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ABSTRACT 

 

Deepa Viswanathan (Ajit) . University of Missouri-Saint Louis, September 2009. Role of 

Amyloid Beta Assembly State in the Human Immune Response. 

  

 

Major Professor: Michael R. Nichols 
 

Alzheimer‟s disease (AD) is a slowly progressing neurodegenerative disease that leads to 

dementia. Histopathological hallmarks that characterize AD are senile plaques formed by 

extracellular deposition of Amyloid beta (Aβ) peptide and intracellular aggregates of 

hyperphosphorylated tau protein. The plaques, which are found in the brain parenchyma, 

comprise both 40 and 42 residue Aβ. Aggregation of Aβ is an established pathogenic 

mechanism in AD, but little is known about the initiation of this process in vivo. Several 

studies have revealed significant inflammatory markers such as activated microglia and 

cytokines surrounding the plaques. Plaques are a hallmark of AD, but they are only part 

of an array of Aβ aggregate morphologies observed in vivo. Structural polymorphism is a 

prominent feature of Aβ aggregation both in vitro and in vivo. The molecular relationship 

between the different forms of Aβ remains to be determined. Inflammatory processes are 

believed to contribute to AD pathophysiology, and may play an important role in the 

disease progression. Not all Aβ deposits evoke a proinflammatory response, making it all 

the more important to probe into structural details of the Aβ aggregation pathway. This 

research was aimed at investigating what Aβ morphology or aggregation species induce 

the strongest proinflammatory response in human THP-1 monocytes as a model system. 

Our results indicate that an intermediate fibrillar aggregation species formed when Aβ(1-

42) is reconstituted in water (100 M, pH 3.6) and incubated at 4C under quiescent 

conditions was capable of stimulating maximum tumor necrosis factor alpha (TNF). 

Modulating conditions that accelerated or increased Aβ(1-42) fibril formation such as 

temperature, peptide concentration, or pH diminished the ability to activate the cells. 

Immunodepletion of Aβ(1-42) solution with fibril specific antibody (OC immune serum) 

reduced the ability to induce TNF production. Characterization by SEC showed an 

included peak that appeared immediately after the void volume and stimulated the 

maximum proinflammatory response.  We have also shown that the shorter peptide Aβ(1-

40) could not stimulate a proinflammatory response under similar aggregation conditions. 

Overall, the data suggest that an intermediate Aβ(1-42) fibrillar precursor species is 

optimal for inducing maximum proinflammatory activity in THP-1 monocytes. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Protein Misfolding and Amyloid Formation 

 

  Proteins are involved in virtually every biological process in the living system. 

The amino acids in the protein must fold into the native three-dimensional structures, and 

these structures are characteristic of individual proteins (Voet, 1995).  The folding of a 

protein is influenced by its amino acid sequence, and the cellular environment around the 

amino acid chain (Anfinsen, 1973, Horwich et al., 1999). The folding and unfolding of 

proteins is associated with a wide range of cellular processes from the trafficking of 

molecules to specific organelles to the regulation of the cell cycle and the immune 

response (Radford and Dobson, 1999, Stefani and Dobson, 2003). These observations led 

to the conclusion that the failure to fold correctly, or to remain folded correctly, leads to 

many different types of biological malfunctions and hence to many different forms of 

diseases (Radford and Dobson, 1999). In the case of incompletely folded proteins, some 

regions of the structure that are actually buried in the native state will be exposed to the 

solvent.  Hence, these proteins are prone to inappropriate interaction with other molecules 

within the crowded environment of the cell (Ellis, 2001). Therefore living systems have 

evolved strategies to prevent unwanted interactions.  The cell has evolved the chaperone 
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system, and some chaperones interact with the nascent proteins as they emerge out of the 

ribosomes, while others are involved in guiding later stages of the folding process (Bukau 

and Horwich, 1998, Hartl and Hayer-Hartl, 2002), and hence prevent aggregation. 

Furthermore, unfolded proteins that escape the chaperone system are degraded by the 

proteasome.  However, there is a gradual decrease in the efficiency of the system with 

age that could lead to late onset disorders. 

  Failure of a specific peptide or protein to adopt, or remain in, its native functional 

conformational state results in a broad range of human diseases termed as protein folding 

disorders (Chiti and Dobson, 2006). Abnormal physiological concentrations and 

mutations are believed to destabilize the native three-dimensional state, thereby deviating 

the protein from its normal folding pathway (Dobson, 1999, Hetz and Soto, 2003).  The 

largest group of misfolding diseases is associated with the conversion of specific peptides 

or proteins from their soluble functional states ultimately into highly organized fibrillar 

aggregates (Lansbury, 1999).  The fact that only select groups of proteins are found in the 

disease-associated fibrils suggest that these proteins are subject to abnormally high 

expression to such an extent that the chaperone and the proteosome system are 

temporarily overwhelmed (Lansbury, 1999).  These structures are generally described as 

amyloid fibrils or plaques when they accumulate extracellularly.  The term “intracellular 

inclusions” has been suggested when fibrils that are morphologically and structurally 

related to extracellular amyloid form inside the cell (Westermark et al., 2005).  Current 

focus in studying the structural aspects of amyloid aggregation states is due to their 

crucial role in disorders such as Alzheimer‟s disease, Parkinson‟s disease, Huntington‟s 

disease (Table 1), and diverse systemic amyloidosis (Walker and LeVine, 2000, Selkoe 
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and Podlisny, 2002, Selkoe, 2003).  Despite the ability of many proteins to form amyloid 

fibrils, not much is known about their structures or the factors that govern their 

formation.  A principal unanswered question about these disorders is the nature in which 

the natively soluble proteins of different primary structures undergo partial unfolding and 

aberrant refolding to produce highly stable oligomers and polymers.  The partially folded 

forms have exposed hydrophobic regions and are therefore prone to self-aggregation 

(Selkoe, 2003).  An understanding of how this aggregation process happens and how the 

resultant aggregates initiate cell dysfunction will offer valuable information that is 

essential in the development of new therapeutic strategies for specific molecular 

interventions, and treatment modalities for these disorders. 

 

1.2 Alzheimer‟s Disease (AD) 

 

AD is the most common cause of dementia in the elderly, and is a progressive 

neurodegenerative disorder that gradually destroys cognitive function and eventually 

causes death.  AD currently affects nearly 2% of the population in industrialized 

countries (Mattson, 2004).  As the life expectancy of  individuals has extended 

considerably, these diseases are of a major concern (Glenner, 1989), and it is estimated 

that about 22 million people will be afflicted globally by 2025 [St George- Hyslop 2000]. 

This statistics emphasizes the need for novel and effective treatments.  During the last 

decade there has been expansive research in the field of AD.  Microscopic studies have 

revealed a loss of neurons in hippocampus, a center for memory, and the cerebral cortex, 
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Table1.1 Some human brain diseases characterized by protein misfolding and 

aggregation Figure adapted from Selkoe. D.J., (2003) Nature, 426: 900-904  

 

 

 

Disease Protein Locus 

Alzheimer‟s disease 

Amyloid beta protein  

 

Tau 

 

Extracellular plaques 

 

Tangles in neuronal 

cytoplasm 

Frontotemporal dementia with 

parkinsonism 

Tau 

Tangles in  

neuronal cytoplasm 

Parkinson‟s disease; dementia 

with Lewy bodies 

α-synuclein Neuronal cytoplasm 

Creutzfeldt-Jakob disease: 

 Mad cow disease 

Prion protein PrP
SC

 

Extracellular plaques 

Oligomers inside and 

outside neurons 

Polyglutamine disease; 

Huntigton‟s disease, spino 

cerebellar ataxias 

Long glutamine stretches 

within certain proteins 

Neuronal nuclei and 

cytoplasm 

Amyotrophic lateral sclerosis Superoxide dismutase Nueronal cytoplasm 
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which is the center for reasoning memory and other thought processes. Hallmark lesions  

of AD include amyloid deposits neurofibrillary tangles (NFTs) and dystrophic neuritis 

(Glenner, 1989, Ballatore et al., 2007). 

Immunocytochemsitry revealed that one of the earliest pathological changes 

include a population of neurons packed with swollen lysosomal granules (Nixon et al., 

1992).  These lysosomes or granules also stain with antibodies against Aβ (Gouras et al., 

2000, D'Andrea et al., 2001).  Extracellular heparan sulfate (Perry et al., 1991, Cummings 

et al., 1993) immunoreactivity, advanced glycation end products (Smith et al., 1994, 

Vitek et al., 1994), racemic amino acids and isopeptide bonds (Shapira et al., 1988, Roher 

et al., 1993) are found associated with senile plaques, NFTs, and dystrophic neurites. 

Activated microglia are found along the margins of senile plaques (Wisniewski et al., 

1989). Key markers of inflammation are also associated with amyloid deposits 

(Rozemuller et al., 1989, Dickson et al., 1993).  A broad spectrum of pathological events 

are associated with AD, and recent studies have indicated the possibility of AD 

representing a spectrum of diseases (Hyman, 1996).  These studies have also revealed 

genetic causes of the disease in addition to cellular and molecular mechanisms that are 

linked to AD.  Until recently post mortem analysis of the brain tissue was the only way to 

study the pathological features of AD.  This limitation prompted research on biochemical 

markers of AD in serum and cerebrospinal fluid that will be able to complement clinical 

approaches and help in early diagnosis (Khachaturian, 2002).  It was initially assumed 

that extracellular amyloid fibrils were responsible for exerting cytotoxic effects.  Over the 

past decade data from cell culture models, β-amyloid precursor transgenic mice, and 

studies on the human brain suggest that prefibrillar, diffusible assemblies of amyloid beta 
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was also deleterious.  This has opened up a wide avenue for further probing the 

mechanisms of AD. 

 

1.3 AD Pathology 

 

The characteristic neuropathology of AD was first described by a German 

psychiatrist, Alois Alzheimer, in 1907.  Two hallmark pathological findings in the brains 

of AD patients are extracellular amyloid plaques, and intracellular neurofibrillary tangles 

(NFTs).  However, there is evidence that suggests that apart from the plaques and the 

neurofibrillary tangles, a third of the AD patients will exhibit significant cerebrovascular 

pathology.  Cerebral amyloid angiopathy, micro vascular degeneration that affects the 

cerebral endothelium and smooth muscle cells, hyalinosis and fibrosis are also seen in 

AD (Vinters et al., 1996, Attems, 2005, Thal et al., 2008).  

 

1.3.1 Extracellular Plaques 

 

Extracellular amyloid plaques mainly constitute diffuse and neuritic plaques.  The 

neuritic plaques are intimately surrounded by dystrophic axons and dendrites, reactive 

astrocytes and activated microglia (Selkoe, 2001).  Neuritic plaques are brain lesions that 

are generally found in large numbers in limbic and association cortices (Dickson, 1997).  

The main protein constituent of plaques is amyloid beta (A) peptide.  A peptide is a 

39-43 amino acid proteolytic product of amyloid precursor protein (APP) and forms long 

insoluble amyloid fibrils which accumulate as spherical microscopic deposits known as 
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senile plaques.  These plaques consist of a central amorphous core which can be 

identified by histological amyloid stains such as Congo red (Klunk et al., 1989) and  

Thioflavin T or S (Sage et al., 1983).  Plaques are surrounded by dystrophic neurites 

(Glenner, 1989, Dickson, 1997) reactive astrocytes (Pike et al., 1995) and microglia  

(Perlmutter et al., 1990) that are thought to release complement factors and cytokines 

(McGeer and McGeer, 2001) and cause inflammatory reactions around the plaques.  

Studies have established that much of the fibrillar Aβ found in neuritic plaques is 

the 42 amino acid peptide Aβ(1-42).  This peptide is more hydrophobic, and more prone 

to aggregation than the shorter Aβ(1-40) peptide (Jarrett et al., 1993a).  In the late 1980s 

experimental data confirmed the presence of diffuse amyloid plaques in the same brain 

region that contained many neuritic plaques (Tagliavini et al., 1988, Joachim et al., 

1989).  However, further research on the diffuse plaques showed that they were the sole 

form found in brain regions that lacked neuritic dystrophy, glial changes, and 

neurofibrillary tangles.  In the case of healthy aged human, free of AD or other 

dementing processes, studies have shown the presence of solely diffuse plaques in the 

limbic and association cortices.  AD patients on the other hand showed mixtures of 

diffuse and neuritic plaques (Fig 1.1).  It was therefore hypothesized that these diffuse 

plaques represent precursor lesions of neuritic plaques (Selkoe, 2001).  This hypothesis is 

best illustrated by studies on Down's syndrome.  Patients with Down‟s syndrome have 

little or no Aβ deposition in the first decade of life, but by around 12 years of age one 

begins to see diffuse plaques containing Aβ(1-42) and not Aβ(1-40).  More and more 

Down's subjects develop such plaques during the second and third decade of life (Lemere 

et al., 1996).  After the age of 30, amyloid fibril formation is seen and there is associated  
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Figure 1.1.Types of Plaques Diagram showing the relationship between the subsets of 

senile plaques based on the morphology of the amyloid and whether or not they are 

associated with PHF type or dystrophic neurites. (Figure adapted from Dickson W D, 

1997, J Neuropathol Exp Neurol, 56:321-339) 
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 microgliosis, astrocytosis and some neuritic dystrophy.  These neuritic plaques then 

become more prevalent over the next 2 decades of life. 

 

1.3.2 Neurofibrillary Tangles 

 

The healthy neurons in the brain are connected by axons.  Microtubules are 

support structures present inside the axons that aid in the transport of molecules and 

nutrients into and out of the cell.  Tau is a microtubule-associated protein and the 

hyperphosphorylation of this protein leads to detachment of tau from the microtubules, 

which results in the formation of neurofibrillary tangles and neurophil threads.  The three 

main types of neurofibrillary lesions (NFLs) based on their localizations in nerve cells 

are: (i) neurofibrillary tangles (NFTs) in the cell body and apical dendrites of neurons, (ii) 

neurophil threads (NTs) in distal dendrites and (iii) dystrophic neurites associated with 

neuritic plaques (Tolnay and Probst, 1999).  NFLs contain bundles of abnormal fibers 

that consist of pairs of ~10 nm filaments wound into helices (paired helical filaments or 

PHFs) as a major fibrous component, and straight 10 nm to 15 nm filaments (SFs) as a 

minor component (Selkoe, 2001).  Most of these filaments are highly insoluble and 

resistant to detergent such as sodium dodecyl sulfate (Selkoe et al., 1982).  In AD, the 

hyperphosphorylated tau decreases the ability to promote the microtubule assembly and 

instead aggregates into paired helical filaments (PHFs) in the cytoplasm of the 

degenerating neurons (Buee et al., 2000).  Neurofibrillary pathology is also found in other 

neurodegenerative disorders like FTDP-17 (fronto temporal dementia and Parkinsonism 

linked to chromosome 17) (Lewis et al., 2001). 
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1.3.3 Relationship Between Aβ and Tau 

 

Pathophysiological mechanisms underlying AD have been controversial. The 

most dominant theory of AD etiology and pathogenesis is amyloid cascade hypothesis. 

The hypothesis states that overproduction of A, or defect in the peptide clearance, leads 

to amyloid deposition, which produces tangles that may lead to cell death, resulting in 

memory impairment in AD (Hardy and Gwinn-Hardy, 1998, Selkoe, 2001).  There is 

strong evidence suggesting that A is critically involved at an early stage in the 

pathogenesis of AD (Vassar, 2004), and that A accumulation precedes and promotes tau 

pathology.  PHF formation in AD is not due to mutations in the tau gene but is due to 

cellular cascade triggered by A, which causes the abnormal phosphorylation of tau 

proteins, and their assembly to filaments (Gouras et al., 2000, Greenfield et al., 2000, 

Gotz et al., 2001, Lewis et al., 2001).  This statement has been supported by data that 

showed presence of A in the vicinity of the neurons enhanced tau phophorylation in 

vitro and in vivo (Busciglio et al., 1995).  Double transgenic mice expressing mutant 

human tau gene (P301L) and mutant APP developed neurofibrillary tangles and 

degeneration in cortical and subcortical brain regions (Lewis et al., 2001).  Further 

studies on 3xTg-AD mouse harboring mutations in APP, Tau and presenilin showed that 

intraneural A accumulation in cell bodies preceded tau hyperphosphorylation (Oddo et 

al., 2003, Billings et al., 2005).  Injection of A(1-42) into the brains of P30IL mutant tau 

transgenic mice resulted in an increase in the number of NFTs by a factor of five.  The 

increase in the numbers were seen in the amygdale from where the neurons project into 
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the injection sites (Gotz et al., 2001).  These data support the fact that A is the primary 

cause for the disease. 

 

1.4 Overview of Amyloid Beta (Aβ) Peptide 

 

1.4.1 Aβ Generation from Amyloid Precursor Protein (APP) 

 

Amyloid beta is derived from a larger precursor protein, amyloid precursor 

protein (APP), a type-I integral transmembrane glycoprotein.  APP contains an 

extracellular N-terminus and a short C-terminal region that lies in the cytoplasm  APP is 

present in a variety of tissues but predominantly in the brain (Mattson, 1997).  It is 

encoded by a gene located on chromosome 21 (Masters et al., 1985).  Splicing of the APP 

gene gives rise to at least three transcripts that encode proteins of 695, 751 and 770 

amino acids (Hardy, 1997, Selkoe, 1999).  All of the APP isoforms contain the 39/43 

amino acids long Aβ domain.  The 695 amino acids are the main isoform expressed in 

neurons (Golde et al., 1990).  At present the physiological function of APP in the brain 

remains unclear, although it has been proposed to have functions in transmembrane 

signal transduction (Nishimoto et al., 1993), calcium regulation (Mattson et al., 1993) and 

cell proliferation and adhesion (Saitoh et al., 1989).  A characteristic feature of APP is its 

proteolytic cleavage by group of enzymes or enzyme complexes,  the α-, β- and γ-

secretases (Selkoe, 2001).  The differential actions of these secretases lead either to the 

non-amyloidogenic or amyloidogenic pathway.  Three enzymes, ADAM 9, ADAM 10 

and ADAM 17 (also known as tumor necrosis factor converting enzyme), all with α-
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secretase activity, have been identified.  These belong to the ADAM family, a 

disintergrin and metalloproteinase enzyme (Allinson et al., 2003).  The α-secretase 

cleaves APP within the Aβ region to produce the large amino N-terminal ectodomain, the 

soluble sAPP that is subsequently secreted into the extracellular medium (Kojro and 

Fahrenholz, 2005), and the 83-residue COOH-terminal fragment C83 (Sisodia et al., 

1990).  The C83 fragment is retained in the membrane, and subsequently cleaved by γ-

secretase to form the short segment p3 (Sisodia et al., 1990).  The α-cleavage pathway is 

considered as default, non-amyloidogenic pathway, since the cleavage occurs in the Aβ 

region, thereby precluding formation of Aβ.  In the amyloidogenic pathway, initial 

proteolysis is mediated by β-secretase, a type I integral membrane protein of the pepsin 

family of aspartyl proteases (Vassar et al., 1999). The β-secretase cleavage produces a 

99-residue COOH-terminal fragment C99 within the membrane and soluble β-APPs, in 

the extracellular space (Vassar, 2004).  These fragments are processed by γ-secretase to 

produce p3 from C83 or Aβ from C99 (Fig 1.2).  γ-secretase cleavage is not sequence 

specific resulting in Aβ peptides of varying length ranging from 39-43 amino acids. 

(Selkoe, 2001). 

 

1.4.2 Aβ Fibrillogenesis 

 

Monomeric A formed from APP cleavage is unstructured (Suzuki et al., 1994), 

and can self- assemble via non-covalent nucleation dependent polymerization process 

(Jarrett and Lansbury, 1993, Lomakin et al., 1996).  Aβ is thought to start accumulating 

in vivo as low molecular weight species (LMW Aβ) that consists primarily of monomers  
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Figure 1.2 Schematic representation of formation of Aβ from APP by the action of 

secretases. EC: extracellular; TM: transmembrane; IC: intracellular. Aβ domain is 

highlighted in red. Only one cleavage site is shown for each enzyme. Figure adapted from 

Zheng.H and Koo H.E, 2006, Mol Neurodegen, 1:5.  
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that are constitutively secreted from the brain cells (Hartley et al., 1999).  Formation of 

Aβ consists of a change from random coil or α-helix into a β-strand.  The conformational 

change of β-amyloid is in part due to the hydrophobic collapse of the very hydrophobic 

C-terminal region of Aβ. This limits the rate of nucleation, and the hydrophobic 

interaction is further maximized by β-sheet conformation (Tycko, 2003).  Although 

Aβ(1-40) residue is present in higher concentrations in the human body, elevated levels 

of Aβ(1-42) residue with additional hydrophobic I41 and A42 are found to be associated 

with familial forms of AD.  Furthermore, it has been reported that Aβ(1-42) is the major 

component of the immature senile plaques and cerebrovascular amyloid deposits (Roher 

et al., 1993, Iwatsubo et al., 1994).  In vitro, Aβ(1-42) forms fibrils rapidly even at much 

lower concentration than Aβ(1-40) (Jarrett et al., 1993b, Harper et al., 1997a).  Hence, 

identification of the slowest or rate-determining step in the overall process is the key to 

understanding the rate of amyloid formation. 

 

1.4.3 Nucleation-Dependent Polymerization of Aβ 

 

In vitro, Aβ fibrillogenesis is proposed to occur via nucleation-dependent 

polymerization process.  This model consists of a nucleation or lag phase and an 

extension phase.  Monomers undergo a slow nucleation phase or lag phase, which 

comprise a series of association steps to form an oligomeric nucleus.  This step is 

thermodynamically unfavorable, representing the rate-limiting step in amyloid fibril 

formation.  Once the nucleus has been formed, further addition of monomers becomes 
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thermodynamically favorable, resulting in a growth phase in which the nucleus grows 

rapidly to form large polymers.  This is followed by a steady state phase, in which the 

aggregate and the monomer appear to be at equilibrium (Fig 1.3A) (Jarrett and Lansbury, 

1993, Harper and Lansbury, 1997).  In nucleation dependent polymerization, polymer 

formation is observed only if the monomer exceeds a certain level known as the critical 

concentration.  Beyond the critical concentration, the polymer concentration increases but 

the monomer concentration remains the same (Harper and Lansbury, 1997).  The in vivo 

concentration of Aβ in the CSF is in the low nanomolar range (Nitsch et al., 1995, van 

Gool et al., 1995).  However, the critical concentration of Aβ measured in vitro is 3-4 

orders of magnitude greater than the average brain concentration, thereby suggesting a 

local super saturation mechanism for Aβ nucleus formation and growth (Harper and 

Lansbury, 1997, Klunk et al., 1994).  The proposed mechanism suggests that the Aβ gets 

supersaturated transiently in a cellular compartment.  During this period a slight increase 

in the concentration results in intracellular aggregation.  Also, the length of time that Aβ 

is locally supersaturated is very critical.  If Aβ is released from the supersaturated state 

before nucleus is formed, there will be no amyloid formation as in normal conditions.  In 

AD, it is hypothesized that the duration of supersaturated state is lengthened thereby 

leading to nucleation and amyloid fibril formation (Harper and Lansbury, 1997, Jarrett 

and Lansbury, 1993, Lomakin et al., 1996), Lomakin et al., 1997).  In a typical 

nucleation-dependent polymerization oligomerization is not observed until the monomer 

concentration exceeds the critical concentration.  During the lag phase protein associates 

in a supersaturated solution to form ordered soluble oligomeric nuclei, and during this 

period there are no detectable fibers.  Addition of preformed protein nuclei during the lag  
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Figure 1.3. Schematic representation of nucleation dependent polymerization  

(A) Monomers undergo slow nucleation to form the nucleus (lag phase). Once the 

nucleus is formed there is rapid aggregation to form fibrils. The lag phase can be 

overcome by the addition of preformed seeds, or by manipulating the aggregation 

conditions like peptide concentration, temperature, pH and ionic strength. (B) Once 

critical concentration is achieved, monomers undergo nucleation to form nucleus, and 

this proceeds to form the protobrils and then the mature fibrils. (Fig 1.3A adapted from 

Harper. J.D., and Lansbury, P.T. Jr., 1997, Ann Rev Biochem, 66:387-407. 1.3 B adapted 

from Walsh, D.M., et al 1997, J Biol Chem, 272:22364-22372). 
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time results in immediate polymerization, a process known as seeding (Harper et al., 

1997a).  Once the oligomeric nuclei are formed, the aggregates grow rapidly (elongation 

phase) until a thermodynamic equilibrium between the aggregate and monomer is 

reached (Harper et al., 1997a, Walsh et al., 1997).  Studies have shown that small 

elongated oligomers appear early in the fibril formation pathway, and measure 2.7 to 4.2 

nm in diameter and < 200 nm in length. These structures disappeared with longer 

incubation time, and were replaced by full length fibrils (Kowalewski and Holtzman, 

1999).  Radiochemical immunological assays have shown the existence of short lived 

species prior to the formation of protofibrils, that progress to form the mature fibrils 

(Walsh et al., 1997).  Intermediate protofibril structures were about ~40% the height of 

the mature fibril, and are believed to appear very early in the process and disapears as the 

fibrils appear (Koo et al., 1999).  These findings support the idea that protofibrils acts as 

a center for the formation of mature fibril. Several models exist that shows the proposed 

coversion of protofibrils to mature fibrils. One is the end to end association of protofibrils 

but,this was considered unlikely due to the kinetic barriers associated with proper 

allignment of protofibril ends (Walsh et al., 1997).  Alternatively, protofibrils could also 

associate laterally followed by an end-end annealing to form mature fibrils (Nichols et 

al., 2002).   

The longer peptide Aβ(1-42) was shown to nucleate faster than Aβ(1-40) (Harper 

and Lansbury, 1997).  Transgenic mice that secrete high levels of Aβ(1-42) in the 

absence of APP over expression, show greater extent of amyloid pathology in contrast to 
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transgenic Aβ(1-40) mice (McGowan et al., 2005).  These experiments highlighted the 

importance of Aβ(1-42) in amyloid deposition, and it was suggested that Aβ(1-42) is 

required for the nucleation in vivo.  The exact nature of the nucleation seed in vivo is not 

known.  It is hypothesized that in the crowded environment inside neurons or in the brain 

parenchyma, Aβ binds to other proteins or lipids and contributes to seeding (Hoozemans 

et al., 2006).  One such example that supports this hypothesis is the binding of Aβ to 

ganglioside GM1, leading to a conformation change that likely acts as a seed for 

aggregation, thereby increasing the fibril formation (Hayashi et al., 2004). 

1.5 Fibril Structural Assembly 

 

Amyloid fibrils are noncrystalline and insoluble making it difficult for structural 

studies by the two principal experimental approaches to structure determination – X-ray 

crystallography and solution-state nuclear magnetic resonance (NMR).  However, X-ray 

fiber diffraction studies indicate a cross β‟ orientation in amyloid fibrils.  Intense 

synchrotron X-ray beams were used to obtain high-resolution diffraction patterns from a 

range of different ex vivo and synthetic amyloid fibrils. Amyloid fibrils were isolated 

from patients with monoclonal λ immunoglobulin light chain amyloidosis, reactive 

systemic amyloid A protein amyloidosis and Val30Met transthyretin amyloid, synthetic 

fibrils were isolated from residues 10-19 of transthyretin, and peptide was isolated from 

residues 20-29 of islet–associated polypeptide (1APP) (Inouye et al., 1993, Sunde et al., 

1997).  High resolution patterns from these samples were dominated by cross beta 

reflections, and the diffraction patterns showed similarities in spite of the fact that the 

samples were from different peptides.  This suggested the presence of a common core 
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molecular structure at least at the level of protofilament.  Extensive biophysical studies 

were done on transthyretin, a tetrameric protein that is the backup transporter of 

thyroxine and the main transporter of retinol binding protein (Blake et al., 1978).  One 

model that was extensively studied was the Val30Met transthyretin amyloid (Blake and 

Serpell, 1996), and this model represented the basic structural elements of the other 

amyloid fibrils that were studied in Sunde et al, (1997).  Structure prediction studies have 

indicated that C –terminal 10 residues and residues 17-21 are highly hydrophobic. 

Residues 28 onwards had high probability for β-sheet structure (Kirschner et al., 1987) 

The fiber diffraction studies cannot determine the chemical details required to 

understand the fibrillogenesis, especially details regarding parts of the sequence that form 

β-strands, and the specific amino acid residues that interact.  Solid state NMR studies 

(Petkova et al., 2002) have revealed that the cross-β motif in full length Aβ fibrils is 

comprised of in-register parallel –β sheets.  These studies have shown that the first 10 

residues of Aβ(1-40) are structurally disordered in the fibrils. Further probe into the 

structural aspects revealed that the residues 12-24 and 30-40 (Fig 1.4B) form two β -

strand segments that are separated by a “bend” segment with non-β -strand conformation 

at G25, S26 and G29.  The bend enables the two strands to form parallel β-sheets that are  

in contact via the side chains.  The resulting structure is a parallel, in register, cross β 

structure with a hydrophobic core and one hydrophobic face.  Fibrillization of amyloid is 

generally considered to driven by hydrophobic rather than electrostatic interactions 

(Halverson et al., 1990, Hilbich et al., 1991, Hilbich et al., 1992).  All full-length Aβ and 

Aβ fragment fibrils studied so far have been found to possess structures that maximize 

hydrophobic contacts within a β -sheet.  Thus, hydrophobic interactions appear to play a. 
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Figure 1.4 (A) Structural prediction showing the region with a high propensity for 

β-sheet (shown in black). The hydrophobic clusters are shown in pink. Figure adapted 

from Serpell (2000) Biochim Biophys Acta 1502:16-30.  (B) Structural model of Aβ(1-

40) schematic representation of a single molecular layer, or cross-β unit.  The yellow 

arrow indicates the direction of the long axis of the fibril, which coincides with the 

direction of intermolecular backbone hydrogen bonds. The cross-β unit is double-layered 

structure, with in-register parallel β-sheets formed by residues 12–24 (red ribbons) and 

30–40 (blue ribbons). Figure adapted from Petkova.et al (2002) Proc.Natl.Acad.Sci.USA, 

99:16742-16747. 
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large role in stabilizing amyloid fibril structures (Halverson et al., 1990, Hilbich et al., 

1991, Hilbich et al., 1992, Harper et al., 1999) 

 

1.6 Classification of AD 

 

Although AD is predominantly a disease of late life, there are two broad types of 

AD – the familial AD (FAD) and the sporadic AD (SAD).  About 5% of AD cases are 

„familial‟ and occur due to mutations in the APP or in the presenilin genes.  Sporadic AD 

cases are thought to be chiefly associated with lack of Aβ clearance from the brain, unlike 

familial AD that shows increased Aβ production (Winklhofer et al., 2008).  In FAD, the 

disease segregates in families, following an autosomal dominant inheritance pattern.  In 

SAD, no clear family history is indicated and the disease usually occurs above 60 years 

of age (Price and Sisodia, 1998).  Because of the variation in age at onset, AD is also 

categorized into early onset and late onset forms.  Both the early-onset (familial) and the 

late-onset (mostly sporadic) forms of the disease have similar neurological and 

histopathological changes, suggesting that the different forms of the disease have a 

common pathophysiology and shared etiology (Pimplikar, 2009). 

 

1.6.1 Genetic Mutations Linked with Early Onset AD 

 

Three different genes have been implicated in the pathology of familial 

Alzheimer‟s disease.  They are: APP (mAPP) gene on chromosome 21 (Goate et al., 

1989, Levy et al., 1990), mutations in the presenilin 1 (PS1) gene on chromosome 14 and 
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mutations in the presenilin 2 (PS2) gene on chromosome 1 (St George-Hyslop, 2000, 

Tanzi and Bertram, 2001).  Mutation in the APP gene was the first mutation associated 

with FAD.  Involvement of APP in FAD was suspected due to the fact that the genes 

resided on chromosome 21, and people with Down‟s syndrome developed the symptoms 

of AD by the age of 40 (Selkoe and Podlisny, 2002).  Presenilins are transmembrane 

proteins localized mainly in the endoplasmic reticulum and Golgi membranes of neuronal 

and non-neuronal cells (De Strooper et al., 1998).  Precise functions of presenilins are 

unclear.  Several studies indicate that PS1 and PS2 are catalytic components of γ- 

secretases (Haass and De Strooper, 1999, Sisodia et al., 1999).  In vitro studies 

demonstrated that the pathogenic mutations in the APP and presenilin genes are 

associated with abnormal processing of APP.  The processing sites are either located 

adjacent to the Aβ domain in APP at the β- and γ- secretase cleavage sites (Nilsberth et 

al., 2001) or within the Aβ sequence at the α-secretase cleavage site.  Either of these lead 

to increased production and elevated plasma levels of Aβ, especially Aβ(1-42) or 

increased ratio between Aβ(1-42) and Aβ(1-40) (Mullan et al., 1992, Citron et al., 1994, 

Suzuki et al., 1994).  The only known mutation near to the β-secretase cleavage site is the 

Swedish double mutation KM → NL.  This mutation increases the level of total Aβ by 

increasing Aβ(1-40) and the levels of Aβ(1-42), though the increase is less in the case of 

the latter.  Mutations near the γ- secretase cleavage site results in an increased production 

of Aβ(1-42) (Scheuner et al., 1996).  However, the V715M mutation (French) results in 

reduction of Aβ(1-40) levels without affecting the Aβ(1-42)  levels (Ancolio et al., 1999), 

suggesting that the increase in Aβ(1-42) : Aβ(1-40) ratio is important rather than the 

absolute amount of Aβ(1-42).  
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Intra-Aβ mutations are associated with amyloid accumulation in the cerebral 

blood vessels in addition to the amyloid plaque formation.  E693Q (Dutch) mutations are 

associated with intracerebral hemorrhages (Levy et al., 1990).  A692G (Flemish) 

mutation manifest with intracerebral hemorrhages but these patients may survive to 

develop a progressive AD-like dementia (Hendriks et al., 1992).  The E693G (Arctic) 

mutation is associated with a decrease in Aβ(1-42) concentration in media from cells that 

were transfected with APPE693G.  Also, the plasma levels of both Aβ(1-42) and Aβ(1-40) 

were low in mutation carriers compared to healthy family members.  In vitro studies have 

shown that the carriers of E693G (Arctic) mutation have a high propensity to form 

protofibrils (Nilsberth et al., 2001). 

Transgenic (Tg) animals carrying mutations in amyloid precursor protein and 

presenilin genes displayed enhanced production and progressive aggregation of Aβ.  

Mouse models have shown that  Aβ(1-42) is essential for Aβ deposition not only in 

parenchyma but also in vessels (Borchelt et al., 1997, Holcomb et al., 1998).  These 

models have established that when APP/Sw mice (producing both Aβ(1-40) and Aβ(1-

42) are bred with mice expressing mutant PS1 (that increases brain Aβ(1-42)/Aβ(1-40) 

ratio), the crossbred mice have drastically increased amyloid deposition in parenchyma 

and vessels compared to single transgenic controls.  However, no significant tau 

pathology or extensive neuron loss, as found in AD brain, was detected in these 

transgenic animals (Games et al., 1995, Hsiao et al., 1996).  Studies on mutations in APP, 

PS1 and PS2 genes have provided important insights for understanding some of the key 

underlying biological mechanisms of AD.  All these genetic mutations lead to  
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Table 1.2 Three genes implicated in the pathology of early onset AD 

 

 

 

 

  

 

Gene (and protein) 

Chromosomal 

location 

Relevance to AD pathogenesis 

Amyloid Precursor 

Protein (APP) 

21q21.3 

Increase in Aβ production or Aβ(1-

42)/Aβ(1-40) ratio; mutations in the  

Aβ sequence or close to the β and γ-

secretase site of APP [need beta 

symbols for Abeta] 

Presenilin 1 PSEN1 14q24.3 

Increase in Aβ(1-42)/Aβ(1-40) ratio; 

mutations throughout molecule; 

enzymatic role in γ-secretase complex 

Presenilin 2 PSEN2 1q31–42 

Increase in Aβ(1-42)/Aβ(1-40) ratio; 

mutations throughout molecule; 

enzymatic role in γ-secretase complex 
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Figure 1.5 Intra Aβ mutations. Schematic representation of APP molecule illustrating 

the sites of cleavage by α-, β-, γ-secretases. Localization of Aβ and p3 proteins containing 

the intra Aβ mutations. [Figure adapted from Nilsberth C, et al, 2001, Nat Neurosci, 

4:887-893.] 
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 overproduction of Aβ(1-42) in the brain before AD symptoms arise, indicating 

accumulation of Aβ(1-42) as initiating factor in the pathogenesis of Alzheimer‟s disease.  

APP or presenilin mutations  cause chronic increase in the Aβ(1-42) levels in the brain 

extracellular fluid, and inside neurons that slowly leads to the oligomerization and, 

eventually, forms fibrils that deposit and later forms the mature plaques (Selkoe and 

Podlisny, 2002).  FAD genetics and other mouse studies have been very useful in 

research on early onset AD.  However, vast majority of AD cases occur late in life, and 

are influenced by both genetic and environmental factors (Bertram and Tanzi, 2008, Bu, 

2009).  These include the ε4 allele of the apolipoprotein E (ApoE) gene (Blacker et al., 

1998, Bu, 2009).  ApoE was identified as a risk factor or a susceptibility gene for AD in 

1993 (Strittmatter et al., 1993).  ApoE plays a major role in lipoprotein metabolism and 

cholesterol homeostasis, in the brain (Mahley, 1988).  The other genetic factors are, 

proteinase inhibitor α2-macroglobulin gene on chromosome 12 (Pericak-Vance et al., 

1997, Blacker et al., 1998), insulin degrading enzyme on chromosome 10 (Olson, 1998, 

Vekrellis et al., 2000), low density lipoprotein receptor related protein and angiotensin 

converting enzyme (Olson, 1998, Kehoe et al., 1999).  So far, 20 mutations in the APP 

gene, 124 mutations in the PS1gene and 8 mutaions in PS2 gene have been described 

worldwide. Therefore gene-targeting strategies will help clarify the in vivo functions of 

genes linked to AD.  The transgenic mouse model studies will offer new opportunities to 

study the evolution and character of AD-type cellular dysfunction in addition to 

biochemical and cellular mechanisms of the disease.  These models will also be very 

useful to test the various treatment strategies for the disease. 
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1.7 Amyloid Cascade Hypothesis 

 

The amyloid cascade hypothesis was formulated more than a decade ago and 

states that the neurodegenerative process comprises of series of events triggered by the 

abnormal processing of the amyloid precursor protein.  The main tenet of the hypothesis 

is that the increased production or decreased clearance of Aβ peptides causes the disease 

(Hardy and Higgins, 1992, Hardy and Selkoe, 2002).  In either case there is accumulation 

of Aβ(1-40) and Aβ(1-42) peptides that result in aggregation and formation of insoluble 

plaques, triggering a series of deleterious changes that results in death of the neuronal 

cells.  Since Aβ(1-42) levels are found to be higher in AD patients, it was proposed that 

increased levels of Aβ(1-42) triggered the cascade of events resulting in AD (Younkin, 

1995).  Over the years the hypothesis has changed with regards to the type of pathogenic 

Aβ species that initiates deleterious events resulting in AD.  Two primary reasons led to 

this alteration in the hypothesis.  First, the plaque load does not correlate with the degree 

of dementia in humans (Terry et al., 1991).  Also, many mouse models of AD show 

memory deficits long before appearance of plaques in the brain (Lesne et al., 2008).  

Second, in vivo neuroimaging techniques have shown the presence of plaques in 

cognitively normal people (Nordberg, 2008, Villemagne et al., 2008).  It is possible that 

these people may have high risk of AD.  These observations suggest that insoluble 

plaques are not responsible for the pathologic cascade of events, and may in fact be 

benign or even protective in nature (Caughey and Lansbury, 2003).  
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1.8 Modified Amyloid Cascade Hypothesis 

Intracellular Aβ is assumed to be an early event in AD pathogenesis (Fig 1.6) 

prior to extracellular Aβ deposition (Wirths et al., 2004).  There is evidence for 

intracellular accumulation of Aβ, in both mouse models and human AD brains, that could 

contribute to disease progression (Gouras et al., 2000).  The focal point is mainly on the 

soluble aggregates of Aβ termed oligomers.  Oligomers were observed to occur 

intracellularly (Walsh et al., 2000).  Furthermore, Aβ(1-42) oligomers were found to be 

potent neurotoxins in neuronal cultures at nanomolar concentrations (Lambert et al., 

1998).  These oligomers were termed as Aβ derived diffusible ligands (ADDLs), and 

were found to be capable of inhibiting hippocampal long term potentiation thereby 

disrupting synaptic plasticity (Lambert et al., 1998, Walsh et al., 2002b). Primary 

neuronal cultures from APP transgenic mice have shown that oligomeric Aβ(1-42) 

redistributes from the outer membrane of the multivesicular bodies (MVB) to the inner 

membranes of the abnormal endosomal organelles and microtubules, and oligomeric 

forms have been observed in abnormal processes and synaptic components in the human 

AD brain (Takahashi et al., 2002, Takahashi et al., 2004).  Sodium dodecyl sulfate (SDS) 

soluble dimeric Aβ was found to accumulate in lipid rafts in the brain tissue of APP 

transgenic mice.  These dimers were found to appear early on as memory impairments 

become obvious, and provide a further link to the assumption that Aβ oligomers are 

tightly linked to memory dysfunction in AD (Kawarabayashi et al., 2004).  Dimeric 

oligomeric species have been isolated from human AD brains even in the absence of 

protofibrils, or fibrils (Walsh et al., 2002a, Shankar et al., 2008), and the dimers were 

found to inhibit long–term potentiation. A number of other poorly characterized but  
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Modified β-Amyloid Cascade 

 

Risk Factors: Aging, Trisomy 21, APP-, PS1- and PS2- mutations 

                                                                                           

          Accumulation of intracellular cellular                    Soluble extracellular  

Aβ(1-42)/ Aβ(1-40)                                                  Aβ(1-42)/ Aβ(1-40)                

                                                                                      

Synapse and neuron dysfunction                             Plaque formation 

                 

Synapse and neuron loss 

                 

Atrophy of distinct brain areas 

                

Dementia and other clinical symptoms 

 

 

 

Figure 1.6. Scheme showing the modified Aβ amyloid hypothesis. Ageing, Down 

syndrome and mutant APP, PS-1 or PS-2 causes an increase in intraneuronal Aβ(1-42) 

levels causing it to accumulate, leading to synaptic and neuronal dysfunction and 

degeneration in brain areas responsible for distinct memory functions. In parallel, 

increased secretion and deposition of Aβ(1-42) leads to extracellular plaque formation.  

Aβ(1-42) plaques are dynamic structures, and can also be internalized again, thereby 

increasing the intraneuronal pool of Aβ(1-42), which in turn increases the neurotoxic 

intracellular events. (Adapted from Wirths.O 2004, J Neuchem, 91: 513-520) 
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biochemically distinct forms of Aβ oligomers have been identified. These aggregation 

species have demonstrated toxicity effects in vivo and in vitro model systems (Klein et 

al., 2001, Walsh and Selkoe, 2004, Glabe, 2005, Walsh and Selkoe, 2007).  Fibrillar and 

pre-fibrillar oligomer species formation have been reported by (Kayed et al., 2007).  The 

new hypothesis suggests that Aβ formation activates the microglial cells which in turn 

release neurotoxic substances such as nitric oxide, proinflammatory cytokines, 

complement proteins and other inflammatory mediators leading to tau phosphorylation 

and neurodegenerative changes (Akiyama et al., 2000, McGeer and McGeer, 2001). 

 

1.9 Microglia 

 

Microglia represent the macrophage-derived cells in the nervous system that are 

capable of responding rapidly to various types of insults (Davalos et al., 2005, 

Nimmerjahn et al., 2005).  They are derived from a myeloid lineage and are the immune 

effector cells in the brain.  Microglia represent approximately 5-10% of all the glia found 

in the brain and are distributed throughout the gray and white matter of the nervous 

system.  At rest, they are believed to play supportive roles for neurons.  An inflammatory 

stimulus will activate the microglia causing them to migrate to sites of injury and 

subsequently transform into a macrophage-like phenotype (Bamberger and Landreth, 

2001). Transformation of microglia into activated form is accompanied by the up 

regulation of cell surface molecules that are involved in immune responses, secretion of 

cytokines and acute phase proteins (Kalaria, 1999).  Deposition of fibrillar amyloid 

deposits leads to activation of microglia, and this has been supported by a number of 
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animal studies.  Transgenic (Tg2576) mice overexpressing APP were generated and they 

developed extensive amyloid plaques, mostly in the hippocampus and in the cortex.  

Analyses of these animals revealed the presence of activated microglia surrounding the 

plaques (Benzing et al., 1999, Mehlhorn et al., 2000).  Aβ accumulation leads to a site-

specific activation of glia resulting in the secretion of pro-inflammatory cytokines 

(Akiyama et al., 2000, Cooper et al., 2000).  The inflammatory response can be 

considered as an attempt to clear the Aβ, however, an overwhelming accumulation of Aβ 

will lead to a chronic proinflammatory response (Blasko et al., 2004) which causes the 

defect in neuronal function. 

A „microglia dysfunction‟ theory (Streit, 2004) has been proposed recently. The 

theory states that many of the microglia in the AD brains are dystrophic and apoptotic 

due to presence of Aβ and cellular debris, and are unable to carry out their normal 

function of phagocytosis and neuroprotection.  The activation of microglia in AD reflects 

the ongoing pathology.  Experimental data have shown that reactive microglia occur 

within Aβ deposits that are associated with tissue injury and dementia ( neuritic plaques), 

and not with diffuse plaques (clinically benign Aβ deposits) (Perlmutter et al., 1992, 

Giulian et al., 1995, Giulian, 1999).  Selectivity in the distribution of reactive microglia 

suggests that a specific signal within the neuritic and core plaques triggers the brain 

inflammation.  Moreover the pattern of microglia distribution in AD is unique to the 

disease, suggesting a very crucial role for brain inflammatory responses in the etiology of 

the disease.  In AD, it is believed that plaques serve as stable irritants that sets the CNS in 

a chronic state of inflammation, promoting the activation and recruitment of microglia, 

which in turn secretes neurotoxins (Giulian, 1999).  Two in vitro models support this 
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hypothesis.  First, plaque fragments are engulfed within few minutes after they were 

placed in cultures of human microglia (Giulian et al., 1995).  The morphology changes 

from resting ramified forms to reactive, amoeboid shapes.  Data also suggest that plaque 

activated, and not resting microglia, secrete neurotoxic substances.  Second, plaque 

fragments do not show direct toxic effects on microglia depleted neuron cultures.  About 

50-µl to 100-µl spots of highly aggregated Aβ are placed on the floor of a cell culture 

well to mimic the Aβ deposits of AD.  Cultured microglia from rapid brain autopsies of 

subjects with or without AD are then seeded into the well.  Within days, there is a 

pronounced activation of the microglia as well as clear chemotaxis to the Aβ spots. The 

activated microglia, within weeks, completely cover the Aβ deposits and begin to 

phagocytose them, a process that can be measured quantitatively (Rogers and Lue, 2001).  

These findings support the fact that immune cells of the brain are necessary to mediate 

the plaque related injury to the neurons.  Activated glia contributes to neurotoxicity 

through the induction of inflammatory mediators such as interleukin (IL)-1and tumor 

necrosis factor-alpha (TNF α).  In addition, these cytokines also mediate the expression 

of the inflammatory enzyme-inducible nitric-oxide synthase (iNOS) (Akama and Van 

Eldik, 2000). 

 

1.10 Aβ Induced Inflammatory Response 

 

The brain was believed to be immunologically privileged by virtue of two factors.  

One is the blood-brain barrier, which hinders entry of humoral immune elements into the 

brain.  Second, it was assumed that the nervous system was unable to mount an intrinsic 
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inflammatory response.  However, it is now widely recognized that brain immunologic 

privilege may be limited since antibodies and humoral immune cells do penetrate the 

brain, (Wekerle, 2002).  Innate, intrinsic, microlocalized, chronic inflammatory responses 

are clearly evident in multiple neurologic disorders, especially AD (Akiyama et al., 2000, 

Griffin, 2006).  In vitro models have facilitated elucidation of mechanisms underlying 

microglial migration, colocalization, and scavenging of Aβ deposits (Rogers and Lue, 

2001).  Several groups have identified a number of inflammation-related receptors 

expressed on microglia.  Among the many receptors that have been identified, 

macrophage scavenger receptors (El Khoury et al., 2003),  Formyl chemotactic receptors  

(Lorton et al., 2000), receptor of advanced glycation end products ( RAGE) (Yan et al., 

1996), are probable important ones since they can have Aβ as a ligand.  Studies have also 

confirmed that Aβ induces glial activation in vivo (Weldon et al., 1998, Ishii et al., 2000).  

The fibrillar conformation of Aβ seems to be a crucial feature for such cell activating 

effects (Ishii et al., 2000).  Alternative and classical complement pathways have been 

implicated in AD pathogenesis (Rogers et al., 2002b), Akiyama et al., 2000).  Fibrillar 

Aβ can bind C1q, the first classical pathway component.  This leads to sequential 

activation of other components of the classic pathway with the release of anaphylatoxin 

(C4a and C3a) and opsonizing (C3b and iC3b) fragments (Rogers, 2008) that enhance 

inflammatory mechanisms.  Another mechanism of complement-mediated inflammatory 

responses is the formation of C5b-9, the membrane attack complex (MAC), targeted at 

cellular membranes.  This assembly creates a transmembrane channel that facilitates the 

diffusion of ions to and from the cytoplasm, leading to disruption of cell homeostasis.  

Sufficient assembling of MAC complexes on the cell surface leads to cell lysis.  
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Immunohistochemical staining of C1q was shown to be colocalized with aggregated Aβ 

deposits in the AD brain, but is absent in the non demented brain  (Rogers et al., 1992).  

A certain degree of aggregation is required for the activation of the complement system.  

The amino acids 14-26 of the antibody- independent binding site of C1q contain five 

cationic side chains that are likely to become charge-coupled to four anionic side chains 

within residues 1 to 16 of N-terminus of Aβ peptide (Jiang et al., 1994). Along with this 

charge coupling, the hexameric structure of C1q appears to align well with adjacent C1q 

binding sites when Aβ is in its aggregated cross-β-pleated sheet configuration, the 

configuration that is predominant in the aggregated Aβ deposit.  Once C1q has been 

activated by Aβ, subsequent activation of the full classic cascade may ensue, and this has 

been widely reported in Aβ -rich areas of the AD brain (Webster et al., 1995). CD14, the 

receptor for lipopolysaccharide (LPS) interacts with fibrillar Aβ (Fassbender et al., 2004) 

and microglia kill the Aβ(1-42) damaged neuron by a CD14 dependent process (Bate et 

al., 2004).  The involvement of CD14 in Aβ induced microglia activation strongly 

supports the hypothesis that innate immunity is linked with AD pathology (Fassbender et 

al., 2004, Eikelenboom et al., 2006). 

  

1.10.1 Neuroinflammation and AD Pathogenesis 

 

One of the mechanisms underlying neurodegeneration in AD is a significant 

inflammatory response to Aβ plaques. Inflammatory response to Aβ plaques are observed 

in the brains of human patients (McGeer et al., 1987), and in AD transgenic mouse 

models (Meyer-Luehmann et al., 2008).  Neuropathological studies in human brains have 
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demonstrated activation of microglial cells (McGeer et al., 1996), and these results have 

been corroborated by in vitro studies  in which microglial cells exposed to aggregated Aβ 

have shown an overproduction of proinflamamtory cytokines that trigger the 

neurodegenerative cascade in the neurons (Quintanilla et al., 2004, Orellana et al., 2005).  

Further support for this concept came from data showing that individuals consuming 

nonsteroidal anti-inflammatory drugs (NSAIDS) have a lower risk of AD (McGeer et al., 

2006). NSAIDS have also shown protective mechanism in animal models of AD (Yan et 

al., 2003).  Patients receiving systemic NSAIDS developed significantly less symptoms 

of AD, suggesting that controlling inflammation in the brain helps prevent or slow down 

the onset of AD (McGeer et al., 1996, Rojo et al., 2008).  However, this effect is 

restricted to only certain (NSAIDS) drugs (Maccioni et al., 2009).  Neuroinflammation is 

characterized by generation of proinflammatory mediators that are locally produced by 

the host cells, thereby indicating the involvement of the innate immune system. 

Inflammation associated with the brain (neuroinflammation) is different from the 

peripheral inflammation.  AD can be thought to be autotoxic disease in which an innate 

immune system uses local phagocytes, microglia, as an effector (Maccioni et al., 2009).  

In vitro studies have shown that Aβ fibrils result in microglial activation (Giulian et al., 

1996, McDonald et al., 1997).  The plaque-associated  microglia have dilated intracellular 

channels of smooth endoplasmic reticulum containing amyloid fibrils (Wisniewski et al., 

1989, Wisniewski et al., 1992).  These findings indicate the role of microglia in clearing 

the Aβ by phagocytosis, which normally takes place in health (Wisniewski et al., 1991).  

In AD, the microglia, found clustered around the amyloid deposits, become dysfunctional 

and unable to clear the amyloid deposits (Rogers et al., 2002a), (Meyer-Luehmann et al., 
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2008).  While the activated microglia fail to clear Aβ, their presence results in neuronal 

damage and cognitive decline due to release of cytokines (Edison et al., 2008).  Infusion 

of anti-Aβ antibodies stimulates the plaque-associated activated microglia to clear the 

deposits (Bacskai et al., 2001). 

 

1.11 Modeling of Alzheimer‟s Disease 

 

Several in vivo models have been developed that were aimed at being a replica to 

the AD symptoms, and to model certain aspects of neurodegeneration, or amyloid 

deposition.  Mouse models that express wild type APP, APP fragments, Aβ and FAD-

linked mutant APP and PS1 were produced.  Mice expressing both mutant PS1 and 

mutant APP were shown to develop Aβ amyloidosis in the central nervous system.  Co-

expression of the human A246E mutant PS1 and APPswe have displayed elevated levels 

of Aβ in the brain, and these mice developed several amyloid deposits, dystrophic 

neurites and glial responses in the hippocampus and cortex (Borchelt et al., 1997).  

Further, these studies have demonstrated that APP, PS1 and BACE1 are colocalized in 

the neurites immediately proximal to the sites of Aβ formation in the brain.  These 

findings strengthen the concept of a neuronal origin for Aβ (Wong et al., 2002).  The 

triple transgenic model (3xTg-AD) (Oddo et al., 2003), harbors PS1M146V, APP (Swe) and 

tauP301L transgenes, and exhibit deficits in synaptic plasticity, long term potentiation, and 

deficits in long-term synaptic plasticity correlate with the accumulation of intraneuronal 

Aβ. Besides, data from 3xTg-AD model suggest that Aβ pathology precedes tau 

pathology by several months.  In vitro models have been very useful since they constitute 
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models that are able to serve as approximations of a disease.  In vitro models allow 

detailed study of pathological factors, and make characterization possible at a cellular 

level.  Rat primary septal cultures (Zheng et al., 2002) and human neuroblastoma cells  

(Misonou et al., 2000) have been used to study the pathophysiological mechanisms that 

are hypothesized to contribute to AD.  Non transfected cell lines like differentiated PC-12 

cells have been treated with Aβ(1-42) to study Aβ neurotoxicity (Bergamaschini et al., 

2002).  Human SH-SY5Y cells exposed to aggregated synthetic beta-amyloid peptide 

Aβ(1-42), caused a decreased solubility of tau along with the generation of PHF-like tau-

containing filaments that correlates with amyloid cascade (Ferrari et al., 2003). 

 

1.11.1  In vitro and In vivo Studies on Inflammation and AD 

 

The in vivo inflammatory response to Aβ has been mirrored in numerous in vitro 

cell model systems including both microglial and monocytic cells (Klegeris et al., 1997, 

Misonou et al., 2000, Yates et al., 2000, Combs et al., 2001). Aβ is deposited in the 

cerebral cortex in the AD brains, and studies have shown the presence of fibrillar Aβ 

(fAβ) associated with the dystrophic neuritis (Mirra et al., 1991).  Geula et al have shown 

that injection of plaque equivalent concentrations (200pg) of fAβ to the cerebral cortex of 

aged Rhesus or marmoset monkeys resulted in a significant neuronal loss, and induced 

hyperphosphorylation of tau.  Further, it was also reported that injections of fAβ in the 

aged primates also resulted in the recruitment and activation of large population of 

microglia (Geula et al., 1998).  Recent studies have shown that low concentrations of fAβ 

induced massive activation of microglia in aged rhesus cortex in addition to neuronal loss 
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(Leung et al., 2009).  Fibrillar Aβ serves as a ligand for both the scavenger receptor class 

A (El Khoury et al. 1996; Paresce et al. 1996) and receptor for advanced glycation end 

products (Yan et al. 1996).  

 

1.12 Human Immune Response 

 

The mammalian immune system is comprised of two branches: innate (cellular), 

and adaptive immune systems.  Innate immune system is the first line of host defense 

against the pathogens, and is mediated by phagocytes, including the macrophages and the 

dendritic cells.  Innate immunity does not require prior exposure to foreign antigens to 

get stimulated.  Adaptive immunity is dependent upon the signals provided by the innate 

immune system, which in turn facilitates expansion of antigen specific T and B 

lymphocytes that can recognize infinite number of potential antigens (Kielian, 2006).  

Host-defense has been based on the ability to recognize pathogen structures (Akira et al., 

2006).  The innate immune system recognizes pathogens via a predetermined subset of 

germ line encoded receptors, thereby limiting the ability to recognize every possible 

antigen.  The innate immune system focuses on few highly conserved structures that are 

unique and expressed by a large group of microorganisms (Kielian, 2006).  The 

conserved structural motifs are called pathogen-associated molecular patterns (PAMPS). 

These bind via a limited number of germ-line encoded pattern recognition receptors 

(PRRs) (Akira et al., 2006, Danilova, 2006).  This attribute enables the immune system to 

distinguish between self and nonself (Medzhitov and Janeway, 1997).  Further, PAMPS 

are essential for the microbial survival, and any mutaion or loss of pattern can be very 
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lethal.  Hence, these patterns are less likely to be subjected to high mutation rates 

(Medzhitov and Janeway, 1997).  Among the various PAMPS available, (Fig 1.7) the 

TLR-family members are pattern recognition receptors (PRRs) that collectively recognize 

lipid, carbohydrate, peptide and nucleic acid structures expressed by different 

microorganisms.  

 

1.12.1 Toll Like Receptors (TLRs) as Pattern Recognition Receptors 

 

Toll-like receptors (TLRs) are evolutionarily conserved from the worm 

Caenorhabditis elegans to mammals (Hoffmann, 2003, Akira and Takeda, 2004, Beutler, 

2004).  TLRs are the primary mediators of the innate immune response and belong to a 

class of type-1 integral membrane glycoproteins.  Depending on the primary sequences, 

TLRs are further divided into subfamilies. TLR1, TLR2 and TLR6 recognize lipids, 

while TLR7, TLR8 and TLR9 recognize nucleic acids.  TLR4 is known to recognize a 

collection of different ligands, each having a different structure, such as, 

lipopolysaccharides (LPS), plant diterpene pactlitaxel, fusion protein of respiratory 

synctytial virus (RSV), fibronectin and heat shock protein (Akira et al., 2006).  TLRs are 

expressed on various immune cells, including macrophages, dendritic cells (DCs), B 

cells, specific types of T cells, and even on nonimmune cells such as fibroblasts and 

epithelial cells.  Expressions of TLRs are modulated rapidly in response to a variety of 

cytokines and environmental stresses.  Certain TLRs (TLRs 1, 2, 4, 5, and 6) are 

expressed on the cell surface, others (TLRs 3, 7, 8, and 9) are found almost exclusively in 

intracellular compartments such as endosomes.  The most extensively studied PAMP is  
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Figure 1.7 Pattern Recognition Receptors (PRRs) Pattern recognition receptors 

involved in the innate immunity mediated host defence against amyloid-beta oligomers 

and fibrils in brain. Figure adapted from Salminen A et al, 2009, Pro Neubiol, 87:187-

194 
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the bacterial lipopolysaccahride (LPS), an outer membrane component of Gram-negative 

bacteria.  LPS is an endotoxin and the most potent immunostimulant.  The lipid portion 

of LPS termed “lipid A” is the portion associated with the Gram-negative bacterial 

infection such as the endotoxic shock.  The LPS released from the gram-negative bacteria 

associates with LPS binding protein (LBP), an acute phase protein present in the blood 

stream.  The LPS-LBP complex binds to CD14; a glycosylphosphatidylinositol (GPI) 

linked protein.  CD14 is expressed on the cell surface of the phagocytes.  The LPS is then 

transferred to MD-2, which is associated with the extracellular portion of TLR4.  These 

steps are followed by the oligomerization of TLR4, a key component in LPS signaling 

(Poltorak et al., 1998, Shimazu et al., 1999).   

Aβ, is one among the several growing number of endogenous human molecules to 

activate the human immune response (Kielian, 2006).  There is increasing evidence that 

suggests the involvement of aggregated Aβ in triggering the human innate immune 

response.  Interaction between fibrillar Aβ(1-42) and CD14 resulted in the release of 

inflammatory products in primary murine microglial cells and human peripheral blood.  

Also, recent data shows that aggregated Aβ(1-42) induces cytokine production via TLR2 

and TLR4, in a human monocytic cell line (Udan et al., 2008).  It has been reported 

earlier that activated microglial cells are typically found clustered around the dense core 

plaques and not around the diffuse Aβ deposits (Selkoe, 2004).  These findings suggest 

that the activation of the microglial cells is selective to a particular Aβ morphology. 
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Figure 1.8 Potential roles of TLRs in the CNS response to infection and injury. 

Microglia and astrocytes respond to numerous PAMPs, including peptidoglycan (PGN; 

TLR2 agonist), double-stranded RNA (dsRNA; TLR3 agonist), lipopolysaccharide (LPS; 

TLR4 agonist), and unmethylated CpG oligodeoxynucleotides and/or bacterial DNA 

(CpG DNA; TLR9 agonist).  The stimulation leads to the release of wide array of 

proinflammatory cytokines (including TNF-α, IL-1β, and IL-12), chemokines [including 

macrophage inflammatory protein-2 (MIP-2/CXCL2) and monocyte chemoattractant 

protein-1 (MCP-1)], and reactive oxygen/nitrogen species [ROI/RNI; including 

superoxide and nitric oxide (NO)].  There is a resultant enhancement of blood–brain 

barrier (BBB) permeability.  Endogenous TLR ligands may be released from injured cells 

within the CNS parenchyma that may serve to augment neuroinflammation. (Figure 

adapted from Kielian, T (2004 a) J Neuroinflamm 1:16.) 
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1.12.2 Proinflammatory Cytokine Markers 

 

Ultra structural studies indicate microglia to be closely apposed to extracellular 

fibrils, and are likely to be involved in a phagocytic response (Wisniewski et al., 1992).  

Monocytes or macroglia have receptors for Aβ ( scavenger type and RAGE) (El Khoury 

et al., 1996, Yan et al., 1996).  In culture conditions the macrophages readily engulf Aβ 

aggregates, and this interaction is often associated with the release of proinflammatory 

cytokines, reactive oxygen species, proteases (eg.matrix metalloproteases) (Giulian et al., 

1995, Lorton, 1997). 

AD brain display immunoreactivity for proinflammatory cytokines IL-1β, TNF-α, 

IL-6 (Dickson et al., 1993) and IL-1α (Giulian et al., 1995, Mrak et al., 1995).  In vitro 

studies have demonstrated that fibrillar Aβ stimulation increases microglial/monocytic  

TNF-α production (Klegeris et al., 1997, Combs et al., 2000).  Increased levels of TNF-α 

have been reported in the brain and plasma of AD patients (Bruunsgaard et al., 1999, 

Tarkowski et al., 1999).  Transgenic mouse models have shown evidence that 

inflammation and TNF-α contribute to disease progression.  Three month old mice 

carrying three familial mutations (APPSwe, TauP301L, and PS1M146V) have shown 

accumulation of intraneuronal amyloid immunoreactivity in regions that include 

entorhinal cortex.  These studies have also reported the presence of elevated TNF-α 

mRNA levels in the same regions, and correlated with onset of cognitive deficits in these 

mice models (Billings et al., 2005, Janelsins et al., 2005).  These findings suggest the 

importance of TNF-α as a valuable proinflammatory marker. 
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1.13 Therapeutic Approach: Vaccination in AD 

 

Immunotherapy is a very promising approach to target the disease causing Aβ 

aggregation species.  This therapy has been approached in two ways.  One is by active Aβ 

peptide vaccination (Schenk et al., 1999, Bard et al., 2000), and the other is passive 

infusion of anti-Aβ monoclonal antibodies (Bard et al., 2000).  Nasal vaccination with 

synthetic copolymer used to treat MS was found to decrease senile plaques in mouse 

model of AD (Frenkel et al., 2005).  T-cell based vaccination with glatiramer acetate 

resulted in decreased plaque formation and induction of neurogenesis in APP mice 

(Butovsky et al., 2006).  There is strong evidence that immune therapy of AD is able to 

remove Aβ from the CNS, leading to an improvement in the cognitive decline that is 

associated with AD (Glezer et al., 2007).  These data justified the first clinical trial with 

the active immunization in patients with mild to moderate AD.  During the Phase 2 trial 

of active immunization with Aβ(1-42) in patients with AD, it was observed that about 6 

% of the patients developed a T-cell mediated, autoimmune meningoencephalitis, and the 

treatment had to be stopped (Orgogozo et al., 2003).  Autopsy investigations of a few 

participants showed clearance of parenchymal plaques.  Amyloid clearance in these cases 

was associated with microglia that showed Aβ immunoreactivity, thereby suggesting 

phagocytosis.  A general cognitive-status test revealed a slowing of cognitive decline in 

these patients (Hock et al., 2003).  The passive infusions of anti-Aβ monoclonal 

antibodies target specific epitopes within the Aβ(1-42) peptide, avoiding a possible 

harmful binding to normal APP.  Since immunotherapy requires repeated infusion of 
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antibodies over a long period, AD patients will be able to tolerate such antibodies 

provided they are of human origin (Steinitz, 2008).  Immunotherapy has been successful 

in affecting the Aβ oligomerization and plaque formation.  The striking feature was the 

clearance of early hyperphosphorylated tau in the neurons of mouse models (Oddo et al., 

2004).  While trials are ongoing, the current hope is that one or more of these approaches 

can slow down the progression of AD and cognitive impairment.  

 

1.14 Aβ Polymorphism and AD Pathogenic Cascade 

 

Post mortem data suggest that different conformations of Aβ aggregated species, and not 

one particular Aβ aggregated intermediate, contribute to the disease mechanisms 

involved in the pathogenic cascade of AD (Hoozemans et al., 2006).  Studies have shown 

that the AD brain has a wide array of polymorphic aggregated Aβ species.  

Immunocytochemistry studies have shown the presence of diffuse plaques in the limbic 

and association cortices, and even in the striatum and cerebellum.  These diffuse deposits 

appear loose and granular by light microscopy, and they lack dystrophic neuritis, altered 

astrocytes and microglia.  Abundant diffuse plaques also occur in the brains of 

neurologically normal elderly humans, and in children with Down‟s syndrome, leading to 

the hypothesis that these are precursor lesions to the neuritic plaques.  These parenchymal 

deposits exist as range of species from dense core neuritic plaques containing fibrillar 

structures to wispy, loose, and granular deposits (Selkoe, 2004).  In vitro aggregation 

studies have provided detailed understanding of the fibrillogenesis mechanisms.  Many 

types of Aβ assembly forms have been reported from studies using synthetic Aβ.  
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Protofibrils (Harper et al., 1997b, Walsh et al., 1997, Hartley et al., 1999, Walsh et al., 

1999), annular structures, paranuclei, amyloid derived diffusible ligands (ADDLs) 

(Lambert et al., 1998, Gong et al., 2003), Aβ*56 (Lesne et al., 2006), secreted soluble Aβ 

dimers and trimers (Podlisny et al., 1995, Walsh et al., 2000, Walsh et al., 2002a), and 

amyloid fibrils are the different aggregation species that have been reported. Soluble 

oligomers are aggregation species that cannot be separated/pelleted from physiological 

fluids by high speed centrifugation (Dahlgren et al., 2002, Haass and Selkoe, 2007).  The 

conditions that produce these different structures are not well understood.  Also, these 

diverse morphologies have distinct toxic and biologic activity and not do provoke the 

same in vivo response (Dahlgren et al., 2002, Walsh et al., 2002a, Deshpande et al., 2006, 

Salminen et al., 2009).  Significant amount of data suggest that induction of an 

inflammatory response appeared to favor a fibrillar conformation.  The local acidic 

environment in the brain (endosomes and lysosomes) are believed to promote Aβ fibril 

formation (McLaurin and Chakrabartty, 1996), thereby inducing the nerurotoxic effects. 

The objective of this study was to characterize the different Aβ aggregation 

species and identify the optimal Aβ aggregation state required for the stimulation of 

maximal TNF-α response in a human monocytic cell line.  It is possible that in the near 

future the early molecular diagnosis of AD will be based on the correlation of Aβ 

structural polymorphisms and levels of proinflammatory cytokines.  The results of this 

study will provide further clues to unraveling the complexities of AD, and help find a 

solution for early diagnosis and treatment of this disorder. 
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Figure 1.9 Schematic representation of various aggregation species in Aβ(1-42) 

assembly. The different species reported are annular structures, paranuclei, Amyloid 

derived diffusible ligands (generally categorized as oligomers). Protofibril formation 

involves structural rearrangement. The final step is the formation of the mature fibrils. 

U (unstructured) α- (alpha helical structure) β (beta sheet). Figure adapted from Bitan et 

al (2003) PNAS,100: 330-335 
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CHAPTER 2 

METHODS 

 

2.1 Disaggregation of Aβ peptides 

The main focus of our study was to determine the assembly state of Aβ 

aggregation species and correlate structure with biological activity.  In order to have 

reproducibility in experimental trials, it was important to start the experiment with a 

homogenous monomeric solution of Aβ.  Commercially purchased peptides may be 

contaminated with certain levels of preexisting aggregates.  These aggregates act as seeds 

to accelerate the aggregation of monomeric peptides (Evans et al., 1995).  Any aggregate 

seed present in the solution will self assemble and alter the structure of the aggregate 

being investigated.  Studies indicate formation of different conformers of Aβ assemblies 

from the same peptide sequence (Petkova et al., 2005).  Small amounts of preformed 

aggregates can compromise the experiment. Therefore, protocols that ensure a uniform 

starting material are very useful when working with synthetic peptides (Chen and Wetzel, 

2001).  

Aβ(1-42), Aβ(1-40) was purchased from r-Peptide (Bogarth, GA, USA).  Aβ(1-

42) WT and Aβ(1-42) (L34P) were gifts from Dr Ron Wetzel, University of Pittsburgh.  

The peptide powder was resuspended in 100% hexafluoroisopropanol (HFIP) to a 

concentration of 1 mM for one hour to solubilize any preformed aggregates, and also 
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make smaller aliquots for storage purposes.  Further, this treatment allows 

“normalization” of the properties of different commercial Aβ preparations and also 

avoids need for subsequent filtration steps. (Wood et al., 1996, Zagorski et al., 1999).  

The peptide solutions were speed vacuum centrifuged to remove the HFIP.  It was 

important to remove traces of HFIP, since low percentages of it can alter the aggregation 

pathway (Nichols et al 2005). The speed vacuum centrifuged samples were stored at -

20C. 

An alternative method of pretreatment utilized a combination of trifluoroacetic 

acid (TFA) and HFIP.  TFA is known to dissolve the H-bonded protein aggregates and is 

relatively volatile making its removal from solution easier.  Further treatment with HFIP 

will remove any traces of TFA and ensuring disaggregation of any aggregated material 

left behind (Zagorski et al., 1999).  This protocol was used on crude peptides Aβ(1-42), 

Aβ(1-40) WT Aβ(1-40) (F4W) and Aβ(1-40) (F19W), synthesized by Dr. Fabio Gallazzi, 

University of Missouri- Columbia.  The peptides were resuspended in 100% TFA to a 

concentration of 1mM and bath sonicated for 10 minutes, and speed vacuum centrifuged 

to remove TFA.  This was followed by addition of an equal volume of 100% HFIP, 

followed by incubation in water bath (37C) for 1 hour, and speed vacuum centrifuged to 

remove HFIP.  The speed vacuum centrifuged peptide samples were stored at -20C. 

 

2.2 Preparation of Aβ Aggregation Solutions. 

 

Lyophilized peptides were stored as 0.25 mg aliquots.  The vials were 

resuspended in sterile water, phosphate buffered saline (PBS), or Hams F12 medium with 
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phenol red, as required in the experiment protocol to a final concentration of 100 µM.  A 

more concentrated Aβ aggregation solution of 1.2mM was made in some experiments.  

For preparations in water, aliquots (0.25 mg) were resuspended in 555 µl sterile water to 

a final concentration of 100 µM Aβ in a cell culture hood to maintain sterile conditions.  

The aggregation reactions were initiated, and stored at appropriate temperature conditions 

as required by the experiment protocol.  For a more concentrated Aβ preparation the 0.25 

mg vial was resuspended in 46 µl sterile water to a final concentration of 1.2 mM. For 

preparations in phosphate-buffered saline (PBS), lyophilized Aβ(1-42) peptide (0.25 mg) 

was resuspended in 500 µl water to a final concentration of 110 µM.  The preparation 

was divided into two aliquots of 250 µl each, and one was supplemented with 25 µl of 

10x PBS (Hyclone) to a final Aβ concentration of 100 µM.  The pH of the resulting 

solution was measured using a micro pH electrode (7.1).  Alternatively, aggregation 

reactions in PBS were initiated by resuspending the lyophilized peptide in 100 mM 

NaOH, (Aβ conc 2 mM, pH 10.2) followed by dilution into PBS (Hyclone,1X) to final 

Aβ concentration of 100 µM. The measured pH after dilution into PBS was 7.4. 

 

2.3 Preparation of Aβ-Derived Diffusible Ligands (ADDLs) 

 

Lyophilized Aβ(1-42) r-Peptide (0.25 mg) was resuspended in 11µl dimethyl 

sulfoxide (DMSO,Sigma) to a concentration of 5mM as described in (Dahlgren et al., 

2002).  Ice cold Ham‟s F12 medium with phenol red (Hyclone) was added to a final Aβ 

concentration of 100 µM.  The peptide solution was incubated at 4C for 24 hours, 

followed by centrifugation at 14,000 x g for 10 minutes.  The supernatant after 
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centrifugation was labeled ADDLs.  The only modification made in the protocol was the 

use of Hams F 12 medium with phenol red. 

 

2.4 Determination of pH of Aggregation Solutions. 

 

The pH of aggregation solutions was measured using a micro pH electrode 

(Thermo Scientific) connected to pH meter (Accumet
R 

Fisher Scientific).  This setup 

allows pH measurements in microliter volumes.  The aggregation studies were done with 

samples less than 1 ml and volumes as low as 5 μl was sufficient for making pH 

measurements. 

 

2.5 SDS PAGE / Western Blotting 

2.5.1 SDS/PAGE 

Aβ samples (100 µM) are prepared and diluted into Laemmli sample buffer 

(Biorad) 1:1 in the presence of reducing agent β-mercaptoethanol.  The samples were 

boiled for five minutes and 15 L loaded onto precast 18% Tris- glycine SDS 

polyacrylamide gels (Biorad).  Protein standards (10 L) (Biorad, Dual color, 10-250 kD) 

were loaded as control.  Aβ aggregation species were separated by electrophoresis in 

Mini-cell (Mini-Protean, Biorad) using running buffer (25mM Tris, 192 mM glycine, 

0.1% SDS, pH 8.3).  Electrophoresis was carried out at 200 volts for 40 minutes.  After 

electrophoresis, protein gels were either visualized by Coomassie staining or blotted to 

membranes for immunoreactivity detection. 
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2.5.2 Western Blotting 

 

The SDS-PAGE resolved proteins were transferred onto polyvinylidene difluoride 

(PVDF) membranes (Hybond
TM

-P, Amersham Biosciences) by electroblotting using the 

tank system (OWL, Bandit
TM

 VEP-2).  The PVDF membrane must be prewetted with 

methanol in order to enable macromolecules in the aqueous phase to bind to the 

hydrophobic surface of the membrane (Wetzel, 1999).  Electroblotting was carried out at 

200 -400 mA for 2 hours in transfer buffer (25mM Tris, 192 mM glycine, 10% methanol, 

pH 8.3).  The nonspecific binding sites on the membranes were blocked by incubating the 

blots in 5% non-fat dry milk in PBS/T (Phosphate buffer saline; 6.7 mM phosphate, 

140mM NaCl, and 0.1% Tween-20, pH 7.5) at 4ºC for at least an hour.  In some 

experiments the blocking was done overnight at 4ºC.  The membrane was treated with 

primary antibody, Ab 9 (gift from Mayo Clinic, Jacksonville) diluted in 5% fat free 

powdered milk in PBS/T for one hour, followed by wash (three times), each for five 

minutes with PBS/T.  The blots were then incubated with HRP-conjugated secondary 

antibody, IgG anti-mouse (R&D systems) diluted (1:1000) in 5% fat free powdered milk 

in PBS/T for one hour, followed by three five minute washes in PBS/T.  All incubations 

and washes were done with rocking.  Immunoreactive bands were detected using 

enhanced chemiluminescence reagent (ECL, Pierce), prepared 5-10 mintes prior to the 

treating the film. Exposure to (Kodak) was used to measure chemiluminescence, and 

exposure time depended on strength of the signal. 
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2.6 Dot Blot Assay 

2.6.1 Dot-Blot Procedures 

Nitrocellulose membrane was wetted with water and set on a filter paper for 5 

minutes.  Prior to spotting the sample the surface of the membrane was checked to see if 

there were any droplets of water.  Aβ (1-42) 5 μl (100 µM) was spotted allowed to stand 

for 20 minutes.  The membrane was blocked with 10% milk in PBS-0.2% Tween 20 

(PBST) for experiments with OC immune serum and Ab 9.  The concentration of Tween 

was reduced to 0.01% for A11 antibody probing based on recommendations in protocol 

in (Kayed et al., 2003).  The blocking step was done for one hour at 4ºC.  The membrane 

was washed with PBST twice (each 5 minutes), and incubated with OC immune serum 

(1:5000), Ab 9 antibody (1:5000), or A11 antibody (1:2000) for 1 hr with gentle shaking.  

Wash procedure was done as mentioned above, and followed by incubation for one hour 

with secondary antibody which is a 1:1000 dilution of an anti-rabbit IgG [HAF008, R&D 

systems] for OC immune serum and A11 antibody or anti-mouse IgG [HAF007, R&D 

systems] for Ab 9.  Washed the membrane twice, and incubated with ECL substrate and 

exposed to film for 30 seconds.  All steps were done at 25C and slight modifications 

were made to the protocols in (Akiyama et al., 2000, Kayed et al., 2003, Parvathy et al., 

2008). 

 

2.6.2 Preparation of Controls for Dot Blot 
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2.6.2.1 OC Positive Control 

0.1 mg of lyophilized Aβ(1-42) was dissolved in 50 µl 100 % HFIP  for 10–20 

minutes at room temperature.  The solution was transferred to a siliconized eppendorf 

tube and diluted to a concentration of 80 µM in sterile water followed by 10-15 minutes 

incubation at room temperature.  The samples were centrifuged for 15 mins at 14,000 x g.  

The supernatant was transferred to a new siliconized tube and subjected to a gentle 

stream of nitrogen for 10 minutes to remove the HFIP.  OC positive fibrillar oligomers 

were generated by stirring sample at ~ 500 RPM using Teflon coated microstir bar for 24 

hours at room temperature (Kayed et al., 2007). However, this preparation did not show 

positive reaction with OC immune serum in the experiments we conducted. 

 

2.6. 2.2 A11 Positive Control 

Soluble oligomers were prepared by dissolving 0.1 mg Aβ in 40 µl 100 % HFIP 

for 10-20 minutes at room temperature as mentioned above. The only difference from 

above being the final concentration of Aβ (55 µM). 10 μL of monomeric Aβ solution was 

added to 90 μL sterile water in a siliconized eppendorf tube to a final concentration of 55 

µM, and incubated for 10-20 min incubation at room temperature.  Following incubation 

samples were centrifuged for 15 minutes at 14,000 x g and the supernatant fraction 

(measured pH 3.3) was transferred to a new siliconized tube and subjected to a gentle 

stream of N2 for 5-10 minutes to evaporate the HFIP.  An aliquot was flash frozen after 

this step.  The samples were stirred at low speed (~ 500 RPM) using a Teflon coated 

micro stir bar for 24-48 hours at 22 °C (Kayed et al., 2003).  An aliquot was taken out 

and flash frozen after 24 and 48 hours.  The flash frozen samples were probed with A11 
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antibody to test for presence of oligomers. This preparation showed reactivity to A11.  

Prefibrillar oligomers have also reportedly been prepared by resuspension of Aβ(1-42) in 

100 mM NaOH (Aβ conc. 2 mM), followed by bath sonication for 30 seconds.  The 

aggregation reaction was initiated by diluting the solution in phosphate buffered saline 

(PBS) pH 7.4 and 0.02% sodium azide (Aβ final concentration 45 µM) and incubated at 

room temperature for up to 96 hours.  This method is a slightly modified version of 

protocol from (Kayed et al., 2007). This preparation was tried as positive control for A11 

antibody, but did not show reactivity. However, this preparation showed reactivity when 

probed with  OC immune serum inspite of being a control for oligomers. 

 

2.7 Immunoprecipitation 

Aβ aggregation solutions were resuspended to a concentration of 100 μM.  

Aliquots of 60 µl was incubated with 2 µl (1:10 dilution) OC antisera (2 mg/ml) resulting 

in ~1:300 dilution.  The incubation was done without agitation for 1 hr at 4°C.  Protein 

G-sepharose beads (10 µl) in 20% ethanol suspension (fast flow, Sigma P 3296) was 

added to the aggregation solution.  Protein G beads were tap spun to remove ethanol, and 

resuspended in same volume of water prior to treatment with aggregation solution.  The 

incubation with Protein-G beads was done with slow mixing for an additional 1 hr at 4°C.  

Protein G is a cell wall protein isolated from Type G streptococci, and has high binding 

affinity to the Fc region of immunoglobulin G (IgG) (Akerstrom and Bjorck, 1986).  The 

solution was centrifuged for 15 min at 18,000 x g and the supernatant (45 µl) was used to 

treat THP-1 monocytes for 6 hours or 24 hours depending on the experiment protocol.  
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After the incubation period the cells were spun and supernatants tested for TNF- levels.  

Another aliquot (5µl) of the 18,000 x g supernatant was used to test for OC immune 

reactivity by dot blot analysis.  AFM image analysis was done with the spin supernatant 

after dilution to a concentration of 1µM.  

 

2.8 Atomic Force Microscopy (AFM) 

An atomic force microscope is optimized for measuring surface features that are 

extremely small.  A Nanoscope III multimode atomic force microscope (Digital 

Instruments) was used in Tapping Mode.  The images were obtained using noncontact 

high frequency cantilevers (Ted Pella).   

 

2.8.1 Preparation of sample grids for AFM 

Aβ(1-42), Aβ(1-40) aggregation solutions (100 µM) were diluted to a 

concentration of 1 µM.  In our earlier trials we used higher concentrations (50 µM) of Aβ 

and we encountered frequent damage of the cantilever.  Samples were allowed to adsorb 

onto mica which is known to be anatomically flat surface with hydrophilic property.  

Grade VI mica (Ted Pella, Inc, Redding, CA) was cut into 11mm circles and affixed to 

12 mm metal discs.  Before application of sample, layers of mica was cleaved by placing 

a section of one-sided scotch tape on the surface.  The tape was then gently pressed and 

pulled up to reveal a smooth and clean surface.  Aliquots (50 µl) were applied to the 

freshly cleaved mica and allowed to adsorb for 15 minutes.  The solution was wicked off 

from the mica surface with tissue wipe, washed with deionized water twice to remove 

any unadsorbed sample, and air dried.  The prepared mica grids were stored in a 
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container with desiccant.  Images were obtained with a Nanoscope III multimode atomic 

microscope (Digital Instruments, Santa Barbara, CA) in Tapping Mode 
TM

.  Height 

analysis was performed using the Nanoscope III software on flattened height modes.  

Alternatively the grids were also prepared by pretreatment with 3 Aminopropyl triethoxy 

silane (APTES) 99% (Sigma Aldrich).  Layers of mica were cleaved as described above 

and the grids were treated with APTES diluted to 100 fold in 1 mM acetic acid for 10 

minutes.  The APTES treated grids were washed with water and air dried.  The APTES 

solution is prepared fresh for each treatment.  Treated mica grids were placed in disc 

container overnight and 50 µl Aβ sample was applied the following day and allowed to 

adsorb for 15 minutes and followed the same steps described above.  For SEC fractions, 

10 µl from the fractions were applied on APTES treated grids without sample dilution. A 

small mark was made with a marker adjacent to the sample drop so that the grid could be 

mounted appropriately for AFM imaging. 

 

2.9 Transmission Electron Microscopy (TEM) 

2.9.1 Preparation of Sample Grids for TEM. 

 Aβ aggregation solutions (100 µM) were diluted to 20 µM in water.  

Aliquots (10 µl) were applied to 200-mesh formvar-coated copper grids (Ted Pella, Inc.).  

The coating on the grid gives a shiny surface and hence can be easily identified.  Samples 

are applied on the shiny surface and allowed to adsorb for 10 minutes at room 

temperature.  Excess sample was wicked away with a tissue wipe.  The samples grids 

were washed three times by placing the sample side down on a droplet of water.  Heavy 

metal staining of the samples was done in a similar manner by incubation on a droplet of 
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2% uranyl acetate (Electron microscopy Sciences, Hatfield, PA) for 5-10 minutes.  The 

excess stain solution was removed and the grids were air dried and stored in desiccated 

containers.  The affixed samples were visualized with a JEOL JEM-2000 FX 

transmission electron microscope operated at 100 – 200 k eV.  The width measurements 

of aggregation species were done manually.  

 

2.9.2 Preparation of Sample Grids for Immunogold Label Studies. 

 

Aβ aggregation solutions (100 µM) were diluted to 20 µM in water.  Aliquots (10 

µl) were applied to 200-mesh formvar-coated copper grids with face up (Ted Pella, Inc.).  

Samples were allowed to adsorb for 10 minutes at room temperature, followed by 

removal of excess sample solution with a tissue wipe.  The samples grids were washed 

three times by placing the sample side down on a droplet of water.  The grids were 

treated with primary antibody Ab9 which recognizes the amino acids 1-16 in the Aβ 

peptide.  Ab9 was diluted (1:1000) into sample diluent [20 mM Tris pH 7.3, 150mM 

NaCl, 0.1% BSA, 0.05% Tween 20].  The grids were treated with the diluted Ab 9 

preparation with the sample side down and incubated for 1 hour at room temperature, 

followed by wash with water thrice.  This was followed by treatment with secondary 

antibody which is a solution of goat-anti mouse IgG conjugated to gold particles [Aurion 

Cat #25129] diluted 1:1000 into sample diluent.  Incubation with conjugated gold 

particles was also done at room temperature with the sample side down.  The grids were 

washed thrice with water and treated with 2% uranyl acetate solution for 5-10 minutes, 

excess solution removed and the grids were air dried. The affixed samples were 
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visualized with a JEOL JEM-2000 FX transmission electron microscope operated at 100 

– 200 k eV (Yagi et al., 2005, Vicente et al., 2006)  

 

2.10 Cell Culture 

 

2.10.1 THP-1 Monocytes 

 

THP-1 cells are cultured from the blood of patient with acute monocytic 

leukemia, and have distinct monocytic markers.  During culture these cells can maintain 

the monocytic characteristics for over 14 months (Tsuchiya et al., 1980).  THP-1 cells 

were obtained from ATCC (Manassas, VA) and stored as 1 ml aliquots in liquid nitrogen 

until they are required for culturing.  The cells were maintained in RPMI-1640 culture 

medium (HyClone, Logan, UT) containing 2 mM L-glutamine, 25 mM HEPES, 1.5 g/L 

sodium bicarbonate, 10% fetal bovine serum (HyClone), 50 U/ml penicillin, 50 g/ml 

streptomycin (HyClone), and 50 M -mercaptoethanol at 37
o
C in 5% CO2.  Prior to 

experiments, THP-1 monocytes were centrifuged, and the pellet was resuspended in 

reduced FBS (2%) growth medium (assay medium) followed by centrifugation as 

mentioned above.  Once again pellet was resuspended in assay medium, and cell 

concentrations were adjusted to 1.0 x 10
6
 cells/ml.  The cell concentrations were adjusted 

by counting using a hemocytometer.  Depending on the protocol the THP-1 cells (0.255 

ml) was added to individual wells of a 48-well sterile culture plate the final volume in the 

well was 0.3 ml.  The Aβ sample (45 µl) and other effectors were added to the wells and 

incubated at 37C for 6 or 24 hours as per experiment protocol.  For 96-well sterile 
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culture plate 12 µl Aβ sample was added to individual wells containing 0.068ml cells.  

The contents of each well were removed, centrifuged at 2500g for 10 min, and the 

supernatant was frozen at −20°C for subsequent TNF-α measurements by ELISA 

(Enzyme Linked Immunosorbant Assay). 

 

2.10.2 Determination of TNF levels by ELISA 

 

TNF levels were measured by using a sandwich enzyme linked immunosorbant 

assay as described previously in (Udan et al., 2008).  Prior to the experiment, 100 l of 4 

g/ml monoclonal anti-human TNF/TNFSF1A capture antibody (R&D Systems, 

Minneapolis, MN) was added to 96-well plates and incubated overnight at room 

temperature.  Wells were washed with PBS (HyClone) containing 0.05% Tween-20 and 

blocked with 300 l PBS containing 1% BSA, 5% Sucrose and 0.05% NaN3 for an hour 

at room temperature.  After washing, 50 l of sample diluent (20 mM Tris containing 

150mM NaCl, 0.1% BSA and 0.05% Tween 20) was added to the wells.  This was 

followed by addition of 50 l samples, human TNF-α standards, and incubated at room 

temperature for 2 hours.  Following the incubation plates were washed three times, and 

the wells were next treated with 100 l biotinylated polyclonal anti-human TNF-

/TNFSF1A detection antibody (R&D Systems) in 20mM Tris with 150 mM NaCl and 

0.1% BSA (2 hours at room temperature).  In the next step, 100 L streptavidin-HRP 

(R&D Systems) diluted 200 times with PBS containing 1% BSA was added and 

incubated for 20 minutes at room temperature.  The wells were washed as described 
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above followed by addition of substrate which was 100 l of equal volumes of 3,3',5,5'-

tetramethylbenzidine and hydrogen peroxide (KPL, Gaithersburg, MD) for 30 minutes.  

The reaction was stopped by the addition of 1% H2SO4 solution.  The optical density of 

each sample was analyzed at 450nm with a reference reading at 540 nm using a 

SpectraMax 340 absorbance plate reader (Molecular Devices, Union City, CA).  A 

standard curve was constructed by sequential dilution of a TNF- standard from 15-2000 

pg/ml.  The concentration of TNF- in the experimental samples were calculated from a 

TNF- standard curve and the TNF- levels were normalized by dividing it with the 

number of cells plated. 

 

 

2.10.3 Test for Contamination by Lipopolysaccharide (LPS) 

  

Contamination of samples with bacterial lipopolysaccharide (LPS), can give rise 

to increased signals from the cells.  In order to rule out any contamination, and confirm 

that the proinflammatory signal was not due to LPS contamination, we added polymyxin 

B sulfate PMX-B (Sigma) to the samples.  PMX-B is known to neutralize the 

pathogenecity of LPS and can be used to detect any trace levels of contaminating LPS in 

the Aβ(1-42) aggregation preparations (Pristovsek and Kidric, 1999).  THP-1 cells were 

prepared as described above, and plated on 48-well culture plate or 96 well plate.  Cells 

were pretreated with 0.1 µg/ml PMX-B and incubated for 30 minutes at 37C, 5% CO2.  

Following incubation with PMX-B, the cells were treated with 10 ng/ml ultra pure LPS 
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or Aβ(1-42) (final concentration 15 µM) and incubated for 6 hours at 37C.  The cell 

supernatants were collected, and stored at −20°C and analysed for TNFα levels. 

 

2.10.4 Monocyte Adhesion Studies 

 

2.10.4.1 Cell adhesion assay 

THP-1 monocytes were prepared in reduced FBS growth medium prior to the start 

of the experiment. THP-1 cells were centrifuged and resuspended in reduced FBS (2%) 

growth medium, and 0.204 ml was added to individual wells of a 48-well sterile culture 

plate.  Cell adhesion was induced as described in (Crouse et al., 2009), by direct addition 

of 10 ng/ml phorbol 12-myristate 13-acetate (PMA) (Sigma) or 15 μM Aβ peptides to 

THP-1 cells.  Controls were 0.0005% DMSO for PMA and sterile water for Aβ 

respectively.  Cells were treated with the effectors and incubated at 37°C for 6 hours.  

After the incubation period, the medium that contains non-adherent cells were removed 

from the wells.  The wells were washed with 200 µl of phosphate buffered saline (PBS) 

and wash was collected.  The cells that adhered to the plate were washed with phosphate 

buffered saline (PBS, Hyclone).  The adherent cells were then removed with 0.25% 

trypsin-EDTA (HyClone), and counted under a microscope using a standard 

hemocytometer.  Percent adhesion was determined by the adherent cell number divided 

by the plated cell number.  We also coated the surface of 48-well cell culture plates with 

human fibronectin (Fn) (Sigma).  Surface coating was done by addition of 0.1 ml per well 

of 50 μg/mL Fn in sterile PBS and incubation for 1 hr at 25°C.  The plate was covered 
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and stored at 4°C until needed for an experiment.  Before the addition of cells, the excess 

Fn solution was aspirated from the wells. 

 

2.10.5 XTT Cell Viability Assay 

 Cell viability was monitored using an XTT (2, 3-bis (2-methoxy-4-nitro-5-

sulfophenyl) -2H-tetrazolium-5-carboxanilide) cell assay.  XTT is a tetrazolium salt, and 

is used to measure the cell metabolism of viable cells (Braeckman et al., 2002).  The 

assay is based on the reduction of the colorless XTT tetrazolium salt within the 

mitochondria of living cells by the enzyme succinate dehydrogenase to form an orange-

colored water-soluble formazan.  A stock solution of XTT (Sigma) 1mg/ml was prepared 

in RPMI 1640 without phenol red (Hyclone) supplemented with 2 mM L-glutamine and 

stored at -20°C.  Cells were treated with Aβ for 6 hours or 24 hours followed by further 

incubation with final concentrations of 0.33 mg/ml XTT and 8.3 µM phenazine 

methosulfate (PMS) (Acros, Morris Plains, NJ) for 3 hours at 37C.  Cell supernatants 

were removed from individual wells after incubation and centrifuged at 5000 rpm for 10 

minutes.  Supernatants were transferred to a fresh 96 well plate.  The XTT reduction by 

viable cells was determined by absorbance measurements of the reduced form of XTT at 

467 nm. 

 

2.11 Fast Pressure Liquid Chromatography (FPLC) 

 The AKTA FPLC is a type of liquid chromatography where the solvent velocity is 

controlled by pumps to control the constant flow rate of solvents.  The standard FPLC 

consist of one or two high-precision pumps, a control unit, a column, a detection system 
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(UV spectrophotometer) and a fraction collector.  AKTA FPLC is controlled through 

UNICORN software, which actually controls the run and offers a number of options such 

as automatic detection and collection of peak fractions.  The Superdex 75 HR column 

was pretreated with 2 mg/ml BSA in running buffer to block non specific binding of A 

aggregation species to the resin.  The column was equilibrated with running buffer.  The 

A preparation was loaded and eluted from a Superdex 75 HR 10/30 column (GE 

Healthcare) in 50 mM Tris-HCl (pH 8.0) at a flow rate of 0.5 ml/min.  Monomeric 

fractions were isolated by size-exclusion chromatography (SEC).  Concentrations of 

monomeric Aβ isolated from the SEC elution fractions were determined by absorbance 

using an extinction coefficient of 1450 cm
-1

 M
-1

 at 276 nm for Aβ(1-40) as previously 

described (Nichols et al., 2002).  The percentage recovery of the monomer concentration 

from the column can be calculated by dividing it by the preload concentration of Aβ.  The 

purified monomer fractions were used to initiate aggregation the aggregation reactions.  

At the appropriate aggregation time point THP-1 cells were treated with the aggregated 

fractions for 6 hours and the cell supernatants were tested for TNF-α production.  SEC 

was also used to separate Aβ(1-42) aggregation species.  Aβ(1-42) solutions (100 µM) 

were allowed to aggregate at 4C for 96 hours, centrifuged for 10 minutes at 18,000 x g, 

and supernatants were loaded on the column.  The fractions were treated with THP-1 

monocytes to test for TNF α level.  Morphology studies were done using AFM and TEM. 

 

2.12 Thioflavin-T Fluorescence Assay 

Thioflavin-T (ThT) is a benzothiazole salt obtained by the methylation of 

dehydrothiotoluidine with methanol in the presence of hydrochloric acid.  ThT  
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Fig 2.1 Structure of Thioflavin T. 
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 fluorescence intensity is enhanced when bound to enriched β-sheet structure found in 

amyloid fibrils.  This provides a simple fluorometric method for following Aβ  

aggregation in prepared samples.  The dye undergoes a characteristic 120 nm red shift of 

its excitation spectrum that may be selectively excited at 450 nm, resulting in a 

fluorescence maximum at 482 nm.  The excitation and emission slits of 10 nm were used 

and all measuremensts were made at room temperature.  The fluorescence intensity was 

monitored by excitation at 450nm and emission scan from 460-520nm using a Cary 

Eclipse fluorescence spectrophotometer (Naiki et al., 1989, LeVine, 1993).  Aβ 

aggregation solutions were monitored by thioflavin T (ThT) fluorescence as described in 

(Nichols et al., 2005).  Aβ aliquots were removed and diluted 10 fold into water, PBS 

(pH 7.4), or 50 mM Tris (pH 8.0), or 150mM glycine buffer (pH 8.0) containing 5 µM 

ThT.  The scans were integrated from 470-500 nm to obtain ThT fluorescence values. 

 

2.13 Centrifugation of Aβ Aggregation Solutions to Test Solubility  

of Aggregation Species 

 

2.13.1 Centrifugation at 18k, 50k, 100 k and 150 k x g 

Microfuge
R 

18 centrifuge, Beckman Coulter
TM 

was moved to 4C prior to 

spinning the samples.  Aβ(1-42) aggregation solutions were spun for 15 minutes at 

18,000 g or 14,000 g as per the experiment protocol.  The spun supernatants were treated 

with THP-1 cells to test for TNFα secretion.  Aliquots were removed for AFM and dot 

blot as per the experiment protocol. The solubility of Aβ(1-42) aggregation species were 

also tested by high speed ultracentrifugation.  Initial centrifugation at 50,000 x g was 
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done in Sorvall RC 5B plus refrigerated centrifuge using SS-34 rotor.  Since we were 

working with small sample volumes (100 µl), adaptors were used.  Aβ(1-42) aggregation 

solutions were placed in 1.5 ml eppendorf tubes which were in turn placed in adaptors 

that fit into the SS-34 rotor.  The samples were spun for an hour at 50,000 x g, 

supernatants were collected,and treated with THP-1 cells to measure the proinflammatory 

response.  Simultaneously, samples were diluted to 1µM and applied to mica grids for 

AFM image analysis.  For centrifugation at higher speeds, a refrigerated Beckman 

Coulter Optima Max ultracentrifuge with TLA-120 rotor was used.  The samples were 

placed in polycarbonate Beckman centrifuge tubes and centrifuged for an hour at 50 k, 

100 k, or 150 k x g as per the experiment protocol.  The centrifugation supernatants were 

collected and treated with THP-1 monocytes as described above and the supernatants 

were tested for TNF-α secretion. 

 

2.13.2 Centrifugation with Centrifugation Filter Devices  

 

Two types of microcentrifugal devices , YM-50 with a nominal molecular weight 

limit (NMWL) of 50,000 Daltons, and YM-100 with a NMWL of  100,000 Daltons were 

used.  The filter device has a sample reservoir that fits into a vial.  The membranes used 

in the micron filters are anisotrophic, hydrophillic, and has the ability to retain molecules 

above a specified molecular weight.  Aβ aggregation solution was pippeted into the 

sample reservoir without touching the membrane with the pipette tip.  The assembly was 

placed in Microfuge
R 

18 centrifuge, Beckman Coulter
TM 

and spun for 15
 
minutes at 

14,000 g.  After the run the vial containing the filtrate is seperated from the sample 
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reservoir.  The sample reservoir was turned upside down into a new vial and then spun 

for 3 minutes at 1000 x g to transfer the retentate into the vial. The supernatant and 

retentate were treated with THP-1 monocytes for 6 hours. The cell supernatants were 

tested for TNF-α response.  Simultaneously, an aliquot was diluted to 1µM concentration 

for AFM imaging. We also used centrifugal filter devices with 0.2µm pore size 

(Millipore Cat # UFC30LG25).  Aβ(1-42) was reconstituted in water and allowed to 

aggregate for 96 hours at 4C.  An aliquot was placed into the filter cup and centrifuged 

for 3 minutes at 12,000 x g, the filtrate was collected and treated with cells. AFM image 

analysis, Bradford assay was done with the filtrate and compared to that of the Total 

(unspun sample). 

 

2.14 Dynamic Light Scattering (DLS) 

 

Light scattering is useful in characterizing macromolecules and colloids.  This 

technique can be divided into two: Static light scattering and dynamic light scattering 

(DLS).  Static light scattering measures the time averaged intensities of the light scattered 

from a solution of particles and dynamic light scattering which measures the fluctuations 

of intensities of the scattered light.  Using these techniques one can obtain the weight 

average molecular weight and the radius of gyration from the total intensity (static light 

scattering) and the hydrodynamic (Stokes) radius (RH) from DLS (Bloomfield, 2000). 

In solution the macromolecules are buffered by the solvent molecules, and the 

molecules are in random motion called the Brownian motion.  As light scatters from the 

moving macromolecules, this motion imparts randomness to the phase of the scattered 
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light.  This leads to time-dependent fluctuations in the intensity of the scattered light.  In 

DLS the time-dependent fluctuations are measured by a fast photon counter.  The 

fluctuations are directly related to the rate of diffusion of the molecule through the 

solvent, and can be used to analyze the RH for the sample  

 DynaPro Titan Instrument (Wyatt Technology, Santa Barbara, CA) was used to 

make the RH measurements.  Aβ samples (30 µl) were spun at 18,000 x g for 10 minutes 

and supernatant was placed directly into a quartz cuvette.  The light scattering intensity 

was collected at 90 angle using a 10-second acquisition time.  Particle diffusion 

coefficients were calculated from auto-correlated light intensity data and converted into 

RH with Stokes-Einstein equation.  Histograms of percent mass vs. RH were generated 

using the Dynamics software (version 6.7.1).  The RH values were calculated from the 

histogram. 
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CHAPTER 3 

 

CORRELATION OF Aβ AGGREGATION STATE WITH ABILITY TO INDUCE 

PROINFLAMMATORY RESPONSE IN HUMAN THP-1 MONOCYTIC CELL 

MODEL SYSTEM 

 

3.1 Introduction 

AD is the most frequent form of senile dementia, and is characterized by 

extracellular senile plaques, and intracellular neurofibrillary tangles.  The extracellular 

plaques consist primarily of aggregated amyloid beta (Aβ), a 40-42 amino acid peptide 

derived by the proteolysis of amyloid precursor protein (APP).  Although only two amino 

acids longer, Aβ(1-42) polymerizes into amyloid fibrils more rapidly than the 

biologically abundant Aβ(1-40) form of the peptide (Jarrett et al., 1993b, Harper et al., 

1997a).  In addition to deposition of Aβ peptides into extracellular plaques, there is also 

evidence for the presence of intracellular Aβ that is believed to be initially involved in the 

disease process (LaFerla et al., 2007).  In vitro studies have shown that Aβ monomer will 

undergo non-covalent self-assembly to form a mixture of diverse Aβ assemblies that 

ultimately form insoluble fibrils (Harper et al., 1997b, Walsh et al., 1997, Harper et al., 

1999).  It is assumed that the same aggregation process occurs in vivo, and these wide 

ranges of morphologies appear to stimulate different types of biological responses in 

vivo.  Cell culture studies have demonstrated the neurotoxicity of Aβ fibrils (Pike et al., 
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1993, Lorenzo and Yankner, 1994, Seilheimer et al., 1997).  Recent studies now suggest 

that soluble oligomeric Aβ species may be more potent than the mature fibrils (Lambert 

et al., 1998, Hartley et al., 1999, Walsh et al., 2005).  Furthermore, a strong positive 

correlation has been demonstrated between soluble oligomeric Aβ and severity of 

dementia in humans (Lue et al., 1999). 

 One of the proposed mechanisms underlying progressive neurodegeneration in AD 

is a chronic inflammatory response to aggregated A involving production of toxic 

cytokines such as tumor necrosis factor alpha (TNF).  Pathology studies have shown the 

presence of inflammatory markers like activated microglia and proinflammatory 

cytokines surrounding the Aβ lesions in the human AD brain (McGeer et al., 1987).  

TNF is a crucial mediator of the inflammatory response.  Overexpression of TNF in 

the central nervous system of transgenic mouse models results in inflammation of the 

CNS and neurodegeneration (Probert et al., 1995).  In vitro studies have shown that 

TNF stimulation of neuronal cell lines leads to increased expression of inducible nitric 

oxide synthase that leads to apoptosis (Heneka et al., 1999).  TNF levels are elevated in 

the post mortem AD brain sections (Dickson et al., 1993) and micro vessels compared to 

non AD micro vessels (Grammas and Ovase, 2001).  TNFα levels are also significantly 

elevated in the cerebrospinal fluid (CSF) of clinically diagnosed AD patients (Tarkowski 

et al., 2003).  These findings suggest TNF levels as a valuable marker for 

proinflammatory response. 

 Though there are several A lesions, not all of them have surrounding 

inflammatory pathology (Walsh and Selkoe, 2007).  The exact mechanism by which A 



 98 

causes neurodegeneration is still not clear.  Understanding the molecular structure of 

amyloid fibrils has attracted tremendous attraction over the past several years.  These 

studies have shed light on issues such as the nature of the intermolecular interactions that 

stabilize amyloid structures (Tycko, 2004).  Moreover, in vitro aggregation studies have 

provided useful information regarding fibrillogenesis mechanisms.  These studies have 

provided information about the various A species that are formed along the aggregation 

pathway, and how they vary in size, length, solubility and morphology (Harper et al., 

1997b, Walsh et al., 1997, Harper et al., 1999, Walsh et al., 1999, Stine et al., 2003).  

Further characterization of A aggregation species will therefore enable identification of 

the particular A assembly state that triggers the inflammatory mechanisms in AD. 

 Our objective in this study was to investigate the A structure-function relationship 

through modulation of Aβ aggregation conditions by varying several factors including 

peptide concentration, peptide length and temperature.  Synthetic Aβ peptides. were used, 

and characterization of the aggregation species were done using biophysical and 

biochemical techniques in an effort to identify the Aβ assembly state that induces 

maximum proinflammatory response in human THP-1 cell line.  Our data indicate that an 

intermediate fibrillar oligomeric aggregation species is optimal for inducing maximum 

proinflammatory response in THP-1 immune cell model system.  These data will provide 

additional information towards understanding the relationship between inflammation and 

AD.  The data from this study will subsequently provide clues to the development of 

therapeutic strategies to treat AD patients.  This work was done in collaboration with 

Maria Udan, University of Missouri, Saint Louis. 
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3.2 Cell Model System for Inflammatory Studies 

 

THP-1 human monocyte cells were used as a model system to study the 

proinflammatory response. THP-1 cells attain a microglia-like morphology when treated 

with lipopolysaccharide (LPS), a bacterial toxin (Yates et al., 2000), and hence, serves as 

a model of primary human microglial cells.  Human microglial cells are very difficult to 

obtain in large quantities, while the THP-1 cells are easy to grow and can be obtained in 

large quantities.  Previous studies have shown that both LPS and Aβ are capable of 

activating THP-1 cells, and stimulate cytokine production (Klegeris et al., 1997, Yates et 

al., 2000, Combs et al., 2001). 

 

3.3 Probing Aβ Aggregation State that Induces Maximum 

Proinflamamtory Response 

 

3.3.1  TNFα Production is Influenced by Aβ(1-42) Aggregation State 

 

Deposition of Aβ(1-40) and Aβ(1-42) peptides in the form of senile plaques is a 

neuropathological hallmark of AD.  Aβ(1-42) in the fibrillar form is abundant in the 

senile plaques.  Aβ(1-40) also has the tendency to form fibrils, but to a lesser extent 

(Iwatsubo et al., 1994).  We wanted to test the ability of Aβ(1-42) to stimulate the THP-1 

cells for proinflammatory response.  Aβ(1-42) forms aggregates very quickly and hence it 

was important to control the rate of aggregation in order to study the various species 
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along the fibril formation pathway.  The initial phase of Aβ(1-42) oligomerization 

involves the formation of pentamer units, hexamer units, and paranuclei.  These associate 

to form large oligomers and protofibrils that elongate to form mature fibrils (Bitan et al., 

2003)  

In our initial studies, Aβ(1-42) reconstituted in DMSO was used and aggregation 

reactions were followed by ThT fluorescence measurements.  Though ThT fluorescence 

values confirmed the progress of aggregation, there was inconsistency in the biological 

activity.  Some Aβ(1-42) preparations in DMSO were able to induce considerable activity 

while the others did not (data not shown).  A different protocol capable of generating 

monomeric starting material was employed.  The commercially available Aβ(1-42) 

peptide was treated with HFIP, vacuum centrifuged and stored as described in Methods.  

Aβ(1-42) aggregation reactions were set up by reconstituting the vacuum centrifuged 

peptide film in sterile water to a concentration of 100 µM and incubated at 4C.  Aliquots 

were removed periodically at 48, 72, 96, 120, 144, 168, 192 and 216 hours and treated 

with THP-1 monocytes with cell concentration of 1 x10
6
 cells/ml for 6 hours as described 

in Methods. The cell supernatants were tested for the ability to stimulate TNF 

production.  We observed that freshly reconstituted Aβ(1-42) induced secretion of very 

small amounts of TNF.  The TNF levels in the freshly reconstituted Aβ(1-42) varied 

amongst trials, but the levels were consistently low. However, we found a significant 

increase in TNF levels at the intermediate time points (48-72hours) of the aggregation 

reaction (Fig 3.1). Continued aggregation at 4C showed a decrease in the 

proinflammatory response after 96 hours, and the signal diminished by 216 hours (Fig 

3.1).  
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Figure 3.1 Proinflammatory activity of Aβ(1-42).  Aβ(1-42) was reconstitued in water 

to a concentration of 100 μM and stored at 4
o
C, as described in the Methods. THP-1 

monocytes were incubated with Aβ(1-42) to a final concentration of 15 μM.  Aliquots 

were removed immediately after reconstitution, and at 48, 96 and 216 hours of incubation 

at 4
o
C, treated with THP-1 cells, incubated for 6 hours at 37

o
C, 5% CO2. After 6 hours 

incubation, supernatants were collected and TNFα production was measured by ELISA.  

Each line in the figure corresponds to a separate experiment.  The peak response lies 

between 48-96 hours of aggregation at 4
o
C.  Courtesy Maria Udan, University of 

Missouri, Saint Louis. 
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The data from multiple experiments led us to hypothesize that an intermediate 

aggregation species may be responsible for inducing TNF production in THP-1 

monocytes. 

 

3.3.2 An Intermediate Aggregation State Induces Maximum 

Proinflammatory Response 

  The morphology of the aggregation species was studied using AFM.  Analysis of 

Aβ(1-42) aggregation time course was done in order to correlate the morphology with 

ability to induce TNF production in THP-1 cells.  As reported earlier (Udan et al., 

2008), we noticed small punctuate species with heights < 2 nm immediately upon 

reconstitution of Aβ(1-42) (Fig 3.2, zero hour). Dynamic light scattering (DLS) 

measurements of the freshly reconstituted Aβ(1-42) showed a major peak with an RH of 

1.0 nm.  This peak (95% mass) represents the monomeric Aβ and ensures that the starting 

material is monomeric.  AFM imaging of the aggregation reaction showed presence of 

flexible fibrillar structures by 48 hours (Fig 3.2).  These intermediate fibrillar structures 

correlated with maximal TNF production by THP-1 cells.  Height analyses of the fibers 

were done using the Nanoscope software as described in the Methods.  The fibers formed 

after 48 hours of aggregation have a mean height and standard deviation (SD) of 4.2 +/- 

1.4 nm.  The lengths of the fibers ranged from 1-3 µm.  Height analyses of the fibers 

made at corresponding time points of cell treatment indicate no significant change in the 

heights of the fibers as the aggregation proceeds from 48 hours to 216 hours.  The fibers 

formed at 216 hours time point had a mean height of 4.5 +/- 1.4 nm.  However, the length 

of the fibrils changed as the aggregation proceeds, especially fibers formed by 216 hours 

0 h 
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Figure 3.2. Morphology analyses of Aβ(1-42) aggregation species by AFM.  Aβ(1-

42) aggregation solutions (100 μM) in water was prepared as described in Methods, 

and allowed to aggregate at 4
o
C.  Aliquots were removed at 0, 48, 96 and 216 hours, 

diluted to 1 μM with water and applied on to mica grids as described in Methods, and 

imaged by AFM. Image panels are 5μm x 5μm and are shown in „height‟ mode.  The 

heights were measured using the Nanoscope III soft ware.  
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 of incubation (< 3 µm). There was a significant difference in the density of fibers.  The 

calculated values of the density of fibers are 1 fiber/µm
2 

at 48 hours of incubation and 6 

fibers/µm
2
 at 216 hours of incubation. ThT fluorescence measurements of the 

aggregation reactions were made in order to monitor the progression of the aggregation in 

the reactions as mentioned in Methods.  Measurements at the zero hour time point of  

Aβ(1-42) solution showed no ThT fluorescence, indicating absence of aggregated 

structures with β-sheet at the time of reconstitution.  ThT fluorescence intensity increased 

as the aggregation progressed indicating formation of β-sheet structures, and by 216 

hours of incubation there was nearly 25 fold increase in the fluorescence intensities 

compared to the values at start of the reaction (Fig 3.3). This correlates with the AFM 

images that show formation of increased fibrillar structures by 216 hours (Fig 3.2).  

 

3.4 Modulation of Aggregation Reaction Conditions 

 

 Aggregation of Aβ proceeds by a multistep, nucleation-dependent, process (Jarrett 

et al., 1993a).  In the absence of preformed fibril seed there is a significant lag period for 

the formation of Aβ fibrils.  Once the seeds are generated, there is rapid fibril elongation 

phase.  The lag time for the fibrils can be shortened by the addition of preformed fibril 

seeds to monomer solutions (Jarrett et al., 1993a).  The rate of Aβ fibril formation is 

controlled by both fibril seed concentration and monomer concentration (Naiki and 

Nakakuki, 1996).  Aβ aggregation is also dependent on temperature (Harper et al., 1999) 

and pH (Wood et al., 1996).  The calculated pI of Aβ is 5.5, and rapid aggregation of this 

peptide at pH 5.5-6.0 may be mediated by non-specific interactions of the highly 
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Figure 3.3.  ThT fluorescence scans of Aβ(1-42) aggregation time course. Each plot 

represents a separate 100 µM Aβ(1-42) aggregation reaction.  Aβ(1-42) aggregation 

reactions (100 µM) in sterile water, and incubated at 4C as described in Methods.  At 

specific time points aliquots of Aβ(1-42) aggregation solutions were removed and mixed 

with ThT diluted into water (5 µM) in a cuvette (final Aβ concentration 10 µM). ThT 

fluorescence was measured as described in Methods.  
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 hydrophobic neutral molecules (Wood et al., 1996).  In order to study the intermediates 

in the slow and controlled aggregation pathway, Aβ aggregation must occur outside of 

this rapid aggregation pH range.  Small changes in the organelle pH, or the peptide 

secretion rates might control the efficiency of fibril formation in vivo (Wood et al., 1996). 

 

3.4.1 Increased Peptide Concentration Diminishes the Proinflammatory Signal 

 

  In Fig 3.1, we have seen that Aβ(1-42) aggregation species formed at the later time 

points were not effective in inducing a proinflammatory response, suggesting that 

continued aggregation diminishes the response.  We increased the peptide concentration 

by 12 fold in order to increase the aggregation kinetics so that the lag time for nucleation 

is shortened.  This step will cause rapid polymerization and fibril formation.  The more 

concentrated solution of Aβ(1-42) (1.2 mM) was incubated at 25 C and the cells were 

treated with the same final concentration of 15µM of Aβ(1-42).  The Aβ(1-42) solution at 

zero hour was able to induce a very small level of TNF.  However, there was no 

induction of proinflammatory response at 24 hours and 48 hours even though the cells 

were treated with the same final concentration of 15 µM Aβ (Fig 3.4 A).  The results 

were very different from the 100 µM preparation wherein we were able to see the peak 

response at 48 hours.  AFM imaging of the concentrated samples showed the formation 

of small fibrillar structures at the time of reconstitution (Fig 3.4 B) and by 24 hours there 

was rapid fiber formation.  Height analyses of the concentrated Aβ(1-42) fibers were not 

possible due to severe overlapping of fibers.  However, the density was calculated to be 6  
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Figure 3.4. Increase in Aβ(1-42) peptide concentration decreases TNF-α signal 

Panel A. Two Aβ(1-42) aggregation reactions were set up.  Aβ(1-42), 100 µM (triangles) 

was incubated at 4
o
C, and the concentrated Aβ(1-42) 1.2 mM (circles), was incubated at 

25
o
C.  At specific time points aliquots were removed from the two samples and treated 

with THP-1 cells with final Aβ concentration of 15 µM.  Courtesy Maria Udan.  Panel B-

C. Representative AFM images of the concentrated 1.2 mM Aβ(1-42) sample.  At 

specific time points aliquots were removed and diluted to final concentration of 1 µM and 

applied to grids as described in Methods. B. Aβ(1-42), 1.2 mM sample aliquot taken 

shortly after reconstitution and C, Aβ(1-42), 1.2 mM sample after 24 hours incubation at 

25
o
C. 
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Figure 3.5 Concentrated peptide solutions show high ThT fluorescence.  Two 

lyophilized aliquots of Aβ(1-42) were reconstituted to 0.1 mM incubated at 4C (circles) 

or 1.2 mM incubated at room temperature (diamonds).  ThT fluorescence was measured 

at different time points by mixing Aβ(1-42) (10 µM) with ThT (5 µM) as described in 

Methods. 
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 fibers per square micron after 24 hours incubation.  This was comparable to the fiber 

density at 216 hours aggregation of Aβ(1-42) (100 µM).  We have already seen from Fig 

3.1 that the 216 hour sample with the same density of fibers did not stimulate the cells for 

a response.  It is possible that an increase in the peptide concentration caused rapid 

aggregation so that the transient intermediate species were either not formed, or were 

immediately converted into the higher aggregated form. ThT fluorescence measurements 

were 10 times higher in the 1.2 mM solutions than in the 100 µM solutions indicating 

rapid formation of β-sheet structures in the 1.2 mM sample compared to the less 

concentrated peptide solution (Fig 3.5). 

 

3.4.2 Incubation of Aβ(1-42) at Higher Temperatures Diminishes  

Proinflammatory Response 

 

 Previous studies have shown that elongation rates of Aβ fibrils vary dramatically 

with temperature (Kusumoto et al., 1998).  The aggregation rate of 100 µM sample was 

accelerated by incubation at higher temperatures.  Three aggregation reactions of 100 µM 

Aβ(1-42) were prepared and incubated at 4C, 25C, or 37C.  Aliquots were taken from 

the reactions, treated with cells at final Aβ(1-42) concentration of 15 µM, and tested for 

ability to induce proinflammatory response.  Only the reaction set up at 4C stimulated 

the cells for a response, while the reactions set up at 25C or 37C significantly 

diminished the ability to stimulate THP-1 cells for TNFα production (Fig 3.6 A).  The 

aggregation reactions were monitored by ThT fluorescence measurements (Fig 3.6 B).  

ThT fluorescence values were high for the aggregation at 37C with a peak at 96 hour  
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Figure 3.6 Incubation at higher temperatures accelerates aggregation, but 

diminishes proinflammatory activity. Panel A.  A solution of Aβ(1-42), 100 µM was 

separated into three tubes and incubated at three different temperatures 4
o
C (circles), 

25
o
C (triangles) and 37

o
C (diamonds).  At various time points aliquots were removed for 

treatment with THP-1 monocytes. Secreted TNFα measurements for each time point were 

determined by ELISA.  Courtesy Maria Udan. Panel B. ThT fluorescence measurements 

were made at specific time points as described in Figure 3.3. 
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time point.  The ThT fluorescence values did not correlate with TNFα levels.  In Fig 3.6 

(Panel B) the highest ThT fluorescence intensities were recorded for the sample 

incubated at 37C.  However, the same sample did not stimulate the cells for high TNFα 

secretion.  AFM images of the aggregation time course showed differences in the extent 

of aggregation.  The peak TNFα response form the cells was at 96 hours, hence, we 

obtained the height analyses of the fibrils incubated at different temperature for this time 

point.  The images of Aβ(1-42) at 4C contained long flexible fiber structures with a 

mean height of 5.5 +/- 1.6 nm (SD) along with the globular species (Fig 3.7 E).  The 

sample at 25C displayed increased number of fibers with a mean height of 6.9 +/- 2.1 

nm.  There was disparity in the measured fibrils heights.  Also, there was an increase in 

fibers with height < 5 nm (Fig 3.7 F).  The AFM image of sample incubated at 37C 

showed less number of fibrils, and the average height of the fibrils were 6.1+/- 1.6 nm 

(Fig 3.7 G).  The heights were not very different from the 25C aggregation reaction.  

However, the striking feature was the absence of globular species.  The fibrils formed at 

37C had a twisted appearance, and shorter than the ones formed at the other two 

temperatures.  The decrease in the number of fibrils could possibly be due to decreased 

adsorption to the mica surface.  These data suggest that the proinflammatory response 

corresponded with the formation of the initial intermediate fibrillar structures of Aβ(1-42) 

solution that was incubated at 4C.  This finding was further strengthened by the 

observation that continued, accelerated, or increased fibril formation abolished the ability 

of Aβ(1-42) to stimulate the THP-1 monocytes to induce TNFα production. 
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Figure 3.7. Increasing the temperature of aggregation reactions failed to invoke 

TNFα response in THP-1 monocytes. 100 μM Aβ(1-42) was prepared in water (100 

µM), and incubated at 4
o
C, 25

o
C or 37

o
C. A-G. Representative AFM images of 

freshly prepared (A), 48 hours (B-D) or 96-hours (E-G) aggregation.  B and E are the 

images of Aβ(1-42) aggregation solution incubated at 4
o
C, (C and F) are images of 

25
o
C incubation, and (D and G) are images of 37

o
C incubation. Heights were 

determined using the Nanoscope software as described in Methods. 
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3.4.3 Proinflammatory Activity is Dependent on Peptide Length 

  

 Aβ is formed from APP by the action of α- β- γ- secretases.  The action of γ- 

secretases results in the formation of Aβ peptides of different fragments of 39-42 amino 

acids long (Selkoe, 2001).  Among the fragments formed, the most abundant is Aβ(1-40) 

fragment.  Among others, Aβ(25-35) fragment is the shortest peptide sequence that 

retains the biological activity comparable to Aβ(1-42) and exhibits β-sheet aggregated 

structures (Pike et al., 1995, D'Ursi et al., 2004).  Aβ-(25-35) is present in plaques and 

degenerating hippocampus neurons in the AD brains and not in age matched control 

subjects.  Aβ(25-35) has a high tendency to quickly assemble into insoluble aggregates 

(Clementi et al., 2005).  Our results so far indicate that Aβ(1-42) incubated at 4C formed 

a species that induces maximum proinflamamtory stimulus.  We wanted to test if length 

of the peptide is crucial for the proinflammatory stimulus.  Aβ(1-40), Aβ(25-35) peptide 

fragments were selected for the experiment and compared to the response from Aβ(1-42) 

under similar conditions.  Three separate reactions (100 µM) of these three peptides were 

set up and allowed to aggregate at 4C.  The aggregation reaction was monitored by 

making ThT fluorescence measurements at specific time points.  At specified time 

intervals the cells were treated separately with each of the three peptides and tested for  

TNFα production.  ThT measurements indicate that under similar conditions Aβ(1-40) 

and Aβ(25-35) did not aggregate as fast as the longer peptide Aβ(1-42) (Fig 3.8).  The 

supernatants from the THP-1 cells treatment indicated that only Aβ(1-42) aggregation 

solution incubated at 4C stimulated the cells and were consistent with our previous data. 
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Figure 3.8. Shorter Aβ peptide aggregates at a slower rate under similar 

conditions.  Three aggregation reactions were set up by reconstituting Aβ(1-42) 

(circles), Aβ(1-40) (squares) and Aβ-(25-35) (inverted triangles) in water to a 

concentration of 100 µM.  The aggregation reactions were allowed to incubate at 

4C.  At specific time points ThT fluorescence was measured by mixing Aβ (10 

µM) with ThT (5 µM) as described in Methods. 
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Aβ(1-40) and Aβ(25-35) aggregation reactions were not able to induce TNFα production 

in THP-1 cells under similar conditions (data not shown).  Therefore, to probe further we 

used Aβ(1-40) aggregation reactions set up at different temperatures.  Solutions of Aβ(1-

42) and Aβ(1-40) (100 µM) were prepared.  The Aβ(1-42) solution was incubated at 4C 

while Aβ(1-40) was incubated at 4C, 25C, or 37C.  THP-1 monocytes were treated 

with aliquots from the aggregation solutions with final Aβ concentration at 15 µM.  Only 

Aβ(1-42),aggregation reaction set up at 4C effectively stimulated the cells for TNFα 

production (Fig 3.9).  AFM (Fig 3.10) images indicate fibril formation by Aβ(1-40) 

sample incubated at the three different temperatures (Fig 3.10 A-C), but at a much slower 

rate compared to Aβ(1-42) (Fig 3.7 E-G).  Height analyses of these images indicate that 

fibrils were longer (> 5 µm) and only one or two fibrils could be located in a 5 µm x 5 

µm image panel.  The heights of these fibrils were slightly greater than Aβ(1-42) fibrils, 

measuring 5.9 +/- 1.7 nm (SD) at 96 hours (Fig 3.10 D).  There was very little change in 

the fibril heights from 96 hours to 216 hours, but they were slightly longer at 216 hours 

(Fig 3.10 G).  TEM images of the same Aβ(1-40) aggregation reactions also displayed 

fibril formation at the different temperatures (Fig 3.11).  Increased temperature resulted 

in the formation of large number of fibrils as seen in the AFM images, yet these 

aggregation species did not induce proinflammatory activity.  Aβ(1-40) and Aβ(1-42) 

oligomerize through different pathways (Bitan et al., 2003), and it is possible that Aβ(1-

42) with the extra two amino acids forms a distinct intermediate species that is able to 

stimulate a proinflammatory response.  AFM and TEM image analyses indicate the  
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Figure 3.9. Aβ(1-40) failed to induce proinflammatory activity on THP-1 cells.  
Aβ(1-40) (100 μM) was resuspended in sterile water, and incubated at 4

o
C (triangle), 

25
o
C (inverted triangle) and 37

o
C (diamond), as described in Methods. Aliquots from the 

respective aggregation solutions were used to treat the THP-1 monocytes to a final Aβ 

concentration of 15 μM for 6 hours; supernatants were collected and analyzed for TNFα 

production. Aβ(1-42) 100 μM incubated at 4
o
C was used as a control (circles).  Courtesy 

Maria Udan, Universit of Missouri, St-Louis. 
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Figure 3.10. Increased temperature induces formation of diverse fibrils, but fails to 

stimulate inflammatory response.  Aβ(1-40) (100 μM) was diluted to 1 μM and applied 

on the surface of freshly cleaved mica as described in Methods. The images shown above 

are representative AFM images of Aβ (1-40) samples. Panel 1 (A-C) are images after 48 

hours at 4
o
C (A), 25

o
C (B) and 37

o
C (C). Panel 2 (D-E) are images after 96 hours at 4

o
C 

(D), 25
o
C (E) and 37

o
C (F) and Panel 3 (G-H) images after 216 hours at 4

o
C (G), 25

o
C 

(H) AFM images panels are 5 μm x 5μm.  
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Figure 3.11. Aβ(1-40) forms diverse fibrils upon incubation at different 

temperatures. Representative TEM images of Aβ(1-40)) samples from the same 

experiment as mentioned in Figure 3.9.  Aβ(1-40) (100 µM) solutions were diluted to a 

concentration of 20 µM and applied to formvar coated copper grids as described in 

Methods. Panel 1 (A-C) are images after 48 hours at 4
o
C (A), 25

o
C (B) and 37

o
C (C). 

Panel 2 (D-E) are images after 96 hours incubation at 4
o
C (D), 25

o
C (E) and 37

o
C (F) 

and Panel 3 (G-E) images after 216 hours 4
o
C (G), 25

o
C (H) and 37

o
C (I). The scale 

bars represent 100 nm. 
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formation of different diverse fibrillar forms of Aβ(1-40), but none of these aggregation  

species were able to stimulate a proinflammatory response when treated with THP-1 

monocytes. 

 

3.4.4 Effect of pH, Ionic strength, and Buffer Type on Aβ(1-42) Aggregation and 

Proinflammatory Activity 

 

 The morphology of Aβ aggregation species alters under varying conditions of pH 

and ionic strength (Fraser et al., 1991, Harper et al., 1999).  Previous studies indicate that 

fibrillization of Aβ(1-40) in 0.1M HCl was highly reproducible, and was free from fibril-

fibril association (Lomakin et al., 1996).  The fibrils formed were also found to be 

morphologically indistinguishable from those formed in vivo (Lomakin et al., 1996).  In 

our experiments, pH measurements of Aβ(1-42) aqueous solutions in water were done 

using a microelectrode, and measured pH was 3.6.  Aggregation conditions were 

modulated by preparing Aβ(1-42) aggregation solution in the physiological pH 7.4.  We 

hypothesized that Aβ(1-42) at higher ionic strength and neutral pH will form different 

structures that may stimulate proinflammatory activity in a different way.  Aβ(1-42) was 

reconstituted in water (100 µM), and another preparation was made wherein Aβ(1-42) 

was reconstituted in 100 mM NaOH to a concentration of 2mM Aβ, followed by dilution 

into PBS to a final concentration of 100 µM.  The measured pH of the solution in PBS 

was 7.4.  The aggregation reactions were monitored by ThT fluorescence measurements.  

In all previous ThT fluorescence measurements, the aggregation of Aβ(1-42)/water 

solutions were monitored by ThT solution prepared in water which maintained the acidic 
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pH.  We followed this protocol inorder to rule out any change in Aβ morphology due to 

change in pH. The ThT values were very low and did not correlate with the 

corresponding AFM images of the same sample which showed formation of fibrils (data 

not shown).  However, we observed that the same Aβ(1-42)/water solution when mixed 

with ThT prepared in PBS (pH 7.4), or 50 mM Tris buffer (pH 8.0) had higher ThT 

fluorescence values compared to measurements made with ThT/water.  We analysed ThT 

fluorescence of an aggregated solution of Aβ(1-42)/water (100 µM), incubated at 4C for 

96 hours with ThT solutions prepared in water, 50 mM Tris buffer (pH 8.0) and 150 mM 

glycine buffer (pH 8.0) (Fig 3.12 ).  We observed that ThT prepared in glycine and Tris 

produced similar ThT fluorescence values that were significantly higher than ThT/water 

solution (Fig 3.12).  For subsequent experiments with Aβ(1-42)/water, ThT 

measurements were made with ThT prepared in Tris (pH 8.0) (Fig 3.13 A circles).  

Further investigations need to be done to probe the pH dependence of ThT fluorescence 

measurements.  The Aβ(1-42)/PBS solutions did not stimulate the THP-1 cells for TNFα 

production (Fig 3.13 B, triangles) compared to the aqueous Aβ(1-42) solution (Fig 3.13 B 

circles).  The PBS samples did not adhere to the mica discs for AFM imaging, 

therefore,TEM was used for morphology analyses.  TEM analyses of both preparations of 

Aβ(1-42) showed presence of fibrillar content (Fig 3.14). However, there were 

differences in the alignment of the fibrils.  The fibrils formed in the aqueous solutions 

were thin and were more or less isolated (Fig 3.14 A, C), while the fibrils formed by 

incubation in PBS showed lateral association (Fig 3.14 B, D).  Also, there was an 

increase in the number of fibrils in the PBS preparations.  This may be the reason for the 
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increase in ThT fluorescence values for the Aβ(1-42) solution in PBS (Fig 3.13, 

triangles). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 ThT fluorescence values were significantly higher at higher pH. Aβ(1-

42) was resuspended in water to a concentration of 100 µM and incubated at 4°C. After 

96 hours of incubation at 4°C, aliquots (7 µl) were removed from the aggregation 

solution and mixed  with (63µl) ThT solutions that were prepared in water, 50 mM Tris 

buffer (pH 8.0), and 150 mM Glycine buffer (pH 8.0). ThT fluorescence measurements 

were recorded as mentioned in the Methods 
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Figure 3.13. pH and ionic strength of aggregation solution influences rate of 

aggregation and Aβ(1-42) proinflammatory activity. Two lyophyllized Aβ(1-42) 

aliquots were reconstituted in either sterile water (circles) or 100 mM NaOH followed by 

dilution into sterile phosphate-buffered saline (PBS) (triangles) to a concentration of 100 

µM and incubated at 4°C.  (Panel A) ThT-fluorescence measurements for both Aβ(1-42) 
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solutions were made at specific time points as mentioned in the Methods.  (Panel B) At 

the above time points, aliquots from the two aggregation solutions were treated with 

THP-1 cells to a final concentration of 15 µM Aβ(1-42).  The secreted TNFα levels in 

cell supernatants were measured by ELISA.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14.  Modulation of pH and ionic strength results in formation of fibrils that 

diminish proinflammatory activity.  Two Aβ(1-42) aggregation solutions were 

prepared in either sterile water, or, in 100 mM NaOH followed by dilution into sterile 

phosphate-buffered saline (PBS) at a concentration of 100 µM and incubated at 4°C.  At 

specific time points aliquots were removed, diluted to 20 µM and applied on formvar 

coated grids as described in Methods. (Panel A) Aβ(1-42) in water after 48 hours and 

(Panel C) Aβ(1-42) 96 hours of incubation at 4C. (Panel B and D) Aβ(1-42) in PBS 

after 48 hours and 96 hours incubation at 4C.  The scale bar represents 100 nm. 
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3.5 Fibrils Formed in Aqueous Solutions are Soluble and Non Toxic to THP-1 Cells 

 

3.5.1 Test for Solubility of Proinflammatory Aggregation Species 

  

 The observations made from the aggregation modulation experiments confirm that 

Aβ(1-42) prepared in aqueous solutions and stored at 4C formed a species that 

stimulated the THP-1 monocytes for a proinflammatory response.  Our data also indicate 

that the proinflammatory activity diminished as the aggregation progressed (216 hours).  

The loss of stimulatory response was based on two assumptions.  One was the reasoning 

that the late stage fibrils precipitated out of the solution, and hence the loss of signal.  We 

tested the solubility of Aβ(1-42) aggregation species prepared in aqueous solutions at 

specified time points.  Aβ(1-42) was resuspended in water and an aliquot was separated 

and centrifuged at 18,000 x g for 10 minutes. The resultant supernatant and the unspun 

(total) sample were treated with cells to test for TNFα production as described in the 

Methods (Fig 3.15 A).  AFM images show that fibrils were present in the supernatant 

after centrifugation at 18,000 x g, indicating that fibrils do not precipitate out of solution 

even at the later time points of aggregation (Fig 3.15 B).  Insoluble fibrils will precipitate 

when spun at 18,000 x g.  Our findings confirm that fibrillar structures that stimulate the 

cells for proinflammatory response were soluble since the centrifugation supernatants 

were still able to activate the cells for a response (Fig 3.15 A). 
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Figure 3.15. Proinflammatory response is not affected by centrifugation of 

aggregation solutions at 18,000 x g.  (A) Aβ (1-42) solution (100 µM) were prepared in 

water and incubated at 4°C. At specific time points aliquots were removed, centrifuged at 

18,000 x g for 10 minutes at 4°C. The spun supernatant (inverted triangles) and unspun 

(total) (circles) were treated with THP-1 cells for 6 hours and TNFα measured in cell 

supernatants Courtesy Maria Udan.   At the same time points, aliquots were removed 

before and after centrifugation at 18,000 x g for 10 minutes, diluted to 1 μM, and imaged 

by AFM. Images are 5 μm x 5 μm. The AFM images above (B, C) correspond to total 

and spun supernatant sample after 96h, and (D, E) represent total and spun supernatant 

after 216 hour incubation at 4°C. 
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3.5.2 Test for Toxicity of Proinflammatory Aggregation Species 

  

 Toxicity of fibrils could be a reason for the loss of inflammatory response.  It was 

assumed that the fibrils, especially the ones formed in the later stages, were toxic to the 

cells.  We tested the toxicity of Aβ(1-42) prepared in aqueous solutions at the 

intermediate and the later time points using XTT assay.  The data indicates that the 

intermediate and the late stage fibrils are not toxic to the cells since the mitochondrial 

mediated reduction of XTT was not affected in both the samples (data not shown).   

 

3.6 Characterization of Aβ(1-42) Proinflammatory Species 

  

 The observations made from the above experiments indicate more clearly that 

when Aβ(1-42) prepared in aqueous solutions is incubated at 4C there is a specific time 

period for the formation of an aggregation species that is capable of inducing a 

proinflammatory response.  From the cumulative data it is clear that the time period for 

formation of the proinflammatory species ranges from 48-96 hours.  The shift in the peak 

response is attributed to variation in the Aβ(1-42) peptide lots that were purchased from 

r-Peptide.  These findings indicate that an intermediate Aβ(1-42) species was optimal for 

inducing proinflammatory response.  In order to characterize these species further we 

separated the samples by SDS PAGE followed by immunoblotting with Ab 9 antibody.  

Ab 9 binds to amino acid residues 1-16 of the Aβ peptide.  Aβ(1-42) prepared in aqueous 

solution was incubated at 4C, and aliquots of samples were snap frozen at specific time 
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points and separated by SDS PAGE.  The SDS PAGE resolved sample was subjected to 

immunoblotting.  There was no clear cut separation of aggregation species (data not 

shown). 

 Previous studies have shown that Aβ(1-42) aggregates were soluble after 

centrifugation at 16,000 x g and 100,000 x g for 30 minutes (Stine et al., 2003).  Our data 

clearly indicate that the fibrillar structures were soluble after centrifugation at 18,000 x g 

for 15 minutes.  We tested the solubility of Aβ(1-42) prepared in aqueous solutions by 

ultracentrifugation at higher speeds.  The peak proinflammatory response for the Aβ(1-

42) peptide lot was at 72 hours of incubation at 4C.  Hence, Aβ(1-42) solution was 

reconstituted in sterile water and allowed to aggregate for 72 hours, centrifuged at high 

speeds ranging from 50,000 x g to 150,000 x g for an hour at 4C.  The centrifugation 

supernatants were treated with THP-1 monocytes and evaluated for TNFα production.  

The centrifugation supernatants at 50,000 ( Fig 3.16 A) and 100,000 x g (Fig 3.16B) 

induced TNFα production in THP-1 cells and were almost similar to the unspun sample 

(total).  There was small decrease in the signal for 150,000 x g spin supernatant.  

Analyses of AFM images showed that high speed ultracentrifugation at 150,000 x g  was 

effective in removing some fibrils from the solution (Fig 13.17 D). Overall, the 

ultracentrifugation data further strengthened our hypothesis that intermediate fibrillar 

forms that elicited maximum proinflammatory response in THP-1 monocytes were 

soluble.  The data also suggests that the fibrils may spin down if spun at speeds higher 

than 150,000 x g.  Therefore spinning at 200-300 k for an hour could be done to confirm 

the above hypothesis. 
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Figure 3.16 Fibrillar structures are soluble after high speed ultracentrifugation.  (A) 

Aβ(1-42) was reconstituted in water (100 µM) and incubated at 4C. At specific time 

points two aliquots were removed, and one was centrifuged at 50,000 x g for 1 hour at 

4C. The centrifugation supernatant and total (circles) were treated with THP-1 cells as 

described in Methods.  (B) Aβ(1-42) was reconstituted in water (100 µM) and incubated 

at 4C for 72 hours.  Separate aliquots of the same solution were centrifuged for 1 hour at 

4C. at 10,000 x g and 150,000 x g.  The pre-centrifuge sample (Total) and the 

supernatants were incubated with THP-1 cells for 24 hours.  The secreted TNF α level 

was measured as described in Methods.  Courtesy Maria Udan 
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Figure 3.17  Fibrillar species are soluble even after high speed ultracentrifugation of 

Aβ(1-42) aggregation solutions. Aβ(1-42) was reconstituted in water (100 µM) and 

incubated at 4C for 72 hours as described in Fig 3.15.  Aliquots of the supernatant after 

centrifugation at 50,000 x g, (Panel B) 100,000 x g (Panel C), and 150,000 x g (Panel D) 

were diluted to 1 µM and applied onto mica grids as described in Methods.  (Panel A) 

Aβ(1-42), (total) after 72 hours at 4C.  The AFM image panels are 5µm x 5µm.  
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In order to confirm that proinflammatory response was due to intermediate fibrillar 

forms, it was necessary to remove fibrils from the aggregation solution, and test the 

ability of the solution without fibrils to evoke a response when treated with THP-1 cells.  

Centrifugal filter devices with 0.2 µm membrane pore have been reported to filter out Aβ 

(1-40) protofibrils from the aggregation solution (Lashuel and Grillo-Bosch, 2005).  We 

used centrifugal filter units with 0.2 µm PTFE membrane for our experiments.  Aβ (1-42) 

was reconstituted in water as described in Methods to a concentration of 100 µM and 

allowed to incubate at 4C for 72-96 hours.  An aliquot was centrifuged at 12,000 x g for 

3 minutes using 0.2 µm centrifugal filter devices.  The filtrate was tested for the ability to 

stimulate proinflammatory response and compared to the prefiltering sample (Fig 3.18 

A).  AFM images indicated that the filtrate was devoid of fibrils, but at the same time 

there were some globular species present (Fig 3.18 C).  The unfiltered sample had both 

fibrillar and globular species.  Bradford assay was done to determine the protein 

concentration in the pre and post filter samples.  The data showed about 35 % of Aβ 

remaining in the filtrate compared to the prefiltered sample.  In a separate experiment 

using the 0.2 µm filter, we collected the filtrate and the retentate.  The retentate was 

recovered from the filter cup and imaged by AFM.  The images showed the presence of 

both fibrillar and globular species (data not shown).  Treatment of THP-1 cells with the 

filtrate resulted in complete wipe out of proinflammatory response compared to unfiltered 

Aβ (1-42) solution.  ThT fluorescence of the filtrate was significantly reduced (75 A.U) 

in comparison to the unfiltered sample (870 A.U).  Results from this experiment suggest 

that the filter device is capable of removing fibrils from the aggregation solution and at 

the same time the filtrate does have some nonfibrilar Aβ.  The data also confirms that  
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Figure 3.18 Aβ(1-42) was reconstituted in water (100 µM) and incubated at 4C for 72 

or 96 hours as described in methods.  An aliquot was removed from the aggregation 

solution and centrifuged using 0.2 µm PTFE membrane filters at 12,000 x g for 3 

minutes. (Panel A). The unspun sample (Total) and the centrifugation filtrate were 

treated with THP-1 cells at a final concentration of 15 µM as described in Methods. The 

cell supernatants were tested for TNFα levels by ELISA. The same samples were diluted 

and applied on to mica grids at a final concentration of 1 µM for AFM imaging.C-D. 

AFM images of Total (C), and 0.2 µm centrifugation filtrate (D). The images are 5 µm x 

5 µm panels. 
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early fibrillar forms are required for  inducing a proinflammaotry response and these 

fibrillar species were soluble even after ultracentrifugation at high speed. 

 

3.7 Proinflammatory Aβ(1-42) Aggregation Species can be Recognized by Antibodies 

Specific for Fibrillar Conformation 

 At present not much is known about the high resolution oligomeric structural 

studies.  Conformation-dependent antibodies and antisera that specifically recognize 

amyloid fibrils (O'Nuallain and Wetzel, 2002, Kayed et al., 2007, Moretto et al., 2007) or 

prefibrillar oligomers (Kayed et al., 2003) have been reported.  These antibodies have the 

unusual property of recognizing generic epitopes that are associated with specific 

aggregation states regardless of their amino acid sequence (Glabe, 2008).  Fibrils have 

been defined as insoluble material that sediments at 100,000 x g. and data indicate 

existence of small soluble oligomers that can react with fibril-specific antibodies (Kayed 

et al., 2007).  These studies discuss the possibility of presence of oligomers with 

structural organization as that of insoluble fibrils (Glabe, 2008). These oligomers are 

termed fibrillar oligomers (Kayed et al., 2007).  Since fibril assembly is known to be 

nucleation dependent process, it is possible that small “seed” aggregates exist in which 

the peptide is organized in the same lattice structure as that of fibrils (Glabe, 2008).  

(Kayed et al., 2007) used fibrillar specific antibody (OC) to distinguish between fibrillar 

and the other oligomeric species.  We used OC immune serum to investigate if the 

aggregation species capable of inducing maximum proinflammatory response belong to 

fibrillar oligomer category.  Aβ(1-42) solution was allowed to age for 72 hours at 4C 

following which they were subjected to immunodepletion of OC positive material as 
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described in Methods.  The immunodepleted supernatant (OC sup) was simultaneously 

reprobed with OC immune serum and also with Ab 9 antibody, using dot blot assay.  Ab 

9 is a sequence specific antibody and is not dependent on the conformation.  Dot blot 

showed significant Aβ remaining in the supernatant probed by Ab 9.  There was very 

little reaction to OC immune serum (Fig 3.19 C & D). AFM image analyses showed a 

significant decrease in the fibrillar and diffuse material (Fig 3.19 B) compared to total 

(Fig 3.19A).  We wanted to probe the OC sensitivity of Aβ(1-42) aggregation species 

throughout the time course of our experiment.  Aβ(1-42) solution in water was prepared 

as described in Methods, and an aliquot was removed immediately upon reconstitution 

and snap frozen.  The remaining solution was incubated at 4C.  At specific time points 

aliquots were removed and probed for OC sensitivity.  The samples were also probed 

with Ab 9 antibody as control since it is sequence specific (Fig 3.19 E). Once we 

confirmed the presence of OC sensitive species in our Aβ(1-42) aggregation solutions, 

we performed immunodepletion experiment, and supernatants were treated with the cells 

as described in the Methods.  The ability of OC supernatant to stimulate TNFα 

production in THP-1 cells was assessed.  An aliquot of the same Aβ(1-42) solution 

(untreated) and Aβ(1-42) treated with rabbit IgG serum was used as control.  Rabbit IgG 

serum was used in order to rule out any non specific binding to fibrils.  Immunodepletion 

of OC-positive material in the Aβ(1-42) solution diminished the proinflammatory activity 

when compared to the untreated 18,000 x g spun sample or supernatants after IP with 

rabbit IgG and centrifugation at 18,000 x g (Fig 3.20 A).  The same samples were probed 

again with OC immune serum.  The dot blot showed a reduction in the OC positive 

material in the OC-immunodepleted material 
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Figure 3.19.  Immunoprecipitation with OC antisera depletes fibrillar oligomers and 

fibrils. Aβ(1-42) was reconstituted in sterile water (100 µM) and stored at 4C for 72 

hours. The solution was immunodepleted with OC antisera as described in the Methods.  

(A-B) AFM Images of the untreated (total) and the immunodepleted supernatant (OC 

Sup).  C-D. OC Supernatant probed again with OC antisera (C) and Ab-9 (D) by Dot blot 

assay. E-F Aβ(1-42) was reconstituted in sterile water (100 µM) and stored at 4C.  At 

the above mentioned time points aliquots were removed and probed with Ab 9 and OC 

antisera by Dot blot. 

.

Ab-9 

OC 

A B 

C 

D 

E 

F 

0h                   24h               48h            72h            216h h 



 135 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20. Immunoprecipitation with OC antisera reduces Aβ(1-42) induced  

proinflammatory response.  Aβ(1-42) was reconstituted in sterile water and incubated 

at 4C for 72 hours.  Aliquots of Aβ(1-42) solution were treated with OC antisera or 

rabbit IgG as described in Methods.  The immunodepleted Aβ(1-42) supernatants were 

reprobed with OC antisera to test for OC sensitivity by dot blot.  Simultaneously aliquots 

were also treated with THP-1 cells and tested for TNFα secretion.  (Panel A) Aβ(1-42) 

untreated solution (tot), Aβ(1-42) untreated, but centrifuged at 18,000 x g and supernatant 

collected (tot sup), OC immunodepletion supernatant (OC IP Sup) and rabbit IgG 

immunodepleted supernatant (IgG IP Sup) were incubated with THP-1 cells for 24 hours 

and the secreted TNFα was measured as described in Methods.  (Panel B) Dot blot of tot 

sup, OC/IP Sup and IgG IP Sup probed with OC antisera. 
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 compared to the 18,000 x g spun supernatants or the supernatants after IP treatment with 

the rabbit IgG (Fig 3.20 B). 

 

3.8 Size Exclusion Chromatography(SEC) of Aβ(1-42) Aggregation Species 

 

 The AFM images from ultracentrifugation experiments showed loss of fibrillar 

structures in the supernatant after centrifugation at both 100,000 x g and 150,000 x g.  

The loss of fibrils in the supernatants was higher in the case of centrifugation at 150,000 

x g.  In spite of this decrease in the fibrils, the cellular activity did not show a drastic 

decrease in the proinflammatory signal.  It has been discussed earlier that insoluble fibrils 

sediment when centrifuged at 100,000 x g (Stine et al., 2003).  Therefore, it is possible 

that during high speed centrifugation the insoluble fibrils were the ones that separated out 

of the solution, hence, there was no significant loss of cellular activity.  (Kayed et al., 

2007)) reported that SEC fractions of Aβ(1-42) showed a broad distribution of oligomer 

sizes from 8 kDa to 200 kDa, and they were recognized by OC.  In our experiments peak 

proinflammatory activity was around 72-96 hours of Aβ(1-42) incubation at 4C.  For 

further characterization, Aβ(1-42) solution was reconstituted in sterile water and allowed 

to incubate for 96 hours at 4C.  After 96 hours, the solution was centrifuged at 18,000 x 

g for 10 minutes and supernatant was loaded on to Superdex 75 column for separation of 

aggregation species as described in Methods.  The elution profile showed four peaks by 

UV absorbance one of them being the void volume peak, an included volume that 

comprised of peaks 2 and 3 and the monomer peak (Fig 3.21 A).  The peak fractions (11,  
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Figure 3.21 Characterization of aggregated Aβ(1-42) by SEC.  Aβ(1-42) reconstituted 

in sterile water was allowed to incubate at 4C for 96 hours.  The solution was 

centrifuged at 18,000 x g for 10 minutes and the supernatant was loaded on to Superdex 

75 column.  (Panel A) 280 nm absorbance elution profiles show four peaks indicated by 

arrows, (1) (Vo) Void Volume, and the peaks labeled 2, 3, and monomer are the peaks for 

the included volumes. The absorbance maximum for the peaks are 1.4 µM for the void, 

and 5.7 µM, 3.7 µM , 18.3 µM, for the included volume. (Panel B) Select peak fractions 

were probed for OC sensitivity by Dot Blot.  Fractions were used for dot blot without 

dilution. (Panel C) The OC positive fractions were treated with THP-1 monocytes for 6 

hours, and TNFα was measured as described in Methods. (Panel D) AFM image analysis 

of the peak fraction that gave maximum proinflammatory response. The image panels are 

3 µm x 3 µm. 

 11         13          16          19          21 

Fraction number 

Fraction number
11 13 16 19

T
N

F

(

p
g
/m

l)

0

100

B 

B 
Fraction number

9 12 15 18 21 24

m
A

U
0

15 monomer

Vo 3

2

B 

C 

A 

D 



 138 

13, 16, 19 and 21) were assessed for OC reactivity by dot-blot analysis (3.21 B).  All of 

the selected fractions, with the exception of the monomer, showed OC-positive material. 

Selected peak fractions were treated with THP-1 monocytes to test their ability to induce 

proiflammatory response.  The included peak 2 (Frac 13) showed the highest levels of 

TNFα secretion (Fig 3.21 C).  The peak fraction that gave maximum proinflammatory 

signal was analysed by AFM.  Images showed the presence of large number of short 

fibrillar structures which were in the range of 100-200 nm in length, and average height 

(diameter) of 5.4 nm +/- 1.6 SD for n= 116 measurements. 

 

3.9 Discussion 

 

 AD accounts for about two-thirds of the cases of progressive dementia in elderly 

people (Golde, 2002).  The exact sequence of events that lead to AD is still debated.  

However, there is lot of evidence that supports the hypothesis that accumulation of Aβ in 

the brain triggers a complex pathological cascade leading to neuronal damage and 

ultimately dementia (Selkoe, 2001).  One of the events within this pathological cascade is 

an inflammatory response.  A key finding that signals the presence of neuroinflammation 

is the accumulation of reactive microglia in the degenerating areas of the brain (McGeer 

and McGeer, 2004, McGeer et al., 2005).  Clumps of activated microglia appear on the 

senile plaques found in AD brains and also in the surrounding tissue (McGeer and 

McGeer, 2004).  However, very few, if any, were found in similar regions of control 

brains.  AD-relevant inflammation has been investigated by studying the interactions of 

human brain microglia with synthetic or brain derived Aβ peptides.  These studies were 
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based on the pathological observations that activated microglia in the AD-affected brains 

are associated with aggregated, thioflavin S-reactive, Aβ plaques (Walker and Lue, 

2005).  These studies indicate that microglia upon interaction with fibrillar amyloid 

plaques become activated.  Fibrillar Aβ aggregates cause a limitation in the phagocytosis 

that leads to cell activation in a proinflammatory manner (Walker and Lue, 2005).  

Studies also indicate the involvement of cytokines (Dickson et al., 1993) in signaling for 

activation.  Dystrophic neurites, activated microglia and proinflammatory cytokines are 

the inflammatory markers that are found surrounding the Aβ lesions in the human brain.  

An array of different aggregate morphologies ranging from dense core neuritic plaques to 

granular diffuse wispy Aβ deposits are observed in the human brain.  However, only the 

plaques seem to provoke the inflammatory response (Selkoe, 2004), and microglia were 

observed surrounding only the dense core plaques and not diffuse plaques. 

 

 In this study we used THP-1 monocytes to investigate the Aβ-induced 

proinflammatory response.  These cells have been used extensively in such studies since 

they display a similar pattern of activation to that of microglial cells (Klegeris et al., 

1997, Yates et al., 2000, Combs et al., 2001).  Aβ solution was allowed to aggregate over 

a time period and monitored for the ability to induce a proinflammatory response from 

THP-1 monocytes.  Earlier studies have used Aβ(1-40) preparations in acidic pH to 

monitor the fibrillization of Aβ and also to quantitate the nucleation and elongation rate 

constants (Lomakin et al., 1996).  The fibrils formed were morphologically identical to 

the ones formed in vivo (Lomakin et al., 1996).  We observed that an intermediate Aβ(1-

42) species formed in aqueous solutions (pH 3.6-4) was optimal in inducing a 
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proinflammatory response.  The peak activity correlated with the formation of short 

fibrillar structures that appeared early on in the time course.  There was slight shift in the 

peak cellular response due to the variation in the Aβ lots but nevertheless the peak was in 

the intermediate time points (48-96 hours) during the course of aggregation (Fig 3.1).  

The proinflammatory activity diminished with the appearance of fibril structures (216 

hour).  Modulation of aggregation of Aβ(1-42) and Aβ(1-40), by increasing the 

temperature of the reaction conditions, resulted in the formation of different types of 

aggregates (Fig 3.9-11), but they did not provoke a proinflammatory response.  Aβ(1-42) 

fibrils formed at neutral pH in PBS were also not effective in inducing a proinflammatory 

response (Fig 3.13).  In fact, the aggregation at neutral pH, and increased ionic strength 

promotes aggregation as shown in the TEM images and ThT fluorescence data (Fig 3.13-

3.14).  The data indicates that acceleration in the aggregation process may have by-

passed the formation of the transient fibrillar structures that induces the maximum 

proinflammatory response.  The OC-immunodepletion studies suggest that the active 

Aβ(1-42) aggregation species is reminiscent of fibrillar oligomers previously reported 

(Kayed et al., 2007).  There is evidence for the formation of Aβ in acidic conditions.  The 

build up of intracellular Aβ may be an early event in the pathogenesis of AD and Downs 

Syndrome (LaFerla et al., 2007).  Accumulation of intracellular Aβ precedes formation of 

extracellular deposits (Mori et al., 2002).  AD and Downs syndrome brains were analyzed 

along with the control brains and the data indicates that most of the intracellular Aβ ends 

at residue 42 (Takahashi et al., 2002).  Further, it is suggested that endosomes are the 

likely sites of Aβ generation due to their acidic nature, and the enzymes BACE-1 and β-

secretase have optimal activity at the acidic pH.  There is also evidence showing the 



 141 

interaction of BACE-1 and APP by FRET (Kinoshita et al., 2003).  The link between 

extracellular and intracellular Aβ is still under investigation.  However, immunotherapy 

studies show that removal of extracellular plaques are slowly followed by the removal of 

intracellular plaques (Oddo et al., 2004).  These findings suggest that extracellular Aβ 

may be formed from the intraneuronal pools and there exists a dynamic equilibrium 

between the pools, such that when the extracellular pools are removed the intraneuronal 

pools are forced out of the cell. At present not much is known about the morphology of 

the intraneuronal Aβ.  We have seen that Aβ(1-42) in aqueous solution (pH 3.6-4) form 

short fibrillar structures that are capable of inducing proinflammatory response (Fig 3.2).  

It is possible that these fibrillar precursors may form intraneuronally and when secreted 

lead to the activation of the microglial cells that in turn induces the proinflammatory 

response.  Freshly reconstituted Aβ solutions have punctuate species <2 nm, and DLS 

measurements of freshly reconstituted Aβ showed a predominant peak of 1nm species 

that corresponds to monomer.  AFM image analyses have shown that the 

proinflamamtory species have a mean height and standard deviation (SD) of 4.2 +/- 1.4 

nm respectively.  AFM imaging of Aβ aggregation species over time was helpful in 

providing information regarding the dimensions and morphology of the aggregated Aβ. 

 

 Modulation of aggregation conditions like change in pH, temperature and mode of 

aggregation (quiescent/agitation) have indicated a change in the fibril structure and 

neuronal toxicity.  Solid state structural studies indicate the presence of in register-

parallel β-sheets for full length Aβ(1-40), Aβ(1-42) and shorter fragment Aβ-(10-35) 

(Benzinger et al., 2000, Tycko, 2003).  Our studies show that changing the pH and ionic 
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strength of aggregation solutions altered the fibril morphology and diminished the 

proinflammatory response (Fig 3.13).  Aβ(1-40) and the shorter peptide Aβ-25-35 failed 

to stimulate the THP-1 monocytes for a proinflammatory response under similar 

aggregation conditions.  This may perhaps be due to the slow nucleation propensity of 

Aβ(1-40) thereby resulting in the formation of a very low concentration of fibrillar 

oligomers.  Aβ-25-35 is supposed to aggregate fast and the biological activity can be 

compared to that of Aβ(1-42), but in our studies this shorter peptide failed to stimulate 

the proinflammatory response.  It is possible that the last two amino acids in Aβ(1-42) are 

very important for the formation of the active proinflammatory species. 

 

 The intermediate fibrillar species in Aβ(1-42) aqueous solution was the most active 

in inducing a proinflammatory response.  We tried to further characterize the aggregation 

species by separating out fibrils from solution by ultracentrifugation (100,000 x g and 

150,000 x g).  Our results indicate that fibrillar structures are soluble and centrifugation 

supernatants are able to stimulate the cells for TNFα production (Fig 3.16-17).  AFM 

image analysis showed a decrease in fibrils in the supernatant.  But this decrease did not 

cause a drastic change in the proinflammatory signal.  In order to characterize the 

aggregation species further, we used conformation-specific antibodies.  These 

conformation-specific antibodies have the ability to distinguish between fibrillar and 

oligomeric species (Kayed et al., 2007).  OC antisera can bind fibrillar species and 

precursors to fibrils that have already formed a fibrillar core structure.  In fact, (Kayed et 

al., 2007) reported the existence of prefibrillar oligomers that were found to be different 

from fibrillar oligomers.  Since the OC sera can detect any fibrillar species, we chose the 
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time point of aggregation that gave the maximum proinflamamtory activity to conduct 

immunodepletion studies.  The data indicate that the selective removal of fibrillar 

oligomers from the aggregation solution resulted in lowering the proinflammatory signal 

(Fig 3.20).  AFM imaging of the SEC fraction that eilicited the maximum 

proinflammatory response showed the presence of short rod like fibrillar structures (Fig 

3.21D).  These findings substantiate our hypothesis that small units of the intermediate 

fibrillar precursors are optimal for inducing proinflammatory response.  The small units 

are crucial since we have observed that continued aggregation, and accelerated 

aggregation resulted in fibrils that failed to stimulate the cells.  These active 

proinflammatory species seem to be transient and appear simultaneously with the fibrils.  

From the time course of aggregation it is evident that these transient small units disappear 

to form bigger units mostly due to elongation.  The intermediate species bound well to 

OC sera indicating presence of fibrillar species.  These fibrillar oligomers may be similar 

to “seed” aggregates in which the peptide is organized in the same lattice structure as that 

of the fibrils (Glabe, 2008).  Further investigations will help decipher if these fibrillar 

oligomers are precursors to protofibrils. 

 Soluble Aβ(1-42) oligomeric species have been implicated as primary toxic species 

in many neurodegenerative diseases.  In fact, large fibrillar plaques provide much less Aβ 

surface area to neuronal membranes compared to a number of small oligomers.  It is 

possible that a group of small oligomers can diffuse into synaptic clefts and these 

assemblies are better candidates for inducing synaptic dysfunction (Haass and Selkoe, 

2007).  Amongst the several unresolved questions, one question raised is the possible role 

of soluble oligomers in triggering a proinflammatory cascade.  It is possible that these 
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species could activate the local microglia and astrocytes either directly or indirectly that 

could lead to synaptic dysfunction (Haass and Selkoe, 2007).  Our findings indicate that 

the soluble prefibrillar oligomeric species formed during the intermediate stage of the 

aggregation pathway are optimal for inducing a proinflammatory response.  This could be 

the partial answer to the question raised above, although a thorough characterization of 

the proinflammatory aggregation species will answer the question completely.  The 

plaque core contains fibrillar Aβ, and there are reports that indicate plaques to be a 

reservoir of bioactive molecules (Meyer-Luehmann et al., 2008).  These studies also 

discuss about the presence of soluble oligomeric Aβ around the plaques. These 

oligomeric Aβ contribute to synapse loss in a mouse model of AD (Koffie et al., 2009).  

Their studies indicate presence of polymorphic Aβ species not only in the brain 

parenchyma, but also within the plaque area.  According to our findings, the soluble pre-

fibrillar Aβ(1-42) species are optimal for triggering a proinflammatory response in 

human THP-1 monocytes.  These studies provide additional information into the 

complexities of Aβ aggregation morphology and may help in deciphering treatment 

strategies.  Identification of the favorable conformation of Aβ(1-42) that triggers a 

proinflammatory response opens up avenues to further probe into the interaction of Aβ 

with cell surface receptors. 
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CHAPTER 4 

 

DIVERSE Aβ AGGREGATION ASSEMBLIES AND THEIR ROLE IN ACTIVATION 

OF DIFFERENT BIOCHEMICAL PATHWAYS 

 

4.1 Introduction 

 The neuropathological features of AD include amyloid deposits, neurofibrillary 

tangles and selective neuronal loss (Selkoe, 1991).  Amyloid deposits contain Aβ, a 40-

42 residue peptide produced by the endoproteolytic cleavage of amyloid precursor 

protein (APP) (Selkoe, 1993).  Microglia are the immune cells of the brain.  Aβ deposits 

attract the microglia and activate them to produce inflammatory mediators, some of 

which will act as a feed back to induce further chemotaxis and activation.  Once at the 

site of Aβ deposition, the activated microglia attempt to phagocytose and clear the 

substance, thereby leading to more activation (Rogers and Lue, 2001).  The plaques in 

AD brain are surrounded by activated microglial cells (Heneka and O'Banion, 2007).  

Microglia may be responsible for the phagocytosis and removal of Aβ under normal 

conditions (Wisniewski et al., 1991).  In AD, it is argued that the microglia clustered 

around Aβ deposits become dysfunctional and incapable of removing Aβ (Rogers et al., 

2002).   
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The limbic and association cortices of AD brain are surrounded by dead or dying 

neurons, activated microglial cells and reactive astrocytes (Selkoe, 1989, Mrak and 

Griffinbc, 2001).  Aβ induced neurotoxicity has been demonstrated in numerous cell 

culture studies (Pike et al., 1993, Lorenzo and Yankner, 1994, Simmons et al., 1994).  

Transgenic mice expressing mutant human APP develop neuropathological lesions 

similar to those found in AD patients.  Immunization of these mice with Aβ(1-42) 

aggregates reverses the neuropathology significantly (Janus et al., 2000, Morgan et al., 

2000).  This effect could be due to two possibilities.  One is that the antibodies generated 

by the host will neutralize Aβ in a restricted compartment, or it may deplete some soluble 

form of Aβ.  The other possibility could be that the microglia get activated due to the 

immunization and this clears the deposited Aβ.  These lead to reversal of cognitive 

imbalance (Janus et al., 2000, Morgan et al., 2000).  The proposed hypothesis is that the 

immune system acts as a peripheral sink, traps Aβ, and depletes it from CNS (Matsuoka 

et al., 2003, Heneka and O'Banion, 2007).  When there is an overwhelming production of 

Aβ(1-42), the levels exceed the rate at which the macrophage machinery clears the 

amyloid deposits resulting in the plaque core found within the AD brain.  Also, the 

clearance mechanisms become less efficient as one ages and this causes severe deposition 

of Aβ aggregates.  These data indicate the significant contribution of Aβ(1-42) to 

neurotoxicity in AD. 

 

Extensive biophysical studies reveal that full length and fragments of Aβ peptides 

form intermolecular parallel β-sheet structures in amyloid fibrils (Serpell, 2000, 

Antzutkin et al., 2002, Balbach et al., 2002).  In addition to β-sheets, turn structures or 
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bend structures were also present at positions 24-27 in Aβ(1-40) aggregates (Whittemore 

et al., 2005), and positions 26-27 in Aβ(1-42) aggregates (Olofsson et al., 2006).  

However, the precise positions of these turn or bend structures in Aβ aggregates are still 

under investigation.  The relationship between the turn position and its impact on 

inflammatory response is not known.  A detailed investigation into Aβ aggregation 

profile may provide clues into the structure-function relationship. 

We investigated the relationship between Aβ aggregation state and its role in the 

activation of monocytes and their maturation into macrophages.  We identified that a 

rapidly formed oligomeric aggregation species is responsible for the maturation of 

monocytes into macrophages, and an intermediate fibrillar oligomer elicits 

proinflammatory response via TLR2 and TLR4 receptors. 

  

4.2 Role of Aβ Aggregation State in Monocyte Recruitment 

 

 

 This study was done in collaboration with Nikkilina Crouse, and the work is 

published in (Crouse et al., 2009).  The cell surface represents the first site of interaction 

between extracellular Aβ and neurons.  Therefore the cell surface may be the location 

where the neurotoxic cascade is initiated (Bateman et al., 2007).  Neurotoxicity studies of 

Aβ indicate that  aggregated Aβ is generally more toxic than monomeric Aβ (Pike et al., 

1993, Simmons et al., 1994, Podlisny et al., 1998, Walsh et al., 1999, Walsh et al., 2002). 

Blood monocytes represent a large pool of scavenger and potential effector cells 

inside blood vessels both in homeostasis, as well as, during inflammatory processes 

(Auffray et al., 2007).  In mammals, monocytes also represent the accessory cells that 
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link inflammation and innate defense against microorganisms to adaptive immune 

responses (Auffray et al., 2009).  Aβ is believed to play roles in monocyte migration (Yan 

et al., 1996, Giri et al., 2000, Le et al., 2001), adhesion and differentiation into 

macrophages (Yan et al., 1996).  Aβ assemblies exhibit a wide range of morphologies 

that appear to stimulate different types of biologic responses in vivo.  The type of 

aggregation species or the receptor mechanisms that causes the monocyte/microglia 

recruitment, monocyte differentiation, and microglial activation are not fully understood.  

We investigated the ability of Aβ aggregation species to induce monocyte maturation into 

an adherent form. 

 

4.3. Aβ(1-42) Induces THP-1 Monocyte Adhesion and Maturation 

 

THP-1 monocytes cell model system was used for studying the monocyte 

recruitment and differentiation process since they are non-adherent and have a round 

morphology (Tsuchiya et al., 1980).  They normally circulate in the blood.  In the event 

of a proinflammatory, or immune stimuli in the periphery, the monocytes are recruited to 

the site and are differentiated into macrophages.  The differentiation process is an attempt 

to round up and destroy the foreign pathogen, and prevent further damage to the body.  

THP-1 monocytes can be induced to differentiate along the monocytic pathway.  These 

cells can be converted into mature cells with functions of macrophages by treatment with 

phorbol diesters (Tsuchiya et al., 1982).  Phorbol-12-myristate-13-acetate (PMA) is 

known to induce cell differentiation. (Schwende et al., 1996) have reported that PMA  
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Fig 4.1 Aβ(1-42) induces monocyte adherence comparable to PMA. THP-1 

monocytes were treated with 10 ng/ml PMA or 15 µM Aβ(1-42) from a freshly 

reconstituted 100 μM water solution and incubated for 6 hours at 37°C. Percent 

adherence was determined by direct cell counting as described in the methods. Standard 

error bars were calculated from n=17 trials for PMA and n=22 trials for Aβ(1-42). Water 

(n=15) controls induced 5 ± 1% adherence. Courtesy Nikkilina Crouse 
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induces adherence, and their reports also show a decrease in cell proliferation when 

treated with PMA.  We used PMA as a control to monitor the differentiation in cells.   

When THP-1 cells were incubated with PMA for 6, 24 and 48 hours respectively,there 

was monocyte differentiation.  The ability to differentiate the monocytes was evaluated 

by measuring monocyte adhesion, a marker for cell maturation.  Freshly reconstituted 

Aβ(1-42) in water (100 µM) induced 41.85 +/- 4.14 % adherence, and it was comparable 

to the 43.11+/- 3.65 % induction by PMA (10 ng/ml) (Fig. 4.1).  The monocyte adhesion 

ability was dependent on the concentration of Aβ.  When cells were treated with different 

Aβ(1-42) concentrations (5, 10, 15 µM), the 15 µM Aβ(1-42) induced maximum 

adherence. (data not shown).  We used this concentration for further experiments. 

 

4.4 Freshly solubilized Aβ(1-42) Induces Maximum Monocyte Maturation Compared to 

Aggregated Aβ(1-42). 

 The influence of Aβ(1-42) aggregated state in inducing the monocyte maturation 

was tested by incubating Aβ(1-42) for longer incubation time.  Aβ(1-42) was 

reconstituted in water, an aliquot was treated with the cells immediately, and the 

remaining solution was allowed to aggregate at 4C.  At specific time points of 

aggregation (0, 48, 72, 96, 120, 144, 216 hours), aliquots of Aβ(1-42) aggregation 

solution were treated with cells, and the ability to induce the monocyte adhesion was 

monitored.  The maximum adhesion occurred at zero and 48 hours of aggregation, and 

the ability to induce adhesion was lost with increase in the duration of aggregation.  AFM 

images of samples at the correlating time points showed presence of small globular 

species for the freshly reconstituted solution of Aβ(1-42).  Small fibrillar structures were  
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Fig. 4.2 Aβ(1-42) aggregates in freshly reconstituted solution induce monocyte 

adherence. Aβ(1-42)) was reconstituted in sterile water to 100 µM and incubated at 4°C. 

(A) At the given times, cells were treated with 15 µM Aβ for 6 hours and adherence was 

measured by direct counting as described in the Methods. Error bars represent standard 

error for n trials of 19 (0 h), 17 (48 h), 4 (72 h), 5 (96 h), 7 (120 h), 3 (144 h), and 7 (216 

h) Courtesy Nikkilina Crouse. (B-E) Representative AFM images of Aβ(1-42) 

aggregation at 4°C taken at 0, 48, 96 and 216 hours respectively. Aβ(1-42) was diluted a 

concentration of 1 µM and applied on mica grids as described in Methods. Images are 5 

µm x 5µm panels.  
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observed after 48 hours along with the small globular species, and by 96 hours, there was 

an increase in the number of fibrils, and a significant loss of ability to induce cell 

adherence.  The data clearly suggest that aggregation species present in the freshly 

reconstituted Aβ(1-42) was the most effective in inducing monocyte maturation.  Height 

analysis of the AFM images showed presence of diffuse material < 1nm in height in the 

freshly reconstituted Aβ(1-42).  Short rod like structures averaging 4-5 nm appeared by 

48 hours and these were able to induce monocyte adhesion but was slightly less than the 

zero hour sample.  As the aggregation progressed there was an increase in the number of 

fibrils.  The heights of the fibrils averaged between 5-6 nm.  There was significant 

increase in the fibril numbers with heights greater than 6 nm after 216 hours aggregation.  

We observed the disappearance of the diffuse aggregation species as the aggregation 

progressed.  The data from this experiment suggests that fibrillar aggregates were unable 

to induce maturation of THP-1 monocytes to an adherent form.  Several trials of the 

experiment showed consistency in this trend although the percent adhesion levels showed 

a variation depending on the Aβ(1-42) lot numbers. 

 

4.5 Increase in Peptide Concentration Affects the Ability to Induce Monocyte Maturation 

 

 Data from section 4.3 suggests that increased Aβ(1-42) aggregation decreases the 

monocyte maturation process.  The maximum activity was exhibited by Aβ(1-42) species 

present at the time of reconstitution.  We modulated the aggregation conditions by 

increasing the starting concentration of the monomer.  We hypothesized that, there will 

be an increase in the rate of the species that forms immediately after reconstitution.  Aβ 
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aggregation proceeds by multistep, nucleation-dependent process (Jarrett and Lansbury, 

1993).  Formation of the nucleation seed is the rate limiting step, so that, in the absence 

of preformed seeds, there is a significant lag time for the formation of fibrils.  The rate of 

monomer incorporation to form fibrils increases as concentrations of monomer and seed 

increases (Naiki and Nakakuki, 1996). 

We increased the monomer concentration by 10 fold (1 mM) and compared 

activity to the 100 µM Aβ(1-42) solution that was used for the experiment in Fig 4.2. 

Increased monomer concentration will alter the rate of formation of the early species.  

The cells were however treated with the same final concentration of 15µM Aβ(1-42).  

The more concentrated 1 mM Aβ(1-42) solution showed a decrease in the ability to 

induce monocyte adhesion (Fig 4.3 A).  AFM images showed presence of fibers with 

heights ranging 2-3 nm immediately upon reconstitution in the 1 mM Aβ(1-42) solution.  

Aliquots of the same preparation was analysed by TEM, and the fibril widths were 6-10 

nm.  Further incubation of 1mM Aβ(1-42) solution for 24 hours resulted in increased 

fibril formation compared to Aβ(1-42) 100 µM sample.  The fibrils were longer and the 

heights were 4-5nm, but the monocyte adhesion inducing activity was diminished (Fig 

4.3).  The treatment of 1 mM Aβ(1-42) with the cells produced 67 % of monocyte 

maturation induced by the 100 µM sample.  It is possible that accelerated aggregation 

depleted the Aβ species capable of inducing monocyte maturation.  The depletion is due 

to the rapid aggregation into the fibrillar forms as seen in the AFM images (Fig 4.3 B-C).  

These findings suggest that the maturation of monocytes was induced by either a 

monomeric, or, oligomeric species that was formed early in the aggregation reaction of 

100 µM Aβ(1-42) that was reconstituted in water. 
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Fig 4.3. Increased peptide concentration decreases monocyte adherence. Two 

aggregations were set up by reconstituting Aβ(1-42) in sterile water to 100 µM and 1 mM 

and incubated at 4°C. A. Cells were treated with 15 µM Aβ for 6 hours and adherence 

was measured by direct counting as described in the Methods (Courtesy Nikkilina 

Crouse).  B-E. Representative AFM images of Aβ(1-42) aggregation. B and D) Aβ(1-42), 

100 µM, at zero and 24 hours incubation at 4°C, C and E) Aβ(1-42), 1 mM at zero and 24 

hours incubation at 4C respectively. Images are 5 µm x 5µm panels. 
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4.6 Monocyte Maturation is Induced by Aβ(1-42) and not Aβ(1-40) 

The maximum monocyte adherence was found when THP-1 cells were treated 

with freshly reconstituted Aβ(1-42).  We hypothesized that the monomeric species may 

be potent.  Studies of the kinetics of Aβ fibril formation have shown that Aβ(1-42) forms 

fibrils significantly faster than Aβ(1-40) (Jarrett et al., 1993).  The initial oligomerization 

and assembly of Aβ(1-40) and Aβ(1-42) indicate that these peptides have distinct 

behaviors at the earlier stages in the assembly, monomer oligomerization (Bitan et al., 

2003). The shorter peptide, Aβ(1-40), is believed to remain in the monomer state for a 

longer time than Aβ(1-42) (Walsh et al., 1997).  In order to further clarify the Aβ 

aggregation species responsible for monocyte maturation, we compared the reactions 

between Aβ(1-40) and Aβ(1-42).  We tested the ability of Aβ(1-40) to induce monocyte 

maturation.  Since the aggregation propensity of Aβ(1-40) is much slower we reasoned 

that the monomer would remain the solution longer, and  we could test our hypothesis to 

see if monomer species, or, early oligomeric species was actually inducing the maturation 

of monocytes.  We investigated the time-dependent aggregation of Aβ(1-40) (100 µM) 

reconstituted in sterile water and incubated at three temperatures 4C, 25C, 37C.  The 

activity was compared to Aβ(1-42) (100 µM) incubated at 4C.  Significant difference 

was observed in the two peptide solutions immediately after reconstitution.  Aβ(1-42) 

(100 µM) was able to induce 57% monocyte adhesion while Aβ(1-40) under similar 

conditions did not (Fig 4.4 A).  Accelerating the Aβ(1-40) kinetics by increasing the 

temperature did not induce any monocyte adherence.  Continued aggregation of Aβ(1-40) 

showed fibrils formation by 216 hours, but none of the intermediates formed had  
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Fig.4.4 Aβ(1-40) aggregated at different temperatures does not induce THP-1 

adherence. Aβ(1-40) was reconstituted in sterile water to 100 µM and incubated at 4C, 

25 or 37°C.  Panel A. At the given times, cells were treated with 15 µM Aβ(1-40) for 6 

hours and adherence was measured by direct counting as described in the Methods. Aβ(1-

42) incubated at 4C was used as the control, Panel A (circles). Error bars represent 

standard error for n trials of 3. Courtesy Nikkilina Crouse. B-D. Representative AFM 

images of Aβ(1-40) aggregation taken at 0 hours at the three different temperatures. E-G. 

AFM images of Aβ(1-40) aggregation taken at 216 hours at 4, 25 or 37°C, respectively. 

Images are 5 µm x 5 µm. The images are in the height mode. 
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 the ability to induce monocyte maturation.  The results suggest that adhesion-inducing 

activity was mediated by an aggregation species that was formed in the Aβ(1-42) 

pathway, but was not formed by any of the aggregation species formed by Aβ(1-40).  

These data led us to hypothesize that the two extra amino acids in Aβ(1-42) may be 

important in the formation of species responsible for monocyte maturation process. 

 

 

4.7 Oligomeric Aβ(1-42) Induces Monocyte Maturation 

 

From the results discussed above, we hypothesized that monomer could still be 

the active species, but the activity was dependent on the two additional amino acids in 

Aβ(1-42).  The extra two amino acids may be crucial for the monomer induced monocyte 

adhesion.  We have seen in Section 4.5 that the lag phase in nucleation–dependent 

polymerization process can be altered by a change in concentration of monomer.  Two 

Aβ(1-42) aggregation solutions were initiated, one at 50 µM concentration and the other  

at a concentration of 100 µM.  We were of the opinion that in the 50 µM aggregation 

solution the available starting monomer concentration is low and therefore the 

aggregation reaction will be slower.  Also, there would be availability of high monomer 

compared to oligomers due to slower aggregation.  On the other hand the 100 µM Aβ(1-

42) solution has more concentration of the monomer thereby driving the reaction towards 

oligomer formation.  We assumed that this would result in a decrease in the monomer 

compared to oligomer.  The cells were treated with the same final concentration of 15µM 

Aβ(1-42).  Cells treated with freshly reconstituted 100 µM Aβ(1-42) induced 58+/- 4% 

adhesion while there was only 16+/- adhesion for the cells treated with 50 µM Aβ(1-42) 
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(Fig 4.5 A).  If monomer was responsible for inducing adhesion then the 50 µM Aβ(1-42) 

aggregation solution with a high monomer:oligomer ratio should have induced a high 

monocyte adhesion property.  Upon additional incubation for 24 hours the activity 

reduced in both aggregation reactions to 41+/- 5 and 12+/-3% adhesion for 100 µM and 

50 µM Aβ(1-42) respectively.  There was further decrease in the adhesion levels as the 

aggregation progressed to 48 hours.  AFM images of the freshly reconstituted solutions of 

50 µM and 100 µM solutions did not show any distinct morphological species that could 

differentiate between the two preparations (Fig 4.5 B).  However, the 48 hour images 

showed a difference in the extent of aggregation (Fig 4.5 C and D).  The images showed 

the formation of fibrillar species in the 100 µM preparation that correlated with a drop in 

the cell adhesion.  The 50 µM sample at the same time did not have any fibrillar 

aggregates, but was not able to stimulate cell adhesion.  Though AFM images could not 

provide additional information regarding the morphology of the species that induces 

adherence in the cells, it was evident that the monomer was not involved in inducing 

adherence in the THP-1 cells. 

 

4.8 Mutated Aβ(1-42) (L34P) Does not Induce Monocyte Maturation  

The data so far indicated that an active Aβ(1-42) aggregation species was capable of 

inducing cell adherence.  These active species were formed in freshly reconstituted 

solutions of Aβ(1-42) indicating that the species is formed early in the aggregation, and 

the role of monomer in the maturation process was ruled out at this point. We wanted to 

try a mutational approach to get further clarification of the species that was active in the  
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Fig 4.5 Lowering the initial Aβ(1-42) concentration decreases monocyte adherence. 

Aβ(1-42) was reconstituted in sterile water to either 100 µM or 50 µM and aggregated at 

4°C. (Panel A) At the times indicated, THP-1 cells were treated with 15 µM of either 

solution for 6 hours at 37°C. The percent adherence was determined as described in the 

Methods. SE was determined for n trials of 3 (0 hours) and 2 (24 hours and 48 hours, 50 

µM). Only 1 trial was done for 100 µM at 48 hours. Water-induced adherence controls 

(2.8 ± 0.4 %) were subtracted from final percent adherence presented. Differences 

between 100 µM and 50 µM treatments were significant at 0 (* p<0.0005) and 24 hours 

(** p<0.005) of aggregation. Courtesy Nikkilina Crouse. (Panel B-D) Representative 

AFM images of the same experiment B) 50 µM sample after 24 h, D) 100 µM sample 

after 24 hours. 
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maturation of monocytes.  Single mutations in proteins can cause aggregation to switch 

from one pathway to the other.  Systematic replacement with proline in peptides is a 

reliable method for predicting the secondary structure (Wood et al., 1995).  Proline 

residues are rarely present in the β- sheets, but can easily be accommodated in the turns 

and bends (Chou and Fasman, 1978, Lifson and Sander, 1979).  Hence, proline residues 

can be introduced into peptides to slow down the aggregation process. Liu et al., (2004) 

investigated the aggregation of Aβ using different Aβ fragments and concluded that 

residues 17-20 and 30-35 are the important regions for aggregation.  Introduction of 

proline into Aβ peptide sequence can improve the solubility and also block or reduce 

aggregation (Wood et al., 1995)  We tried a mutated Aβ(1-42) L34P peptide for further 

probing.  If the last two amino acids in Aβ(1-42) were responsible for transformation of 

monocytes into macrophages, the Aβ(1-42) L34P should also be able to form the active 

species.  The leucine to proline mutation at residue 34 slows down aggregation and 

destabilizes the fibrils (Williams et al., 2004).  This mutation enables the peptide to 

remain in the non fibrillar form for a longer time.  However, Aβ(1-42) L34P prepared 

under similar conditions failed to induce monocyte adhesion after reconstitution in sterile 

water.  The cells responded to differentiation by PMA in these experiments (data not 

shown).  Even prolonged incubation up to 168 hours failed to induce monocyte adhesion. 

Aβ(1-42) L34P did not produce any fibrillar structures as seen in the AFM images.  

These data suggest that a rapidly forming Aβ(1-42) oligomeric species was active in 

inducing monocyte cell adhesion.  These results clearly indicated the monomer was not 

involved in inducing differentiation in monocytes. 
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Fig. 4.6 Aβ(1-42) L34P does not induce THP-1 monocyte adherence  
Aβ(1-42) (L34P) was reconstituted in sterile water to 100 µM and incubated at 4°C. A. 

At the given times, cells were treated with 15 µM Aβ L34P (triangles) for 6 hours and 

adherence was measured by direct counting as described in the Methods. Error bars 

represent standard error for n trials of 5 for Aβ(1-42) L34P. The time course for Aβ(1-42) 

(circles) from Fig 4.2 is shown for comparison. Courtesy Nikkilina Crouse.  B-C. 

Representative AFM images of Aβ(1-42) L34P aggregation at 4°C taken at 0 (B) and 168 

hours (C), respectively. Images are 5 µm x 5 µm and taken as described in Methods.  
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However, there was rapid aggregation when Aβ(1-42) (L34P) was reconstituted in water 

and incubated at 37C.  The measured pH of Aβ(1-42) (L34P) solution was 3.4.  This pH 

was close to the measured pH of Aβ(1-42) solutions reconstituted in water.  Dense fibrils 

formed upon incubation at 37C for 24 hours. The fibril density increased as the 

aggregation progressed (Fig 4.7).  We also noticed less diffuse structures at the start of 

the aggregation reaction (Fig 4.7 A).  Upon prolonged incubation at 37C, fibrils were 

sheared (Fig 4.7 F-G).  It is clear that these morphologies failed to induce maturation in 

THP-1 monocytes.  However, the ability of these aggregates to induce a proinflammatory 

response is yet to be probed.  Aβ(1-42) (17-35) fragment contained a high ratio of β-sheet 

structure, and was comparable to full length Aβ(1-42) (45% and 41%) (Liao et al., 2007).  

The mutation at position 34 may alter the β-sheet structure and may have a different 

effect on the proinflammatory-stimulating activity.  These findings may provide 

important information towards the correlation of structure and biological activity. 

 

4.9 Amyloid Derived Diffusible Ligands (ADDLs) Not Effective Inducers of 

Monocyte Adhesion 

 

We wanted to investigate the effect of oligomers on monocyte maturation process.  

Lambert et al., (1998), reported the detection of small globular structures ~ 5-6 nm in 

diameter which they referred to as ADDLs.  These structures were free of large 

protofibrils or fibrils (Walsh et al., 1997, Harper et al., 1999).  Also, Aβ(1-42) appear to 

populate these structures to a higher degree than Aβ(1-40) (Walsh et al., 1997, Stine et 

al., 2003).  ADDLs cause neuronal cell death, block LTP (Lambert et al., 1998) and  
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Fig 4.7. Aβ(1-42) (L34P) aggregates rapidly at high temperatures.  Aβ(1-42)(L34P) 

was reconstituted to 100 µM in water and allowed to aggregate at 37C.  At specific time 

points an aliquot was removed, diluted to 1µM and grids were prepared for AFM imaging 

as described in Methods. A-G. AFM images at zero (A), 24 hours (B), 48 hours (C), 72 

hours (D), 96 hours (E), 168 hours (F), and 216 hours (G).  The image panels are 5µm x 

5µm and are in the “height” mode 
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inhibit reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 

in neural cell lines, which is an indication of cell death (Dahlgren et al., 2002, Wang et 

al., 2002, Kim et al., 2003)  When low concentrations of ADDLs (5 nM) were incubated 

with organo typic mouse brain culture slices for 24 hours there was a 20 % loss in cell 

number.  However, at higher concentrations (500 nM), and incubation for shorter periods 

resulted in complete loss of LTP (Lambert et al., 1998, Wang et al., 2002).  Since our 

data indicates that Aβ(1-42) oligomeric species was causing monocyte adhesion, we 

wanted to see if ADDLs had any effect on THP-1 monocyte adhesion.  The preparation 

of ADDLs was different from the regular Aβ(1-42) aggregation reactions.  The protocol 

includes an incubation step for 24 hours, and the centrifugation supernatant after 24 hours 

was called ADDLs.  For our experiments, we tested the pre-centrifugation solution (total) 

and the ADDLs.  The pre-centrifugation solution induced 6+/-3% and ADDLs induced 7 

+/- 2% adhesion respectively (Fig 4.8 A). 

AFM images showed the presence of small oligomeric species ranging from 1-6 

nm ( mean = 3.0 +/- 1.3 nm  SD) respectively (Fig 4.8 C).  The morphological aspects of 

the spherical aggregates correlated with earlier reports of ADDLs (Dahlgren et al., 2002).  

However, the cellular data suggest that Aβ(1-42) oligomeric species that induces cell 

adhesion was different from ADDLs.  Moreover, ADDLs are prepared in a different 

solution, and we have seen in Chapter 3 that change in solution conditions alter the 

aggregation morphology, and biologic activity.  It is possible that the active Aβ(1-42) 

species are different and are generated before the ADDLs-like conformation is formed. 
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Fig 4.8 ADDLs failed to induce monocyte adherence. ADDLs were prepared in 

DMSO/ice cold Ham‟s F12 medium with phenol red as described in Methods. Panel A 

Cells were treated with the Aβ(1-42) aggregation solution prior to centrifugation (Total) 

or ADDLs at a final concentration of 15 µM Aβ(1-42). PMA (10 ng/ml was included as 

control. Adherence is presented as the average ± SE for n=2 trials for PMA and n=4 trials 

for Total and ADDLs over two separate experiments. Courtesy Nikkilina Crouse, 

University of  Missouri, St Louis. Panel B-C. AFM images of Total (Panel B), and 

ADDLs preparation (Panel C) that were used to treat THP-1 cells. The images are 5 µm x 

5 µm panels and are shown in the “height” mode. 
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4.10 Intermediate fibrillar Aβ(1-42) Aggregation Species Activate Innate Immune 

Response in THP-1 Cells via Toll-like Receptors (TLRs) 2 and 4 

 

This work was done in collaboration with Maria Udan and is published in (Udan 

et al., 2008).  TLRs are known to comprise a family of 10 proteins (Akira, 2003).  TLRs 

are often considered to be the staring point of immunity.  They function in continuous 

sampling of extracellular environment, and informing the cell to respond to infection.  

These cellular responses are facilitated via signaling pathways (Parker et al., 2007).  One 

of the earliest phagocytes to respond to infection is the tissue macrophage.  These 

originate as monocytes in the peripheral blood system.  TLR stimulation activates 

numerous genes in the human monocytes, leading to the release of cytokines, chemokines 

and growth factors that exert potent autocrine and paracrine inflammatory responses. 

(Kopydlowski et al., 1999, Wang et al., 2000, Ritter et al., 2005). 

Human THP-1 monocytes produce significant proinflammatory response when 

treated with aggregated Aβ (Klegeris et al., 1997, Yates et al., 2000).  Aβ(1-42) peptides 

were prepared by reconstitution in water and incubated at 4C as described in Methods, 

and the aggregation was monitored by AFM.  The freshly reconstituted Aβ(1-42) solution 

showed a dense population of punctuate species that had very little stimulatory effect on 

the cells for a proinflammatory response. Continued aggregation produced thin flexible 

fiber like structures.  Over the time course of aggregation, we identified that the fibers 

formed at 48 hours was able to induce maximum proinflammatory response. AFM height 

analysis indicated the presence of fibrils that fell into two populations.  One was the most 
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populated peak that had a mean height of 4.4 nm +/- 0.1 nm and the other was a 

population of fibers that had a mean height of 7.9 +/- 0.6 nm respectively.  Prolonged 

incubation beyond 96 hours incubation at 4C resulted in the loss of cell stimulation.  

From Chapter 3 we have seen that fibrillar oligomers were optimal to stimulate maximum 

response.  The objective of the study was to determine which transmembrane TLR plays 

a functional role in transducing the Aβ-induced innate immune signal through the 

membrane. 

A TLR neutralization assay was developed to probe the TLRs that mediate the 

Aβ(1-42) induced proinflammatory response.  The assay was initially tested on the TLR 

agonists LPS and Pam3CSk4 in order to determine the sensitivity of the assay (Udan et al., 

2008) (data not included).  Once we determined the sensitivity of the assay, we conducted 

the neutralization studies against the Aβ(1-42) proinflammatory response.  In Chapter 3, 

we have already seen that aggregated Aβ(1-42) that has been incubated at 4C for 48 

hours or 72 hours stimulated maximum proinflammatory response.  Hence, we used 

Aβ(1-42) that has been aggregated for 48-72 hours for the neutralization assays.  Both 

TLR2 and TLR4 neutralizaton resulted in the attenuation of the Aβ(1-42) induced 

proinflammatory signal, with the TLR2 showing a greater degree of blocking activity.  

The antibody neutralization experiments indicated that multiple TLRs mediate the Aβ-

induced activity. When the cells were neutralized by a combination of TLR2 and TLR4 

antibodies, there was increased blocking of the Aβ(1-42) induced proinflammatory signal 

(Fig 4.9).  These data indicate that both TLR2 and TLR4 have active roles in mediating 

the Aβ(1-42) induced innate immune response. 
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The interaction between Aβ- aggregates, TLRs and innate immunity will provide 

some more details into the complexities of the AD etiology.  From chapter 3 we have  

identified that small intermediate Aβ(1-42) fibrillar oligomers are optimal for inducing 

proinflammatory response.  We will be extending the studies to get more information 

regarding the interaction of Aβ with the cells.  We have done preliminary studies to label 

the Aβ(1-42) with immunogold label antibodies (Fig 4.10).  We will be extending the 

investigations to study the interaction between Aβ and the cell membranes using the 

immunogold label studies 

 

4.11 Discussion 

 

The role of macrophages in the innate immune system has gained lot of 

importance, and it has been established that they are crucial for defense against microbes 

and removal of cellular debris (Fiala et al., 2007).  Brain amyloidosis is hypothesized as a 

very crucial mechanism in the AD brain.  Accumulation of Aβ either in fibrillar, soluble 

or oligomeric conformations, is toxic to neurons. (Lambert et al., 1998, Hardy and 

Selkoe, 2002, Oddo et al., 2006).  Neuropahological study of AD and control brains 

showed penetration of blood derived monocytes across brain microvessels, excessive 

engorgement of macrophages with Aβ.  Also, there was  retention of these macrophages 

in the wall of congophillic vessels (Fiala et al., 2002).  Despite data suggesting the 

recruitment of non resident cells into the CNS, there is still no clear picture of how the 

transformation from monocytes to macrophages occurs.  Human monocytes from 
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Fig 4.9 TLR2, TLR4 play an active role in Aβ-induced innate immune response 

activation. Aβ(1-42) 100 μM was prepared in sterile water and incubated at 4C for 48-72 

hours depending on the peptide lot as described in Methods. THP-1 monocytes were pre-

incubated with 10 μg/ml of TLR2, TLR4 CD14(InvivoGen) antibodies, or IgG isotype 

controls, as described in Methods. Isotype controls were rat IgG (Sigma) for TLR2 and TLR4 

and IgG1 for CD14. After incubation, THP-1 cells were stimulated with 15 μM of Aβ(1-42) 

for 6 hours. TNFα was measured using ELISA.Courtesy Maria Udan.  
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Fig 4.10.  Immugold labeling of Aβ(1-42) fibrils. Aggregated Aβ(1-42) (100 µM) was 

diluted  to concentration of 20 µM and applied on to formvar coated copper grids as 

described in Methods.  The grids were incubated with Aβ sequence specific antibody Ab 

9 for an hour, followed by incubation with secondary antibody conjugated to 10 nm gold 

particles.  The grids are stained with 2% uranyl acetate and imaged using JOEL TEM 

microscope.  (Panel A) TEM image with a magnification of 10 k.The scale bar represents 

200 nm.  (Panel B) TEM image with a magnification of 25 k. Scale bar represents 100 

nm.  
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different donors were tested for their ability to differentiate into macrophages.  These 

studies have shown that in the presence of Aβ(1-42), the monocytes differentiate into 

macrophages and also have the ability to secrete cytokines and chemokines (Fiala et al., 

1998).  The aggregation state of Aβ plays a crucial role in the ability to interact with 

cells.  Structural polymorphism is a prominent feature in Aβ aggregation.  Aβ that is 

found in the parenchyma of the brain have been shown to be a continuum of structures, 

and is not limited to a specific aggregation species.(Selkoe, 2004).  We have identified 

that an early oligomeric form of Aβ(1-42) can transform the monocytes into an adherent 

form.  The adherence induced by this oligomeric Aβ(1-42) is comparable to a known 

differentiating agent, PMA (Fig 4.1).  We also observed that the ability to induce 

monocyte maturation is lost as Aβ(1-42) aggregates into fibrils.  The AFM images 

indicate that small globular species were predominant at the time of reconstitution (Fig 

4.6 B).  As aggregation proceeds, fibrillar structures are formed that led to a decrease in 

the ability to convert the monocytes into the adherent form.  The shorter peptide Aβ(1-

40) did not induce cell adherence in spite of increasing the aggregation temperature (Fig 

4.4).  This confirms that the active species was formed in the Aβ(1-42) aggregation 

pathway.  The mutational study with Aβ(1-42)(L34P) was done since this peptide does 

aggregate well due to the presence of proline at residue 34 (Williams et al., 2004).  We 

hypothesized that there would be high monomer to oligomer ratio due to the reduced 

potential to aggregate.  AFM images confirmed that the aggregation was not rapid, but 

could not specifically identify the specific species (Fig 4.6).  Decreasing the amount of 
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starting monomer concentration, could increase the possibility of a large monomer to 

oligomer ratio.  Decreasing the monomer concentration to 50 µM extended the lag phase 

of aggregation compared to 100 µM Aβ(1-42) (Fig 4.5).  The fact that the 50 µM Aβ(1-

42) preparation induced less cell adherence than the 100 µM sample clearly rules out the 

role of monomer in monocyte maturation.  Therefore it is clear that specific Aβ(1-42) 

oligomeric species stimulates the monocyte adherence.  ADDLs are oligomeric species, 

yet, were not able to induce monocyte adhesion (Fig 4.8).  ADDLs are species that are 

formed after 24 hours incubation.  The active species in our experiments are formed at 

the time of reconstitution of Aβ(1-42) solution.  It is possible that the active Aβ(1-42) 

oligomeric species are smaller than ADDLs .  The data from this part of the study 

indicate that Aβ(1-42) is able to induce adherence in the non adherent THP-1 monocytes.  

These data may provide further information in understanding the recruitment and 

transformation of non-resident monocytes into the CNS in AD. 

  We have seen that an early oligomeric species induces adherence in monocytes 

(Crouse et al., 2009).  The data clearly indicates that the Aβ(1-42) aggregation progresses 

to form fibrillar structures that diminished the ability to induce cell adhesion, but induces 

a proinflammatory response in THP-1 cells.  Here we see the influence of Aβ aggregation 

state in eliciting a biological response.  It is possible that the early oligomeric species 

induces the recruitment of monocytes from blood.  The activation of microglia may be 

separate process from that of monocyte recruitment or differentiation.  From our data we 

see that as the aggregation progresses into formation of the intermediate fibrillar species 

it triggers the proinflammatory response.  These fibrillar forms triggers the microglial 

activation.  Our data also shows that an intermediate fibrillar oligomeric species of Aβ(1-
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42) triggers the proinflammatory response that is mediated via receptors  TLR2 and 

TLR4 (Udan et al., 2008).  We have also seen that neutralization of TLR2 and TR4 

results in attenuating the fibrillar oligomeric Aβ(1-42) induced signal (Fig 4.9).  

However, blocking the TLR2 and TLR4 did not attenuate the oligomeric Aβ(1-42) 

induced monocyte adherence (data not shown).  These data further clarify the 

significance of Aβ aggregation state and its involvement in different biochemical 

pathways.  These data may provide important clues into the different stages in the 

inflammatory pathway. 
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CHAPTER 5 

 

 

Conclusion 

 

Data from our studies indicate that Aβ(1-42) has the ability to stimulate the THP-

1 monocytes for a proinflammatory response.  We have also shown the significance of 

the Aβ(1-42) aggregation state in eliciting this response from the cells.  By using a 

combination of biophysical and cellular assays we have identified that an intermediate 

fibrillar species in Aβ(1-42) aggregation pathway is capable of eliciting maximum 

proinflammatory response.  Our data also indicate that only intermediate species formed 

from Aβ(1-42) aggregation solution incubated at 4C could activate the cells for a 

response.  Aggregation of Aβ(1-40) under similar conditions did not elicit stimulatory 

activity.  Furthermore, high speed centrifugation of Aβ(1-42) aggregation solution 

established the solubility of the proinflammatory species. The centrifugation supernatant 

was active in stimulating the cells.  Using conformation-specific antibodies, we were able 

to categorize the proinflammatory species as fibrillar oligomers.  Our 

immunoprecipitation (IP) protocol, using fibril-specific antibody (OC immune serum), 

depleted the active species from aggregation solution, which was confirmed by depletion 

of proinflammatory response by the IP supernatant.  Characterization of Aβ(1-42) 

aggregation solution by SEC enabled isolation of the peak fraction that gave maximum 

proinflammatory response.  These studies strengthen our earlier findings (Udan et al., 

2008) where we had shown the involvement of toll-like receptors, particularly TLR4 and 

TLR2, in Aβ-induced response.  We have also shown that an early oligomeric species in 
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the Aβ(1-42) aggregation pathway has the ability to transform monocytes into an 

adherent form that look like macrophage cells.  Here again we were able to display the 

exclusive property of Aβ(1-42) to form an early oligomeric assembly that was not formed 

by the oligomeric Aβ(1-42) ADDLs and the mutated Aβ(1-42) (L34P) (Crouse et al., 

2009).  Overall, our data displays the correlation between Aβ and the human immune 

response, and also pinpoints the assembly state that is involved in activating the different 

stages of inflammatory pathway.  This study provides further clues into understanding the 

mechanism of Aβ induced inflammatory response and may be useful in designing 

therapeutic strategies towards the treatment of AD. 
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