDNAs of 4,129 cassava cDNA as well as 19,808 cDNAs of 

leafy spurge representing each specific unigene was used to screen for genes 

involved in cassava storage root formation. Although, it was proposed to start looking 

for major differences in gene expression between the developmental stages of storage 

root formation, an initial microarray analysis was performed comparing leaf and storage 

roots in order to evaluate the method. This work generated a matrix of genes/pathways 

involved in root tuberization and a shorter list of candidate genes for further study under 

Objective 3.  

 

The goal of experiments in Objective 2 was to identify a set/subset of genes 

involved in the tuberization process of cassava storage roots. This tuberization process 

probably comprises several different phases, such as triggering, morphological change, 

filling, and is certainly tightly regulated. This outcome helped to narrow down the 

minimum number of genes/pathways in the initiation phase of that process and 

generate a short list of candidate genes for study in Objective 3. 
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Objective 3. Study of the gene expression of candidate genes involved in cassava root 

tuberization process 

From analysis of the cDNA sequences that appear in expression profiles at 

each developmental stage, the putative pathway of these genes can reveal the 

expression of major target genes. However, the tuberization process in cassava may 

depend not only on up-regulated genes that are highly expressed in storage tissues, 

but also on down-regulated genes within the storage organ. The matrix data obtained 

from gene expression profiling using microarray analysis (Objective 2), as well as the 

expression of candidate genes in each organ, facilitated identification of putative storage 

root-specific genes. The sequence of each candidate gene was analyzed through the 

Cassava Genome (Phytozome.net) including the comparative analysis with the UniGene 

database (http://www.ncbi.nlm.nih.gov/unigene). The functional relationship between 

the cDNA sequence and the database was analyzed using BLAST (Basic Local 

Alignment Search Tools; http://blast.st-va.ncbi.nlm.nih.gov/Blast.cgi). The alternative 

splicing variants of each candidate gene were examined for their expression using RT-

PCR to determine the role of each splice variant in different cassava organs, including 

various types of root organs. Early events that could correspond to the switch from 

nodal root to tuberous roots were targeted, as were common genes/pathways 

throughout the tuberization process.  

 

The outcome of this objective was validation of gene expression of identified 

genes, including their splice variants, that putatively affect the tuberization process in 

cassava roots. The gene expression patterning of candidate genes in each organ type 
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helped to indicate their role in the regulation of storage root development. Furthermore, 

the function of unknown cassava-specific genes might reveal novel genes involved in 

cassava tuberization for further investigation and possible exploitation via 

biotechnological approaches.  
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ABSTRACT 

Formation of storage root organs in cassava (Manihot esculenta) is poorly understood, 

but considered to occur when a subset of fibrous roots receive unknown signals to 

undergo secondary thickening. Large amounts of secondary xylem parenchyma are then 

produced in which starch is synthesized and stored. Anatomical studies were undertaken 

to examine rhizogenesis from greenhouse-grown cassava stem cuttings. Root formation 

was observed from the stem cut end (basal) and from close to the buried nodes (nodal) 5-

10 days after planting. Transverse sectioning of the stem provided evidence that the basal 

roots were initiated from the cambium, while the nodal-derived roots developed from 

tissues deeper within the stem, at the boundary of the xylem and pith. Basal root anatomy 

remained constant with age, with minimal development of metaxylem. No tuberization 

was seen to occur from the basal roots. In contrast, nodal roots produced significant 

amounts of metaxylem and subsequently secondary xylem to form a large central stele. 

Further development established the storage organ in which secondary xylem 

parenchyma, tracheids and vessels were produced from the cambium. As a result, the 

nodal-derived roots were seen as precursors of the storage organs. It is proposed that 

nodal-derived and basal-derived fibrous roots are fundamentally different organs, that 
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they originate through different rhizogenic processes, and are committed to their 

respective developmental fates from the earliest stages of their initiation. These 

anatomical investigations offer new insight into root tuberization in cassava and should 

guide better focused studies into the underlying molecular and developmental control 

mechanisms. 

 

Keywords: cassava, root anatomy, storage root development, tuberization, xylem 

differentiation 

 

INTRODUCTION 

Cassava (Manihot esculenta Crantz, Euphorbiaceae) is a staple crop and major source of 

low-cost carbohydrates in the tropics, where it is used in many fresh and processed forms 

for human food, animal feed, and increasingly as a source of biofuel (El-Sharkawy, 2003; 

Howeler et al., 2013). When grown from seed, cassava produces a tap root which, along 

with some adventitious roots, develops to become storage organs. As a crop, however, 

cassava is almost exclusively propagated via woody stem section cuttings obtained from 

plants of the previous growing cycle. Plants establish by adventitious formation of roots 

from the basal region of the cut stem and by development of the shoot system through 

axillary bud growth. Once established, photosynthates produced in the developing canopy 

are diverted from the shoot, translocated downwards and stored as starch within large, 

specialized storage root organs. Depending on the cultivar and growing conditions, 

between three and fourteen storage roots are formed by each plant (Alves, 2002; Howeler 

et al., 2013). 
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Despite its value for more than 700 hundred million people in the world, full 

potential of the crop is limited by numerous constraints, including biotic and abiotic 

stresses (El-Sharkawy, 2003; Sakurai et al., 2007; Howeler et al., 2013) and rapid 

postharvest physiological deterioration of the tuberous roots (Reilly et al., 2007; 

Vanderschuren et al., 2014). Improvement programs employing conventional breeding, 

and more recently biotechnology, have focused on addressing these constraints whilst 

also striving to improve dry matter content, starch quality and nutritional value of the 

storage roots (Sayre et al., 2011; Ceballos et al., 2012). In order to achieve these goals, a 

full understanding of the processes and biology of storage root development in cassava is 

required. Few reports are available describing the mechanisms underlying cassava 

storage root formation. As a result, knowledge of tuberization is limited to descriptions of 

secondary thickening within a subset of the fibrous roots, which subsequently become the 

storage organs (Alves, 2002; El-Sharkawy, 2003). It is not known which signals are 

responsible for triggering such conversion from fibrous to storage root or what controls 

which and how many roots switch development in this manner.  

  

Lowe et al. (1982) describe two types of root production from newly planted stem 

cuttings. One takes place from the cut end (basal) and the other from close to the 

submerged nodes (nodal). They reported continual production of basal roots, while the 

nodal root numbers remained at around four per plant. Storage organs developed from 

both root types. Investigations of the early stages of storage root development indicate 

that the initial phase of tuberization takes place approximately six weeks after 

transplantation of stem cuttings into soil, at which time radial thickening becomes visible 
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in some root structures (Cock et al., 1979; Lowe et al., 1982). Anatomical studies have 

described radial swelling of the root to occur through the production of secondary xylem 

resulting in swelling and development of the storage organ (Lowe et al., 1982; 

Wechkrajang et al., 2006). Five distinct tissue layers are present within the developing 

and mature storage root (Cabral et al., 2000; de Souza et al., 2002). Outermost is the peel 

consisting of the peridermal tissue, followed inwardly by the secondary phloem and 

cambium. The inner portion, or flesh, consists of secondary xylem parenchyma, xylem 

vessels and primary xylem. Starch is stored within parenchymatous cells of the secondary 

xylem, which undergoes massive proliferation to form the bulk of the mature storage 

root. Enrichment of Pt2L4, a protein associated with secondary growth of xylem 

parenchyma, is observed in this tissue (de Souza et al., 2004; 2006). 

  

We report here anatomical studies of root formation in cassava. Two types of 

adventitious root organs are described. We provide evidence that storage roots do not 

develop from the fibrous roots and that the two root types are produced as unique organs 

derived from different locations and tissue types within the stem. 

 

MATERIALS AND METHODS 

Plant material 

 Plants of cultivar 60444 were established from stem cuttings. Semi-woody stem sections 

18-20 cm long consisting of six to eight nodes and a minimum diameter of 1 cm were 

obtained from greenhouse, pot-grown plants. Cuttings were planted 2-4 nodes deep in 12 

cm pots containing Fafard 51 potting media. Stakes were uprooted every five days after 
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transferring potting media in order to visually examine development of the root system. 

Tissue culture-derived plants of cv. 60444 and TME204 were established in Fafard 51 as 

described by Taylor et al. (2012). All plants were fertilized twice weekly with 15-5-15 

fertilizer (Jack’s Professional LX, JR Peters Inc, PA) and micronutrient solution (MOST, 

JR Peters Inc, PA). Plants were grown on the open bench and under natural and 

supplemental lighting at 900 µM/m
2
 for 16 hours per day, at 26-28

o
C and 60% humidity.  

 

Dissection of plant materials and histological staining 

Plants were removed from their pots, and storage root and fibrous roots were washed 

thoroughly with tap water to remove soil. Roots were dissected by free-hand sectioning 

using a two-edged razor blade. In case of the harder tissues such as the semi-woody parts 

of the stem, a sliding microtome (Uchida Yoko, #162-3012 VWR) was used to obtain 

thin sections of 20-50 micron thickness. Woody samples were wrapped at one end with a 

soft supporting material such as a thin paper towel or artificial pith to avoid damaging 

samples while aligning in the microtome chamber. Sectioned samples were transferred to 

distilled water in a Petri dish to prevent desiccation prior to the staining procedure. 

  

 Toluidine blue O (C.I. 52040, Sigma) was used to study root anatomical structure. 

A 0.1% solution (w/v) was prepared in distilled water. Intact thin sections floating in 

water were chosen under the light box and transferred using fine forceps into separate 

clean Petri dishes. Two drops of Toluidine blue O solution were placed directly onto the 

thin section in the Petri dish using a pipette and left for one minute. Tissues were then 

thoroughly rinsed three times with distilled water or until the excess dye was completely 
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removed. Individual sections were removed from Petri dish and mounted on a 

microscopic slide using a cover slip with one drop of water for examination under the 

dissecting microscope. For observation of starch within storage tissues, sections were 

stained with potassium iodine (KI) reagent. A 2% (w/v) potassium iodine (Sigma 

Aldrich, #221945) solution was prepared in distilled water and stored in a tightly sealed 

dark glass bottle. The KI reagent was applied by dropping directly onto the thin sections 

and incubating for 3-5 minutes, depending on the thickness of specific samples.  

 

Microscopy and photography  

Stained sections of various parts of plants were examined under the microscope (Nikon 

SMZ1500). Images were recorded using a high-sensitivity CCD color camera system 

(QIMAGING RETIGA 1300) using the software program Qcapture (version 3.1.3.5) to 

capture the images in RBG mode.  

 

RESULTS 

Morphology of cassava rooting system 

Stem cuttings were removed from their pots every five days and visually inspected for 

development of the adventitious root system. Roots first became visible five days after 

planting, developing from swollen tissues around the circumference of the basal cut end 

of the stem. These basal roots were white colored, fleshy, prolific and fragile in nature. 

They could easily be broken when handled and grew rapidly to fill the available space 

within the potting medium (Fig. 1A). A second type of root structure was seen to develop 

originating from, or very close to, the buried axillary buds. These structures became 
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visible from five to ten days after planting. The nodal root structures were lesser in 

number at three to five per node, and thicker in diameter than the fibrous roots produced 

from the basal cut end. Initially white in color, they developed to become brown with a 

corky surface, grew rapidly in length and were strongly connected to the stem. Lateral 

roots were seen to develop from both the nodal and basal roots and together developed to 

form the root mass (Fig. 1A). In contrast to the fragile nature of the fibrous (basal) roots, 

the whole plant could be picked up and suspended when held by one nodal root. Swollen 

storage roots were first observed 5-6 weeks after planting. In every cutting examined, the 

storage roots developed from radial expansion of the nodal-derived roots. In the majority 

of cases, the storage roots possessed a distinct narrow neck (peduncle) region closest to 

the stem that connected the latter from the swollen storage region of the tuberized root 

(Fig. 1B) (Lebot, 2009). In this study, no storage roots were seen to develop from the 

fibrous roots produced from the basal cut surface of the stem cutting.  

 

Anatomy and origin of fibrous roots and storage roots structures 

As described above, stem cuttings developed swollen tissues at their wounded cut edge 

after planting in soilless compost. The fibrous basal roots subsequently emerged from this 

tissue. Due to the semi-woody nature of stem, the outer layer consisting of the periderm 

could be easily peeled away and separated from the inner portion consisting of the xylem 

and pith. When performed at the swollen end undergoing fibrous root formation, all root 

structures could be removed from the stem along with the peel layer (Figs. 2A and B). 

The fibrous roots remained intact during this process and showed no structural 

connection through the cambium layer into the woody xylem tissue. A distinctly different 
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pattern was seen when the periderm was peeled away from around the submerged nodes. 

In this case, the nodal-derived roots were not removed but remained connected through 

the peel directly into the inner woody xylem tissues (Fig. 2C). 

 

The anatomy of fibrous basal roots was examined by sectioning and histological 

staining with toluidine blue at increasing ages for up to two months after cuttings were 

transferred to potting compost. When sectioned transversely at five days after planting, 

the fibrous roots were seen to possess a distinct cortical region with a central stele. The 

stele carried an arch number of five or six with a highly visible, densely staining region 

associated with the pericycle (Figs. 3A and B). As the root aged, the cortex was 

maintained with production of metaxylem to produce a clear star shape consisting of 

xylem vessels (Fig. 3C). Sections taken from basal-derived fibrous roots up to 60 days 

after planting, as previously reported (Wechkrajang et al., 2006), showed no further 

development of the metaxylem from that seen in Figure 3C. This pattern was maintained 

across more than 20 such roots examined, with the discreet pentarch system present at all 

positions from close to the root tip to the root’s origin at the stem. Sectioning was also 

performed as close as possible to the cut edge of the stem in an attempt to identify the 

earliest stages and origin of the fibrous roots. Figures 3D and E show the presence of 

newly formed basal root primordial in transverse sections. These organs are seen 

developing from the vascular cambium of the stem. In both cases, they are yet to 

penetrate the peridermal region and have no visible connection to the underlying 

secondary xylem tissue. This is further illustrated in the longitudinal section of a young 

basal root in Figure 3F.  

file:///C:/Users/Yeetoh/Downloads/071114Anatomy_finalNJT.docx%23_ENREF_20
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Similar sectioning was performed on nodal-derived root structures. Transverse 

sections of young nodal roots less than 2 cm long developing from the stem revealed an 

anatomy very similar to that of the basal roots. A distinct pericycle is visible with primary 

xylem seen as circular groups of protoxylem vessels present in a pentarch manner (Fig. 

4A). As the nodal roots aged, development of the vascular tissue diverged from that of 

the basal roots, with production of metaxylem taking place to fill the center of the root 

structure (Fig. 4B). With increasing age of the organ, xylem tissues continued to be 

produced through secondary growth to form a distinct region of tracheids and vessels 

within the center of a greatly enlarged stele (Fig. 4C). Stem tissues in the region of the 

submerged node were sectioned transversely. Figure 4D shows root primordia within a 

cross section of the nodal region. The young root structure has yet to penetrate the 

periderm and can be seen growing through the lignified (blue stained), secondary xylem 

tissues. A similar root is shown in greater detail in Figure 4E. Likewise, it is not 

developing from the region of cambium, but appears derived from tissues deeper within 

the stem. Figure 4F provides further illustration, showing a transverse section of a peeled 

stem (cortex and phloem tissues have been removed) from which a more mature nodal 

root has emerged. The base of the root structure is seen to be completely embedded 

within the lignified xylem as deep as the edge of the central pith.  

 

 More mature developmental stages of the storage root structure were examined by 

both toluidine blue and potassium iodide (KI) staining. Transverse sectioning of the neck 

region (Fig. 1B) revealed the anatomy shown in Figure 5A, in which the vascular 

cambium has been established as a continuous cylinder running along the storage root’s 
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longitudinal axis. Secondary phloem is seen external to the cambium. Significant 

production of secondary xylem has occurred internally to the cambium, consisting mostly 

of lignified tracheids and large vessels, with lesser amounts of cellulosic (purple stained) 

xylem parenchyma cells. Examination of sections taken along the storage root axis 

further from the stem reveals a change in composition of the secondary xylem. 

Concomitant with radial expansion of the organ, presence of tracheids and vessels remain 

prominent, but a significantly larger portion of the xylem tissue is composed of starch-

containing parenchyma cells (Fig. 5B). Further progression distally from the stem 

culminates in the anatomy seen in Figure 5C, in which the vast majority of the tissue 

internal to the cambium consists of cellulosic secondary xylem parenchyma that stains 

deeply for presence of starch (Fig. 5F). Minimal xylem vessels are present scattered 

within the starch-containing cells and at the central xylem strand. In contrast to sections 

taken closer to the stem (Fig. 5A), tracheid elements are not conspicuous and may be 

absent within this storage tissue. Presence of starch in the tissues described above (Figs. 

5D-F) is present in an inverse relationship between lignified xylem and cellulosic cells.  

 

Plants were removed from their pots 12-16 weeks after planting and the stems 

split longitudinally in the region close to, and below, the soil surface. Storage roots at 

differing stages of radial development were examined. In all cases, a strong continuous 

connection was observed between the storage organs and the stem. Connection of the 

storage root can be seen to take place with the secondary xylem of the stem, internal to 

the vascular cambium such that the secondary xylem tissues of the storage root are 

continuous with the vascular xylem system of the semi-woody stem (Fig. 6). 
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DISCUSSION 

A study was undertaken to determine patterns of root development from cassava stem 

cuttings. Observations confirmed earlier reports that roots develop both from the cut end 

of the stem and from the nodal regions closest to the stem base (Lowe et al., 1982). 

Evidence is provided that the basal and nodal root structures originate in a similar 

timeframe but in different manners from different regions of the stem anatomy. While 

appearing at their earliest stages to be similar, their anatomies rapidly diverge, with only 

the nodal roots undergoing secondary thickening to develop as storage organs. In this 

study, basal roots developed from the swollen tissues initiated by the wound response at 

the stem cut end and were observed to originate from the cambium exterior to the xylem. 

In contrast, nodal roots originated from significantly deeper within the stem. The latter 

were seen to grow out through the secondary xylem before penetrating the cambium and 

periderm tissues. As a result, the nodal roots were deeply anchored into the central 

portion of the stem and could not easily be detached (Fig. 2B, Fig. 4F, Fig. 6). This 

contrasts with the more superficial basal roots that are easily stripped away from the stem 

along with the peel. The present study does not provide clarity concerning which 

meristematic cells the nodal roots are derived from. However, due to the depth of their 

origin and apparent location at the edge of the central pith and innermost xylem, they 

might be initiated from remnants of the pericycle associated with the protoxylem. These 

tissues are known to be associated with lateral root rhizogenesis, but are more commonly 

described in relation to fibrous roots (Esau, 1977). Further studies are required to 

investigate this in detail. 

file:///C:/Users/Yeetoh/Downloads/071114Anatomy_finalNJT.docx%23_ENREF_14
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 Although the present investigations were performed using relatively young, semi-

woody stem cuttings and plants were rooted in 12 cm pots, important information is 

provided about the earliest stages of storage root formation in cassava. Established 

thinking states that the storage roots develop from a subset of the fibrous roots, but how 

such a conversion occurs has not been described. We provide evidence, and propose here, 

that the storage and fibrous roots are fundamentally different organs, that they originate 

through different rhizogenic processes, are almost certainly not interchangeable, and are 

committed to their respective developmental fates from their earliest stages of initiation. 

The nodal-derived roots are therefore proposed to be precursor structures for the storage 

organs. They are initiated early in the rooting process but do not undergo significant 

radial expansion until receiving signals from the developing stem. It is not clear from 

earlier work how the stem cuttings were prepared before planting and how this relates to 

observations that storage roots could arise from both basal and nodal-derived roots (Lowe 

et al., 1982). In the present study, care was taken to cut the stem at the internode. 

However, if the stem is cut close to a node, storage root structures would develop in close 

proximity with the basal fibrous roots and could cause confusion with regards to their 

respective origins.  

 

Consideration that the two root types have fundamentally different origins and 

developmental fates has important implications for studies of storage root formation in 

the field and laboratory. Increasingly powerful tools are available to study plant 

development at the genomic, transcriptomic and proteomic levels. Such tools have been 

applied to investigate storage root formation and development in cassava (Li et al., 2010; 

file:///C:/Users/Yeetoh/Downloads/071114Anatomy_finalNJT.docx%23_ENREF_14
file:///C:/Users/Yeetoh/Downloads/071114Anatomy_finalNJT.docx%23_ENREF_14
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Yang et al., 2011; Vanderschuren et al., 2014). Like Yang et al. (2011), who utilized 

cDNA microarray technology to study storage roots at different developmental stages, 

previous experiments in our laboratory have failed to distinguish between the fibrous 

basal roots and early stage nodal roots. These two organ types can appear similar within a 

root mass at times before the latter undergoes secondary thickening and radial expansion. 

Failure to distinguish between them risks sampling a mixed population of organ types, 

with the resulting data likely to provide misleading results. Conversely, the ability to 

distinguish between fibrous roots and nodal-derived roots allows these organs to be 

segregated prior to analysis and facilitates improved studies on early tuberization 

processes. In this manner, modern molecular tools, bioinformatics and associated 

analytical tools could be utilized more effectively to elucidate the molecular mechanisms 

underlying root development in cassava.  

 

 In addition to shedding light on the origin of cassava storage roots, the anatomical 

studies of early storage root development described here raise questions as to how 

differentiation of the secondary xylem occurs within the storage organ. Initial 

development of the nodal root organ results in production of a central xylem consisting of 

tracheids and vessels (Fig. 4C). In the present study, the neck region, which connects the 

storage tissues to the shoot (Lebot, 2009), continues to lay down lignified xylem tissue, 

causing radial thickening with minimal presence of starch-containing parenchyma (Figs. 

5A and D). As the root transitions distally away from the stem, the cambium still 

produces xylem, but a larger proportion of the new cells differentiate to form xylem 

parenchyma and not conducting vessels and tracheids. This trend continues with the vast 

file:///C:/Users/Yeetoh/Downloads/071114Anatomy_finalNJT.docx%23_ENREF_21
file:///C:/Users/Yeetoh/Downloads/071114Anatomy_finalNJT.docx%23_ENREF_19
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majority of the xylem differentiating as storage tissue and not lignified conducting tissues 

(Fig. 5C). The processes responsible for controlling transition of the nodal root into a 

storage organ are not understood. Hormonal signals are thought to be sent to the roots 

from the stem system, most likely via the phloem. However, what these are, how they 

stimulate the cambium, and how they influence cellular differentiation to produce 

lignified conducting cells or cellulosic storage cells within the nodal-derived roots is not 

known. Gaining better understanding of these questions is important as the underlying 

mechanisms most likely control the number, size, shape and timing of root tuberization in 

cassava. It could also provide an effective model of studies for cellular lignification, an 

area of significant importance (Bonawitz and Chapple, 2010). 

 

Continual connection of storage root secondary xylem with the stem secondary 

xylem is described in these studies (Fig. 6) and may have implications for genetic 

manipulation of the storage root. The woody stem is also a starch storage organ in 

cassava, a trait most likely selected for because this organ is used as the propagule. This 

may explain difficulties, to date, in developing storage root specific promoters for 

cassava, and determine why transgene-promoter fusions engineered for expression in the 

storage root also express in the stem (Zhang et al., 2003; Beltran et al., 2010). 

 

The anatomical investigations described here offer new insight into the root 

tuberization process in cassava. Evidence is provided that two types of roots develop 

from cassava stem cuttings and that storage organs develop only from the nodal-derived 

organs. It is hoped that this study generates new appreciation and interest in how cassava 

file:///C:/Users/Yeetoh/Downloads/071114Anatomy_finalNJT.docx%23_ENREF_2
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storage roots are produced, and facilitates better designed studies on the underlying 

molecular and developmental control mechanisms. 
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Figure 1. Morphology of 60-day-old greenhouse grown plants derived from a stem 

cutting A. Shoot and root system B. Detail of root system, showing storage roots 

developing from the nodal region of the stem cutting. Massive proliferation of the fibrous 

root has occurred from base of the stem cutting. Three storage roots (1-3) are clearly 

visible. 1 and 2 have undergone radial development and are developing as storage organs, 

3 has yet to initiate significant radial expansion. n indicates neck (peduncle) region that 

connects storage region of the tuberizing root to the stem 
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A 

 

Figure 2. Attachment of basal and nodal derived roots to the stem A. Basal roots arising 

from swollen white tissues at the base of the semi-woody cut stem. B. Young roots 

removed with the periderm when the bark is stripped away from the lignified central 

tissues C. Nodal derived root. Peeling does not remove the root structure, which is seen 

to be emerging from within the stem (arrowed) and penetrating through the peeled bark. 
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Figure 3. Thin sections of developing basal roots stained with toluidine blue. A-C. 

Transverse sections of basal roots. A. Section less than 1 cm from root tip showing 

distinct dark staining pericycle. (bar = 0.5 mm) B. Detail of vascular cylinder in young 

basal root, with six visible primary xylem poles. (bar = 0.25 mm) C. Root section 5-10 

cm from tip showing development of metaxylem. (bar = 0.25 mm) D&E. Transverse 

sections of semi-woody stem showing basal root primordia (arrowed) developing from 

the cambium. (bar = 1 mm) F. Longitudinal section of young root developing from basal 

cut edge of stem. (bar = 2.5 mm) 

  

A B C 
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Figure 4. Transverse sections of developing nodal roots stained with toluidine blue. A. 

Section less than 1 cm from root tip showing distinct dark staining pericycle and five 

xylem poles. (bar = 0.25 mm) B. Section 2-3 cm from root tip showing development of 

metaxylem between the xylem poles. (bar = 0.5 mm) C. Root section 3-5 cm from tip. 

Significant secondary xylem has been produced within the central region of the root. (bar 

= 0.5 mm) D&E. Transverse sections at the nodal region of semi-woody stems. D. 

Development of a root primordia (arrowed) originating within the node. (bar = 5 mm) E. 

Detail of nodal root developing from within or deeper than the lignified xylem. Root has 

yet to penetrate the phelloderm tissues. (bar = 2.5 mm) F. Section showing nodal root 

that has emerged from the peeled stem, with connections deep into the stem through the 

secondary xylem to the central pith. (bar = 1 mm)  

  

A B C 

D E F 
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Figure 5. Transverse sections of different regions of the same storage roots stained with 

toluidine blue (A-C) and potassium iodide (D-F). A. Section through neck region of 

storage root showing predominant development of blue lignified tissues internal to the 

cambium. (bar = 1.5 mm) B. Section of storage root distal to the neck showing greater 

differentiation of xylem into pink staining cellulosic compared to blue staining lignified 

tissues. (bar = 2 mm) C. Section furthest from stem in which the vast majority of xylem 

cells are cellulosic and xylem present as scattered groups of vessels. (bar = 2.5 mm) D-F. 

Sections of same tissues shown in A-C but stained to show presence of starch. Dark 

staining starch is shown to reflect differentiation of cellulosic xylem parenchyma as the 

sections move distally away from the stem and neck regions.  
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Figure 6. Stem (ST) and developing storage roots (SR) sliced longitudinally to the stem 

axis of tissue culture-derived plants. A. Semi-woody stem of cv. TME204 stained with 

toluidine blue showing continuous connection of lignified tissues from a young nodal 

root (NR) with the lignified stem tissues. B. A well-developed storage root (left) and 

nodal root (NR) yet to undergo substantial radial secondary thickening (right) of cv. 

60444, shown with their vascular tissues continuously connected to the secondary 

vascular tissues of the stem. 

A B 

ST 

ST 

SR 

NR 
NR 
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Chapter 3. Microarray analysis of gene expression during storage 

root development in cassava (Manihot esculenta Crantz) 

 

ABSTRACT 

Cassava tuberization is a complex process that depends on genetics, environment and 

biological factors. Knowledge of the specific genes and pathways involved in storage 

root formation in cassava are needed in order to understand the underlying process and 

allow manipulation of storage root yields. cDNA microarray is a powerful tool to 

generate transcriptome profiles and was applied here to elucidate the molecular 

mechanisms of cassava root tuberization. A microarray consisting of 4,129 cassava and 

19,808 leafy spurge cDNAs was used to generate transcriptome profiling across four 

developmental stages of storage root formation representing: prior to storage root 

formation, initiation of storage root formation, filling stage, and maturation stage. Gene 

Set Enrichment Analysis of up-regulated genes across the four developmental stages 

demonstrated up-regulation of the jasmonic acid pathway in the initiation stage. This 

might imply a role for jasmonic acid as a triggering factor in cassava storage root 

development and requires further investigation. K-means clustering and Heatmap 

analysis identified three candidate genes possibly involved in storage root development. 

In silico analysis through public databases and the Cassava Genome (Phytozome) 

indicated the three candidate genes to be homologues of cassava c1 (Mec1), cassava 

ATDI21 and ENOD40-like genes. Mec1 is related to secondary xylem parenchyma 

development in cassava storage roots, while cassava ATDI21 encodes Lea3, a drought 

responsive gene, and ENOD40-like is a gene predicted to function as non-coding RNA. 
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INTRODUCTION 

Tuberization is a critical mechanism in the life cycle of storage root crops to secure their 

survival under adverse environmental conditions. Several factors such as genetics, 

environment and unique physiology of each species affect their tuberization process. Due 

to the importance of tuber crops as sources of dietary energy, they fill the role of staple 

foods for half the world’s population (Shewry, 2003; Howeler et al., 2013). The tuber 

crops are characterized by their different botanical origins. Tubers can be derived from 

diverse organs that are specific in each crop. Potato tubers are derived from underground 

stems, whereas taro is a corm. On the other hand, the storage organs of sweet potato and 

cassava are derived from root (Shewry, 2003). Cassava is distinct from the other tuber 

crops, however, in that the storage organ is not a propagule, but instead is a modified root 

structure with no additional known function. The tuber storage proteins have a major role 

in storage of nitrogen, sulfur and carbon for the purpose of aiding survival of the plant 

under harsh environments. These proteins have been identified in potato, sweet potato, 

taro, and yam as patatin, sporamin, tarin, and dioscorin, respectively. Uniquely, cassava 

has no known tuber storage protein (Shewry, 2003). 

 

Cassava (Manihot esculenta Crantz) acts as a security crop for an estimated 700 

million people in the tropical regions of Africa, Asia and South America (Howeler et al., 

2013). Cassava is grown primarily for its storage roots that are used in fresh and 

processed forms for human food, livestock feed, and as a source of biofuel and industrial 

starch (IITA, 2009; Howeler et al., 2013). Although cassava is an excellent source of 

starch, full utilization of cassava storage roots is limited by inherent adverse traits such as 
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high cyanogenic content of many cultivars, rapid physiological deterioration after 

harvesting and low nutritional content (El-Sharkawy, 2003; Howeler et al., 2013; IITA, 

2009).  

  

Breeding programs have been addressing these limitations for decades but face 

numerous challenges. Cassava is highly heterozygous and suffers from sporadic 

flowering, poor seed set and low seed viability (Alves, 2002; El-Sharkawy, 2003). All 

these factors make modern transgenic technologies an attractive alternative for the 

improvement of otherwise high-performing and valued cassava varieties (Taylor et al., 

2004, 2012; Jorgensen et al., 2005; Carvalho et al., 2011; Sayre et al., 2011; Zainuddin et 

al., 2012). Progress in this area includes the application of RNA interference technology 

(RNAi) to generate cyanide free cassava (Jorgensen et al., 2005). The BioCassava Plus 

program has also conducted biofortificaton of cassava to increase the iron and beta-

carotene content in cassava storage roots (Sayre et al., 2011). The delay of postharvest 

physiological deterioration of cassava storage root was intensively studied by the 

manipulation of the reactive oxygen species production (Zidenga et al., 2012; Xu et al., 

2013). Furthermore, large-scale proteomic analysis in cassava storage root allowed 

identification of target genes to reduce postharvest deterioration (Owiti et al., 2011; 

Vanderschuren et al., 2014).  

 

Despite recent progress many challenges remain, such as improvements to 

tuberous root harvest index, enhanced starch for industrial applications and the ethanol 

industry (Carvalho et al., 2011; Howeler et al., 2013). All such improvement programs 
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would benefit from increased knowledge of the tuberization process in cassava. Cassava 

tuberization is a complicated processed. Cassava is usually propagated by stem cuttings. 

Two types of adventitious root are generated at the early stage of root development: basal 

roots and nodal roots (see Chapter 2; Lowe et al., 1982). According to the previous 

anatomical studies of this thesis (Chapter 2), storage roots develop from the nodal-

derived roots. What genes and biochemical pathways are responsible for this process 

were investigated here.  

 

Functional genomics is the study of gene products and how their interactions 

result in cellular and whole organism development, including phenotype and response to 

the environment (Butte, 2002). This approach enables the researcher to analyze genetic 

events on a genome-wide scale, suitable for using in gene discovery, marker assisted 

determination, trait classification and specific gene target identification (Chen et al., 

2009). The approaches for functional genomics are performed in two ways: forward and 

reverse genetics. Forward genetics was initially performed using mutagenesis to generate 

randomly mutating population, resulting with genome-mapping to locate the target genes 

in the genome that correspond with the observed phenotype. Traditional forward genetics 

is a time-consuming method, due to the fact that large-scale screening of the saturated 

mutant phenotype is required. In contrast, the reverse genetic approach utilizes advanced 

sequencing technologies. Reverse genetics predicts the function of a gene based on the 

phenotype resulting from target gene alteration. Efficient techniques used in reverse 

genetics include gene silencing by RNAi technology, mutational analysis, genome-wide 

association studies, microarray analysis including RNAseq and proteomic analysis (Chen 
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et al., 2009; Till et al., 2013). Integrated functional genomics studies facilitate the 

identification of genetic significance, such as gene expression profiles and proteomic 

analysis, which can be used to predict the molecular mechanism of important traits. 

Complex biological systems can be elucidated using microarray technology, which 

facilitates identification of the expressed genes interacting with each other under given 

environmental conditions (Zhang et al., 2003). Transcriptional profiling from cDNA 

microarray analysis enables the prediction of putative pathways and candidate genes 

involved in target mechanisms (Duggan et al., 1999; Hardiman, 2004; Chen et al., 2009). 

However, cDNA microarray is a genome-wide analysis, thus the challenge for analysis is 

to interpret the large scale of the data produced. Experimental design and component 

analysis, including the minimum sample size, have been studied to improve efficiency of 

data analysis from microarrays (Butte, 2002; Churchill, 2002; Subramanian et al., 2005; 

Nguyen and Williams, 2006; Jørstad, et al., 2007). 

 

A functional genomics approach was initially implemented for cassava research to 

develop expressed sequence tags (ESTs) from polymorphic transcript-derived fragments 

(TDFs) using the cDNA-AFLP (amplified fragment length polymorphism) technique 

(Suarez et al., 2000). Genetic diversity among domesticated varieties and wild population 

were examined to determine the evolutionary and geographical origin of cassava using 

the SNPs (single nucleotide polymorphisms) and SSRs (simple sequence repeat) (Olsen, 

2004). Gene libraries constructed for cassava were developed and characterized using 

ESTs (Sakurai et al., 2007, Lokko et al., 2007). The draft genome sequence for cassava 

was announced in 2009 via JGI’s Phytozome (www.phytozome.net/cassava), providing 

http://www.phytozome.net/cassava
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new opportunities to improve cassava crop. Furthermore, a total of 9,600 cDNA and gene 

expression profiles at key growth stages of cassava were sequenced and established as 

another catalogue of expressed sequence tags (ESTs) (Li et al., 2010). 

 

The cDNA coding for root protein Pt2L4 (the glutamic acid-rich protein), was 

reported to be differentially expressed in the starchy layer of cassava storage root (de 

Souza et al., 2002; 2006). Two cassava promoters related to vascular expression (cDNA 

of C15 and C54) have also been characterized (Zhang et al., 2003). Furthermore, a 

glutamic acid-rich protein promoter showed high expression in the storage root and stem 

when fused to a transgenic marker gene (Beltran et al., 2010). However, these results still 

leave little understanding of what controls formation of storage roots in cassava.  

 

In order to understand the pathway or subset of genes involved with each 

developmental stage of cassava storage root formation, genome analysis is required to 

provide information on the tuberization mechanism. Over the past decade, differential 

gene expression and transcriptome profiling provided sources of information about the 

gene regulated during tuberization in cassava. In addition, several cassava genome-wide 

expression analyses have been reported at different growth stages. Sojikul et al. (2010) 

compared gene expression profiles between fibrous roots and storage root in cassava 

using cDNA AFLP. The results indicated that sulfite reductase, calcium-dependent 

protein kinase, ent-kaurene synthase, and hexose transporter are involved in cassava 

storage root initiation because these genes showed specific expression in the storage root 

at an early stage. Leaf proteomic analysis was studied to elucidate the possible metabolic 
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switches in the leaf that may act as triggers for storage root formation (Mitprasat et al., 

2011). Yang et al. (2011) studied genome-wide expression patterns during the 

tuberization stage using a 60 mer oligonucleotide microarray and showed dynamic 

changes in the active processes of glycolysis and gluconeogenesis during storage root 

formation. To date, although new technologies have been applied to study genome-wide 

expression and combined with improved analytical tools for interpretation of large-scale 

data, knowledge about cassava tuberization still remains unclear.  

 

The present work attempts to elucidate the cassava tuberization mechanism using 

transcriptome analysis. A cDNA microarray containing 4,129 cassava-specific cDNA and 

the 19,808 leafy spurge unigenes (USDA-Bioscience research lab, Fargo, ND) was used 

to generate the transcriptome profiling across root developmental stages. Differential 

gene expression revealed the order and subset of genes and pathways involved at each 

specific developmental stage. The genes that were highly up-regulated in the initiation 

stage, starch filling stage and maturation stage were annotated of their putative function 

in cassava tuberization. 

 

MATERIALS AND METHODS 

Plant material 

Cassava cultivar 60444 was micropropagated in tissue culture as described by Taylor et 

al. (2012). The media for cassava micropropagation consisted of Murashige and Skoog 

(1962) (MS) basal salt mixture and MS vitamin powder (Sigma-Aldrich, MO), and 20 g/l 

sucrose (MS2) solidified with 8 g/l of Difco Agar Noble. The pH of the media was 
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adjusted to 6.14 followed by addition of Difco Agar Noble and autoclaving at 121
o
C and 

15-20 psi for 20 minutes. The media was dispensed into 100 x 25 mm Petri dishes at 40 

ml per dish and stored at room temperature until use. Apical cuttings carrying two to 

three nodes were excised from in vitro mother plants cultured on MS2 medium every four 

weeks by subculturing onto fresh MS2 culture media and incubating at 28
o
C under a 16/8 

hours photoperiod at 75 µMs/m
2
.  

 

 To establish plants derived from tissue culture in the greenhouse, four-week-old 

in vitro plantlets were removed from the agar medium and transferred into the three-inch 

pots containing Fafard 51 potting media (Sun Gro Horticulture Canada Ltd.). The potting 

soil was soaked with 1.8 gram per 3.78 L. Gnatrol (Valent BioSciences Cooperation, IL), 

14.7 gram per 3.78 L. of 15-5-15 fertilizer (Jack’s Professional LX, JR Peters Inc, PA) 

and 5 ml per 3.78 L of micronutrient (MOST, JR Peters Inc, PA). Potted plants were 

placed on a mist bench for one week with bottom heat supplied before moving to the 

open bench and grown under natural and supplemental lighting at 900 µM/m
2
 for 16 

hours per day, at 26-28
o
C and 60% humidity.  

  

Twenty in vitro plants were transferred out to greenhouse every 30 days for three 

months to be assured of the sufficient experimental material. Plants were removed from 

the pots without damaging the root system every two weeks through three months in 

order to collect root samples.  
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Sample collection for cDNA microarray analysis  

Storage root vs. leaf microarray analysis  

Cassava leaves were collected using gloved hands from three-month-old plants growing 

in the greenhouse, wrapped in aluminum foil and labeled. Samples were immediately 

frozen in liquid nitrogen until proceeding for RNA extraction. Storage roots from the 

same plants were removed and cleaned by rinsing under running tap water. The peel was 

removed by hand and the storage tissues cut into pieces approximately 125 mm
3 

in size 

and placed in a clean 50 ml Falcon tube. Storage root tissues were then submerged in 

liquid nitrogen and freeze-dried using a lyophilizer (VirTis lyophilizer #FM 25ES-53, SP 

scientific) for 24 hours. Samples were stored at room temperature until RNA extraction. 

Three biological replications were represented by sampling from three individual plants 

and two technical replications were performed using the roller cycle dye swapping 

technique. 

 

Microarray analysis of four root developmental stages 

Storage root development from in vitro derived plants was examined at two weeks, one 

month, two months and three months after transfer to soil. This equated to the four 

developmental stages: 1. before tuberization (SR1); 2. storage root initiation (SR2); 3. 

starch filling (SR3); and 4. storage root maturation (SR4). Four biological replications 

and two technical replications were performed at each developmental stage. At SR1 and 

SR2 stages, five grams of fibrous root of two-week-old plants and one-month-old plants 

were collected for RNA extraction respectively. Collected root samples were gently 

rinsed in tap water to remove dirt, wrapped in aluminum foil and immediately kept in 
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liquid nitrogen and labeled. At SR3 and SR4, the storage roots were removed from two-

month-old and three-month-old plants, taking care not to include any fibrous root 

structures. Storage roots were washed under running tap water, peeled and the inner 

storage tissues processed as described above. The processed storage root samples were 

immediately frozen in liquid Nitrogen and freeze-dried in a lyophilizer (VirTis 

lyophilizer #FM 25ES-53, SP Scientific) for 24 hours and stored at room temperature till 

required for RNA extraction. 

 

RNA extraction 

Leaf and fibrous root tissues 

Samples from leaf and non-storage roots were homogenized in liquid N2 in a DEPC-

treated pestle to produce a powder and extracted using the modified CTAB protocol 

based on Lodhi et al. (1994). The CTAB buffer was modified to compose 2% CTAB 

(Sigma), 100 mM Tris-HCL (pH 8.0, Sigma), 20 mM EDTA (Sigma), 1.4 M Sodium 

Chloride (NaCl, Sigma), and 2% v/v beta-mercaptoethanol (Sigma) in RNase-free water. 

The 2% beta-mercaptoethanol was added into buffer just prior to use and then incubated 

at 65
o
C before adding 0.5 g of ground tissue to the 15 ml centrifuge tube. Samples were 

incubated at 65
o
C for 30 min with gentle mixing following by incubation at room 

temperature for 10 min. An equal amount of chloroform was added and mixed by 

inverting for 10 min at room temperature before centrifuged at 10000 rpm. After 

centrifugation, the aqueous phase containing nucleic acids was dispensed into a new 

centrifuge tube and the RNA purification performed using an equal amount of 

chloroform:isoamyl alcohol (24:1) and performed twice. The supernatant was carefully 
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transferred to the new 15 ml tube after centrifugation and precipitated by adding 0.7 

volume of ice cold isopropanol. The RNA pellet was then washed with 500 µl 75% 

ethanol three times before dissolving in one ml RNase-free water. An additional 

overnight precipitation was then performed by adding 1/3 volume of 8 M LiCl (Ambion) 

and incubated at -20
o
C. The final RNA pellet was washed with 75% ethanol three times. 

RNA quality and quantity was confirmed by denaturing agarose gel electrophoresis and 

spectrophotometer, respectively.  

 

Storage root tissues 

Total RNA from storage roots was extracted using a protocol modified for cassava 

storage roots based on Li and Trick (2005). The RNA extraction buffer consisted of 100 

mM LiCl, 1% w/v SDS, 100 mM Tris-HCL pH 7.5, 100 mM EDTA, and 1% v/v beta-

mercaptoethanol in diethylpyrocarbonate (DEPC) treated water, the latter being added 

into the buffer before extraction. The lyophilized storage root sample was briefly ground 

in liquid N2 to produce a fine powder. Half a gram of ground lyophilized tissue was 

transferred into a 2 ml Eppendorf tube. First, 800 µl extraction buffer was added into the 

sample, followed immediately by the premix of 800 µl acidic phenol:chloroform 

(AM9720, Ambion). The extract was vortexed, incubated at room temperature for one 

hour and then centrifuged at maximum speed in a microcentrifuge for 30 min at 4
o
C. The 

clear aqueous phase of the extract was carefully transferred into a new tube and 

centrifuged again for 5 min. The supernatant was carefully transferred into a new tube, 

1/3 volume of 8M LiCl added and gently mixed followed by incubation at -20
o
C for 16 

hours. The extract was then centrifuged at 4
o
C for 30 min to harvest the RNA pellet. The 
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RNA pellet was washed by ice cold 75% ethanol twice, then left to dry at room 

temperature before elution with 30 μl RNase-free water. The RNA was treated with 

DNase using DNA removal kit (DNA free, AM1906, Ambion), followed by cleanup 

using a spin column as described in RNA cleanup step manual (RNeasy mini kit,Qiagen). 

RNA quality and quantity was confirmed by denaturing agarose gel electrophoresis and 

spectrophotometer reading, respectively.  

 

cDNA labeling and microarray analysis 

The first strand cDNA synthesis of genomic RNA was performed using SuperScript 

indirect cDNA labeling system (L1014-02, Invitrogen). First, 20 µg of total RNA was 

reverse transcribed using SuperScript III reverse transcriptase with the anchored 

oligo(dT)20 as a primer and incorporating amino-modified dUTP into the synthesized 

cDNA. The cDNA synthesis mix was incubated at 46
o
C for two hours. Then the template 

RNA was degraded by addition of 1M NaOH at 65
o
C for 15 min and neutralized with 1M 

HCL and TRIS (1M pH 7), follow by clean up of the unincorporated nucleotides, primer 

and buffers using the PCR purification kit (Invitrogen, Carlsbad, CA). In the second step, 

the modified cDNA was coupled with Alexa Flour 555 and 647 (Invitrogen) according to 

manufacturer’s protocol. The labeled cDNA was purified using the Purelink PCR 

purification kit (Invitrogen) to remove all unincorporated dye to be ready for 

hybridization to microarrays. 

 

Labeled cDNA was hybridized to a custom made 23K element cDNA microarray 

containing 4,129 unigenes from a cassava EST database (Lokko et al., 2007) and 19,808 
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unigenes from leafy spurge EST database (Anderson et al., 2004). The signal intensities 

of 16 hybridized microarrays were read using a GenePix 4000X scanner (Axon 

Instruments/Molecular Devices Corp., Sunnyvale, CA) and GenePix Pro software. The 

intensities of each array were log2 transformed, then centered and normalized against 

each other.  

 

Data Analysis  

For the microarray analysis to study differential expression between leaf vs. storage root, 

gene expression profiles were statistically analyzed using GeneMath XT software 

(Applied Maths, NV) for normalization of expression values against each other, including 

principle analysis to predict the functional biological process based on GO term. For 

microarray expression analysis across the four different developmental stages of storage 

root formation, statistical analysis, including normalization of differentially expressed 

gene data sets, was performed using CLC Main Workbench software (CLCbio, a Qiagen 

company, MA). K-means clustering was used to partition the data set into distinct 

clusters with similar expression pattern across samples (Wagstaff et al., 2001). 

  

 To predict pathway networks involved in tuberization, Pathway Studio software 

(http://www.ariadnegenomics.com) was used for Gene Set Enrichment Analysis (GSEA) 

as described in Subramanian et al. (2005). The expression of genes significantly over-

represented (p < 0.05) by up- and down-regulation in biological processes, molecular 

functions and cellular components were also identified using GSEA.  

 

http://www.ariadnegenomics.com/
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Candidate gene identification 

Gene clusters resulting from differential expression analysis that were shown to be highly 

up-regulated in SR1, SR2 & SR3 and SR4 were selected to be the study groups. Non-

redundant sequences including the cassava-specific genes were blasted into the TAIR 

database (http://www.arabidopsis.org/Blast/index.jsp) to identify the Arabidopsis 

orthologue and predict their function using BLASTN and BLASTP via NCBI 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). Sequences of selected genes were retrieved from 

the EST database (NCBI) correlating to their unique accession number and then blasted 

into Cassava genome (www.Phytozome.net, JGI, CA) for analysis against the actual 

cassava sequence database.  

 

RESULTS 

Comparative study of gene expression profiles in storage root and leaf tissues 

A microarray experiment was performed in order to validate efficacy of the cDNA 

microarrays and generate initial data for determining differential gene expression 

between leaf and storage root tissues. Young leaves and tuberous root tissues were 

sampled from three-month-old greenhouse grown plants.  

  

 An improved method for extraction of total RNA from cassava storage roots was 

developed to facilitate this study. When RNA was extracted from frozen tissues 

following the protocol of Li and Trick (2005), the resulting RNA was degraded and not 

suitable for cDNA synthesis. Addition of a lyophilizing step in sample preparation 

improved yields of intact RNA but purity remained problematic for labeling with 

http://www.arabidopsis.org/Blast/index.jsp
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.phytozome.net/
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fluorescent dye. The purification steps were also modified by adding a chloroform 

cleaning step and increasing the time of LiCl precipitation from two hours to at least 12 

hours. Use of these three modifications resulted in high yields of intact RNA suitable for 

production of cDNA and dye labeling (results not shown) and were used as adopted as 

the standard protocol for processing RNA from storage root and stem tissues. 

 

Total RNA was extracted with the improved method, labeled and hybridized to a 

microchip consisting of 4,129 cassava and 19,808 leafy spurge cDNA. Data was log2 

normalized and statistically analyzed using GeneMath software to display genes 

significantly (p-value <0.05) up- or down-regulated in leaves and storage roots. Using 

these criteria, 336 genes were seen to be up-regulated in leaf compared to storage root 

tissues, and 108 genes were up-regulated in storage root compared to the leaf. Putative 

biological function of up-regulated genes was predicted using Gene Set Enrichment 

Analysis based on gene ontology (GO). The majority of up-regulated genes fell within 

uncategorized biological function for both leaf and storage root profiles (Fig. 1A and B). 

Among 336 up-regulated genes in the leaf, approximately 67% of genes were 

undetermined, while 23% had biological process unknown. Data for the 108 up-regulated 

genes in storage root was similar to that of the leaf, with 67% undetermined and 22% of 

biological process unknown. 

  

Figure 2 shows the number of up-regulated genes with known biological function 

identified from the leaf (35) and storage root (12). Twenty-six genes with known 

biological function were seen to be up-regulated in the leaf only and not the storage root. 
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Only three genes of known biological function were found up-regulated in roots tissues 

and not in the leaf. In the leaf, seven up-regulated genes were involved in photosynthesis, 

three in biosynthesis, five in signal transduction, three in defense response and one each 

in carbon utilization, cell communication, DNA methylation, growth, aging, secondary 

metabolism, sugar mediated signaling and unidimensional cell growth. Specific 

biological pathways up-regulated in storage roots and not in the leaf, including jasmonic 

acid mediated signaling pathway (1 gene), circadian rhythm (1 gene), and embryonic 

development (1 gene). The three biological functions – metabolism, transport and 

response to jasmonic acid stimulus – were found to have up-regulated genes from both 

leaf and storage roots. Metabolism was highly expressed and represented by six genes in 

leaf and two genes in the storage root. Likewise, seven genes belonging to the transport 

processes were represented in the leaf (2 genes) and storage root (5 genes). Genes 

involved in the response to jasmonic acid stimulus were represented in leaf and storage 

root as one gene and two genes, respectively. It should be noted that up-regulated genes 

involved in response to jasmonic acid stimulus were seen in both leaf and storage root 

tissues; genes involved in jasmonic acid mediated signaling pathway were presented only 

in storage root. This result may therefore indicate a likely role for jasmonic acid in 

storage root production and maturation and requires further study. 

 

Differentially up-regulated genes unique to the storage root or leaf 

Data was further analyzed in order to determine which genes were differentially up-

regulated in the storage root and leaf. To achieve this, the root/leaf and leaf/root ratios 

was calculated from log2 normalized expression values and used to rank genes for 
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differential expression between the storage root and leaf (Table 1 and 2). BLAST 

searches were performed for the ten unigenes with highest differential expression in root 

and leaf tissues in order to identify their similarity to genes within the NCBI database. 

Because the microchip used in this study contained cDNAs from two organisms, leafy 

spurge and cassava, differentially up-regulated genes are shown as cassava-specific or 

spurge-specific.  

 

Differentially up-regulated genes unique to the storage root 

The ten genes with the highest differential root/leaf expression ratio were studied using 

BLAST searches against non-redundant database on NCBI. The up-regulated unigene 

DV445495 that ranked highest for expression ratio in storage root was allergenic-related 

protein Pt2L4. Pt2L4 is unique to Manihot esculenta and is a glutamic acid-rich protein 

previously reported to be related to secondary growth and storage root formation in 

cassava (de Souza et al., 2004; 2006). DV446014 was also seen to be highly 

differentially expressed in roots compared to leaves. The cDNA sequence of DV446014 

was specific to cassava and not similar to any other organism. BLAST searching revealed 

no significant similarity to other nucleotide or protein sequences in any organism. Lea5 

(Late embryogenic abundant) protein (DV446014), fiber protein Fb37 (Gossypium 

barbadense) (DV451141) and DnaJ protein (Hevea brasiliensis) (DV139532) were also 

shown to be highly differentially up-regulated in the storage root. Although, DV451141 

had similarity to unknown hypothetical protein p85RF, its function in cassava is not 

known. 
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Differentially up-regulated genes unique to the leaf 

The top ten differentially up-regulated genes found in the leaf from this array analysis are 

shown in Table 2. Predictably, five of the unigenes with highest leaf/root differential ratio 

showed high similarity with genes involved in photosynthesis. Highest was seen for 

DV441259, which is very similar to light harvesting chlorophyll a/b-binding protein in 

Nicotiana sylvestris. DV454456 was ranked ninth and is unique to Manihot esculenta, 

predicted to encode chloroplast latex aldolase-like protein.  

 

Comparative study of gene expression profiles in different stages of storage root 

formation and development  

In order to study differential gene expression during storage root initiation and 

development, cassava plants of cultivar 60444 were established in the greenhouse. Root 

tissues were harvested at four different time points representing known stages in 

development of the storage root system in this cultivar under these conditions. Root 

tissues were harvested two weeks after planting to represent the stage before storage root 

formation (SR1), at one month to represent the storage root initiation stage (SR2), at two 

months for radial expansion and starch filling stage (SR3) and at three months for storage 

root maturation stage (SR4) (Fig. 3).  

 

 Total RNA was extracted from four biological replicates for each developmental 

stage. Samples were processed, cDNA produced, labeled and hybridized to 16 microchips 

carrying 4,129 cassava and 19,808 leafy spurge cDNA respectively as described above. 

Data was log2 normalized and statistically analyzed using GeneMath software to display 
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genes significantly (p-value <0.05) up- or down-regulated at the different SR1-SR4 

developmental stages.  

 

Pathways significantly up- and down-regulated during storage root development 

To identify significantly over-represented (p<0.05) pathways among the four 

developmental stages of storage root development, Gene Set Enrichment Analysis 

(GSEA) was employed to identify up- and down-regulated biological processes, 

molecular functions, and cellular components using gene ontology (GO) classification. 

Based on GO, the role of target gene sets were predicted through their biological function 

to provide putative pathways involved in the different stages of storage root development. 

The enrichment of each pathway was generated by the number of up-regulated genes in 

the pathway, and differential expression levels were determined by pairwise comparison 

between stages of storage root development, i.e. – SR1 vs SR2, SR2 vs SR3 and SR3 vs 

SR4. Table 3 shows pathways significantly over-represented (p<0.05) when comparing 

these developmental stages against each other. 

 

The pathways that were highly up-regulated in SR2 were identified using 

comparative analysis between the pre-tuberization stage (SR1) versus the initiation stage 

(SR2). Seven significant pathways were found to be overrepresented in SR2 compared to 

SR1 (Table 3). These included jasmonic acid biosynthesis, different pathways of sucrose 

degradation, and systemin signaling. Up-regulation of jasmonic acid biosynthesis was 

seen to be unique to the SR2 developmental stage. Five of the same pathways involved in 

sucrose degradation, plus systemin signaling, were also found to be up-regulated in SR3. 
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An additional eight pathways were up-regulated in SR3 compared to SR2. These 

represented glycolysis I (plant cytosol), valine, isoleucine, suberin, flavonoid 

biosynthesis, and the superpathway of isoleucine and valine biosynthesis plus the 

superpathway of leucine, valine and isoleucine biosynthesis. Up-regulation of leucine, 

valine, and isoleucine biosynthesis superpathway was also evident in SR4, but this was 

the only up-regulated pathway common between SR3 and SR4. Ten additional up-

regulated pathways were unique to SR4. These included auxin signaling, fatty acid 

oxidation, and the glyoxalate cycle. Surprisingly, for these achlorotic tissues the 

photosynthesis pathway was also represented here.  

 

Transcriptome profiles among four developmental stages or root development 

Microarray analysis was conducted across the four developmental stages (SR1-SR4) of 

storage root tuberization to determine transcriptomic changes at each developmental 

stage. The change of transcriptome profiles across the four developmental stages allowed 

determination of the subset of the genes involved in storage root formation. A total of 

22,503 unigenes were analyzed using CLC Main Workbench program. 5,142 were 

significantly expressed at p<0.005 for normalized values and 1,239 at p<0.005 for 

maximum change greater than two fold. Analysis was performed using K-means cluster 

to group the 22,503 genes identified by CLC Workbench into different clusters that 

showed similar expression patterns across the four developmental stages. Analysis 

generating 12 different clusters did not provide sufficient resolution of the data to show 

differential expression. Increasing this to 16 clusters was also not successful. Therefore, 

analysis at 24 clusters was employed. Figure 4 shows a pie chart illustrating proportions 
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of genes up-regulated in the different SR stages. The top twenty unigenes showing 

highest fold changes were ranked for their normalized expression values across the four 

SR developmental stages (Fig. 5). 

  

Because the main objective of this study was to uncover important biological 

processes involved in the developmental stages from fibrous roots to storage root 

initiation, filling and maturation, clusters showing significant changes in expression 

across, and between these stages were selected for further study. The three clusters – 15, 

20 and 22 (Figs. 6A-C) – were chosen for further study because of their highly significant 

changes in normalized expression values (above 14,000) across the SR1 to SR4 stages. 

This was considered to increase the likelihood of their critical role in the stages of root 

tuberization. In addition, the number of genes within these clusters was reasonable to 

handle for subsequent analysis and study. 

  

Cluster 20 (Fig. 6A) consisted of fifteen unigenes of which four pass significant 

filter at p<0.005 for expression. These four genes had significantly up-regulated 

expression at SR2 compared to the other developmental stages. Expression of unigenes in 

this group had low relative values in SR3 and SR4. Genes in this group could therefore 

be considered as candidates for regulators of early storage root formation. BLAST 

searches for these four leafy spurge unigenes obtained hits for putative homologues, 

including putative amino transferase from rice, major latex allergen Hev b 4 from rubber, 

cyclin A3 from tomato, and cysteine synthase from spinach (Table 4A).  
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 Nine genes comprised cluster 15, of which eight had significant expression 

(p<0.005). Normalized expression levels were high compared to cluster 20 with up-

regulation seen at SR3 and SR4 compared to earlier developmental stages (Fig. 6B). In 

contrast to cluster 20, in cluster 15, six out of the eight highly expressed genes were 

cassava unigenes. The unigene with highest expression levels in this cluster, and across 

all cira 24,000 unigenes investigated, was DV445495. DV445495 expressed most highly 

at SR4 and relates to the cassava-specific allergenic-related protein Pt2L4. This result 

corresponds with previous identification of this protein in the secondary xylem 

parenchyma of mature storage roots of cassava (de Souza et al. 2004; 2006). The second 

ranked unigene DV451479 in cluster 20 related to LEA5,; late embryogenic abundant 

protein in cassava. DV446014 had a greater than 10-fold change in expression during 

SR4 and is cassava-specific but of unknown function (Table 4B). 

 

 Cluster 22 consisted of seventeen unigenes (Fig. 6C). All seventeen had 

significant expression and were similar to those of cluster 15 being highly up-regulated 

expression at SR3 and SR4 compared to SR2. Six of the unigenes were specific to 

cassava. Eleven of the overrepresented unigenes were from leafy spurge and nine had no 

predicted functional annotation in cassava (Table 4C).  

 

Gene expression involved in storage root development 

In order to confirm the expression data described above, and to more fully analyze 

differential expression patterns across the four developmental stages, a Heatmap was 

created. CLC Main Workbench was used to produce a Heatmap of the 29 unigenes across 
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SR1 to SR4 using their normalized expression values. Hierarchical clustering was 

calculated from the average expression value in each developmental stage to illustrate 

their relationship to the root tuberization process (Fig. 7).  

 

 Using the Heatmap analysis, the 29 unigenes were separated into three distinct 

groups. In the first group expression was seen to be down-regulated in SR2 compared to 

SR1, SR3 and SR4. In the second group, the pattern was reversed with relative up-

regulation of expression in SR2 compared to the other developmental stages. Lastly, a 

group was seen with low expression in SR1 and SR2 but high expression in SR3 and 

SR4. Within the second group, which showed high expression in SR2, DV127294 (major 

latex allergen Hev b 4) was distinct from all other unigenes showing elevated expression 

signal at this stage only. As SR2 is the developmental stage associated with transition 

from fibrous to storage root, this result indicates that the homologue gene for Hev b 4 in 

cassava is a possible candidate for involvement in the initiation of root tuberization. 

  

  It is notable that DV445495 (allergenic-related protein Pt2L4), which was the 

most highly differentially expressed gene as determined by fold change, was placed in the 

third group and showed increasing expression through SR3 and into SR4. DV451479 

(late embryogenesis abundant protein LEA), although also placed in the third group, was 

less distinct by its up-regulation in the latter root developmental stages. DV446014 

(cassava-specific 746, unknown function) showed the most distinct up-regulation in SR4 

compared to earlier developmental stages of all 29 unigenes studies with the Heatmap 

method.  
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DISCUSSION 

This study performed cDNA microarray analysis to determine the putative candidate 

genes involved in cassava root tuberization. The quality and quantity of RNA used in 

microarray is a first critical factor to achieve success. High starch content in cassava 

storage root tissue can cause difficulties in RNA extraction (Kumar et al., 2007, Xu et al., 

2010). For instance, the extended time required for grinding the fresh storage root tissue 

in liquid nitrogen at -80
o
C leads to degradation of nucleic acids and decreases the yield of 

intact RNA. Furthermore, the conformational change of starch to form a gel in the high 

salts of the extraction buffer reduces the purity of intact RNA and obstructs downstream 

reactions. Lyophilization of starchy tissues, such as the cassava storage root, is an 

improved method that enhances the stability of nucleic acids and shortens the grinding 

time needed in liquid nitrogen before RNA extraction. LiCl and acidic phenol was used 

in the present protocol to eliminate the amount of DNA. Additional of purification steps 

and increasing the time for RNA precipitation under -20
o
C resulted in a significant 

increasing in RNA quality and quantity. This improved protocol was not only used for 

cassava storage root RNA extraction, but can also be effectively used for RNA extraction 

from woody stem or lignified tissues (see Chapter 4). 

 

 Validation of the microarray methods and analysis was also important for the 

planned experiments. For example, the microarray employed in this study was composed 

a mixture of cassava and leafy spurge cDNA (Lokko et al., 2007). In order to assess 

efficacy of this array, differential gene expression profiling was performed to compare 

tissues derived from the storage root and leaves. Thus some up-regulated genes might be 
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shown to be specific to leafy spurge cDNA even when cassava cDNA was used as a 

probe for hybridization to the microarray chip. Data generated using this microarray 

produced predictable and informative results. As expected and logical, GSEA predicted 

that the majority of up-regulated pathways and genes in the leaf were involved in 

photosynthesis, including signal transduction and biosynthesis. In addition, the highest 

up-regulated cassavas-specific gene identified was Mec1 that encodes allergenic-related 

protein Pt2L4. This result correlates with the findings of de Souza et al. (2004), who 

identified this gene to be involved with development of secondary xylem parenchyma in 

storage roots. Additionally, the gene encoding late embryogenesis abundant proteins 

(Lea) was shown to be highly expressed in storage root tissue in the present study, a 

result that also correlates with previous reports (de Souza et al., 2004; 2006). Information 

generated from this initial study comparing gene expression in storage root and leaves, 

therefore generated confidence in the cassava/leafy surge cDNA microarray and its 

utilization to study the stages to storage root development in greater detail. 

  

 An understanding of the processes controlling storage root formation in cassava is 

important for improvement programs aiming to improve the crop through enhanced dry 

matter content, starch quality, nutritional content and improved postharvest 

characteristics (Sayre et al., 2011; Zainuddin et al., 2012; Vanderschuren et al., 2014). 

However, the biological mechanisms involved in this process remain unclear. This 

present study utilizes the cDNA microarray analysis to investigate the transcriptional 

changes occurring across four developmental stages of storage root formation. These 

included “prior to tuberization” (SR1), initiation of tuberization (SR2), filling (SR3), and 
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maturation (SR4) (Fig. 3). GSEA was used to predict up-regulated pathways due to 

differential gene expression across the four developmental stages. Pathways associated 

with sucrose degradation including glycolysis were found to be up-regulated at the 

initiation of storage root formation stage (SR2) (Table 3). This result reveals the active 

process of glycolysis and gluconeogenesis in early cassava storage root development and 

corresponds with the report of Yang et al. (2011), who employed cDNA microarray 

analysis to specifically study starch biosynthesis in storage roots.  

 

Interestingly, the jasmonic acid biosynthesis pathway was also found to be up-

regulated in SR2 (Table 3). In the initial microarray experiment reported here, a gene 

involved in jasmonic acid mediated signaling pathway was shown to be highly up-

regulated in storage roots compared to leaves (Fig. 1). Numerous reports have shown 

jasmonic acid to be involved in potato tuberization, where it interacts with gibberellic 

acid to promote tuber formation (Palacho and Castel, 1991; Takahashi et al., 1994; Castro 

et al., 2000). In addition, it has been shown to have possible roles in tuberization in yams 

and sweet potato (Koda, 1997). The systemin signaling pathway, which is known to be 

involved in jasmonic acid biosynthesis (Sun et al. 2011), was up-regulated in SR2 and 

SR3 (Table 3). As SR2-SR3 represents the stages during which early storage roots can 

first be seen developing, it is possible that jasmonic acid, which is known to be an 

important signaling molecule, also plays a role in storage root formation and early 

development in cassava. Future experiments in which jasmonic acid would be 

exogenously applied to developing cassava root systems should be performed and could 

provide additional information about the role of this compound in root tuberization. 
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 The superpathway of leucine, valine, and isoleucine biosynthesis, which is 

involved in glucosinolate production, was shown to be up-regulated in SR3 and SR4 

(Table 3). This result might relate to the synthesis of cyanogenic compounds for which 

these amino acids are involved. Cassava storage roots are known to accumulate 

cyanogenic glycosides (Jorgensen et al., 2005, Binder. 2010), so up-regulation of this 

related pathways would be logical at these developmental stages in which the storage 

tissues have been laid down and are undergoing growth and filling. Prediction of up-

regulated photosynthesis pathway in storage root stage SR4 is an unexpected result for 

these studies, but could indicate that this later stage of storage root development might 

require a subset of genes involved in photosynthesis, such as phytochrome interacting 

factor (PIF) to induce, or suppress, plant hormone biosynthesis (Alabadi and Blazquez, 

2008). 

 

 Microarray data analysis poses challenges due to the large data sets that are 

generated. These must be analyzed using effective software tools in order to highlight the 

biologically important results. CLC Main Workbench was used to statistically analyze 

and generate predicted fold change for differential gene expression across the four root 

developmental stages. Normally, significance at p-value 0.05 is used to determine the cut 

off level for data interpretation. However, if the data set is still too large, significance at 

p-value 0.005 is used. This was the case for the present studies. K-means clustering was 

used to separate the up-regulated genes into distinct groups based on the expression value 

of each gene across the four developmental stages. Of the 24 clusters produced, 21 

clusters were not considered further because the numbers of genes presented were too 
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large to handle and/or did not show sufficiently large fold changes of gene expression to 

be of interest. Three distinct clusters were selected for subsequent detailed analysis 

because the number of genes (29) was reasonable to study (Figs. 6A-C) and fold changes 

were large. 

 

 Twenty-nine genes represented from three clusters were analyzed by production 

of a Heatmap in CLC Main Workbench. By statistical analysis, highly expressed genes 

are usually shown as fold changes, but in Heatmaps the expression value is shown as the 

individual value compared across the other three developmental stages. The biological 

Heatmap demonstrated the actual expression of up-regulated genes across the four 

developmental stages (Fig. 7). Visualization in this manner allowed a second 

interpretation of the data. By this method Mec1 (DV445495) was seen to be highly up-

regulated in SR3, and especially SR4, compared to the earlier developmental stages. 

Likewise, DV4511479 (ADT21; Lea3) was also seen to be up-regulated in SR3, and 

especially SR4. In both cases this confirms data from microarray analysis of storage root 

vs leaf tissues (Table 1). The Heatmap and associated phylogenetic tree (based on 

expression value) reveals three groups of differential expression patterns for SR1-SR4. 

One group shows relative down-regulation in SR2, the second is up-regulated in SR2 and 

therefore might be associated with initiation of the tuberization process. The third appears 

as up-regulation in SR3 and SR4. Of interest is DV127294, which showed the most 

distinct change of expression across the four developmental stages by the Heatmap. This 

gene is predicted to be a homologue of major latex allergen protein (Hev b 4). As in 

cluster 20 (Fig. 6A), the Heatmap showed this gene to be highly up-regulated in SR2, and 
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relatively down-regulated in the developmental stages before and after this stage. This 

data contrasts with the statistical information, which showed fold changes for this gene to 

be relatively low at 1.4, compared to Mec1 (DV445495) at (16.5) (Table 4A) and 

demonstrates the value of Heatmap analysis. 

  

 It should be noted that the microarray data described here was performed before 

full information from the anatomical studies in Chapter 2 was available. Thus separate 

collection of basal-derived and nodal-derived roots was not performed. Instead, all roots 

at SR1 and SR2 that visibly appeared fibrous in type were collected as one. As a result, 

tissues at these stages, and especially at SR2, are most likely composed of a mixture of 

basal- and nodal-derived root structures. This may therefore complicate identification of 

changes taking place at the RNA level in SR2, when the nodal-derived roots initiate 

secondary thickening and start to develop as storage organs. However, for SR3 and SR4 

only distinct storage organs were collected and no fibrous root material was included, 

which allows clear comparison of these two types of root organ with previous 

developmental stages.  

  

Due to this lack of understanding of the biology of early storage root initiation 

and development, the experimental design of this microarray study was likely not optimal 

for discovery of the genes and mechanism involved at the initiation stage (SR2) of 

storage root formation. However, jasmonic acid and major latex allergen Hev b 4 have 

been identified as having putative roles at, or close to, the SR2 storage root initiation 

stage. Data generated by this microarray study clearly indicate that during SR3 and SR4, 
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Mec 1 and ATDI21 genes play important roles in these stages in which secondary 

thickening and starch accumulation are predominant. Functional analysis of these two 

genes is further investigated in Chapter 4.  
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Table 1. GeneMath determined top ten significantly up-regulated genes in mature storage 

roots  

GB_accession 

(unigene) 

Organism Blast_hit Arabidopsis 

Orthologue 

Root/Leaf 

ratio 

DV445495 Cassava Allergenic-related protein Pt2L4 

[Manihot esculenta] 

Unknown 2.82379985 

DV446014 Cassava Cassava specifc 746 Unknown 1.6413579 

DV451141 Cassava Unknown hypothetical protein p85RF At1g51200 1.54818425 

DV451479 Cassava Lea5 protein [Citrus sinensis] At4g15910 1.46267635 

DV447512 Cassava Fiber protein Fb37 [Gossypium 

barbadense] 

At3g52800 1.3702485 

DV447813 Cassava Cassava-specific 878 Unknown 1.3664046 

DV139865 Leafy spurge Spurge specific 3836 Unknown 1.35062855 

DV447978 Cassava Hypothetical protein [Cicer arietinum] At1g72150 1.24675385 

DV449550 Cassava Cassava-specific 2240 Unknown 1.14256645 

DV139532 Leafy spurge DnaJ protein [Hevea brasiliensis] At3g44110 1.12819925 

 

Table 2. GenMath determined top-ten significantly up-regulated genes in leaves 

GB_accession 

(unigene) 

Organism Blast_hit Arabidopsis 

Orthologue 

Leaf/root 

ratio 

DV441259 Cassava Light harvesting chlorophyll a/b-binding 

protein  

At1g29930 2.6269454 

DV134008 Leafy spurge Carbonic anhydrase, Chloroplast precursor 

(Carbonate dehydratase) 

At3g01500 2.62582885 

DV450878 Cassava Chloroplast oxygen-evolving enhancer 

protein [Manihot esculenta] 

At4g05180 2.2122086 

DV452214 Cassava Chlorophyll a/b-binding protein [Pisum 

sativum] 

At5g54270 2.19743425 

DV455684 Cassava Questionable orf [Candida albican] 

SC5314] 

Unknown 2.15877195 

DV444628 Cassava Oxygen evolving enhancer protein 1 

precursor 

At3g50820 2.11052345 

DV458083 Cassava  Chloroplyll a/b-binding protein type III 

precursor - tomato 

At1g61520 2.0925479 

DV449255 Cassava Unnamed protein product [Lycopersicon 

esculentum] 

At1g76100 1.90737655 

DV454456 Cassava Chloroplast latex aldolase-like protein 

[Manihot esculenta] 

At4g38970 1.8830498 

DV136998 Leafy spurge Unknown protein [Arabidopsis thaliana] At5g16520 1.86234195 
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Table 3. Gene ontology determination for biological processes significantly up-regulated 

(p<0.05) in each stage of storage root development 

Differentially up-regulated pathway Initiation 

(SR2) 

Starch 

filling 

(SR3) 

Maturation 

(SR4) 

Jasmonic acid biosynthesis √   

Sucrose degradation √   

Sucrose degradation to ethanol and lactate (anaerobic) √ √  

Superpathway of sucrose degradation to pyruvate √ √  

Superpathway of starch degradation to pyruvate √ √  

Systemin Signaling √ √  

Glycolysis II (plant plastids) √ √  

Glycolysis I (plant cytosol)  √  

Valine biosynthesis  √  

Suberin biosynthesis  √  

Flavonoid biosynthesis  √  

Isoleucine biosynthesis  √  

Triacylglycerol degradation  √  

Superpathway of isoleucine and valine biosynthesis  √  

Superpathway of leucine, valine, and isoleucine 

biosynthesis 
 √ √ 

Oxidative ethanol degradation   √ 

Fatty acid omega-oxidation   √ 

Glyoxalate cycle   √ 

Superpathway of pantothenate and coenzyme A 

biosynthesis 
  √ 

Photosynthesis, light reaction   √ 

Leucine biosynthesis   √ 

Phospholipases   √ 

Photosynthesis    √ 

Auxin Signaling   √ 

Salvage pathway of purine nucleoside   √ 
√ = significantly up-regulated in this stage compared to previous stage 
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Table 4A. Significant genes in cluster 20 determined by K-means cluster to be over-

represented as up-regulated in the initiation stage (SR2) of storage root development 

 

Feature 

ID 

Organism Fold 

change 

Blast_hit Arabidopsis 

orthologue 

functional 

annotation* 

DV128628 Leafy 

spurge 

1.4 putative aspartate 

aminotransferase [Oryza 

sativa (japonica cultivar-

group)] 

At2g22250 Aminotransferase 

class I and II 

DV127294 Leafy 

spurge 

1.29 major latex allergen Hev b 4 

[Hevea brasiliensis] 

At1g54030 GDSL-like 

Lipase/Acylhydrolase 

DV125594 Leafy 

spurge 

1.17 cyclin A3 [Lycopersicon 

esculentum] 

At1g47230 G2/MITOTIC-

SPECIFIC CYCLIN 

DV129011 Leafy 

spurge 

-1.92 cysteine synthase [Spinacia 

oleracea] 

At3g59760 Cystathionine beta-

synthase and related 

enzymes 

*Predictive functional annotation (Cassava Genome, Phytozome) 

 

 

 

Table 4B. Significant genes in cluster 15 determined by K-means cluster to be over-

represented as up-regulated in the maturation stage (SR4) of storage root development 

 

Feature 

ID 

Organism Fold 

change 

Blast_hit Arabidopsis 

orthologue 

Functional 

annotation* 

DV445495 Cassava 16.15 Cassava-specific 1668 Unknown Manihot esculenta 

allergenic-related 

protein Pt2L4 (c1) 

DV451479 Cassava 11.47 Lea5 protein [Citrus 

sinensis] 

At4g15910 Late embryogenesis 

abundant protein 

DV446014 Cassava 10.67 Cassava-specific 746 Unknown No functional 

annotation 

DV444641 Cassava 9.19 68418.m06286 expressed 

protein 

At5g50730 Populus EST from 

severe drought-

stressed opposite 

wood 

DV443475 Cassava 8.35 ubiquitin [Pisum sativum] At4g02890 ubiquitin like protein 

DV121679 Leafy 

spurge 

7.31 ubiquitin extension protein 

[Cucumis sativus] 

At2g47110 ribosomal protein s27a 

+ Ubiquitin family 

domain 

DV442863 Cassava 6.45 fw2.2 [Lycopersicon 

esculentum] 

At1g58320 PLAC8 family 

DV141376 Leafy 

spurge 

6.42 S-adenosyl-methionine-

sterol-C- methyltransferase 

[Ricinus communis] 

At5g13710 SAM-dependent 

methyltransferases 

*Predictive functional annotation (Cassava Genome, Phytozome) 
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Table 4C. Significant genes in cluster 22 determined by K-means cluster to be over-

represented as up-regulated in the filling stage (SR3) of storage root development 

 
Feature 

ID 

Organism Fold 

change 

Blast_hit Arabidopsis 

orthologue 

Predictive functional 

annotation 

(Cassava Genome) 

DV117936 Leafy 

spurge 

10.09 Spurge Specific 166 Unknown Not found any region in 

Cassava 

DV131468 Leafy 

spurge 

7.56 putative GAR1 protein 

[Arabidopsis thaliana] 

At3g03920  

DV120061 Leafy 

spurge 

4.64 Spurge Specific 335 Unknown Not found any region in 

Cassava 

DV445389 Cassava 4.24 cassava-specific 699 Unknown Protein tyrosine 

kinase/leucine rich repeat 

DV441408 Cassava 4.12 cassava-specific 317 Unknown Not found any region in 

Cassava 

DV155281 Leafy 

spurge 

3.64 Spurge Specific 2845 Unknown Not found any region in 

Cassava 

DV444942 Cassava 3.52 cassava-specific 668 Unknown Sodium sulfate symporter 

and related arsenite 

permeases 

DV443227 Cassava 3.51 cassava-specific 501 Unknown Not found any region in 

Cassava 

DV129279 Leafy 

spurge 

3.28 Spurge Specific 1299 Unknown Not found any region in 

Cassava 

DV119603 Leafy 

spurge 

3.2 Spurge Specific 280 Unknown Not found any region in 

Cassava 

DV118797 Leafy 

spurge 

3.16 40S ribosomal protein 

S25 (RPS25E) 

[Arabidopsis thaliana] 

At4g39200 S25 ribosomal protein 

DV126381 Leafy 

spurge 

3.03 Spurge Specific 1031 Unknown Not found any region in 

Cassava 

DV441855 Cassava 2.89 cassava-specific 364 Unknown NmrA-like family 

(NITROGEN 

METABOLIC 

REGULATION PROTEIN 

NMR-RELATED) 

DV120250 Leafy 

spurge 

2.81 Spurge Specific 356 Unknown RNA binding 

DV119585 Leafy 

spurge 

2.77 Spurge Specific 275 Unknown Not found any region in 

Cassava 

DV442549 Cassava 2.75 cassava-specific 1893 Unknown Glyceraldehyde 3-

phosphate dehydrogenase 

DV131392 Leafy 

spurge 

2.62 unknown [Arabidopsis 

thaliana] 

At5g26940 Exonuclease  

*Predictive functional annotation (Cassava Genome, Phytozome) 

 



91 
 

 

Figure 1. Predicted biological function of significantly up-regulated genes (p<0.05) in 

leaves and roots as determined by Gene Ontology. Microarray analysis was performed to 

compare gene expression in leaves and storage roots in three-month-old plants. Gene Set 

Enrichment Analysis was done using Pathway Studio software to categorize pathways 

represented by up-regulated genes. A. Up-regulated pathways in storage roots B. Up-

regulated pathways in leaf. Number of genes in each pathway is shown in brackets. 

A 
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Figure 2. Enrichment analysis based on Gene Ontology to compare pathways 

containing up-regulated genes over-represented in storage root and leaf tissues.  
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Figure 3. Developmental stages in storage root development with comparative size of 

plants. SR1 – fibrous roots prior to tuberization, plants at two weeks after planting; SR2 – 

initiation stage, plants at one month after planting; SR3 – starch filling stage, plants at 

two months after planting; and SR4 – maturation stage, plants at three months after 

planting. 
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Figure 4. Significantly up-regulated genes (p<0.005) in each developmental stage of 

storage root formation determined by k-mean clustering. Number of genes and expression 

level (high, medium or low) is represented in each different developmental stage (SR1-

SR4) as shown in brackets. Low expression equates to less than a normalized expression 

value below 5,000, medium to 5,000 – 10,000 and high to expression values above 

10,000.   
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Figure 5. The average original expression value of twenty highest expression genes across the four root developmental stages (SR1-

SR4) ranked by fold change calculated by GeneMath software.  
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Figure 6A. Pattern of gene expression in cluster 20 across four developmental stages of 

root development (SR1-SR4). Four genes in this cluster showed significantly higher 

expression in the initiation stage (SR2) of storage root development. The expression 

pattern was shown as normalized expression value.  
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Figure 6B. Pattern of gene expression in cluster 15 across four developmental stages of 

root development (SR1-SR4). Eight genes in this cluster showed significantly higher 

expression in the maturation stage (SR4) of storage root development. The expression 

pattern was shown as normalized expression value.  
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Figure 6C. Pattern of gene expression in cluster 22 across four developmental stages of 

root development (SR1-SR4). Seventeen genes in this cluster showed significantly higher 

expression in the filling stage (SR3) of storage root development. The expression pattern 

was shown as normalized expression value.  
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Figure 7. Heatmap analysis of expression profiles of unigenes identified in clusters 15, 

20 and 22 across each of the four root development stages SR1-SR4. Phylogenetic tree is 

shown for unigenes displaying similar patterns of expressions. 
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Chapter 4. Gene expression analysis of candidate genes enriched 

during development of cassava storage roots 

 

ABSTRACT 

Molecular mechanisms controlling root tuberization in cassava can be revealed by 

studying differential gene expression between the tuberous and non-tuberous roots and 

across timing of the tuberization process. Microarray analysis across four different stages 

of storage root development identified three candidate genes involved in the maturation 

stage of storage root formation. These three candidate genes were identified as Mec1 

(DV445495), MeATDI21 (DV451479) and ENOD40-like genes (DV446014). In the 

present study, the functional role of these candidate genes was investigated in cassava 

using in silico analysis against the genome sequence available on public databases and 

the Cassava Genome sequence. In addition, the expression of each gene was examined by 

RT-PCR, Northern blotting and tissue printing in leaf, fibrous root, nodal root, stem, and 

storage root tissues, in order to validate actual expression in cassava plants. Northern 

blots and tissue printing indicated that Mec1 is highly expressed in the storage root and 

stem tissues, while RT-PCR revealed a high signal of Mec1 expression in the storage 

root, stem, and nodal root, with the low expression in leaf and fibrous root. MeATDI21 

was highly expressed in storage roots and nodal root with the low expression seen in 

fibrous roots and the stem. Finally, RT-PCR indicated that the cassava ENOD40-like 

gene was highly expressed in nodal roots with the low expression in storage root, stem, 
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and fibrous root. The further analysis is required for these candidate genes in order to 

annotate their putative role in cassava root tuberization. 

 

INTRODUCTION 

Root tuberization in cassava (Manihot esculenta Crantz) is a complex process that is 

dependent on genetics and environments. Diverse conditions including biotic stress and 

abiotic stress clearly affect the process of storage root development (El-Sharkawy, 2003, 

Lebot, 2009). The modification of nodal-derived roots into storage root occurs around 

one month after propagation via stem cuttings with visual thickening observed at 

approximately six weeks after planting under the optimum conditions in the greenhouse 

(see Chapter 2). However, various planting conditions such as low light intensity and 

high nitrogen fertilization can cause delays in storage root development. Conversely, 

early development of storage roots can be found under stress conditions such as low level 

of N fertilization and drought as well as the long day length period (Taylor et al., 2012). 

Therefore stress conditions may play a role in the initiation of storage root development, 

although the specific genes and pathways involved need to be clarified.  

Gene expression profile analysis is an efficient approach to elucidate biological 

mechanisms in plants (Jung et al., 2014) and could have great value if applied to the 

study of cassava root tuberization. Several efficient functional genomics tools have been 

used to investigate gene expression in plants (Butte, 2002). Reverse genetics approaches 

have been used to study gene functions based on alteration of phenotype. Efficient 

reverse genetic tools were developed to investigate the role of target genes for validation 

of differential gene expression between controls and a mutated phenotype; for example, 
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gene silencing by RNAi technology, recombinant mutagenesis, microarray analysis, 

RNA-seq and proteomic analysis (Chen et al., 2009; Till et al., 2013). Gene expression 

profiling and proteomic analysis can be useful tools for identification of genes involved 

in significant traits, whereas microarray technique or RNA-seq can be powerful for 

elucidating the complex biological systems under controlled environmental conditions 

(Butte, 2002; Zhang, 2003). Factors affecting efficiency of microarray experiments such 

as experimental design, component analysis, and the minimum sample size have been 

improved in order to increase the accuracy of data interpretation (Butte, 2002; Churchill, 

2002; Subramanian et al., 2005; Nguyen and Williams, 2006; Jørstad et al., 2007). As a 

result, transcriptional profiling from cDNA microarrays have been shown to be an 

efficient method for prediction of putative pathways and candidate genes involved in the 

studied mechanisms (Duggan et al., 1999; Hardiman, 2004; Chen et al., 2009).  

 

Genome-wide analysis, especially transcriptome analysis in cassava research, was 

first implemented using the cDNA-AFLP to develop cassava-specific ESTs (Suarez et 

al., 2000). The evolutionary and geographical origin of cassava between domesticated 

varieties and wild populations were determined using SNPs (single nucleotide 

polymorphisms) and SSR (simple sequence repeat) in order to study their genetic 

diversity (Olsen, 2004). Moreover, databases of ESTs derived from various cassava 

cDNA libraries were developed and are available through the public database (Lopez et 

al., 2004; Lokko et al., 2007; Sakuria et al., 2007; Li et al., 2010). ESTs which are shown 

to be predicted unigenes located at the same transcribed locus on UniGene database 

facilitate faster interpretation of putative function of candidate genes. 
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The draft genome sequence for cassava was announced in 2009 via JGI’s 

Phytozome (www.phytozome.net/cassava) for providing new opportunities for improving 

the cassava crop. This cassava draft genome sequence does not only facilitate the gene 

analysis and annotation for cassava-specific genes, but also allows the advancement of 

data on genome-wide expression analysis for traits such as storage root formation. 

Furthermore, a total of 9,600 cDNAs and gene expression profiles at the key growth 

stages of cassava were sequenced and established as another catalogue of expressed 

sequence tags (ESTs) (Li et al., 2010). The library of a unigene set of 5,700 EST 

sequences was generated using differential expression in a cassava variety that differed in 

starch content and bacterial blight resistance (Lopez et al., 2004). These large cassava 

EST resources publically available on published databases are useful for mining the 

genomic knowledge of cassava. 

 

To date, different databases for in silico analysis is available, for example the 

UniGene database (http://www.ncbi.nlm.nih.gov/unigene), to determine groups of 

cDNAs that share the same transcribed locus. The large EST libraries in UniGene 

database provide the possibility to identify transcripts from the same locus of a given 

candidate gene, and then allow prediction of the biological function based on annotated 

cDNAs in the same transcribed locus. However, most cassava-specific cDNAs still lack 

effective functional annotation. An alternative tool for analysis is the genome-wide 

analyses of alternative splicing variants. Alternative splicing occurs under certain 

condition such as diverse growth and development to create multiple transcripts, or 

http://www.phytozome.net/cassava
http://www.ncbi.nlm.nih.gov/unigene
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isoforms, from a single gene (Barbazuk et al., 2008). Isoform derived alternative splicing 

has been reported to play a role in biological function (Stamm et al., 2005; Reddy, 2007). 

Alternative splicing causes an increase of mRNA diversity and also affects the 

localization, enzymatic properties, and ligand interaction of proteins (Kelemen et al., 

2013). Moreover, alternative splicing is also shown to play a role in plant tissue identity, 

stress adaptation, and defense responses (Gassmann, 2008; Mastrangelo et al., 2012; 

Thatcher et al., 2014). 

 

According to the microarray results described in Chapter 3, three unigenes were 

selected as candidate genes with putative relation to storage root development in the latter 

maturation stage (SR4). Those unigenes are DV445495, DV451479, and DV446014 that 

were shown to be enriched in the maturation stage (Ch3, Fig. 7/Table 4B). The functional 

protein domain of DV445495 was identified through Cassava Genome to be allergenic-

related protein Pt2L4, which has been proposed previously to be related to storage root 

and vascular tissue of cassava (de Souza et al., 2004; 2006). The gene corresponding to 

DV451479 was annotated as the homologue of ATDI21 (Arabidopsis thaliana Drought-

induced 21) in cassava. However, the functional annotation of DV446014 remains to be 

identified. 

 

The cDNA of DV445495 was characterized as the Mec1 gene encoding 

allergenic-related protein Pt2L4 and identified as the gene related to cassava storage root 

formation (de Souza et al., 2002; 2003; 2004; 2006). Two cassava promoters related to 

storage root formation and vascular expression were developed from cDNA of c15 and 
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c54 and characterized in cassava (Zhang et al., 2003). Furthermore, a glutamic acid-rich 

protein Pt2L4 promoter was shown to drive high transgenic expression of a marker gene 

in storage roots and stem (Beltran et al., 2010). DV451479 is the homologue of ATDI21 

gene in cassava. The ATDI21 gene is located in Chromosome 4 in Arabidopsis and its 

transcription level of ATDI21 was reported to be elevated by changes in abscisic acid 

levels (Gosti et al., 1995). Because the coding sequence consisted of the late 

embryogenesis abundant protein 3 (Lea3), the putative function of DV45149 was 

predicted as the response to biotic and abiotic stress (Costa et al., 2011). DV446014 is 

one candidate unigene that requires further study to determine its functional role in 

cassava tuberization. 

 

 In this study, I attempted to analyze gene expression of the three candidate 

unigenes (DV445495, DV451479, and DV446014) related to storage root development at 

maturation stage of the tuberization process. The expression of alternative splicing 

variants of each candidate gene was also studied in different tissue types of cassava to 

predict the putative role in tissue-specific regulation. 

  

MATERIALS AND METHODS 

Plant materials 

Three-month-old plants derived from tissue culture were transferred to greenhouse as 

described in Chapter 2. Young leaves consisting of the second to fourth leaf below the 
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apical point were collected. Samples were taken with gloved hands, wrapped with 

aluminum foil, labeled and immediately frozen in the liquid nitrogen.  

 

Plants were removed from their pots, the whole rooting system gently removed 

and soil rinsed away from the root tissues under running tap water. The whole root tissues 

were briefly dried with paper towel. The fibrous roots (FR), nodal roots (NR), and 

storage roots (SR) were carefully separated and cut from the plant using a sharp blade. 

Tissues were placed into 15 ml centrifuge tubes and kept on dry ice until RNA extraction. 

Storage roots were removed from the stem using a sharp blade and rinsed again with tap 

water. Cleaned storage roots were quickly peeled and cut into small pieces approximately 

125 mm
3
 in size and transferred into a 50 ml plastic Falcon tube and closed using 

aluminum foil. Storage root samples were freeze-dried in a lyophilizer (VirTis lyophilizer 

#FM 25ES-53, SP Scientific) for 24 hours and then stored at room temperature till 

required for RNA extraction. Stem tissues was cut into small pieces approximately 125 

mm
3
, placed in 50 ml Falcon tunes, and freeze-dried in the same manner as the storage 

roots. The freeze-dried samples were kept at room temperature till proceeding with RNA 

extraction. 

 

RNA extraction for each organ type 

Total RNA from two grams of leaf sample, one gram of fibrous roots, and one gram of 

nodal roots were separately extracted using a modified CTAB protocol adapted from 

Lodhi et al., (1994). The CTAB extraction buffer was modified to be composed of 2% 

CTAB (Sigma), 100 mM Tris-HCL (pH 8.0, Sigma), 20 mM EDTA (Sigma), 1.4 M NaCl 
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(Sigma), and 2% v/v beta-mercaptoethanol (Sigma) in RNase-free water, with the beta-

mercaptoethanol added to the buffer immediately before extraction. The buffer was 

incubated at 65
o
C before adding onto 0.5 g of ground sample tissue in the 15 ml 

centrifuge tube. Samples were incubated on 65
o
C for 30 min with gently mixing. An 

equal amount of chloroform was then added and the sample mixed for 10 min at room 

temperature before centrifuge at 10000 rpm. After centrifugation, the aqueous phase 

containing nucleic acid was dispensed to a new 15 ml centrifuge tube and purification 

steps performed twice using equal volumes of Chloroform:isoamyl alcohol (24:1). Total 

RNA was precipitated from the supernatant after centrifugation with 0.7 volumes of ice 

cold isopropanol in a 2 ml Eppendorf centrifuge tube. The RNA pellet was washed with 

500 µl 75% ethanol three times and then dissolved in 1 ml RNase-free water before an 

overnight precipitated with 1/3 volume of 8 M LiCl (Ambion) at -20
o
C. The final RNA 

pellet was washed with ice cold 75% ethanol three times. 

 

Total RNA of storage roots and stem was extracted using a modified protocol for 

cassava storage root RNA as described in in Chapter 3. The RNA extraction buffer was 

composted of 100 mM LiCl, 1% (w/v) SDS, 100 mM Tris-HCL pH 7.5, 100 mM EDTA 

in diethylpyrocarbonate (DEPC) treated water, and 1% v/v of beta-mercaptoethanol, 

which was added into the buffer before extraction. The lyophilized storage root sample 

was briefly ground in liquid N2 to a fine powder. Half a gram of ground, lyophilized 

tissue was transferred into 2 ml Eppendorf microtube. First, 800 µl extraction buffer was 

added into the sample, then the premix of 800 µl acidic phenol:chloroform (AM9720, 

Ambion) immediately added to the same tube. The extract was well vortexed and 
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incubated at room temperature for one hour. The extract was centrifuged at max speed for 

30 min at 4
o
C. The clear aqueous phase of the extract was carefully transferred into the 

new centrifuge tube and then centrifuged again for 5 min. The supernatant was 

transferred into a new tube, 1/3 volume of 8M LiCl was added to the supernatant with 

gently mixing and incubated at -20
o
C for 16 hours. The extract was centrifuged at 4

o
C for 

30 min to harvest the RNA pellet, followed by two washing steps using ice cold 75% 

ethanol. The pellet was then dried before elution with 30 μl RNAse-free water. The RNA 

was treated with DNase using DNA removal kit (DNA free, AM1906, Ambion) 

following by the cleanup steps as describe in the manual (RNeasy mini kit,Qiagen). RNA 

quality and quantity was confirmed by denaturing agarose gel electrophoresis and a 

spectrophotometer, respectively.  

 

RT-PCR  

The expression of selected unigenes DV445495 (allergenic-related protein Pt2L4), 

DV445495 (cassava ATDI21), and DV446014 (No functional annotation) was performed 

by reverse transcriptase PCR (RT-PCR) from total RNA extracted from different organs 

of three-month-old plants. Primers were custom-designed in order to amplify cDNA 

fragments corresponding to candidate gene sequences (Table 1) using the PrimerQuest 

tools (http://www.idtdna.com). The first strand cDNA were synthesized from total RNA 

using the SuperscriptIII first-strand cDNA synthesis system (#18080-051, Invitrogen, 

Life Technology). cDNA from the genomic RNA was synthesized using Oligo(dT)20 as 

a primer and the synthesis mix incubated at 50
0
C for 50 min. The reaction was then 

incubated at 85
o
C for 5 min to terminate the reaction. The RNA duplex was degraded by 

http://www.idtdna.com/
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RNase H at 37
o
C for 20 min, and 2 μl cDNA used as the template in PCR reactions with 

the primers and the optimized annealing temperature specific for each candidate gene 

(Table 1). The expression of selected gene was amplified by PCR using One tag DNA 

polymerase (NEB, MA). The amplified fragments of candidate unigene were run on a 1% 

agarose gel electrophoresis to reveal expression within the different organ types.  

 

In silico analysis of alternative splicing forms of candidate genes 

The three unigenes DV445495 (Pt2L4 protein), DV445495 (cassava ATDI21), and 

DV446014 were analyzed by blasting the non-redundant sequences, including the 

cassava-specific unigenes, against the TAIR database 

(http://www.arabidopsis.org/Blast/index.jsp) in order to identify the Arabidopsis 

orthologue and predict their function using BLASTN and BLASTP via NCBI 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). The sequence of candidate genes was retrieved 

from the ESTs database (NCBI) correlating to their unique accession number, then these 

sequences were blasted into Cassava genome (www.Phytozome.net, JGI, CA) for 

analysis of the actual cassava sequence and their alternative splicing forms (RNA 

Isoform). The alignment of nucleic and protein sequences were analyzed through CLC 

Main Workbench software (CLCbio, a Qiagen company, MA).  

 

Because information for the DV446014 transcript was not available on the 

Cassava Genome database (Phytozome), nor through BLASTN search on NCBI, the 

UniGene database (http://www.ncbi.nlm.nih.gov/unigene) was used to identify unigenes 

from the same transcribed locus. The Rfam database, which is a collection of non-coding 

http://www.arabidopsis.org/Blast/index.jsp
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.phytozome.net/
http://www.ncbi.nlm.nih.gov/unigene
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RNA families, was used to identify RNA families with conserved RNA secondary 

structure domain (Griffiths-Jones et al., 2003, Burge et al., 2012). The RNA sequence of 

DV446014 transcript was submitted to the Rfam database (http://rfam.xfam.org). 

Information of the match RNA family was then further analyzed by comparing to the 

reference sequence to identify the regulatory domains within DV446014. 

 

Northern blot hybridization of Mec1 RNA 

To examine the expression of the Mec1 gene in different cassava organs, Northern blot 

analysis was performed to compare gene expression between the three-month-old plants 

derived from tissue culture. Fibrous roots (FR), leaves (L), stems (ST), and storage roots 

(SR) were sampled as described above. Large storage roots, approximately 6 cm in 

diameter and woody stems were also harvested from field grown eight-month-old plants 

of cv. 60444 and imported from the Tropical Agricultural Research Station Mayaguez, 

University of Puerto Rico. Field grown storage roots were peeled, chopped into 125 mm
3
 

size pieces, lyphilized and processed in the same manner as greenhouse derived 

materials. Stems were peeled to remove the bark, cut into 125 mm
3
 size pieces and 

processed likewise. Total RNA of leaf, fibrous root, stem, and storage root was extracted 

as described above. 

  

Ten µg of genomic RNA from each tissue was run on a 1% denaturing agarose 

gel under 80 eV for 2 hrs. RNA was transferred to a Hybond-N+ nylon membrane 

(Amersham Pharmacia Biotech, USA) with transfer buffer (20x SSC). A DIG-labeled 

probe was prepared by PCR amplification of the coding sequence of Pt2L4 protein using 

http://rfam.xfam.org/
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primers DV445495-F (5’-CCTTGGCTGACTATGGCTACTGCTGAGGTAGT-3’) and 

DV445495-R (5’-TCAGATTTCTTCTCATCACCTTCTTCCTCC-3’) by PCR DIG-

probe synthesis kit (Roche Life Science). Optimum PCR conditions used were: initial 

denaturation at 94
o
C for 4 min, followed by 35 cycles of 30 s at 94

o
C, 60 s at 58

o
C, and 

60 s at 72
o
C, and incubation at 72

o
C for 5 min. DIG-labeled probe was checked for 

quality on agarose gel electrophoresis and was kept at 20
o
C till hybridization.  

 

The membrane was pre-hybridized at 60
o
C for 15 min, follow by hybridization 

with buffer containing the DIG-labeled probe at 60
o
C for 16 hrs. The hybridized 

membrane was washed twice at 60
o
C for 20 min. The DIG blocking step was incubated at 

room temperature for 30 min using a shaker, after which the anti-DIG antibody 

(1:15,000) was added to the DIG blocking buffer and incubated at 25
o
C for 1 hr. The 

membrane was washed three times with 1x maleic buffer at room temperature for 20 min 

using a shaker and then incubated in equilibration buffer at room temperature for 5 min. 

Chemiluminescence detection was done by applying chemiluminescent substate (CDP-

star, Roach Life Science) for alkaline phosphatase (10 µl per cm of membrane) and 

incubated at room temperature for 5 min. The membrane was covered with cling film and 

signal detection performed by exposure to X-ray film for 20 min.  

 

In situ hybridization of Mec1 

To examine localization of Mec1 RNA in developing storage roots and stem, in situ 

hybridization was performed using a tissue printing technique following Pluskota et al. 

(2011). Fresh storage roots and stems were obtained from three-month-old greenhouse 
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grown plants. Storage roots were sliced into 50 μm thick sections using a sliding 

microtome (Uchida Yoko, VWR). Sections were cut from the neck region of the storage 

root and fleshy tuberized tissues and from the semi-woody stem. RNA printing was 

performed immediately by placing the thin sections on a Hybond-N+ nylon membrane 

(Amersham Pharmacia Biotech, USA), and then covering the membrane with parafilm. 

Each tissue section was pressed hard down onto the membrane using the thumb for 20 

seconds ensuring that all areas of the tissue contacted the membrane. After the pressure 

was released, tissue sections were removed using forceps taking care not to touch the 

membrane. The membrane was then cross-linked using a UV cross-linker and processed 

for hybridization with the DIG-labeled DNA probe as described above for the Northern 

blot analysis. 

 

RESULTS 

Selection of candidate genes involved in cassava storage root maturation for further 

analysis 

According to the results of microarray analysis described in Chapter 3, differential gene 

expression across the stages of storage root formation demonstrated transcriptional 

changes in each developmental stage from SR1 (before tuberization), SR2 (initiation), 

SR3 (filling), and SR4 (maturation). Three distinct clusters of differential gene 

expressions generated by k-means clustering were selected to identify candidate genes 

involved in storage root formation. Cluster 15 consisted of unigenes that were highly up-

regulated in SR4, showing fold changes of 6.4-16.2 (Ch3, Table 4B/Fig. 6B). Cluster 20 

and cluster 22 consisted of genes showing high expression in SR2 but the fold change of 
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their expression was only a maximum of 1.4 (Ch3, Table 4A&C and Fig. 6A&C). 

Corresponding sequences for unigenes in cluster 22 could not be found in any region of 

the published cassava genome. In contrast, in cluster 15, of the eight significantly 

expressed unigenes, all could be found to have similar annotated sequences in the cassava 

genome. The three unigenes (DV445495, DV451479, and DV446014) that showed 

highest fold change across the four developmental stages and highest expression in 

storage root tissues were therefore selected for further study (Table 2).  

 

Sequence similarity analysis of candidate genes  

BLAST searches (performed 10/22/14) were performed for cDNA sequences of unigenes 

DV445495, DV451479, and DV446014 against the non-redundant database (NCBI) and 

Cassava Genome Database (Phytozome.net). The BLAST search showed the cassava-

specific allergenic-related protein Pt2L4 (Mec1) to be highly similar to the DV445495 (E 

value 0.0) both in NCBI database and Cassava Genome. Cassava ATDI21, the homologue 

of Lea3 was shown to be highly similar to DV451579 (E value 0.0). In contrast, there 

was no significant similarly found for DV446014 against the non-redundant database on 

NCBI. However, one region was found to be highly similar to DV446014 on Cassava 

Genome (E value =0.0), but no transcript or functional annotation was available.  

 

DV445495 (Allergenic-related protein Pt2L4) 

Functional annotation of DV445495 in cassava 

BLAST searches for DV445495 against the NCBI database predicted five highly similar 

sequences as shown in Table 3. The results showed that DV445495 falls within the 



114 
 

distinct group of c1 genes that is specific in cassava and called Mec1. Mec1 encodes the 

allergenic-related protein Pt2L4 previously reported to be involved in development of 

secondary xylem parenchyma in cassava storage roots (de Souza et al., 2004). 

 

The DV445495 cDNA sequence was used as the query sequence for a BLAST 

search against the Cassava Genome through Phytozome. Two significant regions were 

predicted to have the homologue sequence of DV445495. The sequence in the first region 

was located in scaffold06844 and shown to be highly similar to the reference sequence 

(E-value=0, score 1058.1), whereas the sequence in the second region located in scaffold 

03131 was showed to have lower similarity (E-value=1.8e-70, score 270.0) (Fig. 1A). 

Two alternative splicing variants were predicted in the first region on scaffold06844 (Fig. 

1B), while the genes located on scaffold03131 showed no alternative splicing forms. 

Although the cDNA sequence of DV445495 was shown to be highly similar to cassava 

c1 (Mec1) encoding allergenic-related protein c1 (Pt2L4) on NCBI database, no 

functional annotation for this locus was presented on cassava genome.  

  

Expression of Mec1 in storage root and stem  

The full length cDNA of DV445495 was used as a probe to investigate expression of 

Mec1 gene by Northern blot analysis. Total RNA from leaves, storage root, fibrous roots, 

and stem was extracted from three-month-old tissue culture derived plants and hybridized 

with DIG-labeled probe. Expression of Mec1 was shown to be high in tissues of storage 

root and stem but was absent or below detectable levels in the leaf and fibrous root (Fig. 

2). Expression of Mec1 was also examined in storage roots, stem, and leaf tissues of 
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eight- month-old field grown roots. Likewise, Mec1 was seen to be highly up-regulated in 

storage root and stem tissues but not detectable in leaves collected from these fully grown 

plants (Fig. 2). This data indicate that expression of the Mec1 gene encoding for the 

Pt2L4 protein was not specific to storage root tissues but was present also in the stem. 

Interestingly, its pattern of expression was similar in relatively juvenile greenhouse 

grown plants and almost mature plants cultivated under tropical conditions in the field. 

The latter information is important as it provides confidence that although studies in the 

greenhouse are performed on small plants under artificial conditions, the data generated 

does relate well to the field and can therefore be treated with some confidence.  

 

Expression of Mec1 in secondary xylem parenchyma in storage roots and stem vascular 

tissue  

Mec1 expression was confirmed at the tissue level by in situ hybridization using the 

tissue printing technique. The same full length cDNA of DV445495 was used as a label 

for this Northern blot analysis. The neck of storage root (see Ch2, Figs. 1 & 5) through to 

the widest area of storage root, as well as stem of three-month-old cassava plants were 

freshly cut into sections approximately 50 μm thick, pressed onto a nylon membrane and 

blotted as described in Material and Methods. Expression of Mec1 was seen within both 

storage root and stem tissues especially associated with the starch storage tissue in roots 

(Fig.3A) and the vascular tissue in stem (Fig. 3B). Within the storage root, expression 

was seen least in the neck region of storage root, where the majority of the tissues are 

known to be lignified xylem (Ch 2, Fig. 4) with little starch storage, while the expression 

was highest within the more cellulosic, starch-containing storage region located further 
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from the stem (Fig. 3). The result therefore corresponds with those of de Souza et al. 

(2004) who originally proposed the function of Pt2L4 protein to be associated with 

secondary xylem parenchyma of storage root. Expression in the more mature stem would 

also be explained by this information as the stem of cassava is lignified and does store 

starch within these xylem tissues.  

 

Alternative splicing variants prediction of Mec1 

Two homologous transcripts showing high similarity with Mec1 were predicted in 

Cassava Genome Database (Fig. 1A). The first hit region was located in scaffold06844 

(SC06844) which showed two alternative splicing variants (Mec1-1, and Mec1-2), while 

the second region was located in scaffold03131 (SC03131) and had no alternative 

splicing (Mec1-like). SC06844 region was further studied to test whether the putative 

splice variants affected gene expression in different organs or tissue types of cassava. The 

coding sequences of two splice variants (Mec1-1 and Mec1-2) of the first homologue 

were retrieved from the Cassava Genome Database and then aligned against the reference 

sequence of Mec1. From the alignment, the coding sequence of Mec1-1 maintained its 

internal intron, whereas this intron was spliced out in the second splice variant, Mec1-2. 

The results showed that the transcript of Mec1 was more likely similar to the splice 

variant 1 (Mec1-1) than to the splice variant 2 (Mec1-2), as shown in Figure 4.  

 

Gene expression analysis of Mec1 and its predicted alternative splicing variants in 

different tissue types 
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Primers were designed to amplify the entire coding sequence of DV445495 (Mec1) and 

specifically amplify each predicted variant (Table 1). RT-PCR was performed on total 

RNA extracted from leaves, stems, fibrous roots, nodal roots (see Chapter 2), and storage 

root tissues. Amplification of the complete coding sequence showed high expression of 

Mec1 in storage roots, nodal roots, and stem compared with lower expression in leaf and 

fibrous roots (Fig. 5). The same expression pattern was seen for Mec1 homologue 2 

(Mec1-like) and for splicing variant 1 (Mec1-1). In contrast, Mec1 splice variant 2 (Mec1-

2) showed a different pattern with a weak signal of expression in most tissues. Signals 

were present for expression in storage root, but were barely detectable for fibrous root 

and leaves. In addition, non-specific amplification was shown for this primer pair.  

 

DV451479 (cassava ATDI21; Late embryogenesis abundant protein 3)  

Functional annotation of DV451479 in cassava 

The cDNA sequence of DV451479 was retrieved from EST database through NCBI. A 

BLAST search was performed to predict the homologue gene against the non-redundant 

database on NCBI. The cassava ATDI21 (MeATDI21) mRNA sequence (accession no. 

JQ807808) was found to be highly similar to cassava-specific unigene DV451479 with 

the max score 1094 and E value 0.0. The Arabidopsis ATDI21 gene encoding ATDI21 

(Arabidopsis thaliana drought-induced 21 protein) contains one Late embryogenesis 

abundant protein 3 (Lea3) domain in the transcript. The function of Lea protein is known 

to be involved with stress response in various plants (Olvera-Carrillo et al., 2011) as well 

as in cassava (Costa et al., 2011). BLAST searches performed before 2012 returned the 

sequence of unigene DV451479 to be as similar to late embryogenesis abundant protein 5 
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(Lea5). After that time, this cassava-specific DV451479 was identified as cassava 

ATDI21. The similarity between DV451479 and MeATDI21 is shown in Figure 6. The 

transcript sequence of DV451479 consisted of 294 nucleotide coding sequence which is 

100% identical to the transcript of MeATDI21. Thus, DV445495 is exactly the cassava-

specific ATDI21 gene. 

 

To examine the predictive function for ATDI21 in cassava, the coding sequence of 

DV451479 was BLAST searched against the cassava genome via Phytozome.net. Two 

significant regions were predicted to be its homologue. The first matched region was 

located in scaffold01945 (SC01945:558330-559288) and second region in scaffold01551 

(SC01551:92609-92764) with the scores 677.5 (E value 0) and 21.6 (E value 8.7e-11), 

respectively (Fig. 7A). Due to the obviously higher similarity of ATDI21 gene located in 

SC01945 compared to a gene located in SC01551, the transcript of cassava-specific 

ATDI21 gene in SC01945 was chosen for further study. 

 

Alternative splicing variant prediction in cassava ATDI21 

The cassava ATDI21 gene contains two different introns and its transcription produces 

two alternative spliced variants, as shown in Figure 7B. The alternative splicing occurred 

at the 5’ UTR in mRNA of the splice variant 1, whereas the variant 2 did not show 

splicing in the 5’UTR.  Both alternative splicing variants share the same 294 coding 

sequence and contained the late embryogenesis abundant protein 3 (Lea3) domain 

(Pfam:0342), which is known to be involved in drought stress response based on GO 

term (Phytozome). Transcripts and coding sequences of both alternative splicing variants 
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were aligned to review structural mismatch against DV451479 (Fig. 8). Cassava-specific 

unigene DV451479 was shown to have higher similarity to alternative variant 2, which 

did not contained splicing in the 5’UTR of the transcript.  

 

Gene expression analysis of DV451479 (MeATDI21) in different tissue types 

The expression of the MeATDI21 gene containing Lea3 domain was examined using RT-

PCR with a primer set that amplified the full length coding sequence of the cassava-

specific unigene DV451479. The expression level was examined for leaf, fibrous root, 

nodal root, storage root, and stem of three-month-old greenhouse grown plants. The 

expression of this gene was found to be non-detectible in leaf tissue, low in fibrous roots, 

moderate in the stem, and highly expressed in storage root tissues and nodal roots (Fig. 

9). Unlike Mec1, although the transcript of this gene possibly produces two alternative 

splicing variants, the splicing occurred in the 5’UTR region. Therefore the coding 

sequence still maintains the same translational information.  

 

DV446014 (ENOD40-like gene) 

Sequence similarity analysis of DV446014 

As the results of microarray analysis described in Chapter 3, DV446014 was one of the 

cassava-specific unigenes in cluster 15 showing high expression in the maturation stage 

of cassava tuberization (SR4). A BLASTN search was performed for DV446014. Unlike 

DV445495 and DV451479 that returned known putative functions in cassava, the cDNA 

sequence of DV446014 did not show similarity to any gene or protein in the NCBI 

database. Furthermore, no open reading frame was found for translated protein in the 
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DV446014 transcript. However, BLASTN search against the draft Cassava Genome 

through Phytozome identified five regions in cassava to be similar to the EST sequence 

of DV446014. The result showed 100% similarity to a gene locus on scaffold 03823 at E 

value 0.0 with Max score at 870.5 (Fig. 10). In this region, although the EST sequence of 

DV446014 showed 100% similarity, the transcript information was not available and 

therefore no putative function was available for any of the five matching regions. 

  

Expression pattern of DV446014 transcript 

Because information about the putative function of DV446014 unigene was not available 

in Cassava Genome or other genome databases, expression of its transcript was 

investigated by RT-PCR to assess its expression in different tissue and organ types. Total 

RNA from five different organs – leaf (L), fibrous root (FR), nodal root (ND), stem (ST), 

and storage root (SR) – of three-month-old plants was obtained and extracted as 

described in Material and Methods. RT-PCR was optimized at the annealing temperature 

at 58
0
C for 30 cycles to amplify the full length (508 bp) of the cDNA sequence available 

in the EST database. Expression of DV446014 transcript were detected in all five organs, 

but clearly showed highest expression in the nodal root with lowest expression seen in the 

leaf (Fig. 11). 

 

Putative functional identification of DV446014 transcript 

Due to the absence of an open reading frame (ORF) in the transcript of DV446014, it was 

not possible to use a BLASTP search to identify the functional protein motif of this 

transcript. DV446014 may, therefore, behave as a non-coding RNA gene. The EST 
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sequence of DV446014 was converted to RNA sequence and a search performed for the 

RNA family match using the Rfam database (http://rfam.xfam.org/). Rfam database is a 

collection of RNA families that categorizes the functional class of RNA families as non-

coding RNA, primarily RNAs with a conserved RNA secondary structure, including both 

RNA genes and mRNA cis-regulatory elements (Burge et al., 2012). Based on this search 

the RNA structure of DV446014 showed only one hit to ENOD40 (accession no. 

RF01845) with score of 82.6 on the plus strand and E value 1.7e-16. The ENOD40 (early 

nodulin 40) is a dual RNA containing both a short open reading frame (sORF) and two 

functional RNA domains. It is known that ENOD40 is involved in root nodule 

organogenesis in legumes (Crespil et al., 1994; Campalans et al., 2004; Bardou et al., 

2011).   

 

Sequence analysis of functional domains between MeENOD40 and DV446014 

The peptide sequence logo of ENOD40 coding sequence and RNA secondary structure 

for common leguminous plant is shown in Figure 12 

(http://rfam.xfam.org/family/enod40). ENOD40 gene encoding the short peptide and two 

conserved domain is known to be activate during nodule organogenesis in legumes. Their 

putative role has also been studied further in non-leguminous plants such as Arabidopsis 

(Guzzo et al., 2005). Gultyaev and Roussis (2007) analyzed the conserved short ORF and 

possible RNA secondary structure of the ENOD40 transcript through the nucleotide 

sequence database to identify ENOD40 homologues in various plant families. Their 

results suggest that the encoded RNA structure was necessary to determine the common 

http://rfam.xfam.org/
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function of ENOD40 and that the short peptide might be responsible for the diverse 

function in plant development (Gultyaev and Roussis, 2007; Bardou et al., 2011).  

  

Gultyaev and Roussis (2007) identified the unigene CK643649 (cDNA library 

submitted by Lopez et al., 2004) as a ENOD40 homologue in cassava. These workers 

also identified three domains and their locations of ENOD40 in the transcript of 

CK643649. In the present study, this information was used as a reference for cassava 

ENOD40 (MeENOD40). The peptide sequence of the conserved sORF, including 

secondary structure domains, were identified in the RNA sequence of CK643649 (Fig. 

13). The cDNA sequence of unigene CK643649 was used as the reference to align with 

cDNA of DV446014 in order to find sORFs and secondary structure domains in 

DV446014 (Fig. 14). The comparison of RNA sequence with the translated ORF between 

DV446014 and CK643649 was also performed to investigate the putative functional 

domains on the transcript (Fig. 15). Two major differences were seen between CK643649 

and DV446014. No sORF was found in DV446014 and a tandem repeat of domain 3 in 

RNA structure was seen to be present in DV446014 (Figs. 14 and 15). The functional 

domain structure of the DV446014 transcript was demonstrated as shown in Figure 16.  

  

Identification of DV446014 as ENOD40-like gene 

Differences in functional domain structure were seen between transcripts of DV446014 

and CK643649 (MeENOD40) (Fig. 15). In order to study this further, unigenes 

represented by DV446014 and MeENOD40 were compared to examine their library 

information. The cDNA sequences of unigene DV446014 and CK643649 were retrieved 
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from EST database and then submitted to UniGene database through NCBI 

(http://www.ncbi.nlm.nih.gov/unigene) to identify unigenes in the same transcribed 

locus. The result showed the group of unigenes from various EST and/or cDNA libraries 

that shared the same transcribed locus and contained the same functional domains 

(UniGene, NCBI). The cassava transcribed locus corresponding to DV446014 was 

represented by 20 ESTs from six cDNA libraries. Likewise, cassava transcribed locus 

corresponding to CK643649 was represented by 20 ESTs from five cDNA libraries. 

UniGene database is composed of six cDNA libraries produced from different tissue 

sources and genetic backgrounds of cassava (Table 4). Three ESTs from the same 

transcribed locis of DV446014 and three from CK63649 were chosen from different 

libraries produced from different sources of tissue. 

  

Three ESTs (FF379705, CK643649, and FG805321) represented the transcribed 

locus of MeENOD40 based on the identification of cassava ENOD40 described by 

Gultyaev and Roussis (2007). Two unigenes that shared the same transcribed locus with 

DV446014 were CK646520 and DR084027. All six unigenes from the two transcribed 

loci were aligned for domain analysis (Fig. 17). The results clearly showed two groups of 

cassava ENOD40. The EST corresponding to the same transcribed locus with CK643649 

(MeENOD40) showed one sORF with 12 amino acids. In contrast, the transcribed locus 

containing DV446014 was absent of sORFs. The differences between these two 

transcribed loci show not only the lack of sORF, but also the non-splicing intron in 

domain 2 which was clearly shown in DV446014 (Fig. 17). These results indicated that 

DV446014 might function as cassava ENOD40-like gene. 

http://www.ncbi.nlm.nih.gov/unigene
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DV446014 may act as a tissue-specific RNA regulator 

The region of short coding sequence was analyzed to reveal the feature of conserved 

domains in ENOD40 gene (CK642649) and ENOD40-like gene (DV446014) in cassava. 

The presence of a short ORF was obvious in the group of cassava ENOD40 (FF379705, 

CK643649, and FG805321), whereas the absence of start and stop codons was shown in 

the group of cassava ENOD40-like transcripts (Fig. 18). The sequence logo of peptides 

showed two distinct groups determined by the source of tissue used for the construction 

of cDNA libraries (Table 4). The unigenes related to CK643649 were presented in stem, 

leaf, and meristem tissue. FG80321 was generated from root tissue of seven-month-old 

plants (Li et al., 2010). The other isoform which did not contain start and stop codons 

clearly showed that the unigenes in this group derived from root tissues (Fig. 18). Due to 

the sequence logo showing the conserved protein motif of DV446014 is clearly identified 

as a cassava ENOD40-like gene. 

 

DISCUSSION 

The present work aimed to study the putative biological function of three candidate genes 

determined by microarray analysis to be involved in the development of cassava storage 

roots (Chapter 3). Focus was mostly on stage SR4, during which the storage root has 

been formed and is filling with starch, and its comparison to the earlier stages of storage 

root initiation and early development. Although microarray results allowed ranking of up-

regulated genes by fold changes of differential gene expression across the four 

developmental stages (SR1-SR4), those genes identified as up-regulated needed to be 

validated for their actual expression in the relevant cassava tissues. To date, several 
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genome databases have been published for utilization of genome-wide analysis of plant 

species (Li et al., 2010; Jung et al., 2014; Thatcher et al., 2014). In silico functional 

prediction is relatively accurate for determining the putative function of candidate genes. 

However, prediction through genome databases alone might result in errors for data 

interpretation because it deals with very large genome data sets. Hence the integration of 

multiple BLAST searches across the cassava genome and non-redundant database NCBI, 

including the UniGene database, are a more efficient way to identify the putative function 

of candidate genes.  

 

The first candidate gene to be studied was DV445495, a unigene predicted to be a 

homologue to cassava-specific Mec1 gene which, based on BLASTN search (NCBI), 

encodes allergenic-related protein Pt2L4 with 100% identity (Table 2). We can have 

confidence that the unigene DV445495 is, therefore, the cassava-specific Mec1 gene. 

This Pt2L4 protein was previously reported as the enriched protein related to secondary 

xylem parenchyma in cassava storage roots (de Souza et al., 2004; 2006). Two 

homologue genes of DV445495 (Mec1) were predicted on the Cassava Genome. 

Alternative splicing was shown to form splice variant in homologue 1 (Mec1 1). To study 

further, the full length cDNA sequence corresponding to DV445495 was cloned from 

cassava genomic DNA of cv. 60444, sequenced, and then aligned to its predicted 

homologues. The DV445495 transcript was found to be 100% identical to splice variant 1 

of Mec 1 1 (DV445495 1), which has no intron splicing (Fig. 4). The expression of both 

homologues including the alternative splicing variants were analyzed by RT-PCR and 

tissue printing. As expected, high expression of Mec1 gene appears in storage root, stem, 



126 
 

and nodal root tissues (Figs. 3 and 5). Only low expression was seen in the leaves and 

fibrous roots. This is the first time that expression of Mec1 has been reported for the 

nodal-derived root and lignified stem tissues. This correlates with the report of Beltran et 

al. (2010), who describe transgenic expression in vascular tissue of the stem and storage 

root when a marker gene was under control of the Mec1 promoter.  

  

Expression of the splice variant 2 of Mec1 1 predicted from Cassava Genome was 

weak and unpredictable when assessed by RT-PCR (Fig. 5). It is possible, therefore, that 

this splice variant might not be an alternative splicing variant of Mec1, but may be due to 

annotation error on the genome database. Interestingly, presence of Mec1 expression in 

the stem and nodal root as confirmed by Northern blot analysis and tissue printing 

indicated that this Mec1 gene is not specific to the storage root. Its relatively high 

expression in both stem and storage root would therefore associate it with secondary 

growth of the xylem. Both of these organs, and especially the storage root at SR4, are 

undergoing significant development of the xylem through secondary growth from active 

cambium (Ch2, Figs. 4 and 5). However, this process is not substantial in fibrous roots or 

leaves.  

 

The second candidate gene, DV451479 was first predicted as the homologue of 

the gene encoding late embryogenesis abundant protein 5 (Lea5) in rubber tree (NCBI). 

To date, BLASTN search predicted DV451479 was 100% identical to cassava ATDI21 

(MeATDI21) based on the similarity of cDNA sequence (Fig. 8). ATDI21 contains the 

domain encoding late embryogenesis abundant 3 (Lea3) and is known to be involved in 
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stress response, especially water deprivation (Costa et al., 2011). Furthermore the splice 

variant at 5’ UTR was predicted in the first homologous gene of DV451479, meaning 

that the coding sequence was not being affected by the splicing. The effect of splicing on 

gene expression needs to be further studied in order to validate the effect of alternative 

splicing on the biological processes. The expression of this MeATDI21 was strongly 

shown in the storage root and nodal root, with low expression in stem and fibrous root 

and below detectable level in the leaf (Fig. 9). Again, relatively high co-expression of 

genes involved in stress response was shown in the storage root and in the nodal roots but 

seen as low expression in stem and fibrous root. This might imply a role for drought 

stress-like processes in cassava storage root maturation.  

 

DV446014 is the third candidate gene identified to be involved in storage root 

formation. Unlike the Mec1 and MeATDI21 genes, no gene was predicted to be 

homologous to DV446014 on the NCBI database. However, BLASTN search showed 

one of five possible regions located on the cassava genome having 100% identical to the 

cDNA sequence of DV446014 (Phytozome) (Fig. 10). Furthermore, DV446014 cDNA 

was shown to have a transcribed locus on UniGene database (NCBI). Presence of a 

homologous sequence to DV446014 found in the cassava genome, including presence of 

a transcribed locus, indicates that DV446014 is a novel cassava-specific gene. This gene 

has not been previously identified and its biological function has yet to be annotated for 

storage root development or other processes. It is noticeable that the transcript sequence 

of DV446014 contains no ORF or putative regulatory domain. Thus this gene may not be 

regulatory protein, but might be coding for regulatory RNA. The DV446014 RNA was 
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shown to be homologous to the transcripts of ENOD40 RNA family that is known to be 

involved in early nodulation in leguminous plants (Crespil et al., 1994). This result could 

have significance in advancing knowledge about cassava storage root formation by 

relating the root tuberization to nodulation mechanisms described in other species.  

 

The cassava ENOD40 gene (CK643649 unigene) and its structure was predicted 

and identified by Gultyaev and Roussis et al. (2007). Apparently, DV446014 is the 

unigene located in the different transcribed locus with CK643649 and differs from 

CK643649 in two structural domains (Fig. 15). DV446014 does not contain sORF and 

has a tandem repeat at domain 3 of ENOD40. The similarity in RNA sequence, but 

difference in structural domains, is predicted in both cassava ENOD40 and DV446014, 

indicating that DV446014 can be confidently predicted as an ENOD40-like gene in 

cassava. The lack of sORF in ENOD40-like genes might relate to tissue specific function 

because the conserved peptide sequence showed differences between the two groups of 

unigenes derived from tuberous and non-tuberous tissue. These results demonstrate the 

possible role of ENOD40-like genes in cassava storage root formation. Further 

characterization is needed to identify and annotate the actual function for this ENOD40-

like gene. Ambiguous results related to the expression of DV446014 were shown by RT-

PCR in the present study. According to microarray results, DV446014 was highly 

expressed in SR4, the stage of maturation of storage root development. High expression 

of DV446014 is therefore expected to be present in storage root tissue and was 

confirmed. Expression of this ENOD40-like was shown to be low in storage root and 

stem, including the fibrous roots. Interestingly, however it appears to be highly expressed 
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in nodal-derived roots prior to radial thickening. Results described in Chapter 2 postulate 

that the young nodal root is the precursor structure for storage roots. Common expression 

of putative storage root-associated genes between these two root structures would 

therefore be logical. Further research using techniques such as qRT-PCR should be 

undertaken to evaluate more accurately expression of DV446014 RNA in these organ 

types and ages.   
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Table 1. Primer sequences used for functional analysis of candidate genes and their 

alternative splicing variants 

Candidate 

cDNAs 

Vairant Primer name Primer Sequence Annealing 

temperature 

Functional 

annotation 

DV445495 1-1 Mec1-1F 

Mec1-1R 

GAGATTGTAACAGAAGAGGCAGCA 

TCTTCTCAGCTTCAACTTCTGC 

58 Pt2L4 

(Mec1) 

 1-2 Mec1-2F 

Mec1-2R 

AGCTGAAGAAGTGAAGGAGG 

TCTTCTCAGCTTCAACTTCTGC 

58  

 2-1 Mec1-like F 

Mec1-like R 

AGTCAAGGTTCCAGAGGCA 

TTCTTCTGCTTCAGGCTTCTTCTTCTC 

58  

 full 

length 

Mec1-entire F 

Mec1-entire R 

CTTGGCTGACTATGGCTACTG 

ACCTTGCAGAGCTATCTCATTAC 

55  

DV451495 1-1 MeATDI21 1-1F 

MeATDI21 1-1R 

GGTGCTGCAGAAGAAAATAG 

AGAGTGAACACCACCACAGA 

55 Lea3 

(MeATDI21) 

 1-2 MeATDI21 1-2F 

MeATDI21 1-2R 

TGCTCTTCTTGAGAATCCAT 

AGAGTGAACACCACCACAGA 

55  

DV446014 ND* DV446014-F AGAATCCATCCTTGGGTCTTC 55 Not detected 

  DV446014-R CGTTTGGCTGAGATTCAGTTG 55  

*ND- Isoform not detected 

 
 

Table 2. Function annotation of three candidate cassava-specific unigenes predicted from 

genome databases  

Accession 

No. 
a
 

Functional annotation
b
 Fold 

change
c
 

Blast hit
d
 Arabidopsis 

Othologue
e
 

No. of 

regions
f
 

variants
b
 

DV445495 Manihot esculenta allergenic-

related protein Pt2L4 (c1)  

16.15 Allergenic-related 

protein [Manihot 

esculenta] 

Unknown 2 3 

DV451479 Late embryogenesis abundant 

protein 

11.47 ATDI21 [Manihot 

esculenta] 

At4g15910 2 2 

DV446014 No functional annotation 10.67 Cassava-specific 

746 

Unknown 1 ND* 

a
: ESTs database (Lokko et al., 2007) through NCBI corresponding to the array 

b
: Cassava genome database (www.Phytozome.net) 

c
: Fold change calculated as normalization value of overall experiment 

d
: Sequence similarity (http://blast.ncbi.nlm.nih.gov/Blast.cgi) 

e
: Arabidopsis Othologue (http://www.arabidopsis.org/Blast/index.jsp) 

f
: No of regions found in Cassava genome 

*Not determined 

 

 

 

http://www.phytozome.net/
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.arabidopsis.org/Blast/index.jsp
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Table 3. Five cassava-specific cDNAs showing high similarity to DV445495 sequence 

using BLASTN search against non-redundant database on NCBI 

Accession Description Gene 
 

Organism E 

value 

Reference 

(submission) 

EU249994 Allergenic-related protein  ND* Cassava 0.0 Guo and Zhang 

(2007) 

AY101376 Allergenic-related protein Pt2L4 (c1)  Mec1 Cassava 0.0 de Souza et al. 

(2002) 

JF710639 Manioc Glu  ND* Cassava 0.0 Santos et al. (2011) 

AY217354 Glutamic acid-rich protein (c54)  c54 Cassava 1e-25 Zhang et al. (2003) 

FJ688171 Glutamic acid-rich protein Pt2L4 (c1)  Mec1 Cassava 2e-23 de Souza et al. 

(2009) 

*ND – Not determined 

 

 

Table 4. Six unigenes from different cDNA libraries selected for domain analysis of two 

transcribed loci corresponding to CK643649 (MeENOD40) and DV446014 

Accession 

no. 

Size 

(bp) 

Tissue type Library name Reference 

FF379705* 257 Leaf, stem 

meristem 

CASL Hearne et al. 2008 

CK643649* 481 Stem MBra685 cassava lambda zap Lopez et al. 2004 

FG805321* 452 Root Cassava root 210-day-old 

plants cDNA library 

Li et al. 2010 

CK646520 503 Root Cassava lambda zap Lopez et al. 2004 

DR084027 411 Storage root Cassava tuber Emmersen et al. 

2005 

DV446014 508 Mix tissue CV01-normalized library Lokko et al. 2007 

*unigenes represented in the same transcribed locus with CK643649 
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Figure 1. Predicted homologues of cassava-specific unigene DV445495 located on the 

cassava genome. A. Two homologues of unigene DV445495 predicted in scaffold06844 

at location 2907-4368 and scaffold03131 at 86914–88042. B. Two alternative splicing 

variants of DV445495-1 on scaffold06844.  

(Source : Phytozome.net) 

 

 

 

 

 

B 
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Figure 2. Northern blot analysis showing expression of Mec1 in tissues of greenhouse 

and field grown cassava plants. Mec1 specific DNA probe was generated from sequence 

derived from DV445495 cDNA. RNA was isolated from L-leaf, SR-storage root, FR-

fibrous root, and ST-stem tissues of three-month-old greenhouse grown and six-month-

old field grown plants. 28S rRNA band was used for RNA quality and quantity control.  
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Transverse sections of  
storage root stained with KI  

 

Figure 3. In situ hybridization to reveal expression of Mec1 gene encoding allergenic-

related protein Pt2L4 in storage root and stem sections using tissue printing technique of 

three-month-old greenhouse grown plants. A. Tissue cross sections of the storage root 

(left-to-right) from the neck region into the starch storage regions. Blotting signal 

increases as the tissues transition from primarily lignified to starch storage. B. Transverse 

sections of semi-woody stem. Mec1 specific DNA probe was generated from sequence 

derived from DV445495 cDNA. 

 

 

 

 

B. Sections of stem A. Sections of storage root 
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Figure 4. Alignment of cDNA sequences showing similarity between DV445495 

unigene and its two alternative splicing variants. The highlighted red shaded area in the 

coding sequence represents the splicing intron in splice variant 2. The highlighted areas at 

the beginning and the end of reference sequence of DV445495 represented the 5’UTR 

and 3’UTR region, responsively. 
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Figure 5. RT-PCR determination of Mec1 transcript expression comparing alternative 

splicing variants in tissue from five different organ types: leaf (L), fibrous root (FR), 

nodal root (NR), stem (ST) and storage root (SR) in three-month-old plants. Tubulin was 

used as the quality control of cDNA synthesis, -ve = water negative control.  
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Figure 6. Alignment of MeATDI21 cDNA sequence from NCBI and DV451479 showing 

100% similarity between coding sequences.  
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Figure 7. Predictive homologue of cassava-specific unigene DV451479 located on 

Cassava Genome. A. Two homologues matching the cDNA sequence of DV451479 were 

predicted in Cassava Genome database. B. Two alternative splicing variants were found 

in the region 1 (scaffold01945). 

(Source: Phytozome.net)  
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Figure 8. Alignment of cDNA sequences showing similarity between unigene 

DV451479 and its alternative splicing variants. Transcripts of both variants showed 

alternative splicing located in the 5’UTR. The coding sequence of DV451479 remained 

identical to both splice variants. The highlighted red shaded area in the 5’UTR represents 

the alternative splicing (DV451479 2) that occurred in transcript variant 1. DV451479 

was similar to transcript variance 2 which had no splicing region.  
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Figure 9. RT-PCR determination of DV451479 (MeATDI21) transcript expression 

comparing tissue from five different organ types: leaf (L), fibrous root (FR), nodal root 

(NR), stem (ST) and storage root (SR) in three-month-old plants. Tubulin was used as the 

quality control of cDNA synthesis, -ve = water negative control. 

 

 

Figure 10. Five predicted homologues of cassava-specific unigene DV446014 on the 

Cassava Genome. The homologue located on scaffold03823 was shown to have greatest 

similarity to DV446014 (E value 0).  

(Source : Phytozome.net) 
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Figure 11. RT-PCR determination of DV446014 transcript expression comparing tissue 

from five different organ types: leaf (L), fibrous root (FR), nodal root (NR), stem (ST) 

and storage root (SR) in three-month-old plants. Tubulin was used as the quality control 

of cDNA synthesis, -ve = water negative control. 

 

 

Figure 12. Functional domain and secondary structure of ENOD40 RNA. A. Peptide 

sequence logo showing the conserved functional domain of short open reading frame 

(sORF) of ENOD40 in leguminous plant. B. Secondary structure of ENOD40 RNA, 

which function as the regulatory structure to interact with binding proteins.  

(Source: http://rfam.xfam.org/family/enod40) 

 

A B 

 

B 

 

 

     L         FR        NR         ST        SR      -ve 

Organ type 

Tubulin 

DV446014 



149 
 

 

Figure 13. RNA sequence analysis of cassava ENOD40 (accession no. CK643649) 

showing three main domains: short open reading frame (sORF), domain 2 and domain 3. 

The sORF consisted of twelve amino acids. No coding sequence is found in RNA domain 

2 and 3.  
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Figure 14. Alignment of CK643649 and DV446014 cDNA to determine different 

structures between both ENOD40 homologues.  
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Figure 15. Alignment of RNA sequences between cassava-specific unigene DV446014 

and reference MeENOD40 (CK643649) showing differences of structural RNA domains 

against MeENOD40 (CK643649). DV446014 did not show the same sORF as found in 

reference MeENOD40.  
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Figure 16. RNA sequence analysis of cassava-specific unigene DV446014 locating the 

regulatory RNA structure domains (domain 2 and domain 3) of ENOD40. DV446014 

does not obtain sORF but contains the tandem repeat of domain 3 at the end of RNA 

sequence. 
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Figure 17. Comparison analysis between six transcripts in the same transcribed locus of 

DV446014 and CK643649 (MeENOD40) showing two different groups of ENOD40 

RNA gene.  
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Figure 18. Two groups of peptide sequence logo showing the conserved functional 

domain of sORF of six cassava-specific unigenes from different cDNA libraries 

including DV446014. The source of tissue derived cDNA libraries is shown on the left. 

The positions lacking start and stop codons are shown in red block. 
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Chapter 5. Conclusions and perspectives 

Cassava storage roots are used for food security and are increasingly important as an 

industrial commodity in developing economies. However, the biology of root tuberization 

in cassava is poorly understood. The main hypothesis of this research is that the structural 

modification of a root to become a storage root in cassava is under control of unknown 

molecular and developmental mechanisms. To elucidate the mechanisms involved with 

storage root formation in cassava, an anatomical study of cassava root formation was 

undertaken along with transcriptome analysis. cDNA microarray analysis was performed 

to investigate the regulatory genes related to the different stages involved in storage root 

development. The integration of the anatomical study and molecular analysis was shown 

to be an effective tool to investigate and elucidate unknown mechanisms of cassava 

tuberization, which is a unique process among the major crop species. 

 

Firstly, the anatomy of root and stem was studied to determine how and where the 

storage roots develop in comparison with the fibrous root system. The results confirm 

earlier reports that two types of root develop from stem cuttings of cassava (Lowe et al., 

1982). Basal roots were seen to be produced from the wounded cut end of the stem while 

nodal roots are produced from the regions close to the buried axillary buds. While 

appearing to be similar at the earliest stages of development, these two root types were 

shown to rapidly diverge in their anatomy, with only the nodal roots undergoing 

secondary thickening. Importantly, evidence was provided to show that the two root types 

were derived from different tissue layers within the stem. The nodal-derived root 

primordia were produced from deep within the stem at the boundary of the xylem and 
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pith, while basal-derived fibrous roots were initiated from the cambium. Only the nodal 

root type was seen to develop into storage organs.  

 

This information contradicts previous assumptions that cassava storage roots 

develop from a subset of the fibrous roots. From data described in these studies we 

propose that the storage and fibrous roots are fundamentally different organs, originate 

through different rhizogenic processes, and are committed to their different 

developmental fates from their earliest stages of initiation. This hypothesis, supported by 

the data presented in Chapter 2, offers new appreciation of the root tuberization process 

in cassava and has important implications for the research community. Powerful tools are 

available to study plant development at the genomic, transcriptomic and proteomic levels 

and have been applied to investigate storage root formation and development in cassava. 

Failure to distinguish between the two root types when sampling for such studies results 

in analysis of a mixed population of organ types, with the resulting data possibly 

providing misleading results. This has almost certainly been the case for published 

reports to date (Wechkrajang et al., 2006; Mitparasat at el., 2011; Yang et al., 2011;). 

The ability to distinguish between fibrous roots and nodal-derived, and to specifically 

study the storage organ precursor (nodal) roots as an individual organ will greatly 

facilitate better studies to be performed on the early tuberization processes.  

 

An unexpected result of this study was illustration of xylem differentiation taking 

place within the storage roots. Depending on age and location along the length of the 

storage organ, differing proportions of xylem cells newly formed by the cambium 



157 
 

differentiated to become lignified, conducting tracheids and vessels, or to become 

cellulosic starch storing cells (Ch2, Fig. 5). Understanding how this process occurs, and 

subsequently the ability to manipulate the underlying control mechanisms, has important 

implications and could lead to technologies for controlling timing, number, shape and 

maturation of tuberization in cassava. The study of lignification is hugely important with 

respect to wood and biomass production and for the development of biofuels and 

associated industries. The tissue system described here, where location of xylem 

differentiation is clearly identified, provides a potentially important tool to study the 

molecular mechanisms controlling this process. Sampling tissues close to the cambium 

that are undergoing lignified or cellulosic fates would be simple and facilitate 

transcriptomic, proteomic and other studies. Data generated would be important not only 

for the improvement of cassava but also for understanding lignification in other plant 

species.  

 

 Further studies can build on the new information described in Chapter 2 and are 

needed to better understand the specific origin and control of nodal root development. 

While a cambium-derived origin of the basal roots (Ch2, Fig. 3) can be appreciated, the 

exact nature of the progenitor cells of the nodal roots at the pith/xylem boundary (Ch2, 

Fig. 4) is not obvious at this time. Also, it is not known why these roots are produced 

only from the nodal and not the internodal regions. Once more, knowledge of this type 

could be of importance for enhancing cassava production.  
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Finally, the continual connection of storage root secondary xylem with the stem 

secondary xylem described in these studies (Ch2, Fig. 6) may have implications for 

genetic manipulation of the storage root. The woody stem is also a starch storage organ in 

cassava, a trait most likely selected for by farmers because this organ is used as the 

propagule. These two storage organs are shown though the anatomical studies in Chapter 

2 to be connected and to appear almost as one continuous organ. The difficulty in 

developing storage root specific promoters for cassava biotechnology may be explained 

by this observation and determine why transgene-promoter fusions engineered to be 

expressed in the storage root also express in the stem (Zhang et al., 2003; Beltran et al., 

2010). 

 

To predict the putative pathways or subset of genes involved in cassava storage 

root formation, cDNA microarray analysis was used as a tool to investigate transcriptome 

profiling related to the developmental stages of cassava tuberization. A data set of 

microarray analysis across four developmental stages of storage root formation was 

generated and CLC Main Workbench used for analysis and interpretation of the data. The 

jasmonic acid biosynthesis pathway was shown to be a significant pathway associated 

with the early stage of cassava storage root development and may therefore be a key 

pathway to initiate storage root formation. This result indicated that jasmonic acid might 

possibly play a role as the trigger in the initiation of storage root formation within the 

nodal-derived roots, because its signal was highly upregulated in SR2 (initiation stage) 

but remained relatively low signal at the other developmental stages. Reports of 

jasmomic acid regulation in potato and other tuberizing species (Palacho and Castel, 
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1991; Koda et al., 1997) make this signaling molecule an important target for future 

study of storage root formation in cassava. Such investigations could be as simple as 

studying effects of jasmonic acid application to the shoot and roots are various ages and 

effects in tuberization. At the molecular level, identification of candidate genes within 

jasmonic acid pathway is needed for further analysis. Silencing of such genes either by 

RNAi technology or virus-induced gene silencing (VIGS) would be a good way to test 

their role in storage root formation.  

 

 K-means cluster analysis identified three clusters containing genes involved in the 

SR2, SR3 and SR4 root developmental stages. The Heatmap analysis was also performed 

to visually display changes in the expression for 29 genes identified from three clusters 

produced by k-means analysis. Three best candidate genes involved in cassava storage 

root formation are DV445495 (Mec1), DV451479 (MeATDI21), and DV446014 

(ENOD40-like protein). Up-regulation of Mec1 encoding allergenic-related protein, 

Pt2L4, was observed mostly in the SR3 and SR4 stages. This is expected and would 

correlate with production of secondary xylem in the developing storage root. This also 

agrees with de Souza et al. (2004) who identified this gene from mature storage roots. In 

the present study, Mec1 expression was also shown to be up-regulated in the stem and in 

the nodal roots. This result is not surprising due to the knowledge gained in Chapter 2 

describing the similarity and continuity of the xylem tissues of the storage root and the 

stem and evidence that the nodal root is the precursor of the tuberized root. What is not 

known at this time is whether Mec1 is part of the triggering process received by the nodal 
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root to become a storage organ or if it purely operates downstream to associate with 

production of secondary xylem parenchyma.  

 

 The two genes MeATDI21 and ENOD40-like were shown for the first time in 

these studies to be candidate genes for involvement in cassava storage root tuberization. 

MeADTI21 was shown to be up-regulated at SR3 and SR4 while ENDO40-like was up-

regulated in SR4 (Ch4, Figs. 9 and 11). Further work using qRT-PCR should now be 

performed to better characterize these genes and their expression at different stages of 

tuberization and different tissues within the storage organ and nodal root.  

 

Finally a gene that is a homologue of major latex allergen protein Hev b 4 in 

rubber was found to be highly up-regulated in SR2, storage root initiation stage. 

Previously, Souza et al. (2008) reported that the Mec1 gene is a homologue of Hev b 5, 

while patatin, which is the storage protein in potato, is a homologue of Hev b 7. It 

appears possible that this protein family is involved in the tuberization process. Further 

work is required to confirm this hypothesis.  

 

 The significance of the studies reported here is a gain of novel knowledge on root 

formation, including identification of putative genes involved in storage root tuberization 

in cassava. Information from the anatomy study brings a new appreciation of 

rhizogenesis in cassava and identifies the origin and specific root type that undergoes 

tuberization. New candidate genes with possible roles in regulating storage root 

development in cassava have also been identified, opening multiple new avenues for 
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further study. It has become apparent that an understanding of the basic biology of a 

system is required before implementing complex, modern analytical tools to its 

investigation. Correlating results between the expression profile analysis and anatomy 

works confirms the intellectual merit gained from these studies and opens the new 

approaches for the research of the tuberization process in cassava.  
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