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Abstract 

Oxidative stress is a key mechanism of the aging process that can cause damage to brain 

white matter and cognitive functions. Allele variations of two polymorphisms (SOD2, 

CAT -262) have been associated with abnormalities in antioxidant enzyme activity, 

suggesting a risk for enhanced oxidative damage to brain white matter and cognition 

among older individuals with these genetic mutations. The present study utilized 

diffusion tensor imaging (DTI) and neuropsychological assessment to compare 

differences in microstructural white matter integrity and cognitive performance among 96 

older adults (age 50-85) with and without genetic risk factors of SOD2 (rs4880) and CAT 

-262 (rs1001179). Results revealed significantly higher radial diffusivity (RD) in the 

anterior thalamic radiation (ATR) among CC genotypes of SOD2 compared to CT/TT 

genotypes. Further, the CC genotype significantly moderated the relationship between the 

hippocampal segment of the cingulum (CHC) and processing speed. Neither CAT-262, 

nor the combined effect of SOD2 and CAT-262 risk alleles were significantly associated 

with brain outcomes in this cohort. Collectively these results suggest that the CC 

genotype of SOD2 is an important genetic marker of suboptimal brain aging in this cohort 

of otherwise healthy older adults.  

Keywords: Brain aging, oxidative stress, SOD2, CAT-262, white matter, cognition  
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Genetic risk for increased oxidative stress in the aging brain: Implications for white 

matter integrity and cognition  

 Aging is associated with a systemic decline in cellular processes that leads to 

structural brain changes and cognitive difficulties (Grigsby et al., 1994; Gunning-Dixon, 

& Raz, 2000; Holtzer et al., 2004; Mitrushina & Satz, 1991; Raz, Gunning-Dixon, Head, 

Dupuis, & Acker, 1998; Raz, 2004; Zelinski & Burnight, 1997). Reductions in total brain 

volume occur around 40-50 years of age (Ge et al., 2002; Miller, Alston, & Corsellis, 

1980; Pfefferbaum et al., 1994). Although total brain volume remains relatively preserved 

until the fifth decade, a steady decline in gray matter begins in early adulthood and 

continues throughout the lifespan (Ge et al., 2002; Pfefferbaum et al., 1994). By contrast, 

white matter aging follows a quadratic pattern of change that peaks around the fourth 

decade and declines thereafter (Ge et al., 2002; Giorgio et al., 2010; Sowell et al., 2003). 

The inverse relationship between gray matter and white matter in early adulthood likely 

contributes to the relative stability of total brain volume (defined strictly by gray and 

white matter tissue) until middle age, and also suggests that decline in total brain volume 

is heavily dependent on the transition from white matter maturation to degeneration in 

middle adulthood (Ge et al., 2002; Salminen & Paul, 2014). This theory is consistent with 

evidence that white matter is a stronger predictor of intraindividual variability in 

cognitive performance in advanced age compared to gray matter (Lovden et al., 2013; 

Moy et al., 2011). As a result, there is increased interest in the importance of white matter 

decline as it relates to overall brain integrity in older adulthood (Bartzokis, 2004; Head et 

al., 2004; Salat et al., 2009).  
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 Histological studies have revealed significant age-related changes in myelin 

integrity including decreased pallor, splitting of myelin lamellae, and formation of myelin 

balloons (Peters, 2002). Over time these changes result in myelin rarefaction, decreased 

fiber length, and a decrease in the total number of myelinated axons (Marner et al., 2003). 

Collectively these microstructural white matter changes negatively impact cognition 

(Bartzokis, 2004; Kövari et al., 2004; Peters & Kemper, 2012).  The evolution of age-

related white matter decline is partly a result of chronic oxidative damage (Bartzokis, 

2004), and it is possible that individual differences in oxidative damage contribute to 

variability in cognitive aging.  

Neurobiology of oxidative stress and oligodendrocyte vulnerability  
 

Under normal physiological conditions human brain cells consume 20% of total 

oxygen intake, despite accounting for less than 2% of body weight (Aoyama et al., 2008). 

More than 95% of cellular oxygen is used for ATP synthesis during oxidative 

phosphorylation (OXPHOS; Boveris & Navarro, 2008; Cannizzo, Clement, & Sahu, 

Follo, & Santambrogio, 2011; Reiter, 1995), reducing the remaining oxygen (< 5%) to 

harmful reactive oxygen species (ROS) such as superoxide anion (O2
-) and hydrogen 

peroxide (H2O2; Hensley et al., 2000). Production of these highly toxic ROS can cause 

protein modification and DNA strand breaks (Dringen et al., 2000), particularly in the 

mitochondrial electron transport chain (Hensley et al., 2000). Because mitochondria are a 

major source of ROS production, alterations in organelle structure reduce detoxification 

capacity resulting in a net increase of ROS (Lin and Beal, 2006). Mitochondria become 

further impaired as ROS are replicated, causing damage to other organelles and mutations 

to mitochondrial DNA (mtDNA; Mecocci et al., 1993). Point mutations and deletions 
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begin around the third decade and accumulate with age (Wei & Lee, 2002). The repair 

capacity of mtDNA is tissue specific, with oligodendrocytes (OLs) demonstrating less 

efficient repair mechanisms compared to other brain cells (Hollensworth et al., 2000; 

LeDoux, Druzhyna, Hollensworth, Harrison, & Wilson, 2007; Salminen & Paul, 2014). 

OLs are particularly susceptible to oxidative damage due to the high metabolic 

rate of myelin maintenance and production (Connor & Menzies, 1996). In order to 

synthesize large quantities of myelin, OLs require high concentrations of ATP and iron 

that increase aerobic metabolism (Conner & Menzies, 1996; McTigue & Tripathi, 2008). 

H2O2 is a toxic byproduct of ATP synthesis that reacts with iron to produce ROS when it 

is not fully metabolized (Rouault & Cooperman, 2006), including the production of the 

highly toxic hydroxyl radical (Smith, Kapoor, & Felts, 1999). Accordingly, studies have 

shown that in vitro exposure of OLs to H2O2 is a direct cause of DNA damage and OL 

apoptosis (Ladiwala et al., 1999; Mouzannar et al., 2001; Salminen & Paul, 2014; Uberti 

et al., 1999).  

In addition to high iron content, OLs contain low levels of antioxidants, thereby 

increasing their vulnerability to free-radical reactions (Bartzokis, 2004). One antioxidant 

found in remarkably low concentrations is the tripeptide, glutathione (GSH); comprised 

of glutamate, cysteine, and glyceine (Meister & Anderson, 1983). GSH is a critical 

neutralizer of free radical toxicity in OLs, and it is highly sensitive to intracellular shifts 

in oxidative state (Droge, 2005). ROS accumulation can trigger the reduction of GSH to 

oxidized glutathione disulfide (GSSG), thereby depleting intracellular GSH and leaving 

OLs increasingly vulnerable to oxidative damage (Droge, 2005). Although GSH redox 

can be reversed, the intracellular ratio of reduced GSH to oxidized GSH is heavily 
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influenced by oxidative alterations in signaling pathways and surrounding GSH 

concentrations (Jozefczak et al., 2012; Salminen & Paul, 2014).  

Oxidative stress in the aging brain and implications for white matter damage 

Age-related increases in ROS promote immunoscenescence in the central nervous 

system (CNS) through activation of inflammasomes (Cannizo et al., 2011; Salminen, 

Kaarniranta, & Kauppinen, 2012). Inflammasome complexes facilitate cytokine 

maturation and pyroptosis (an apoptosis analogue specific to inflammation), and are 

highly expressed in OLs (Kummer et al., 2007). The cytokine, interleukin-1β (IL-1β), is a 

specific target of inflammasomes that has been implicated in the development of 

Alzheimer’s disease (AD) (Rothwell & Luheshi, 2000). Specifically, IL-1β induces tau 

phosphorylation and Aβ neurotoxicity (Friedman et al., 2005), causing direct damage to 

myelin sheaths (de Chaves & Narayanaswami, 2008). Aβ interactions with neuronal 

membranes also induce inflammasome activation when there is a potassium efflux in Aβ 

ion channels (Salminen & Kaariniranta, 2009). These pathological interactions result in a 

chronic state of low-grade inflammation that reduces cellular antioxidant capacity and 

causes aggregated damage to macromolecules (Lopez-Armada et al., 2013). Because 

antioxidant concentrations are normally low in OLs, age-related decline in antioxidant 

capacity further leads to mitochondrial dysfunction and neural cell death (Farooqi and 

Farooqi, 2009; Salminen & Paul, 2014).  

Iron concentrations also increase with advanced age to maintain OL 

differentiation, thereby increasing OXPHOS and intracellular oxidation in brain regions 

with an abundance of late-differentiating OLs (Bartzokis, 2004; Bartzokis et al., 2001). In 

contrast to early-differentiating OLs that myelinate large diameter axons, late-
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differentiating OLs have a “weaker” lipid profile that produces thinner myelin sheaths for 

many small diameter axon segments (Wood & Bunge, 1984). These small diameter axon 

fibers myelinate later in life and are believed to be the first to decline in older age 

(Pakkenberg et al., 2003; Tang, Nyengard, Pakkenberg, & Gunderson, 1997). This “last 

in first out” pattern of white matter aging is commonly referred to as retrogenesis, which 

describes the breakdown of white matter that follows the reverse sequence of 

myelogenesis (Reisberg et al., 1999). Late-differentiating OLs have reduced capacity for 

myelin turnover and repair, and therefore the resultant thin myelin sheaths are highly 

susceptible to age-related oxidative damage and destruction. Thinner myelin sheaths are 

predominantly located in intracortical association areas involved in higher-order 

cognitive integration (Bartzokis, 2004; Bartzokis et al., 2001; Kemper, 1994).  As will be 

discussed, white matter fiber tracts traversing these brain regions are at increased risk for 

oxidative damage, which may result in cognitive difficulties (Bartzokis, 2003; Bartzokis, 

2004; Hof, Morrison, & Cox, 1990).   

Relationships between oxidative stress and cognitive processes 

 Modest concentrations of ROS are necessary for learning and memory 

consolidation (Serrano & Klann, 2004). In fact, long-term potentiation (LTP) can be 

attenuated from an imbalance of low ROS and high antioxidant levels (Knapp & Klann, 

2002; Thiels et al., 2000).  ROS molecules such as O2
- and H2O2 are critical for LTP and 

synaptic plasticity in the hippocampus.  Activation of the N-methyl-D-aspartate (NMDA) 

receptor is also critical for LTP and synaptic plasticity, and is a direct source of ROS 

generation in the glutamatergic pathway. ROS produced from NMDA receptor activation 
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causes oxidation of the protein kinase C substrate, neurogranin, which has shown to 

initiate LTP (Kishida & Klann, 2007; Salminen & Paul, 2014). 

 A homeostatic imbalance of ROS and antioxidants, however, is believed to be a 

major determinant of cognitive dysfunction. Animal studies have demonstrated positive 

associations between age-related increases in ROS and impaired LTP (Auerbach & Segal, 

1997; Watson et al., 2002), which is supported by observed relationships between 

hippocampal protein oxidation and learning deficiencies in aged rats (Nicolle et al., 

2001). Research by Urano and colleagues (1997; Fukui & Urano, 2007) has provided 

insight into microcellular changes of oxygen-exposed rats and non-manipulated aged rats 

through synaptosome stimulation by potassium chloride (KCl). Both oxygen-exposed and 

normal aged rats demonstrated decreased acetylcholine release from the synaptosome 

terminal following KCl administration (Urano et al., 1997; Urano et al., 1998). Because 

acetylcholine release is crucial for executive processes such as decision-making and 

attention, these results offer evidence that oxidative stress has a direct impact on 

cognitive networks (Salminen & Paul, 2014).  

 Previous research has identified several other biological mechanisms by which 

oxidative stress contributes to impaired learning and memory consolidation. First, ROS-

induced lipid peroxidation has been shown to alter the activity of LTP signaling pathways 

and enhance membrane impermeability, resulting in reduced LTP capacity (Lynch, 1998; 

Watson. Arnold, Ho, & O’dell, 2006). Second, aging is associated with increased 

inflammasome activation in hippocampal neurons, causing upregulation of IL-1β and 

impaired modulation of synaptic plasticity (Mawhinney et al., 2011). Animal studies have 

demonstrated negative associations between activation of the hippocampal nucleotide-
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binding domain leucine-rich repeat (NLRP) inflammasome and spatial learning in aged 

rats (Mawhinney et al., 2011). Third, age-related decline in glutamate release and NMDA 

receptor signaling causes a shift in intracellular redox status and subsequent inhibition of 

LTP (Knapp & Klann, 2002). Reduced NMDA receptor involvement also results in 

altered intracellular calcium (Ca2+) levels that decrease synaptic strength, reduce cellular 

excitability, and ultimately lead to long-term depression (Foster, 2007; Salminen & Paul, 

2014).  

 In addition to learning and memory, oxidative damage to the myelin sheath results 

in dysfunctional saltatory conduction, causing slower signal transmission and a longer 

refractory period of an axon potential. As a result, information processing speed is 

reduced and the ability to integrate information across highly distributed brain networks 

is compromised (Bartzokis 2004). Conduction delays are a signature of normal aging, and 

have been shown to explain the majority of cognitive difficulties in healthy older adults 

(Spaan, 2015; Verhaeghen & Salthouse, 1997).  

Antioxidant defense mechanisms in the aging brain 

Superoxide dismutase (SOD) and catalase (CAT) are two of the most critical first-

line antioxidant defense mechanisms in the human brain. SOD and CAT work in 

conjunction with other metalloproteins to reduce ROS toxicity via enzyme-catalyzed 

dismutation of O2
- to H2O2, which is further reduced to oxygen and water (Masella et al., 

2005). While SOD and CAT activity cannot fully prevent the production of reactive 

compounds, these redox reactions are essential for limiting oxidative damage (Salminen 

& Paul, 2014).  
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Despite high demand for ROS detoxification, the brain contains significantly 

lower antioxidant concentrations compared to other organs in the body (Reiter, 1995). 

Suboptimal antioxidant levels in the brain make it difficult to combat the large quantities 

of highly reactive polyunsaturated fatty acids, iron, and ROS that accumulate with age 

(Reiter, 1995), particularly in the cortex, hippocampus, striatum, and hypothalamus 

(Favreliere et al., 1998; Mythri et al., 2011; Ulmann, Mimouni, Roux, Porsolt, & Poisson, 

2001; Yehuda, Rabinovitz, Carasso, & Mostofsky, 2002). Accordingly, analysis of 

postmortem brain tissue has revealed significant decreases in antioxidant activity in the 

hippocampus and frontal cortex with advanced age, specifically in the enzymatic activity 

of SOD and CAT (Venkateshappa, Harish, Mahadevan, Bharath, & Shankar, 2012a). 

Similar reductions in the activity of these antioxidants have been observed in conjunction 

with increased protein oxidation in the substantia nigra of aging individuals (Salminen & 

Paul, 2014; Venkateshappa et al., 2012b). 

Although aging has been associated with a decline in cerebral antioxidant activity, 

several studies have reported elevated antioxidant levels in postmortem brain tissue of 

individuals with Parkinson’s disease (PD) and Lewy body disease (Mythri et al., 2012; 

Power & Blumbergs, 2009). This is consistent with recent findings from a magnetic 

resonance spectroscopy (MRS) study that revealed a significant negative relationship 

between GSH and poor neuropsychological performance among individuals with mild 

cognitive impairment (MCI; Duffy et al., 2014). While these results seem contradictory 

to antioxidant changes during normal aging, antioxidant activity may increase under 

pathological conditions to compensate for the increased load of oxidative stress 

associated with neurodegenerative disease. It is difficult to determine the cause of 
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increased antioxidant activity, however, as oxidative stress is a component of both normal 

aging and pathological processes (Albers & Beal, 2000). There is additional evidence that 

previous reports of antioxidant markers obtained from postmortem tissue may not 

accurately reflect antemortem antioxidant activity due to inconsistencies in tissue storage 

time and agonal state of the donor (Harish et al., 2013; Salminen & Paul, 2014).  

Given the methodological limitations of neurochemical studies, investigation of 

genetic predispositions for antioxidant deficiencies may be a more valuable method for 

evaluating age-related changes in antioxidant activity. Genetic risk factors for low 

antioxidant levels may explain a degree of variability in brain aging, and individuals with 

these risk factors might be susceptible to an accelerated risk for oxidative damage 

(Salminen & Paul, 2014). In support of this hypothesis, genetic polymorphisms that 

encode antioxidant enzymes for SOD and CAT have been associated with numerous 

disorders involving oxidative stress (Abu-Amero et al., 2015; Babusikova, Jesenak, 

Evinova, Banovcin, & Dobrota, 2013; Bairova et al., 2014; Chistiakov et al., 2006; Eskafi 

et al., 2014; Fukai, Folz, Landmesser, & Harrison, 2002; Gromadzka et al., 2015; 

Khodayari et al., 2013; Liu et al., 2015;  Rajaraman et al., 2008; Rosen et al., 1993; Shen 

et al., 2015; Shimoda-Matsubayashi et al., 1996; Landeghem, Tabatabaie, Beckman, 

Beckman, & Andersen, 1999; Vats, Sagar, Singh, & Banerjee, 2015; Wiener, Perry, 

Chen, Harrell, & Go, 2007; Zotova et al., 2004). 

SOD 

Three forms of SOD have been identified in the human brain, differing by their 

metal cofactor. Copper (Cu) and zinc (Zn) make up SOD1 and SOD3, and are located in 

the cytosol and extracellular space, respectively (Crawford et al., 2012). Although 
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abnormalities in SOD1 and SOD3 have been variably implicated in neuromuscular and 

cardiovascular conditions (Fukai et al., 2002; Rosen et al., 1993), manganese SOD (also 

referred to as SOD2) is likely most relevant to brain integrity due to localization within 

the mitochondrial matrix (Holley, Dhar, & St. Clair, 2010). SOD2 is an important 

enzyme for controlling ROS production because it is the only known antioxidant located 

within the mitochondria (Crawford et al., 2012; Salminen & Paul, 2014). Animal studies 

of transgenic AD mice have demonstrated that a partial reduction in SOD2 causes an 

increase in Aβ plaque formation and accelerates behavioral changes (Esposito et al., 

2006; Li et al., 2004). Similarly, deficient SOD2 expression in model organisms has 

shown to cause mitochondrial dysfunction, neuronal atrophy, and accelerated CNS 

senescence (Paul et al., 2007). By contrast, evidence from cortical cultured cell lines has 

shown that SOD2 overexpression is protective against NMDA and nitric oxide 

neurotoxicity (Gonzalez-Zulueta et al., 1998); a common consequence of age-related 

decreases in intracellular energy (Calabrese et al., 2004; Salminen & Paul, 2014).  

Previous studies have investigated the impact of genetic polymorphisms encoding 

SOD2 in the human genome, particularly as it relates to disease risk. The SOD2 gene 

contains a c.47T>C single nucleotide polymorphism (SNP; rs4880) that results in a 

missense mutation (valine > alanine) at position 16 of the mitochondrial targeting 

sequence (Soerensen, Christensen, Stevnsner, & Christiansen, 2009). The C allele of 

SOD2 has been associated with neurodegenerative diseases including AD (Wiener et al., 

2007), PD (Shimoda-Matsubayashi et al., 1996), and sporadic motor neuron disease 

(Landegham et al., 1999), and psychiatric conditions such as schizophrenia (Akyol et al., 
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2004). In addition, the CC genotype has been associated with increased 

immunosenescence and DNA damage (Salminen & Paul, 2014; Taufer et al., 2005).  

CAT 

 CAT is a critical antioxidant for monitoring H2O2 concentrations in the 

intracellular space, by reducing peroxisomal H2O2 to oxygen and water (Babusikova, 

Evinova, Hatok, Dobrota, & Jurecekova, 2013). Although no studies have examined the 

impact of human CAT deficiency on the brain integrity in vivo, animal studies have 

shown that CAT knockout mice demonstrate a slower rate of ATP synthesis in brain 

mitochondria compared to transgenic mice with CAT overexpression (Schriner et al., 

2005). Similarly, transgenic mice with overexpressed mitochondrial CAT are associated 

with decreased oxidative damage, longer life span, and neuroprotection against cerebral 

ischemia (Armogida et al., 2011; Salminen & Paul, 2014; Schriner et al., 2005).  

 The promoter region of the human CAT gene contains a common SNP 

(rs1001179) that involves a cytosine to thymine substitution at amino acid -262 of the 5’ 

region (CAT-262C>T; Crawford et al., 2012). Evidence suggests that enzymatic 

expression of the CAT-262 C and T alleles may differ between organ tissues (Forsberg, 

Lyrenas, Morgenstern, & de Faire, 2001), and as a result, a clear risk allele for 

neurodegeneration has not been defined. However, there is literature to suggest that the 

common C allele poses a greater risk for oxidative damage in the CNS than the minor T 

allele. Specifically, the T allele has shown to protect against the development of diabetic 

neuropathy (Chistiakov et al., 2006; Zotova et al., 2004), acoustic neuroma (Rajaraman et 

al., 2008), and neurological manifestations of Wilson’s disease (Gromodzka et al., 2014) 

compared to the C allele. Research specifically regarding CAT-262C>T and brain 
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integrity is limited, however, and the extent to which allele variation imposes enhanced 

risk for neurodegenerative disease is unclear (Salminen & Paul, 2014).   

Antioxidant enzyme expression in the aging brain 

 Oxidative stress is responsible for regulating gene expression of antioxidant 

enzymes and is highly variable between individuals (Franco et al., 1999). This may 

explain why previous studies of antioxidant enzyme expression have been somewhat 

contradictory. Some studies have reported decreased antioxidant activity in erythrocytes 

with age (Anderson, Nielsen, Nielsen, & Grandjean, 1997; Artur et al., 1992; Guemouri 

et al., 1991; Perrin et al., 1990), while others have reported no change in antioxidant 

activity in plasma and erythrocytes of healthy aging individuals (Barnett & King, 1995; 

Loguercio, Taranto, Vitale, Beneduce, & Blanco, 1996; Wang &Walsh, 1996). Contrary 

to both of these findings, Rizvi and Maurya (2007) reported increased antioxidant activity 

in response to age-related increases in ROS production.  

 Genetic expression of antioxidant enzymes in the brain is even less understood 

and appears to vary with age (Lu et al., 2004). Previous research has identified relatively 

homogenous expression levels in the brain among individuals ≤ 42 and individuals ≥ 73, 

and heterogeneous enzyme expression between ages 43-72. There is additional evidence 

that extensive oxidative DNA damage is associated with lower levels of gene expression 

in the aging brain, and that this effect is most robust in genes that are down-regulated 

with advanced age (Lu et al., 2004). Collectively these findings suggest that early 

changes in genomic expression, particularly those related to oxidative processes, may 

impact age-related neurodegeneration and subsequent cognitive decline (Salminen & 

Paul, 2014).   
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Antioxidant defense genes and neuropsychological performance 

 Despite biological evidence of an oxidative impact on brain integrity and 

cognitive processes, only one large scale genetic association study has explored 

relationships between antioxidant defense SNPs and cognitive aging (Harris et al., 2007). 

In a study by Harris et al. (2007), longitudinal data were obtained from non-demented 

individuals in the Lothian Birth Cohort of 1921 (LBC1921; n = 437) and the Aberdeen 

Birth Cohort of 1936 (ABC1936; n = 485) to examine cognitive change across the 

lifespan. Individuals in the LBC1921 were evaluated at ages 11 and 79 on a test of non-

verbal reasoning (Raven’s Standard Progressive Matrices; Raven. Raven & Court, 1990), 

and individuals in the ABC1936 were evaluated at ages 11 and 64 on the same cognitive 

test. Of the 325 SNPs examined, joint analysis of both cohorts revealed a significant 

relationship between a SNP in the amyloid precursor protein gene (APP; rs2830102) and 

later life cognitive performance (Harris et al., 2007). Specifically, GG genotypes (risk) 

demonstrated significantly lower cognitive scores on later life performance on the 

Raven’s test compared to AG and AA genotypes, with a dose response trend effect of the 

G allele on cognitive function. Because APP encodes the precursor protein for Aβ, these 

results provide modest evidence for a relationship between genetic risk for oxidative 

stress and cognitive aging. It is likely that more robust associations were not found due to 

the genome-wide assumption that SNPs contribute to only a small portion of variance in 

any given population (Frazer, Murray, Schork, & Topol, & 2009), making it difficult to 

identify SNPs associated with heterogeneous “conditions” such as cognitive aging 

(Salminen & Paul, 2014). 
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  Only one candidate polymorphism study has been conducted on a phase I 

antioxidant defense SNP (CAT-262) and aging phenotypes in healthy older adults 

(Christiansen et al., 2004). In this study cognitive function was evaluated using the total 

score on the Mini Mental State Examination (MMSE; a screening measure designed to 

detect severe cognitive impairment; Folstein & Folstein, 1975), and a composite score of 

cognitive tests of executive function, attention, and memory. The authors reported a 

slight positive association between TT genotypes (no risk) of CAT-262 and cognition 

using both the MMSE and composite scores, yet these associations were not statistically 

significant. It is important to note, however, that the lack of significant relationships 

between CAT-262 and cognition may be due to the methodological design. Specifically, 

the MMSE is insensitive to minor cognitive difficulties associated with aging, and the use 

of a composite score for executive function, attention, and memory may have masked 

significant relationships between genetic risks and cognitive domains with greater 

sensitivity (executive function) than others (attention). Thus, the relationship between 

genetic risk for decreased antioxidant defense and brain aging remains largely unknown 

(Salminen & Paul, 2014).  

  This gap in the literature represents an important area for future research. 

Although the relationship between aging and oxidative stress has been well established, 

few studies have examined the impact of genetic risk for increased oxidative damage as a 

mechanism of age-related cognitive decline, and no studies have combined neuroimaging 

and neuropsychological indices to examine the impact of these risk factors in older 

individuals.  

Evaluating the impact of oxidative stress on white matter integrity and cognition 
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 Diffusion tensor imaging (DTI) is a non-invasive neuroimaging technique used to 

measure directional properties of water diffusion in white matter tracts (Basser & 

Pierpaoli, 2011; Conuro et al., 1999; Pierpaoli & Basser, 1996). Because diffusion of 

water molecules in brain white matter is directionally restricted (referred to as 

anisotropy), DTI can detect changes in underlying microstructure when there is a 

directional change in water movement. Fractional anisotropy (FA) and mean diffusivity 

(MD) are commonly used scalar metrics of white matter integrity, which measure 

directional properties of water molecules within an image voxel (Assaf & Pasternak, 

2008; Burzynska et al., 2010). Specifically, FA measures the degree of directional water 

restriction that is indicated by axonal fiber density and coherence (Beaulieu, 2002). FA 

values range from 0-1, with 1 indicating perfectly anisotropic diffusion and 0 indicating 

perfectly isotropic diffusion. Conversely, MD measures the average rate of water 

diffusion within a voxel that is determined by the density of anatomical barriers (e.g., 

myelin sheaths) and the exchange of water molecules between cellular compartments 

(Beaulieu, 2002; Sen & Basser, 2005). Axial diffusivity (AD) and radial diffusivity (RD) 

are two vector metrics that characterize the directionally dependent rate of water 

diffusion that occurs parallel and perpendicular to axon fibers, respectively (Alexander, 

Lee, Lazar, & Field, 2007). Although multiple patterns of white matter diffusion have 

been reported in advanced age (Burzynska et al., 2010; Madden et al., 2012), the majority 

of studies using DTI scalar and vector metrics report decreased FA and increased MD, 

AD and RD (Bennett, Madden, Vaidya, Howard, & Howard, 2010; Burzynska et al., 

2010; Lebel et al., 2012; Madden et al., 2012; Sexton et al., 2014; Westlye et al., 2009). 

This pattern of change typically occurs along an anterior to posterior gradient (Head et 
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al., 2004; Madden et al., 2004; O’Sullivan et al., 2001; Pfefferbaum et al., 2000; 

Pfefferbaum, Adalsteinsson, & Sullivan, 2005; Salat et al., 2005) and is believed to result 

from predominant demyelination and myelin loss. Disruption to both myelin and axons 

has also been associated with this pattern of diffusion in commissural white matter fibers 

(Madden et al., 2012).  

 To date no studies have used DTI to examine relationships between markers of 

oxidative stress and white matter integrity in normal aging, yet numerous studies 

acknowledge that oxidative stress is a likely driver of age-related changes in late-

myelinating white matter pathways (i.e., retrogenesis). Studies of brain aging demonstrate 

early age-related decline in white matter fiber bundles that traverse association brain 

regions, otherwise known as “association tracts” (Brickman et al., 2012; Davis et al., 

2009; de Groot et al., 2015; Kennedy & Raz, 2009; Stadlbauer, Salomonowitz, Strunk, 

Hammen, & Ganslandt, 2008). White matter association tracts are the latest myelinating 

fiber tracts in the brain and connect cortical areas within each hemisphere (Jellison et al., 

2004; Kinney, Kloman, & Gilles, 1988; Yakovlev & Lecours, 1967). Association tracts 

include the superior longitudinal fasciculus (SLF), inferior longitudinal fasciculus (ILF), 

inferior fronto-occipital fasciculus (IFOF), uncinate fasciculus (UF), and cingulum 

bundle (CB) (Jellison et al., 2004). 

 The theory of retrogenesis has also been applied to cognitive aging, which 

postulates that damage to late-myelinating white matter tracts mediates age-related 

changes in cognitive performance. Accordingly, Brickman et al. (2012) revealed that FA 

in the ILF mediated age differences in executive function among healthy individuals. 

Other studies have found partial support for the retrogenesis model of cognitive aging. 
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The following relationships have been identified between DTI scalar metrics in 

association tracts and age-related cognitive decline: lower FA and higher MD, AD, and 

RD in the IFOF and executive function, processing speed (Bender, Prindle, Brandmaier, 

& Raz, 2015; Bendlin et al., 2010; Cremers et al., 2016; Laukka et al., 2013; Mella, de 

Ribaupierre, Eagleson, & de Ribaupierre, 2013; Perry et al., 2009; Sasson, Doniger, 

Pasternak, Tarrasch, & Assaf, 2012), visuospatial construction (Voineskos et al., 2012), 

and delayed memory (Charlton, Barrick, Markus, & Morris, 2013); lower FA and higher 

AD and MD in the ILF and psychomotor speed (Voineskos et al., 2012), information 

processing speed (Sasson et al., 2012), executive function (Borghesani et al., 2013; Perry 

et al., 2009) and memory (Davis et al., 2009; Mella et al., 2013; Schmahmann et al., 

2007); lower FA and higher MD, AD, and RD in the CB and executive function (Bender 

et al., 2015; Borghesani et al., 2013; Mella et al., 2013; Metzler-Baddeley et al., 2012; 

Sasson et al., 2012), information processing speed (Bendlin et al. 2010; Laukka et al., 

2013; Sasson et al., 2012), and cognitive control (Metzler-Baddeley et al., 2012); lower 

FA and higher MD, RD, and AD in the SLF and executive function and information 

processing speed (Bendlin et al., 2010; Borghesani et al., 2013; Laukka et al., 2013; 

Mella et al., 2013; Perry et al., 2009; Salami et al., 2012; Sasson et al., 2012); lower FA 

and higher MD, AD and RD in the UF and memory (Bender et al., 2015; Charlton et al., 

2013; Mella et al., 2013; Metzler-Baddeley et al., 2011) and executive function (Bender 

et al., 2015; Borghesani et al., 2013; Perry et al., 2009), and psychomotor performance 

(Zahr, Rohlfing, Pfefferbaum, & Sullivan, 2009). Across these studies the most consistent 

relationships between DTI and cognition were related to information processing speed, 
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executive function, and memory, suggesting that white matter damage in association 

tracts may explain age-related decline in these cognitive domains.  

 Although the relationships noted above provide support for the retrogenesis model 

of cognitive aging, age-related decline in white matter projection tracts contributed to 

cognitive decline in some of these studies (Bendlin et al., 2010; Cremers et al., 2016; 

Laukka et al., 2013; Sasson et al., 2012). Projection tracts are located within distinct 

subregions of the internal capsule of the brain and connect areas of the cortex with the 

thalamus, brainstem and spinal cord (Jellison et al., 2004). The projection tracts are 

hypothesized to underlie various brain functions and can be categorized into specific fiber 

systems based on their projection sites (Parent, 1996; Mori et al., 2008; Wassermann et 

al., 2016). Pertinent to this study, the anterior thalamic radiation (ATR) is the major fiber 

bundle within the anterior limb of the internal capsule that connects the prefrontal cortex 

to the anterior and medial nuclei of the thalamus (Behrens et al., 2003; Mori et al., 2002; 

Mori et al., 2008; Wakana, Jiang, Nagae-Poetscher, Van Zijl, & Mori, 2004). Early 

decline in the ATR has been reported with advanced age using DTI (Baker et al., 2014; 

Cremers et al., 2016; Mella et al., 2013), and these alterations have been associated with 

poorer performance on executive function and information processing speed in healthy 

older adults (Borghesani et al., 2013; Cremers et al., 2016; Mella et al., 2013). Further, 

Mella et al. (2013) reported a significant association between DTI alterations in the 

bilateral ATR and increased intraindividual variability in simple and complex processing 

speed over a period of one week. The anterior thalamic nuclei are also associated with 

encoding and retrieval of information, and therefore disruptions to the ATR may 

negatively impact learning and memory (Dalrymple-Alford et al., 2015; Fama & 
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Sullivan, 2015; Nishio et al., 2014). In contrast to other projection fiber bundles in the 

internal capsule, the ATR traverses association brain regions that are vulnerable to 

oxidative damage (Mori et al., 2002; Wakana et al., 2004), which may explain previous 

observations of ATR abnormalities in DTI studies of brain aging.  

 Collectively the abovementioned findings suggest that cognitive performance is 

partially driven by white matter tract alterations with age, but the pattern of these changes 

and their relationship to cognition is not well understood. Oxidative stress is likely a 

driver of white matter alterations in small diameter white matter tracts and projection 

tracts that innervate association brain regions, which may underlie cognitive variability 

among older individuals. However, it is currently unclear if aging individuals with 

genetic risk for increased oxidative stress demonstrate enhanced white matter damage 

and cognitive difficulties compared to their non-risk counterparts.  Examination of white 

matter integrity among individuals with genetic risk factors for SOD2 and CAT-262 will 

be an important next step for determining if oxidative stress manifests differently in 

individuals who may have lower levels of SOD2 and CAT in the brain. This is 

particularly important to investigate among a healthy sample of older individuals, as 

oxidative load increases across the lifespan (Cannizzo et al., 2011; Wei & Lee, 2002).  

Public Health Relevance 

 The neurobiological variables that underlie the variability in brain aging have not 

been defined, yet this represents a major public health concern given the increasing 

population of older individuals. Oxidative stress is considered a risk factor for brain 

deterioration among older individuals, and it is possible that genetic risk for enhanced 

oxidative damage is a key factor associated with variability in cognitive function among 
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older adults. Because life expectancies are continuously increasing, it is critical to 

determine genetic markers of brain abnormalities to improve the quality of life in a 

growing elderly population. Understanding the relationship between antioxidant defense 

genes and brain integrity will allow for the development of preventative mechanisms and 

behavioral intervention strategies to reduce negative outcomes associated with oxidative 

stress. Importantly, identifying genetic risk factors for suboptimal brain health will 

further our knowledge of variability associated with the aging brain. 

Summary 

 Normal aging involves a gradual breakdown of physiological processes that leads 

to a decline in brain integrity and cognition, yet the onset and progression of decline is 

variable among older individuals. Oxidative stress is a key mechanism of the aging 

process that can cause direct damage to cellular architecture within the brain. OLs are at a 

high risk for oxidative damage due to their role in myelin maintenance and production 

and limited repair mechanisms, suggesting that white matter may be particularly 

vulnerable to oxidative activity. Reduced antioxidant defense mechanisms in the brain 

contribute to accumulation of toxic ROS and progressive neurodegeneration during 

normal aging, yet it is unclear if certain genetic risk factors contribute to premature 

neurodegeneration as a result of deficient protection against age-related increases in 

highly reactive compounds. Allele variations in SOD2 and CAT -262 have been 

associated with abnormal antioxidant concentrations in human brain tissue and have been 

identified as risk factors for disease development. Individuals with a genetic 

predisposition towards cerebral deficiencies in SOD2 and CAT might be susceptible to an 
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accelerated risk for neuronal decline and cognitive difficulties as a reflection of 

oxidative-induced structural brain impairment.  

 The primary purpose of this study was to identify the link between genetic risk 

factors of oxidative damage and white matter integrity in healthy older adults using DTI 

metrics of FA, MD, AD, and RD. I hypothesized that individuals with genetic risk 

variants of SOD2 and CAT-262 would exhibit lower FA and higher MD, AD, and RD in 

white matter association tracts and the ATR compared to individuals without these risk 

factors. Since the association tracts and ATR are vulnerable to demyelination from 

oxidative stress, I predicted that white matter in these pathways would be more sensitive 

to genetic risk for oxidative damage than other white matter tracts. Additionally, I 

hypothesized that individuals with genetic risk variants of SOD2 and CAT -262 would 

perform more poorly on tests of processing speed, executive function, and memory 

compared to individuals without these risk factors. I predicted that genetic risk would 

correspond to poorer performance in these cognitive domains due to the oxidative 

mechanisms that influence these functions. Further, white matter association tracts and 

the ATR tap processing speed, executive function, and memory processes, and damage to 

these tracts would likely result in poor performance in these domains. As such, I 

hypothesized that alterations in white matter tracts would be associated with poor 

performance in processing speed, executive function and memory, and that these 

relationships would be moderated by SOD2 and CAT-262 status. I further hypothesized 

that abnormalities in white matter tracts and cognitive function would be more 

pronounced among individuals with genetic risk factors for both SOD2 and CAT-262.  

Approach 



 Salminen, Lauren, 2016, UMSL, p. 24 

 The present study utilized DTI and neuropsychological indices to examine the 

impact of genetic risk for increased oxidative stress on brain integrity among healthy 

older adults. Genomic DNA was extracted from preserved saliva samples of 96 healthy 

individuals participating in a larger study focused on vascular health and brain integrity 

among older individuals (R01-NS052470; PI: Dr. Paul).  This study extends the scope of 

the parent grant by examining brain integrity among individuals with genetic markers of 

oxidative stress; an area of study not investigated in the parent R01.  

Research Design Considerations 

 A number of important methodological design issues were considered related to 

the proposed science. Below were three potential areas of concern along with the 

rationale for the decisions applied to the final design.  

 The first design consideration centered on whether to examine RNA expression 

from tissue samples versus genetic variants from DNA samples. While the aim of the 

proposed study is to determine the influence of antioxidant defense genes on brain 

integrity, this inherently assumes that certain genetic risk variants negatively influence 

the expression of antioxidant enzyme activity. Previous studies have indicated that 

genetic expression varies between different kinds of cells and also across individual 

phenotypes, making it difficult to ascribe direct mechanisms of histopathology. Further, 

work by Spielman et al. (2007) indicated that genetic variation between populations 

significantly influences gene expression phenotypes and may contribute to population 

differences in disease susceptibility. As such, the decision was made to examine genetic 

variants from DNA samples to identify a functional profile of brain integrity that is 

independent of individual phenotypes. Obtaining plasma markers of protein oxidation to 
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supplement the genetic data was considered, yet the association between central and 

peripheral nervous system levels is not consistent (Reiter, 1995; Harish et al., 2013). 

 The second important consideration focused on sample size and power due to the 

base rate frequencies of the polymorphisms of interest. The Single Nucleotide 

Polymorphism Database (dbSNP; Sherry et al., 2001) revealed that the frequencies of the 

risk allele (C allele) for SOD2 is high among Caucasians (47%) and African Americans 

(35%), which are the two dominant races of individuals included in the parent R01.  

While a clear risk allele has not been defined for CAT-262, the weight of literature 

suggests that the C allele poses greater risk for neural damage than the minor T allele 

(Chistiakov et al., 2006; Christiansen et al., 2004; Rajaraman et al., 2008; Zotova et al., 

2004). Prevalence for the CAT-262 C allele is very high among Caucasians (77%) and 

African Americans (98%). These numbers provide confidence that risk can be adequately 

assessed in the present study. As described in the power analysis section, different 

genetic models were tested for SOD2 and CAT-262 to account for differences in allelic 

frequency distributions between the two SNPs and optimize power.   

 The final design consideration involved the determination of the white matter 

tracts for the outcome measures of the primary aims. Given the extant literature on late-

differentiating OLs and demyelination, the decision was made to focus on white matter 

association tracts previously linked to cognitive aging. These include the SLF, ILF, IFOF, 

UF, and CB.  The CB was sectioned into cingulate gyrus (CGC) and parahippocampal 

(CHC) segments to allow for comparisons with previous studies that have reported a 

relationship between distinct subregions of the CB and cognition (Bendlin et al., 2010; 

Laukka et al., 2013; Metzler-Baddeley et al., 2012). In addition to the association tracts, 
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the ATR was included as a tract of interest (TOI). Although the ATR is not classically 

defined as an association tract, this tract innervates association areas and has been 

previously associated with brain aging and decline in executive function, processing 

speed, and memory (Baker et al., 2014; Cremers et al., 2016; Nishio et al., 2014). Of 

note, projection tracts have been categorized as association tracts in previous work (de 

Groot et al., 2012; Mori et al., 2002), as they connect brain regions within the same 

hemisphere. Additional projection tracts such as the CST and PTR were not examined, as 

these tracts are less likely to be influenced by genetic risk for increased oxidative damage 

due to their anatomical location in posterior brain regions (Cremers et al., 2016; Westlye 

et al., 2009). Similarly, it was difficult to determine which subregions of the corpus 

callosum (CC) might impact cognition as a result of increased oxidative load. While the 

genu of the CC has been implicated in brain aging and connects prefrontal association 

areas (Hofer & Frahm, 2006), the splenium of the CC has been more closely associated 

with memory and executive function (Voineskos et al., 2012). The variability in CC 

segmentations across studies further complicated the delineation of structure and 

function. Given these issues, the CC was excluded from the analyses to facilitate data 

reduction.  

Method 

Participants 

 Data from 96 English-speaking older adults were extracted from an existing 

database associated with the parent study. Cognitive data, participant demographics and 

relevant health histories were obtained at the University of Missouri, St. Louis (UMSL) 

during the neuropsychological evaluation. Neuroimaging procedures were completed in a 
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subset of these individuals (n = 71) at Washington University within one month of the 

neuropsychological visit for the majority of participants. The Institutional Review Board 

(IRB) of UMSL and Washington University approved all study protocol. All participants 

provided informed consent and received financial compensation for their involvement in 

the study. 

Inclusion/Exclusion Criteria 

 Individuals were excluded from the study based on a self-reported history of a 

substance use disorder, psychiatric diagnosis (i.e., all Axis I and II disorders with the 

exception of managed depression), learning disability, a medical or neurological 

condition capable of impacting cognition (e.g., thyroid disease, multiple sclerosis, etc.), 

history of head injury (defined by a loss of consciousness greater than 30 minutes), 

history of treatment-dependent diabetes, and contraindications for MRI (e.g., 

claustrophobia). All individuals were required to independently complete basic and 

instrumental daily functions according to the Lawton and Brody Activities of Daily 

Living (ADLs; Lawton & Brody, 1969), and receive a score ≥ 24 on the MMSE to 

exclude individuals with probable dementia. A physician visually inspected all MRI 

scans to screen for possible anatomical abnormalities unbeknown to the participant. 

Individuals demonstrating clinically significant abnormalities were excluded from the 

study and instructed to contact their primary care physician.  

DNA extraction 

 Genetic isolation and processing was completed at Genetics Repositories 

Australia. Genomic DNA was extracted from saliva samples using the Oragene DNA 

collection kit (DNA Genotek, Ottawa, Canada) and the Autopure LS nucleic acid 
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purification system (QIAgen). Genotypes for SOD2 and CAT-262 was ascertained using 

predesigned Taqman SNP assays. The QIAGEN Multiplex PCR Kit (QIAGEN Pty Ltd., 

Victoria, Australia) was used for DNA amplification using the following primers: (SOD2; 

rs4880) forward: 5’- GGCTGTGCTTTCTCGTCTTCA-3’, reverse: 5’- 

TCTGCCTGGAGCCCAGATAC -3’; (CAT-262; rs1001179) forward: 5’-

TAAGAGCTGAGAAAGCATAGCT-3’, reverse: 5’ 

AGAGCCTCGCCCCGCCGGACCG -3’. Amplicons were digested with HpaII, and 

products were separated by agarose gel electrophoresis and visualized using ethidium 

bromide. 

Imaging Acquisition and Analysis 

 All imaging acquisition was performed using a head-only Magnetom Allegra 3T 

MRI scanner (Siemens Medical Solutions, Erlangen, Germany) located at Washington 

University. This high performance scanner has gradients with a maximum strength of 40 

m/T/m in a 100 µs rise time and a slew rate of 400/T/m/s, with 100% duty cycle. 

Acquisition parameters were designed for whole-brain coverage, high signal-to-noise 

ratio (SNR), and minimal artifact. Subject head movement was restrained using 

specialized foam pads and the application of surgical tape across the forehead. An initial 

scout scan consisting of three orthogonal planes was obtained at the beginning of each 

scanning session to confirm head position. Daily quality assurance tests were performed 

to ensure consistent scanner performance across subjects. The same scanner, operating 

system and processing software were used throughout the duration of the study. Total 

scan time was < 1 hour.  Structural whole-brain scans were collected using a T1-weighted 

magnetization-prepared rapid-acquisition gradient echo (MPRAGE) sequence (Mugler & 
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Brookeman, 1990), a double-echo proton-density (PD)/T2-weighted turbo spin echo 

(TSE) sequence, and a T2-weighted fluid-attenuated inversion-recovery (FLAIR) TSE 

sequence (Hajnal et al., 1992). Standard shimming was applied.  

 Axial diffusion-weighted images (DWIs) were obtained with a custom single-shot 

multislice echo-planar tensor encoded pulse sequence with diffusion-encoding gradients 

applied in 31 non-collinear directions and 24 main directions (b = 996 s/mm2). To 

maximize SNR and directional coverage we used a “core” of tetrahedral-perpendicular 

directions (b = 1412 and 680 s/mm2) with 5 I0 acquisitions (b~0) (Conturo et al., 1996). 

The following pulse sequence parameters were also implemented: TE= 86.2 ms; TR= 

7.82 s; 64 contiguous 2.0-mm slices; and an acquisition matrix of 128 x 128 with a FOV 

of 256 x 256 mm (isotropic 2.0x2.0x2.0 mm voxels). A total of 72 acquisitions were 

averaged over 2 scan repeats.  

 Brain tissue was extracted using the FSL Brain Extraction Tool and diffusion-

weighted volume was corrected for subject motion and artifacts by affine registration 

using FSL FLIRT (Jenkinson, Bannister, Brady, & Smith, 2012). Linear least squares and 

trilinear interpolation was used to reconstruct the diffusion tensors of the DWI signal 

(Zhukov & Barr, 2002). Individual tracts were identified using deterministic whole-brain 

streamline tractography with one randomly placed seed per voxel, second-order Runge-

Kutta integration, a 35° flip angle, FA of 0.15, and minimum fiber length of 10mm. Each 

participant’s FA image was registered to the Johns Hopkins University (JHU) white 

matter atlas using FSL FLIRT with mutual information. TOIs included the SLF, ILF, 

IFOF, UF, CGC, CHC, and ATR. Each tract was modeled separately by hemisphere for a 

total of 12 distinct tracts. As described in the statistical analysis section below, tracts 
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were collapsed across hemispheres to provide an average measure of FA, MD, AD, and 

RD for each fiber bundle. The JHU atlas was used to determine which streamlines would 

be included in a specific bundle. Streamlines were retained in the bundle if at least 80% 

of fiber arc length was included in the bundle mask. Streamlines that came within .8 mm 

of an existing tract were removed from the analysis (Zhang, Demiralp, & Laidlaw, 2003). 

Numerical integration was used to compute average scalar and vector values along each 

streamline, and average FA, MD, AD, and RD for each bundle was computed for the 

streamline measures.  

Neuropsychological Assessment  

 All participants completed a comprehensive neuropsychological evaluation at 

UMSL. Demographic information and health history were obtained via self-report 

questionnaires. Blood pressure was measured at three time points during the cognitive 

visit to account for the potential influence of hypertension on cognitive performance. The 

neuropsychological tests were chosen based on established sensitivity to age-related 

cognitive decline (Amodio et al., 2002; Clark et al., 2012; Gontkovsky et al., 2004; 

Myerson, Emery, White, & Hale, 2003). This study focused on cognitive domains of 

processing speed, executive function, and memory, as previous research suggests that 

these functions may be influenced by age-related increases in oxidative stress.  Cognitive 

difficulties in these domains have also been linked to alterations in white matter 

association tracts and the ATR. Composite scores for each cognitive domain were used as 

the primary outcome measures for the neuropsychological variables to facilitate data 

reduction. In order to determine composite scores, raw scores from each cognitive test 
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were converted to z scores and averaged for each domain. Scores measured in completion 

time were multiplied by -1 to result in all positive integers.  

Processing Speed 

 The following tests were used to measure processing speed: 1) Trails A from the 

Trail Making Test (Army Individual Test Battery, 1944), 2) Trial 1 from the Color-Word 

Interference Task (CWIT) of the Delis-Kaplan Executive Function System (Delis, 

Kaplan, & Kramer, 2001), and 3) Coding from the Repeatable Battery for the Assessment 

of Neuropsychological Status (RBANS; Randolph, 1998). Trails A requires participants 

to connect a series of letters in alphabetical order such that a line is drawn from A to B to 

C, etc. Time to completion was the primary outcome measure. During Trial 1 of the 

CWIT, participants are presented with four rows of color blocks. Participants are required 

to correctly identify the color of each block, in order, as quickly as possible. Time to 

completion was the primary outcome measure. Coding requires participants to match 

numeric digits to their corresponding symbols as identified in the key. The primary 

outcome measure was the total number of correctly matched digits and symbols at the 

end of 90 seconds.  

Executive Function 

 The following tests were used to measure executive function: 1) Trails B from the 

Trail Making Test, 2) Trial 4 from the CWIT, and 3) Letter Number Sequencing (LNS) 

from the Wechsler Adult Intelligence Scale-III (Wechsler, 1991). Trails B requires 

participants to connect numbers in ascending order and letters in alphabetical order in an 

alternating sequence. Numbers and letters are connected by drawing a line from 1 to A, A 

to 2, 2 to B, etc. Time to completion was the primary outcome measure. In normal 
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populations, the recommended time limit is 300 seconds before the test is discontinued 

(Heaton, Miller, Taylor & Grant, 2004). Thus, scores ≥ 300 were excluded from the 

analyses. During Trial 4 of the CWIT, participants are presented with four rows of color-

words (i.e., the word red) that are printed in a contrasting color-word combination (i.e. 

the word red printed in blue ink). Participants are required to identify the ink color of 

each color-word unless the color word is presented inside a box. Participants are required 

to read the name of the color-word when it is presented inside a box. Time to completion 

was the primary outcome measure. LNS requires participants to arrange a series of 

number and letters within a string by placing numbers in order first, followed by letters in 

alphabetical order.  Each letter-number string has a distinct number of characters (begins 

with 2 and ends at 9) and there are three strings within a block.  The task is discontinued 

once a participant fails to complete any strings within a block. The number of 

successfully completed strings was the primary outcome measure.   

Memory 

 Memory included subtests of list learning, story memory, list recall, and story 

recall from the RBANS. List learning requires participants to listen to a list of 10 

unrelated words and repeat back as many words as they can remember across 4 trials. The 

primary outcome measure was the total number of recalled words. Story memory requires 

participants to listen to a short story and repeat back as much of the story as they can 

remember across 2 trials. The total number of accurately recalled key words and phrases 

in the story across 2 trials was the primary outcome measure. List recall and story recall 

require participants to freely remember as many items from the initial memory tasks as 

possible. The primary outcome measures were the total number of accurately recalled 
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items within each task. Scores for list learning and story memory were used to create a 

subdomain of immediate memory, and scores for list recall and story recall were used to 

create a subdomain of delayed memory. Subdomain scores were computed separately as 

the underlying cognitive processes tap different neural systems. As indicated in the 

statistical analysis section, correlations were computed between subdomain scores and a 

composite score of memory was also computed.  

Genetic Approach 

 In genetic association studies involving candidate polymorphisms, models of 

disease penetrance are used to define genetic risk in individuals with a given genotype. 

The following models are standard approaches to quantifying genetic risk by the 

penetrance parameter (y) with alleles a (no risk) and A (risk), and possible genotypes a/a, 

a/A, AA (Clark et al., 2011): 1) Multiplicative: risk increases y-fold with each A allele, 2) 

Addititve: risk increases y-fold with one A allele (a/A) and 2y-fold with two A alleles (i.e., 

A/A), 3) Recessive: two A alleles are required to increase risk y-fold (i.e., only the AA 

genotype confers risk), and 4) Dominant: one or two A alleles are required to increase 

risk y-fold (i.e., a/A + AA genotypes confers risk). Selection of the appropriate model is 

necessary for optimizing power, yet these models are rarely known a priori (Balding, 

2006). Various statistical procedures can be used to determine the appropriate model of 

risk for case-control studies (e.g., chi square, odds ratios, Cochran-Armitage trend test) 

(Clark et al., 2011), yet these methods cannot be applied in the absence of a clinical 

cohort. Thus, genetic model testing in healthy participants involves running the same set 

of analyses for each genetic model. This approach requires large cell sizes per genotype 

to test the fit of the abovementioned models, and therefore some models may not be 
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testable in small-scale studies. Thus, it was necessary to determine the prospective 

genotypic frequency distributions of SOD2 and CAT-262 for the proposed study.    

 SOD2 and CAT-262 were initially selected based on established frequency 

distributions of risk alleles among Caucasians and African Americans, who comprise 

90.4% of the participant sample in the parent R01 (racial distribution is consistent with 

regional census data).  Because allele frequencies are not expected to change within a 

given population (Jankowska, Milewski, Gorska, & Milewsk, 2011), we were able to 

calculate a reliable estimate of individuals with each genotype to be included in the 

proposed study using dbSNP (N = 96; estimates calculated according to race). Estimates 

were as follows:  SOD2: CC n = 19, CT n = 49, TT n = 27; CAT-262: CC n = 63, CT n = 

30, TT n = 2. These estimates were approximate to the following observed frequencies 

SOD2: CC n = 26, CT n = 43, TT n = 27; CAT-262: CC n = 61, CT n = 32, TT n = 3. As 

such, a dominant grouping system was selected for CAT-262 (CC vs. CT/TT) for the 

primary analysis. While these genotypes are arranged according to a recessive grouping 

system, this model is functionally dominant as the C allele is far more common than the 

minor T allele and thus is meant to have the dominant effect. Homozygous genotypes of 

SOD2 (CC vs. TT) were examined for the primary analysis, in order to isolate genetic 

risk and reduce the possibility of grouping error. As noted in the power analysis section, 

these grouping systems provided adequate power to test the study hypotheses. Secondary 

analyses examine group differences in the imaging and cognitive variables using 

alternative genetic models. 

Statistical Analyses 
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 Data were examined for violations of normality prior to statistical computation. 

The shape of the distribution was visually inspected using Q-Q plots and boxplots. 

Skewness and kurtosis were also examined. Variables that were non-normally distributed 

were log transformed and re-examined for normality.   

 Preliminary analyses involved examination of key demographic variables 

including age, gender, race, and years of education. Chi square analyses were used to 

examine group differences in gender and race, and independent samples t-tests were used 

to examine group differences in age and years of education. Group differences in 

descriptive variables such as hypertension (systolic blood pressure ≥ 140 mmHg or 

diastolic ≥ 90 mmHg), intracranial volume (ICV), or CAT-262 genotypic status were also 

analyzed using chi square analyses and t-tests. To determine the need for covariance in 

the main analyses, demographic and descriptive variables (collectively referenced as 

descriptive variables herein) that differed significantly (p < .05) between groups were 

examined in conjunction with the dependent variables using the appropriate statistical test 

(e.g., bivariate correlations versus independent samples t-tests or ANOVA). Descriptive 

variables that were significantly correlated with the dependent variables were included as 

covariates in the main analyses to control for any intervening effects on the outcome 

measures. 

 To facilitate data reduction, bivariate correlations were completed between white 

matter tracts of the left and right hemispheres to determine if tracts could be aggregated 

across both hemispheres. While some studies of brain aging examine tracts bilaterally, 

the majority of studies examining tract-specific relationships with cognition have used an 

aggregate measure of tract integrity. Statistical significance was initially determined 
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using an alpha level of .05. False Discovery Rate (FDR) corrections were implemented to 

control for type 1 error.  

Primary Aim 1: Determine the impact of SOD2 and CAT-262 on the microstructural 

integrity of white matter tracts using DTI metrics. Aim 1 was tested using separate 

multivariate analysis of variance (MANOVA) models (or MANCOVAs where 

appropriate) for SOD2 and CAT-262. Genetic status served as the independent variable 

and white matter tracts served as the dependent variables in each MANOVA. DTI 

outcomes were analyzed in separate MANOVAs to minimize metric-specific variance. 

Intercorrelations between tracts were examined prior to each analysis to ensure the 

dependent variables in each MANOVA were moderately correlated (r > .4).  

Primary Aim 2: Determine the impact of SOD2 and CAT-262 on cognitive 

performance in domains of processing speed, executive function, and memory. Aim 

2 was tested using separate ANOVA models (or ANCOVAs where appropriate) for 

SOD2 and CAT-262. Genetic status served as the independent variable and cognitive 

domain scores served as the dependent variable in each analysis.  

Secondary Aim 1: Determine if genetic risk for increased oxidative stress moderates 

relationships between white matter tracts and cognitive performance on tests of 

processing speed, executive function, and memory. Multiple regression models were 

computed to determine the relationship between tract-specific DTI metrics and cognitive 

domain scores (main effects), and whether these relationships were moderated by genetic 

status (interactions). To reduce multicollinearity, DTI metrics and genetic status (e.g., 

SOD2) were mean-centered prior to calculation of the interaction terms (Aiken & West, 

1991). Cognitive domain scores were then regressed onto mean-centered DTI metrics, the 



 Salminen, Lauren, 2016, UMSL, p. 37 

mean-centered genetic variable, and the interaction term (mean-centered DTI variables * 

mean-centered genetic variable). Mean centered DTI variables were entered into block 1 

of the regression model. Mean-centered SOD2 was entered into block 2, and the 

interaction term was entered into block 3.  

Secondary Aim 2: Investigate white matter integrity and cognitive performance 

among individuals with multiple genetic risk variants of SOD2 and CAT-262. The 

same statistical analyses employed for primary aims 1 and 2 were used to assess the 

impact of multiple genetic risk variants on white matter and cognition. Genetic risk was 

dichotomized into “low risk” and “high risk” groups according to genotypic 

combinations of SOD2 and CAT-262.  

Power Analysis 

 To determine the appropriate sample size needed for adequate power (.80), effect 

sizes (Cohen’s d) were calculated for the DTI and neuropsychological variables using 

preliminary data from 21 participants extracted from the parent database. G*Power (Faul, 

Erdfelder, Buchner, & Lang, 2009) was used to calculate the necessary sample size from 

input parameters for an independent samples t-test. Power analyses were based on the 

independent samples t-test versus MANOVA because the key input parameters for 

MANOVA were initially unknown (e.g., number of variables in each MANOVA and 

number of MANOVAs). Thus, power analyses were calculated for bilateral white matter 

tracts and individual neuropsychological tests. Effect sizes ranged from 1.17 to 3.40 for 

the majority of white matter tracts, indicating that a total sample size of 26 was required 

to detect significant differences in DTI metrics between groups (Aim 1). Effect sizes 

ranged from .62 to 1.30 for the majority of neuropsychological tests, indicating that a 
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sample size of 84 was required to detect significant differences in cognitive performance 

between groups (Aim 2). Collectively these numbers indicate that the sample of 96 

individuals, 71 of whom have imaging data, should be sufficiently powered to detect 

significant effects that are present in the study.  

Results 

Data Screening and Preliminary Analyses 

  Data screening of the cognitive variables indicated that < 5% of scores were 

missing and therefore mean imputation was not completed. Two individuals received 

scores of 300 on Trails B (indicating test discontinuation) and as such were removed 

from the analyses in pairwise fashion. Initial examination of domain scores indicated that 

assumptions of skewness and kurtosis were violated (> +/- 2; West, Finch, & Curran, 

1995) for processing speed. Executive function was leptokurtic (.611) and negatively 

skewed (-.814), but within normal limits. Q-Q plots and boxplots indicated that abnormal 

performance scores from one subject were driving the abnormal shape of the distribution 

and this subject was removed from the analyses. Removal of this subject reduced 

skewness and kurtosis for both domains (< +/- 2) and Q-Q plots revealed a normal 

distribution. Domain scores for memory were normally distributed and did not require 

data cleaning. Data screening for the imaging measures revealed slightly different cell 

sizes across DTI metrics due to Freesurfer processing errors in the CB, ILF and IFOF 

across three subjects. Tests of normality indicated that RD and AD variables were 

leptokurtic and positively skewed beyond the acceptable range. A log10 transformation 

was applied to all RD and AD variables and re-examined for normality. While skewness 

and kurtosis improved, Q-Q plots and boxplots revealed extreme scores (> 3x 
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interquartile range) for one subject across multiple tracts. This subject was removed from 

the analyses and the shape of the distribution was normalized.  

 A total of five domain scores were calculated: processing speed, executive 

function, immediate memory, delayed memory, and global memory (composite of 

immediate and delayed memory). Bivariate correlations indicated that the immediate and 

delayed memory domain scores were highly correlated (r =.7), resulting in strong 

correlations with the global memory domain score (r’s >.8). Given the strength of these 

correlations, immediate and delayed memory domains were dropped from the analyses 

and the global memory domain score was utilized as the measure of memory. Domain 

scores were analyzed in three separate univariate ANOVAs (processing speed, executive 

function, and global memory) due to potential differences in the sensitivity of each 

domain to discriminate between groups.  

Bilateral white matter tract correlations revealed moderately large correlations 

between hemispheres for the majority of tracts on all DTI metrics (r’s range from .4- .9). 

As such, white matter tracts were averaged across both hemispheres to create a composite 

measure of tract integrity. Correlations between DTI metrics revealed very strong 

correlations (r’s > .8) between MD and RD for nearly all tracts. As such, MD was 

dropped from the analysis to reduce redundancy in the outcomes. RD was retained in the 

analyses (versus MD) due to its enhanced sensitivity to demyelination and observations 

that MD changes are often driven by changes in RD (Lentz et al., 2014; Song et al., 

2002).  Correlations between FA, RD, and AD ranged from .1 to .7 across each of the 

tracts, and intercorrelations between tracts were moderately strong for each metric. As 

such, tracts were examined in three separate MANOVAs according to DTI metric. 
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Pillai’s Trace was used for MANOVAs that violated statistical assumptions (Box’s M < 

.001, Bartlett’s test > .001, Levene’s test < .05; Meyers, Gamst, & Guarino, 2006). 

Univariate differences were not examined for non-significant MANOVAs.  

Primary Aims 1 and 2: Genetic differences in white matter and cognition 

Descriptive variables did not differ between the CC (n = 26) and TT (n = 26) 

genotypes of SOD2, and the CC/CT (n = 60) and TT (n = 34) genotypes of CAT-262 

(Table 1). As such, covariates were not utilized in the main analyses.  

 For SOD2, a multivariate trend effect was observed for RD (Pillai’s Trace = 

0.318, F(7,33) = 2.20, p = 0.060, f2 = 0.47) between CC and TT genotypes. Specifically, 

the CC group demonstrated higher RD in the ATR (p = .003) and CGC (p = .027) 

compared to the TT group. Significant multivariate main effects were not observed for 

FA (Wilks’ Λ = 0.720, F(7,33) = 1.84, p = 0.113, f2 = 0.39) or AD (Pillai’s Trace = 

0.174, F(7,33) = .993, p = 0.454, f2 = 0.21). Groups did not differ significantly on 

processing speed (F(1,49) = .10, p = 0.756, f = .04), executive function (F(1,49) = .07, p 

= 0.788, f = .14), or memory (F(1,50) = .18, p = 0.674, f = .08).  Group differences in the 

ATR and CGC did not remain significant after applying FDR corrections to the 

univariate outcomes across the three MANOVAs (adjusted cutoff p < .002). 

 For CAT-262, no significant multivariate effects were observed for FA (Wilks’ Λ 

= 0.926, F(7,58) = .66, p = 0.701, f2 = 0.08), RD (Wilks’ Λ = 0.904, F(7,58) = .88, p = 

0.527, f2 = 0.12), or AD (Wilks’ Λ = 0.822, F(7,58) = 1.79, p = 0.107, f2 = 0.22). Groups 

did not differ significantly on processing speed (F(1,88) = .00, p = 0.981, f < .001), 

executive function (F(1,86) = .02, p = 0.903, f < .001), and memory (F(1,92) = .00, p = 

0.953, f < .001).   
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Outcomes for alternative genetic models of SOD2 

 Preliminary analyses indicated that groups did not differ significantly on 

descriptive variables for recessive and dominant genetic models. Thus, covariates were 

not used in these analyses. Cell sizes varied slightly across the imaging analyses.  

For the recessive model, individuals with the CC genotype (n = 26) of SOD2 were 

compared against individuals with the CT/TT genotypes (n = 68). A significant 

multivariate main effect was observed for RD (Pillai’s Trace = 0.243, F(7,58) = 2.67, p = 

0.018, f2 = 0.32), with the CC group demonstrating significantly higher RD (p = .001) in 

the ATR compared to the CT/TT group (Figure 1A). Groups did not differ significantly 

for AD (Pillai’s Trace = 0.172, F(7,58) = 1.72, p = 0.122, f2 = 0.21) or FA (Wilks’ Λ = 

0.870, F(7,58) = 1.24, p = 0.295, f2 = 0.15). No significant differences were observed for 

processing speed (F(1,88) = .07, p = 0.791, f = .03), executive function (F(1,86) = .30, p 

= 0.588, f = .05), or memory (F(1,92) = .67, p = 0.415, f = .08). RD in the ATR remained 

statistically significant (p < .002) after applying FDR corrections to the univariate 

outcomes.    

 For the dominant model, individuals with the TT genotype (n = 26) were 

compared against individuals with the CC/CT genotypes (n = 68). Statistical assumptions 

were satisfied with the exception of Levene’s test in all analyses. Groups did not differ 

significantly for FA (Pillai’s Trace = 0.168, F(7,58) = 1.68, p = 0.133, f2 = 0.20), RD 

(Pillai’s Trace = 0.159, F(7,58) = 1.57, p = 0.164, f2 = 0.19), and AD (Pillai’s Trace = 

0.071, F(7,58) = .63, p = 0.727, f2 = 0.08). Groups did not differ significantly on 

processing speed (F(1,88) = .09, p = 0.766, f = .03), executive function (F(1,86) = 1.26, p 

= 0.265, f = .12), or memory (F(1,92) = .01, p = 0.914, f = .01).   
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 For the additive model, genotypes were compared using a 3-group design: CC (n 

= 26) vs. CT (n = 42) vs. TT (n = 26). Preliminary analyses revealed significant group 

differences in years of education between the CC and CT groups (p = .042). Bivariate 

correlations between education and white matter tracts revealed modest but significant 

associations in the ATR, IFOF, ILF, and both segments of the CB (r’s between .2 and .4). 

Thus, education was used as a covariate in the tract-based analyses. Interestingly, 

significant correlations were not observed between education and the cognitive measures, 

and as such education was not used as a covariate in the cognitive analyses.  

A significant multivariate effect was observed in RD between groups (Pillai’s 

Trace = 0.390, F(14,114) = 1.97, p = 0.026, f2 = 0.24) (Figure 1B). Specifically, Tukey’s 

HSD revealed higher RD in the ATR among CC genotypes versus CT genotypes (p = 

.020) and TT genotypes (p = .003). Significant differences were not observed between 

CT and TT genotypes (p = .477). Univariate differences in the CGC were trending 

towards significance between CC and TT groups (p = .059). Pairwise comparisons in the 

CGC revealed higher RD in CT genotypes compared to TT genotypes (p = .033), and a 

trend for higher RD in CC genotypes compared to TT genotypes (p = .058). Groups did 

not differ significantly on FA (Wilks’ Λ = 0.763, F(14,112) = 1.16, p = 0.319, f2 = 0.14) 

or AD (Pillai’s Trace = 0.322, F(14,114) = 1.56, p = 0.100, f2 = 0.19). No significant 

differences were observed for processing speed (F(2,87) = .06, p = 0.944, f = .03), 

executive function (F(2,85) = .63, p = 0.535, f = .12), or memory (F(2,91) = .36, p = 

0.701, f = .09). Results did not remain significant after applying the FDR correction to the 

univariate outcomes (p > .002).  

Secondary Aim 1: Relationships between white matter tracts and cognition by SOD2 



 Salminen, Lauren, 2016, UMSL, p. 43 

  To address whether genetic status moderated relationships between white matter 

tract alterations and cognition, the SOD2 recessive model (CC vs. CT/TT) was used as 

the moderating grouping variable since univariate outcomes did not survive the FDR 

correction in the homozygous analyses. Regression models were not run for CAT-262 due 

to the lack of significant relationships with white matter and cognition. Collinearity 

assumptions were satisfied for all analyses (Tolerance > .4, VIF < 2.5; Allison, 1999). 

Model 2 in the regression (mean centered DTI variable and mean centered SOD2 on 

cognition) did not offer meaningful information beyond model 1 (mean centered DTI 

variable on cognition) and model 3 (mean centered DTI variable, mean centered SOD2, 

and interaction term on cognition), and therefore model 2 was not interpreted. Results 

were considered significant at the .05 alpha level if both the ANOVA model and Sig. ΔF 

were < .05. FDR corrections were applied separately to each cognitive domain (42 

comparisons). 

For processing speed, significant main effects were observed with FA in the ILF 

and IFOF; AD in the SLF, IFOF, CGC, ATR, and UF; and RD in the ILF, IFOF, SLF, 

CGC, ATR, and UF (Table 3). Lower FA and higher AD and RD in these tracts was 

associated with slower processing speed.  The addition of SOD2 and the interaction term 

did not improve model fit for any significant main effect. However, a significant 

interaction effect was observed between RD in the CHC and SOD2 on processing speed 

(F (3,60) = 3.30, p = 0.026), with the interaction term (RD in the CHC*SOD2) uniquely 

explaining 12% of the variance in processing speed. Simple slope analyses indicated that 

individuals with the CC genotypes demonstrated a strong negative relationship between 

RD in the CHC and processing speed (t = -3.12, p = .003). Significant relationships were 
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not observed between RD in the CHC and processing speed in individuals with the 

CT/TT genotypes (t = .32, p = .747). This suggests that slower processing speed is related 

to higher RD in the CHC among individuals with the CC genotype. By contrast, higher 

RD in the CHC of individuals with the CT/TT genotypes is not related to slower 

processing speed (Figure 2A). A significant interaction was also observed between FA in 

the CGC and SOD2 (F (3,63) = 2.91, p = 0.041), with the interaction term (FA in the 

CHC*SOD2) uniquely explaining 6% of the variance in processing speed. ). Simple 

slopes also revealed a strong positive relationship between FA in the CGC and processing 

speed among CC genotypes (t = 2.87, p = .006), whereas no significant relationship was 

observed in CT/TT genotypes (t = .69, p = .492). This suggests that slower processing 

speed is related to lower FA in the CGC among individuals with the CC genotype, but 

lower FA in the CGC is not related to processing speed in CT/TT genotypes (Figure 2B). 

After applying FDR corrections, all main effects and interactions remained significant 

with the exception of the interaction effect in the CGC.  

 For executive function, significant main effects were observed for FA in the ILF 

and IFOF; AD in the SLF, ATR, and UF; and RD in the ILF, IFOF, and CGC (Table 4A). 

Lower FA and higher AD and RD in these tracts was significantly associated with poorer 

performance on executive function tasks. The addition of SOD2 and the interaction term 

did not improve model fit for any significant main effect. Interaction effects were not 

observed. After applying FDR corrections, only FA in the ILF and IFOF remained 

significant.  

 For memory, only one significant main effect was observed for FA in the ILF 

(Table 4B). Lower FA in the ILF was associated with poorer memory performance, 
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though this effect did not survive the FDR correction. The addition of SOD2 and the 

interaction term did not improve model fit and interaction effects were not observed.  

Secondary Aim 2: Impact of combined risk alleles of SOD2 and CAT-262 

 Low risk groups were defined by a SOD2 genotype of CT or TT, and a CAT-262 

genotype of CT or TT. The results of the primary analyses and genetic model testing 

indicated that two C alleles are required to increase risk for SOD2, and as such, CT and 

TT genotypes were considered low risk. Consistent with primary aims, low risk for CAT-

262 was also defined by the CT and TT genotypes. High risk was strictly defined by 

possession of the CC genotype for both SOD2 and CAT-262.  Participants with one high 

risk genotype and one low risk genotype were excluded from the analyses. Twenty-three 

individuals were identified as low risk (SOD2 CT + CAT-262 CT or TT, SOD2 TT + 

CAT-262 CT or TT), and 15 individuals were identified as high risk (SOD2 CC + CAT-

262 CC). Imaging data were available for 15 individuals in the low risk group and 11 

individuals in the high risk group. Groups did not differ significantly on descriptive 

variables.  

 Groups did not differ significantly for FA (Wilks’ Λ = 0.838, F(7,18) = .50, p = 

0.824, partial eta2 = 0.162),  RD (Wilks’ Λ = 0.676, F(7,18) = 1.23, p = 0.337, partial eta2 

= 0.324), and AD (Pillai’s Trace = 0.284, F(7,18) = 1.02, p = 0.450, partial eta2 = 0.284). 

Groups did not differ significantly on processing speed (F(1,34) = .07, p = 0.801, partial 

eta2 = 0.002), executive function (F(1,34) = .03, p = 0.856, partial eta2 = .001), or 

memory (F(1,36) = .32, p = 0.577, partial eta2 = .009).  

Discussion 
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 The present study is the first to examine the influence of antioxidant defense 

genes on brain white matter and cognition in a healthy sample of older individuals. 

Results revealed higher RD in the ATR of individuals with the CC genotype of SOD2 

compared to those with the CT and TT genotypes. Group differences in RD were also 

evident in the CGC, though this finding did not survive the FDR correction. With regard 

to cognition, the CC genotype moderated the relationship between higher RD in the CHC 

and slower processing speed. By contrast, CAT-262 did not significantly influence white 

matter or cognition, and possession of high risk genotypes from both SOD2 and CAT-262 

was not associated with poorer brain outcomes. Collectively these results suggest that the 

CC genotype of SOD2 is a significant risk factor for microstructural white matter damage 

and associated reductions in processing speed in otherwise healthy older adults.  

 Research examining the impact of the SOD2 polymorphism on the brain is 

limited, and existing work in humans has been conducted almost exclusively in clinical 

cohorts using case-control designs. Nevertheless, the observation that the C allele of 

SOD2 was associated with a greater risk for brain abnormalities is consistent with 

evidence that the C allele of SOD2 is overrepresented in neurodegenerative conditions 

such as AD (Wiener et al., 2007), PD (Shimoda-Matsubayashi et al., 1996), motor neuron 

disease (Landegham et al., 1999), and psychiatric conditions such as schizophrenia 

(Akyol et al., 2004). The recessive model (CC vs. CT/TT genotypes) was the most robust 

genetic model to brain alterations, suggesting that two C alleles are required to influence 

brain integrity in a sample of cognitively normal individuals. This observation is in 

agreement with work by Bastaki et al. (2005), who revealed 33% higher SOD2 enzyme 

activity in CT/TT genotypes compared to CC genotypes. 
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In the present study, CC genotypes of SOD2 demonstrated localized alterations in 

the ATR, and to a lesser extent the CB. The ATR and CB are prominent white matter 

tracts that include connection sites with the prefrontal cortex (PFC), cingulate cortex, and 

thalamic nuclei (Chiu et al., 2011; Mori et al., 2008). Studies utilizing fiber dissection 

techniques and DTI tractography have shown that the ATR and CB are fiber bundles 

within the Papez circuit (Jang & Yeo, 2013; Shah, Jhawar, & Goel, 2012), which is a 

limbic system pathway involved in emotional expression and memory (Papez, 1937). 

Signaling pathways within the Papez circuit are primarily excitatory (Morgane, Galler, & 

Mokler, 2004), resulting in ROS production via NMDA receptor activation (Bindokas, 

Jordán, Lee, & Miller, 1996; Urano et al., 1998). Excess ROS production can deplete the 

already limited stores of cellular antioxidants, ultimately leading to perpetuated 

mitochondrial dysfunction, glutamate neurotoxicity, and cell death (Atlante et al., 2001).  

Alterations in the Papez circuit, specifically the ATR and CB, have been reported 

in previous studies of brain aging (Baker et al., 2014; Cremers et al., 2016; Gunbey et al., 

2014; Mella et al., 2013), AD (Aggleton, Pralus, Nelson, & Hornberger, 2016; 

Hornberger et al., 2012; Torso et al., 2015), PD (Kamagata et al., 2012; Vercruysse et al., 

2015), and schizophrenia (Ellison-Wright et al., 2014; Whitford et al., 2014), among 

others. Oxidative stress has been implicated in the pathogenesis of these conditions and is 

consistent with studies reporting an increase risk for AD, PD, and schizophrenia among 

CC genotypes of SOD2. NMDA receptors are located in OLs and myelin sheaths and 

have shown to become activated in response to neuronal injury (Butt, Fern, & Matute, 

2014; Salter & Fern, 2005). In addition, overexpression of SOD2 in cultured cell lines 

has been shown to protect against NMDA neurotoxicity (Gonzalez-Zulueta et al., 1998). 
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It is possible that reduced integrity of the ATR and CB among older individuals with the 

CC genotype is due to lower levels of SOD2 in the Papez circuit, and a resultant decrease 

in the detoxification capacity of ROS. Although this remains conjecture at this point, 

imaging modalities such as positron emission tomography (PET) would be useful for 

identifying relationships between SOD2 genetic status and in vivo glutamate and NMDA 

receptor binding within regions of the Papez circuit.  

RD was the most robust DTI metric to genetic differences in SOD2, which is 

consistent with the hypothesis that oxidative stress is detrimental to myelin integrity. RD 

is believed to be preferentially sensitive to changes in the myelin sheath compared to 

other DTI metrics. Work by Song et al. (2002, 2005) demonstrated that RD could 

distinguish demyelination from axonal damage in mouse models of retinal ischemia and 

multiple sclerosis. Additional work from Nair et al. (2005) revealed increased RD in mice 

that were genetically modified to be myelin-deficient, which corresponds to the positive 

correlation between RD and demyelination severity observed in human post mortem 

tissue samples of multiple sclerosis patients (Klawiter et al., 2011). 

Human studies of normal aging in vivo reveal various patterns of diffusivity that 

are expected to reflect different mechanisms of neuropathology (Bennett et al., 2010; 

Burzynska et al., 2010; Madden et al, 2012), with FA and AD linked to axonal damage 

and MD and RD linked to demyelination. The most consistent and spatially prominent 

DTI findings are decreased FA and increased RD in older adults relative to younger 

adults, with region specific increases (and sometimes decreases) in MD and AD (Bennett 

et al., 2010; Burzynska et al., 2010). Decreased FA and increased RD is most commonly 

observed across white matter tracts traversing the frontal lobe during normal aging 
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(Madden et al., 2012), supporting the theory that the increased metabolic activity of OLs 

in late-myelinating association pathways makes them more vulnerable to oxidative 

damage. Madden et al. (2012) noted that a concurrent decrease in FA and increase in RD 

likely represents pathology of both the axon and myelin sheath. Results from the present 

study suggest that genetic differences in SOD2 do not contribute to axonal pathology but 

specifically influence myelin disruption in healthy older adults.  

The lack of cognitive differences between SOD2 groups may be due to several 

factors. First, the average age of the sample was only 63 years old, and therefore the 

genetic impact on age-related cognitive decline may not have been sufficient to influence 

group differences. Previous research by Tucker-Drob and Briley (2014) demonstrated 

that approximately one third of between-subject variability in cognitive changes between 

ages 65-96 is explained by genetic differences, whereas no cohesive pattern of indicators 

could explain the variability in cognitive aging between ages 50-65. This is in agreement 

with the resource-modulation hypothesis, which theorizes that increased depletion of 

brain resources modulates the impact of common genetic variants on cognition, and 

therefore the impact of such variants becomes more significant with advanced age 

(Lindenberger et al., 2008). Many studies have provided support for this model by 

revealing modest or non-existent genetic effects in young adults relative to older adults 

(for review see Papenberg, Lindenberger, & Backman, 2015). The resource-modulation 

hypothesis is closely related to the concept of cognitive reserve, which may also have 

contributed to the lack of significant cognitive effect between SOD2 groups. Cognitive 

reserve refers to the use of pre-existing cognitive processing strategies to perform 

normally despite considerable neuropathology (Stern, 2009). Education is a common 
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proxy measure of cognitive reserve that is positively correlated with cognitive outcomes 

(Le Carret et al., 2003). Participants in the present study were highly educated (≈ 16 

years), and therefore alterations in the ATR and CB among CC genotypes may have been 

functionally attenuated due to a high level of cognitive reserve. Finally, the lack of 

cognitive effect is consistent with previous genetic studies within this cohort that have 

reported negative findings with regard to cognition (Salminen et al., 2013, Salminen et 

al., 2014).  

Despite the absence of a direct effect of SOD2 on cognitive function, multiple 

regression analyses revealed a significant moderating effect of the CC genotype between 

the CB and processing speed, with a more robust interaction in the CHC compared to the 

CGC. Previous research suggests that alterations in the CHC are more closely linked to 

pathological aging and AD compared to alterations in the CGC (Catheline et al., 2010; 

Choo et al., 2010; Fellgiebel et al., 2005; Firbank et al., 2007; Nir et al., 2013; Santiago et 

al., 2015). Accordingly, Laukka et al. (2013) revealed weaker associations between age-

related changes in the CHC and reduced processing speed when cognitively “normal” 

older adults were excluded for prodromal dementia (assessed retrospectively from 

longitudinal follow up). The CHC is a fiber pathway within the Papez circuit that 

connects the posterior cingulate cortex (PCC) with the medial temporal lobe (Yu et al., 

2014), the latter of which harbors the hippocampal region, entorhinal, and 

parahippocampal cortices (Squire, Stark, & Clark, 2004). Each of these structures is 

vulnerable to AD pathology, particularly the accumulation of oxidative end products and 

reduced antioxidant capacity in the hippocampus. Both aging and genetically determined 

SOD2 deficiencies promote oxidative stress in the hippocampus, thereby leading to 
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reductions in cognitive function (Huang, Leu, & Zou, 2015). Relatedly, the PCC is a 

primary connectivity hub for major cortical networks (Buckner et al., 2009; Greicius, 

Supekar, Menon, & Dougherty, 2009), allowing information processing across disparate 

brain systems. Disrupted functional connectivity of the PCC has been associated with 

reduced processing speed in aging individuals (Andrews-Hanna et al., 2007; Damoiseaux 

et al., 2008), which may explain the link between the increased RD in the CHC and 

slower processing speed in CC genotypes of SOD2. It is possible that some individuals 

with the CC genotype were in a prodromal stage of disease at the time of scanning which 

influenced the strength of the moderation. Longitudinal studies are needed to evaluate 

annual changes in the relationship between the CB and processing speed among CC 

genotypes.    

 In contrast to my hypothesis, CAT-262 was not significantly related to white 

matter or cognition in this cohort of individuals. Although this was unexpected, previous 

research has reported conflicting results regarding the impact of this SNP on various 

health conditions. First, a clear risk allele for brain dysfunction has not been defined. 

Some studies have shown that the minor T allele is protective against diabetic 

neuropathy, acoustic neuroma, and later presentation of neurological manifestations of 

Wilson’s disease (Chistiakov et al., 2006; Gromadzka et al., 2014; Rajaraman et al., 

2008; Zotova et al., 2004). However, other studies have reported an increase risk for 

breast and prostate cancer (Hu et al., 2015; Saadat & Saadat, 2015), chronic hepatitis B 

(Liu et al., 2015), alcohol dependency (Plemenitas et al., 2015), ulcerative colitis 

(Khodayari et al., 2013), and asthma (Babusikova, Jesenak, Evinova, Banovcin, & 

Dobrota, 2014; Taniguchi et al., 2014). Additional research investigations reported no 
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association between CAT-262 and sporadic AD (Capurso et al., 2010), hypertension 

(Petrovic, 2014), and depression (Galecki, Szemraj, Zboralski, Florkowski, & Lewinski, 

2010). Forseberg et al. (2001) revealed differences in allelic expression across organ 

tissues (Forseberg et al., 2001), which may explain the discrepancy of allelic risk in the 

abovementioned studies.  

Results from the present study may indicate that lower levels of CAT are not 

sufficient to impact brain structure and function in a healthy adult sample. Although CAT 

and SOD2 are recognized as the two primary catalytic antioxidants involved in the 

reduction of ROS, glutathione peroxidase (GPx) works synergistically with CAT to 

facilitate the breakdown of H2O2 to oxygen and water (Bastaki et al., 2005). Results from 

in vitro studies have shown that GPx overexpression protects against experimental stroke, 

and may be more neuroprotective than SOD2 or CAT (Hoehn, Yenari, Sapolsky, & 

Steinberg, 2003; Toussaint, Houbion, & Remacle, 1993). GPx1 is the most common 

isoform of GPx and is encoded by the Pro197Leu SNP (rs105040) in the GPx1 gene 

(Crawford et al., 2012). The Leu allele has been associated with earlier mortality 

(Zeikova et al., 2012) and lobar intracerebral hemorrhage (Pera et al., 2008), yet research 

regarding the Pro197Leu SNP and brain integrity is limited. Given the convergent 

mechanisms of GPx and CAT, alterations in brain microstructure and cognition may 

depend on the presence of risk alleles from both CAT-262 and GPx1 Pro197Leu. This 

theory is consistent with evidence that the interaction between GPx and CAT promotes 

resistance to H2O2 -cell death in mature OLs (Baud et al., 2004).  

In the present study genotyping was only completed for SOD2 and CAT-262 to 

facilitate data reduction. CAT-262 was selected over GPx1 Pro197Leu due to the weight 
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of literature emphasizing the importance of CAT in redox reactions and the increased 

prevalence of the prospective risk allele in Caucasians and African Americans (77% and 

98% respectively, versus ≈ 30% for the Leu allele in both races; dbSNP). Additional 

work is needed to determine if the combination of risk factors from CAT-262 and GPx1 is 

associated with brain abnormalities in a similar sample of healthy older adults.   

Limitations 

A few limitations of this study should be acknowledged. First, this study did not 

include a plasma or cerebrospinal fluid (CSF) biomarker of oxidative stress or antioxidant 

enzyme activity and therefore the functional impact of SOD2 and CAT-262 on brain 

microphysiology remains unknown. While previous studies have measured antioxidant 

activity from plasma and serum, the relationship between central and peripheral levels of 

enzyme activity is not consistent (Reiter, 1995; Harish et al., 2013). Alternatively, the 

enzyme 8-hydroxy-2-deoxyguanosine (8-oxo-dG) is a commonly used peripheral marker 

of mtDNA damage that has shown to predict brain atrophy in neurodegenerative 

conditions such as the human immunodeficiency virus (Kallianpur et al., 2016). 

Examination of 8-oxo-dG in conjunction with SOD2 may provide useful information 

regarding underlying mechanisms of neuropathology in CC genotypes.     

Second, the use of AD and RD is controversial due to potential misalignment of 

the principal diffusion direction to underlying tissue structure. Misalignment is most 

likely to occur in areas of crossing fibers and low anisotropy (often from severe 

pathology), and can lead to inaccurate biophysical interpretations of what is truly axonal 

degeneration versus demyelination (Madden et al., 2012; Wheeler-Kingshott & 

Cercignani, 2009). Interpretation that increased RD in the present study represents 
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demyelination is based on previously identified patterns of DTI changes that correspond 

to histological data (Burzynska et al., 2010). While it is possible that increased RD in the 

ATR also reflects axonal damage given the established correlations between 

demyelination and axonal degeneration (Klawiter et al., 2011; Schmierer et al., 2008), the 

weight of literature regarding diffusivity patterns and oxidative mechanisms suggests that 

RD changes were likely driven by demyelination.  Neuropathological data are required to 

address this hypothesis. 

Third, participants were recruited using advertisements for “healthy cognitive 

aging” and as such there may have been a sampling bias for individuals who were already 

concerned about their cognitive health. While a sampling bias may have influenced the 

level of cognitive performance exhibited by this cohort as a whole, it is unlikely that this 

would have influenced genetic differences in brain outcomes. Finally, the present study 

was cross-sectional and therefore the impact of SOD2 and CAT-262 on intraindividual 

brain changes remains unknown.  

Conclusion 

The work presented herein is highly significant as it is the first in vivo 

examination of brain outcomes among healthy older adults with genetic risk variants of 

SOD2 and CAT-262. While our results do not support a role for CAT-262 in “normal” 

brain aging, the CC genotype of SOD2 appears to confer risk for tract-specific alterations 

in the Papez circuit that are related to slower processing speed. Knowledge of these 

associations should facilitate research aimed at developing intervention strategies for 

individuals at risk for SOD2 deficiencies, whether by exogenous antioxidant 

supplementation or modification of lifestyle factors that reduce the burden of oxidative 



 Salminen, Lauren, 2016, UMSL, p. 55 

stress in the aging brain. Future studies utilizing PET imaging will further elucidate the 

relationship between SOD2 and metabolic disturbances in the Papez circuit, particularly 

in the ATR and CB. Longitudinal studies examining a slightly older cohort (≥ age 65) 

will be beneficial for determining the degree to which these antioxidant defense genes 

influence intraindividual variability in normal brain aging.   
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Table 1. Descriptive Characteristics for the Primary Aims  
SOD2  (N = 52) CC (n =26) TT (n = 26) p value 

Age (M, SD) 64.5 (8.2) 61.8 (7.2) 0.215 
Years of Education (M, SD) 14.9 (2.6) 15.2 (2.6) 0.669 
Sex (n) (Male, Female) 9, 17 6, 20 0.358 
Race (% Caucasian) 76.9 69.2 0.754 
Hypertension (% Yes) 30.8 19.2 0.337 
CAT-262 (% CC genotype) 57.7 61.5 0.777 

ICV (M, SD) 1077395.8 
(170141.1) 

989557.8  
(97487.9) 0.053 

CAT-262 (N = 96) CC (n = 60) CT/TT (n = 34) p value 
Age (M, SD) 62.5 (8.3) 64.5 (7.3) 0.236 
Years of Education 15.8 (2.4) 15.5 (2.5) 0.614 
Sex (n) (Male, Female) 20, 40 14, 20 0.447 
Race (% Caucasian) 68.3 88.2 0.052 

Hypertension (% Yes) 26.7 26.5 0.984 
SOD2 (% CC genotype) 48.4 52.4 0.777 

ICV (M, SD) 1048182.05 
(191627.6) 

1039461.13 
(147178.5) 0.852 

*p < .05 
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Table 2. Descriptive Characteristics for the Secondary Aims  
SOD2 Recessive Model   CC (n =26) CT/TT (n = 68) p value 
Age (M, SD) 64.50 (8.23) 63.16 (8.27) 0.481 
Years of Education (M, SD) 14.88 (2.57) 15.86 (2.40) 0.053 
Sex (n) (Male, Female) 9, 17 25, 43 0.846 
Race (% Caucasian) 76.9 75.0 0.623 
Hypertension (% Yes) 30.8 25.0 0.571 
CAT-262 (% CC genotype) 57.7 66.2 0.444 

ICV (M, SD) 1077395.8 
(170141.1) 

1032688.4 
 (177432.9) 0.375 

SOD2 Dominant Model   CC/CT (n = 68) TT (n = 26) p value 
Age (M, SD) 63.7 (8.2) 61.8 (7.2) 0.296 
Years of Education 15.9 (2.4) 15.2 (2.6) 0.243 
Sex (n) (Male, Female) 28, 40 6, 20 0.102 
Race (% Caucasian) 77.9 69.2 0.149 
Hypertension (% Yes) 29.4 19.2 0.318 

CAT-262 (% CC genotype) 64.7 61.5 0.775 

ICV (M, SD) 1073316.9  
(199095) 

989557.8 
 (97487.9) 0.075 

SOD2 Additive Model   CC 
 (n = 26) 

CT  
(n = 42) 

TT 
 (n = 26) p value 

Age (M, SD) 64.5 (8.2) 63.3 (8.3) 61.8 (7.2) 0.480 
Years of Education 14.9 (2.6) 16.5 (2.1) 15.2 (2.6) 0.017* 
Sex (n) (Male, Female) 9, 17 19, 23 6, 20 0.178 
Race (% Caucasian) 76.9 78.6 69.2 0.175 
Hypertension (% Yes) 30.8 28.6 19.2 0.595 
CAT-262 (% CC genotype) 57.7 69.0 61.5 0.613 

ICV (M, SD) 1077395.8 
(170141.1) 

1070427.7 
(220858.2) 

989557.8 
(97487.9) 0.205 

*p < .05. For the additive model, Tukey’s HSD revealed significant differences in years 
of education between CC and CT genotypes (p = .042). CC and CT groups did not differ 
significantly from TT groups (p = .956, p = .083, respectively).  
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Fig.1. Significant multivariate main effects were observed for tract-specific alterations in 
RD when individuals were grouped according to recessive and additive models.  After 
applying the FDR correction, group differences in the ATR remained significant for the 
recessive model (A), but not the additive model (B). Note. Values were graphed 
according to raw RD values for visualization purposes. The p values indicated are those 
after the log10 transformation. 
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Table 3. Significant Main Effects between White Matter Tracts and Processing Speed 

  R2 F p f2 

ATR 
    AD .17 13.55 <.001* .20 

RD .13 9.40 .003* .15 
CGC 

    AD .10 7.20 .009* .11 
RD .19 15.59 <.001* .23 

ILF 
    FA .24 20.82 <.001* .32 

RD .19 15.61 <.001* .23 

IFOF 
    FA .21 17.14 <.001* .27 

AD .10 7.31 .009* .11 
RD .21 17.29 <.001* 

 SLF 
    AD .14 10.63 .002* .16 

RD .11 7.99 .006* .12 
UF 

    AD .17 13.31 .001* .20 
RD .14 10.80 .002* .16 

*p < .05, bolded p values survived FDR correction (total of 42 comparisons).  
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Fig.2. Moderation of the CC genotype on RD in the CHC (A) and FA in the CGC (B) on 
processing speed. Endpoints were plotted according to maximum and minimum log 
transformed RD values (.27 and -.06, respectively).  
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Table 4. Significant Main Effects between White Matter Tracts, Executive Function, and 
Memory 
 A) Executive Function R2 F p f2 
ATR 

    AD .08 5.67 .020* .09 
CGC 

    RD .07 4.10 .047* .08 
ILF 

    FA .24 20.82 <.001* .32 
RD .06 4.31 .042* .06 

IFOF 
    FA .17 12.78 .001* .20 

RD .12 8.80 .004* .14 
SLF 

    AD .09 5.97 .017* .10 
UF 

    AD .08 5.21 .026* .09 

 B) Memory R2 F p f2 
ILF 

    FA .06 4.32 .041* .07 
*p < .05, bolded p values survived FDR correction (total of 42 comparisons).  
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