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ABSTRACT

Surface subdivision schemes are used in computer graphics to generate

visually smooth surfaces of arbitrary topology. Applications in com-

puter graphics utilize surface normals and curvature. In this paper,

formulas are obtained for the first and second partial derivatives of

limit surfaces formed using 1-ring subdivision schemes that have 2 by

2 matrix-valued masks. Consequently, surface normals, and Gaussian

and mean curvatures can be derived. Both quadrilateral and triangu-

lar schemes are considered and for each scheme both interpolatory and

approximating schemes are examined. In each case, we look at both

extraordinary and regular vertices. Every 3-D vertex of the refinement

polyhedrons also has what is called a corresponding “shape vertex.”

The partial derivative formulas consist of linear combinations of sur-

rounding polyhedron vertices as well as their corresponding shape ver-

tices. We are able to derive detailed information on the matrix-valued

masks and about the left eigenvectors of the (regular) subdivision ma-

trix. Local parameterizations are done using these left eigenvectors

and final formulas for partial derivatives are obtained after we secure

detailed information about right eigenvectors of the subdivision ma-

trix. Using specific subdivision schemes, unit normals so obtained are

displayed. Also, formulas for initial shape vertices are postulated using

discrete unit normals to our original polyhedron. These formulas are

tested for reasonableness on surfaces using specific subdivision schemes.

Obtaining a specified unit normal at a surface point is examined by

changing only these shape vertices. We then describe two applications

involving surface normals in the field of computer graphics that can

use our results.
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1.2. BRIEF HISTORY OF SUBDIVISION SCHEMES 1

CHAPTER 1

Introduction

Based on certain assumptions we will be building easy-to-implement

formulas for the first and second partial derivatives of what is called a

refinable function. This function can be used to quickly generate a discrete

approximation to a target surface, called a subdivision surface. These

formulas will be based solely on certain right eigenvectors and what are

called the control and shape vertices of the original control net. From

such formulas one can then obtain unit surface normals and other geometric

information such as gaussian curvature. We will show a method for defining

what are called the shape parameters and demonstrate how such shape

parameters can change the normals of the target surface.

1.1. General Background

Subdivision is a powerful mechanism for the construction of smooth

curves and surfaces. More specifically, it is an algorithmic method for

surface generation that produces smooth surfaces by repetitively applying

a set of rules to an initial mesh or control net. As a result of the algorithm,

a sequence of meshes are produced, which generally converge to a limit

surface, called the subdivision surface. Application settings range from

industrial design and animation to scientific visualization and simulation.

Subdivision surfaces are used increasingly in high end animation production

(e.g. Pixar), game engines and are provided in many popular modeling

programs (e.g. Maya, Mirai, 3D Studio Max, etc.).

1.2. Brief History of Subdivision Schemes

Subdivision schemes go back to papers published by G. de Rham in 1947

and 1956 and by G.M. Chaikin in 1974 [PR08],[dR47],[dR56],[Cha74].



1.2. BRIEF HISTORY OF SUBDIVISION SCHEMES

Here “corner cutting” routines were applied to “smooth out” polygonal

lines. Rham evenly trisected each edge to produce two new vertices and

Chaikin trisected each edge in a 1:2:1 ratio to produce new vertices. In

Chaikin’s algorithm quadratic B-spline curves were produced [Asp03]. Us-

ing subdivision schemes to produce B-spline curves led to tensor-product

B-spline surfaces. But in order to design surfaces that have an arbitrary

topology irregular points and faces were needed in the initial control net. In

the context of tensor-product spline surfaces, these would be points that had

a valence other than 4 or faces that had other than 4 sides. Such surfaces

were first introduced in 1978 by Edwin Catmull and Jim Clark [CC78] and

also by Daniel Doo and Malcolm Sabin [DS78]. The Catmull-Clark and

Doo-Sabin schemes extended to general control meshes the tensor-product

cubic B-spline and quadratic B-spline schemes respectively [PR08]. In

[DS78] matrix multiplication was employed to describe the subdivision pro-

cess and eigenanalysis of this matrix was used to analyze the surface at the

irregular (extraordinary) vertices. In 1987, Charles Loop, in his Masters’

thesis, described a subdivision scheme defined over a grid of triangles (as

opposed to quadrilaterals)[Loo87]. Loop demonstrated that eigenanalysis

could be utilized to decide upon the coefficients to be used in the template

of an extraordinary point.

Another significant publication in 1987 was the description by Nira Dyn,

David Levin and John Gregory of their four-point curve scheme [DLG87].

This was new in that it was an interpolatory scheme, rather than an ap-

proximating one, and in that the limit curve did not consist of parametric

polynomial pieces. Here, the mask of the subdivision scheme (a finite num-

ber of coefficients which defined the method of refinement) was used to

determine the existence and the smoothness qualities of the limit of the

scheme. We also see the use of linear combinations of eigenvectors to pro-

vide a representation of certain neighboring points on a piecewise linear

approximation to a curve. Formulas for first derivatives are obtained with

a method similar to what we propose to use later. See Figures 3.5, 3.6 and

3.7 on pages 51, 53 and 54 for our first partial derivative formulas for an

interpolatory triangular scheme.

2



1.2. BRIEF HISTORY OF SUBDIVISION SCHEMES

In 1990 Dyn et al expanded the same type of analysis to surfaces when

they developed the “Butterfly” interpolatory scheme [DGL90].

Tools that were developed to analyze the convergence of schemes and

the smoothness of limit curves and surfaces included [PR08]:

• the notion of “derived subdivision schemes” obtained from the dif-

ferences and the divided differences of control points [DLG91]

• the notion of a symbol of a scheme that replaces the mask coeffi-

cients by a Laurent polynomial [CDM91]

• the notion of the “contractivity” of a subdivision scheme to check

for convergence [CDM91]

Algebraic manipulation of the Laurent polynomials that result from

these “symbols” led to sufficient conditions for a scheme to have a cer-

tain level of derivative continuity [DLM90]. (Note that, previously, the

eigenanalysis had only provided necessary conditions.)

In [Dyn92] Dyn extended the analysis in [DLG91] to the convergence

and smoothness of multivariate subdivision schemes. Such schemes used

matrices instead of scalars in their masks. They converged to function

vectors. In [Str96] multiwavelets were constructed from refinable function

vectors that had matrix-valued masks.

In 1995 Ulrich Reif developed the notion of the characteristic map to

assist in the analysis of the level of derivative continuity at extraordinary

points [Rei95].

Later schemes that have been developed include Kobbelt’s
√
3 scheme

where a triangular grid becomes denser by the insertion of a new point in

the middle of each triangle, the old edges disappear and are replaced by

new ones joining each new point to the corners of its triangle and to the

neighboring new points [Kob00]. This scheme has small support and is

C2 except at extraordinary points where it is C1. Also in 2001 Luiz Velho

and Denis Zorin developed the 4-8 subdivision that generalized the four-

directional box spline of continuity class C4 to surfaces of arbitrary topology

[VZ01]. In 2004 Guiqing Li and Weiyin Ma developed the
√
2 subdivision

scheme for quadrilateral meshes. This scheme can be regarded as an exten-

sion of the 4-8 subdivision scheme [LMB04]. It produces surfaces of the

3



1.3. SCALAR-VALUED MASKS

same smoothness and is computationally more efficient. Of course this list

of subdivision schemes is not all-inclusive.

1.3. Scalar-valued Masks

Subdivision schemes are formulated in terms of certain templates of nu-

merical (scalar) values that are used as weights for taking weighted averages

of certain given “old” vertices (points in R3) for the purpose of generating

new vertices, and perhaps to move the positions of the old vertices as well.

It yields a higher resolution of some discrete approximation to the target

(subdivision) surface for each application (iteration) of the weighted aver-

ages. If the old vertices are not altered for each iteration, the subdivision

scheme is called an interpolatory scheme. Otherwise, it is called an approx-

imation scheme. Subdivision templates are displayed in two dimensional

space as certain triangles or quadrilaterals with certain weights attached to

each vertex. For regular vertices (also called ordinary vertices) these tri-

angles and quadrilaterals lie on 3-directional or 2-directional meshes since

the valences of regular vertices are 6 and 4 respectively [CJ03b].

Surface subdivision templates for regular vertices are derived from the

refinement equation of some bivariate refinable function with a finite re-

finement sequence. The refinement sequence is called the “subdivision

mask” of the subdivision scheme. A refinable function φ is one that has

the following quality:

(1.1) φ (x) =
∑

k∈Z2

pkφ (Ax− k) x ∈ R
2

where A is some dilation matrix and {pk}k is the (finite) subdivision mask.

It can be shown that the subdivision mask sums to |det(A)|. The selection

of the dilation matrix A depends on what is commonly called the “topo-

logical rule”. The most commonly used rule is the “1-to-4 split” that

dictates the split of each triangle or square in the parametric domain into

four sub-triangles or four sub-squares by connecting the mid-points of the

appropriate edges. Also a “face point” is introduced when the mid-points

of the opposite edges of a square are connected. The new vertices intro-

duced in the parametric domain correspond to new vertices in R3 when

4



1.3. SCALAR-VALUED MASKS

the templates are applied to take weighted averages [CJ05]. Most of

the well-known surface subdivision schemes such as Loop’s scheme and the

Catmull-Clark scheme use the 1-to-4 split topological rule. For the 1-to-4

split rule, the dilation matrix in the refinement equation is 2I2. Other

topological rules are the
√
3 and

√
2 rules with dilation matrices given by

A1 =

[
2 −1

1 −2

]
and A2 =

[
1 1

1 −1

]

respectively [CJ05].

To apply a subdivision scheme, one must first select certain desirable

points in R3 as well as connect these points to form a triangular or quadri-

lateral mesh. So the points thus chosen are vertices of triangles or quadri-

laterals. These points are called “control vertices” and the triangular or

quad meshes are called “control meshes” or “control nets”. For a con-

trol mesh with just regular initial control vertices v0k (i.e. their valences

are equal to 6 or 4 respectively) the refinement equation (1.1 |p.4) yields a
“local averaging rule”:

(1.2) vm+1
k =

∑

j

vmj pk−Aj m = 0, 1, ...

where vmk denote the set of newly generated points in R3 after applying

the local averaging rule m times (or using the corresponding subdivision

templates to perform m iterations).

The target subdivision surface is precisely given by

f(x) =
∑

k

v0kφ (x− k) x ∈ R
2

with the initial control vertices as coefficients [CJ05]. We can thus see

that the smoothness of the limiting surface is reflected by the smoothness

of the refinable function φ (x).

Note that from (1.2 |p.5) one can obtain what is called the subdivision

matrix S where

S = (pAj−k)j,k and vm+1 = vmS

5



1.4. MATRIX-VALUED MASKS

A similar subdivision matrix can be constructed from the templates

involving extraordinary vertices. The eigenstructure of both these ma-

trices can tell us quite a bit about the smoothness of the subdivision

scheme [CJ06].

1.4. Matrix-valued Masks

Since the early 90’s work has been done with refinable function vec-

tors in the field of multiwavelets [Dyn92], [Str96]. See (2.5 |p.12) for a

representation of a refinement equation with a refinable function vector.

Notice that the mask consists of matrices. Very briefly, wavelets (which

classically use a scaling function φ) make large data sets more manageable.

Among other areas, they have been used as a basis set of approximating

functions and operators, in image processing, in processing music, speech

and other acoustic signals, and for displaying 2-dimensional geographic data

[Kob98]. Multiwavelets utilize refinable function vectors and have the ad-

vantages of shorter support and higher approximation orders than scalar

wavelets [Kei03].

In recent years Chui and Jiang have done work on matrix-valued subdi-

vision masks [CJ03b][CJ08][CJ06]. Some of the benefits they have found

include:

• the introduction of a parameter (called the shape parameter) that

can control and change the shape of the final subdivision surface

• the two components of a refinable vector-valued spline function can

be reformulated (by taking certain linear combinations of each) in

order to convert an approximation scheme into an interpolatory

scheme (at the expense, however, of an increase in the template

size).

• C2 1-ring (non-spline) interpolating schemes (i.e. C2 at regular

vertices)

The schemes developed by Chui and Jiang are C2 on regular vertices

(regular surface areas) and the conditions for C1 smoothness are maintained

at the extraordinary vertices via the use of eigenanalysis of the subdivision

matrix through DFT (Discrete Fourier transform) techniques.

6



1.5. DISSERTATION OUTLINE

Here we will be working exclusively with refinable function vectors and

matrix-valued masks.

1.5. Dissertation Outline

In Chapter 2 we will list notations used throughout and give the as-

sumptions used to build our formulas for first and second partial derivatives.

Chapter 3 will develop these partial derivatives for a 1-ring interpolatory

triangular scheme in terms of the initial control net. Chapter 4 will do

likewise for a 1-ring interpolatory quadrilateral scheme. In Chapter 5 we

will cover both triangular and quadrilateral approximating schemes.

We then proceed to a formulation of the initial shape parameters (Chap-

ter 6) using discrete normals. Chapter 7 covers normals and curvature. In

particular, it deals with achieving a specific normal at a surface point. In

Chapter 8 we look at two applications of surface normals in the field of

computer graphics. One is their use in surface lighting and the other is

their use in texturizing a surface (bump maps). Conclusions are provided

in Chapter 9. Several appendices follow.

7



2.1. NOTATIONS AND DEFINITIONS 8

CHAPTER 2

Preliminaries and Notations

In this chapter we will do the following:

• introduce notation used throughout the paper

• provide needed definitions

• review the notion of a refinable vector-valued function

• discuss sum rule order and provide assumptions used throughout

• outline a method to determine Sobolev smoothness

2.1. Notations and Definitions

We will now introduce some notations used in this paper. Let Z+

denote the set of all nonnegative integers. And so let Zd
+ denote the set of

all d-tuples of nonnegative integers. The following multi-index notations

will be adopted:

ωβ := ωβ1
1 . . .ωβd

d , β! := β1! . . .βd!, |β| := β1 + . . .+ βd

for ω = (ω1, . . . ,ωd)
t ∈ Rd, β = (β1, . . . , βd)

t ∈ Zd
+.

If α, β ∈ Zd
+ satisfy β−α ∈ Zd

+ then we will say that α ≤ β and denote
(
β

α

)
:=

β!

α! (β − α)!

For β = (β1, . . . , βd)
t ∈ Zd

+ let

Dβ :=
∂β1

∂xβ1
1

. . .
∂βd

∂xβd
d

where ∂j = ∂
∂xj

is the partial derivative operator with respect to the jth

coordinate for 1 ≤ j ≤ d.

For ease of notation later on define

(2.1) Dj :=
∂

∂xj
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Hence

(2.2) Dβ := Dβ1
1 ...Dβd

d

For y := (y1, y2)
T ∈ R2\ {0} denote the directional derivative in the

direction of y as

Dy := y1D1 + y2D2

and the second order directional derivative in the direction of y as

D2
y := y21D

2
1 + 2y1y2D1D2 + y22D

2
2

Note that

D(1,0)T = D1 = D(1,0)T

D(0,1)T = D2 = D(0,1)T

With that said, there will be instances in which the first and second

partial derivative of a function F will be represented as Fs, Ft, Fss, Fst, etc

where s and t represent the variables of the first and second coordinates

respectively.

For a finite collection X = {x1,x2, ...,xn} of vectors in Rs, define the

span of X

〈X〉 := γ1x1 + γ2x2 + ... + γnxn where γ1, γ2, ..., γn ∈ R

The d × d matrix A is isotropic if ∃Λ (d × d invertible matrix) and

σ = (σ1, ..., σd) such that

(2.3) ΛAΛ−1 = diag (σ1, ..., σd)

where

|σ1| = |σ2| = ... |σd| := spectral radius of A

If A is anm×n matrix and B is a p×q matrix then we say the Kronecker

product A⊗ B is the mp× nq block matrix

A⊗B :=




a11B · · · a1nB
...

. . .
...

am1B · · · amnB





Also let πs
d denote the space of all polynomials in Rs of total degree d.

9



2.1. NOTATIONS AND DEFINITIONS

For 1 ≤ p ≤ ∞ we denote by Lp

(
Rd
)
the Banach space of all (complex-

valued) measurable functions f on Rd such that ‖f‖p < ∞ where

‖f‖p :=
(∫

Rd

|f (x)|p dx
)1/p

For an r×1 vector-valued function f = (f1. . . . , fr)
t, we say that f is in

some space on Rd if every component fi of f is in that space. In particular,

such an f ∈ L2

(
Rd
)
means that each component fi ∈ L2

(
Rd
)
.

Also, for such a vector-valued function f , its Fourier transform f̂ :=(
f̂1. . . . , f̂r

)t

where

f̂ (ξ) :=

∫

Rd

f (x) e−ix·ξdx, ξ ∈ R
d

and where x · ξ denotes the inner product of two vectors x and ξ in Rd.

For v ≥ 0, denote by W v
2 (Rs) the Sobolev space [Jia99] of all functions

f ∈ L2 (Rs) such that
∫

Rs

∣∣∣f̂ (ξ)
∣∣∣
2
(1 + |ξ|v) dξ < ∞

The smoothness of an r × 1 vector function Ψ = (ψ1,ψ2, ...,ψr)
T where

ψi ∈ L2 (Rs) is measured by the critical exponent λ (Ψ) defined as [JO03] :

(2.4) λ (Ψ) := sup
{
λ : ψj ∈ W λ

2 (Rs) ∀ j = 1, ..., r
}

The Sobolev embedding theorem [Mel02] states that for n ∈ N0 and

v > s
2 + n then W v

2 (Rs) ⊂ Cn (Rs).

Since here s = 2 the Sobolev embedding theorem reverts to

for n ∈ N0 and v > 1 + n W v
2

(
R

2
)
⊂ Cn

(
R

2
)

If A is a matrix of size n×n then (where In is the n×n identity matrix)

the polynomial

det (A− λIn)

is a polynomial of degree n. The roots of this polynomial are the eigenvalues

of A. If λj is a root then the algebraic multiplicity of λj is the multiplicity

of the root in the polynomial. Call this number k. If p denotes the

number of linearly independent eigenvectors associated with λj then p is

10



2.1. NOTATIONS AND DEFINITIONS

the geometric multiplicity of λj. It is known that p ≤ k. But if p < k

then we say that the eigenvalue λj is defective.

In such cases, A is called a defective matrix. It has fewer linearly

independent eigenvectors than eigenvalues (counting algebraic multiplicity).

Generalized eigenvectors are needed to form a complete basis for A. A

generalized eigenvector is a nonzero vector v, which is associated with λj

having algebraic multiplicity k ≥ 1, satisfying

(A− λjIn)
k v = 0

The following definitions are from [O’N06] :

(1) We say that a surface in R3 is a subset M of R3 such that for

each point p of M there exists a proper patch in M whose image

contains a neighborhood of p in M .

(2) We say that a proper patch is a mapping x :D → R3 that is one-

to-one and regular (where D is an open set of R2) and for which

the inverse function x−1 : x(D) → D is continuous.

(3) We say that a mapping x is regular if xu and xv give a basis for

the tangent plane of M at each point of x (D).

(4) If p is a point of M then for each tangent vector v to M at p then

we say that the shape operator of M is defined asSp (v) := −∇vU

where U is a unit normal vector field on a neighborhood of p in M

and ∇v is the directional derivative.

(5) For any unit vector u tangent to the surface M at point p we define

the normal curvature of M in the u direction as: k (u) := S (u) ·u
(6) The Gaussian curvature at point p on M is defined as K :=

k1k2K := k1k2 where k1 and k2 are the maximum and minimum

values of k (u) at p.

(7) The quadratic approximation ofM near p is: M´ := 1
2 (k1u

2 + k2v2) .

We have non-degenerate curvature continuity if we have such a quadratic

approximation at every point p. [Loo01]

11



2.2. MATRIX-VALUED SUBDIVISION SCHEMES

2.2. Matrix-valued Subdivision Schemes

Reformulating (1.1 | p.4) for a vector function, an r x 1 vector of func-

tions Φ is called refinable if there exists an s x s dilation matrix A (meaning

that the eigenvalues have modulus > 1) and a (finite) subdivision “mask”

Pk consisting of r x r matrices such that

(2.5) Φ(x) =
∑

k∈Zs

PkΦ(Ax− k), x ∈ R
s

Note that we will only be working with s = 2, i.e. Φ(x) is defined on

R2. Also the dilation matrix A will be restricted to 2I2. Use of 2I2 means

that we will be using the most commonly used topological rule that we

previously noted is called the “1-to-4 split” (dyadic) rule. Regular vertices

in triangular schemes are vertices with valence 6 (6 adjacent vertices) and

regular vertices in quad schemes are vertices with valence 4. Otherwise,

the vertices are labeled “extraordinary” vertices. Both triangular and

quadrilateral schemes will be examined.

For the sake of simplicity we will also restrict r = 2 in (2.5 |p.12). Thus

Φ = (φ1, φ2)
T where φ1, φ2 map from R2 to R. Also the support of the

finite mask Pk is such that Pk = 0, k /∈ [−N,N ]2 for some positive integer

N .

Our initial control net is a collection of vertices {v0k}kin R3 that belong

to what is called a “simplicial complex” [Zor00a]. A simplicial complex is

a set of vertices, edges and triangles (or quadrilaterals) in R3 such that for

any triangle (quadrilateral) all its sides are in the complex and for any edge

its endpoints are vertices in the complex. No isolated vertices or edges are

assumed, that is, every vertex is an endpoint of an edge and every edge is

a side of a triangle (quadrilateral). Each vertex in the initial control net is

associated with a 3× r (here r = 2) vector v0
k where

(2.6) v0
k :=

[
v0k, s

0
k

]

The collection of these {v0
k}k are called our ”initial control vector net.”

We can obtain subsequent generations of vector nets using the following

12



2.2. MATRIX-VALUED SUBDIVISION SCHEMES

algorithm called the “local averaging rule.”[CJ06] Under certain assump-

tions, as we shall shortly see, after m iterations of (2.7 |p.13) the first com-

ponents vmk of these subsequent vector nets provide an accurate discrete

approximation of a target (subdivision) surface (2.9 |p.13) . Thus one can

effectively render a surface in three-dimensional space (3-D).

The local averaging rule is:

(2.7) vm+1
k =

∑

j∈Z2

vm
j Pk−2j, m = 0, 1, . . . ,

where

(2.8) vm
k := [vmk , s

m
k ]

It is shown in [CJ06] that the generated subdivision surface is precisely

given by

(2.9) F (x) =
∑

k

v0kφ1 (x− k) +
∑

k

s0kφ2 (x− k)

The natural question to be asked is what is the purpose of the second

component of (2.6 |p.12) or (2.8 |p.13)? This second component is one

of the valuable features that matrix-valued subdivision schemes allow. It

is called the “shape-control parameter” and it functions just as its name

implies. This parameter allows the designer to control or change the geo-

metric shape of the surface. In Chapter 6, a method will be proposed for

defining this parameter that is based on the discrete normals of the initial

control polyhedron.

The local averaging rule (2.7 |p.13) gives rise to templates that visually

show how new vertices are “made” and how “old” vertices are updated.

Figure 2.1 shows the templates for two matrix-valued masks for 1−ring

triangular [CJ08] and quadrilateral schemes [CJ05].

For the triangular scheme we have:

P0,0 = [pij ]1≤i,j≤2 D = [dij ]1≤i,j≤2(2.10)

B = [bij ]1≤i,j≤2 C = [cij ]1≤i,j≤2

13



2.2. MATRIX-VALUED SUBDIVISION SCHEMES

where

p11 = 1, p21 = 0, d11 = 0, d21 = 0 in the interpolatory case

and

B = P1,0 = P−1,0 = P0,1 = P0,−1 = P1,1 = P−1,−1

C = P2,1 = P−2,−1 = P1,2 = P−1,−2 = P1,−1 = P−1,1

D = P2,0 = P−2,0 = P0,2 = P0,−2 = P2,2 = P−2,−2(2.11)

for Pk from (2.7 |p.13)

For the quadrilateral scheme we have:

R0,0 = [rij]1≤i,j≤2 L = [lij ]1≤i,j≤2 N = [nij ]1≤i,j≤2(2.12)

K = [ki j ]1≤i,j≤2 J = [ji k]1≤i,j≤2 M = [mi j]1≤i,j≤2

where

r11 = 1, r21 = 0, l11 = 0, l21 = 0, n11 = 0, n21 = 0 in the interpolatory case

and

L = P2,0 = P−2,0 = P0,2 = P0,−2

N = P2,2 = P−2,2 = P2,−2 = P−2,−2

K = P1,1 = P1,−1 = P−1,1 = P−1,−1

J = P1,0 = P0,1 = P−1,0 = P0,−1

M = P2,1 = P1,2 = P−1,−2 = P−2,−1 = P2,−1 = P−2,1 = P−1,2 = P1,−2

(2.13)

for Pk from (2.7 |p.13)

14
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Figure 2.1. Top figure: regular template (triangular). Bot-
tom figure: regular template (quadrilateral). These templates
are 1-ring templates, meaning that the vertices involved in ei-
ther forming new vertices or updating old vertices come from
the immediate adjacent ring of vertices around a central ver-
tex.

.

2.3. Sum Rule Order and Other Assumptions

We will now define [as given in [CJ03a] ] what it means for a subdivision

mask Pk to satisfy the sum rule of order m.

If the dilation matrix A is 2 I2 [note: this will be the case used through-

out] it is said that Pk satisfies the sum rule of order m if there exist 1 × 2

constant vectors lα0 with l00 1= 0, such that

(2.14)
∑

β≤α

(−1)|β|
(
α

β

)
lα−β
0 Jβ,γ = 2−αlα0

15



2.3. SUM RULE ORDER AND OTHER ASSUMPTIONS

for all γ ∈
{
(0, 0)T , (1, 0)T , (0, 1)T , (1, 1)T

}
, |α| < m, with

Jβ,γ :=
∑

k

(
k+ 2−1γ

)β
P2k+γ

The sum rule of order m is an “attractive” property since it implies

(with the additional assumption that l00 Φ̂ (0) = 1) that linear combinations

of integer translates of Φ will reproduce polynomials of total degree less

than m:

(2.15) xα =
∑

k∈Z2

{
∑

β≤α

(
α

β

)
kα−βlβ0

}

Φ (x− k) , |α| < m

where lβ0 are the same as in (2.14). Note that (2.15) is called accuracy of

order m.

It can be shown that (2.14 |p.15) implies the following set of equations:

∑

β≤α

(
α

β

)
(2, 2)β−α lβ0

∑

k

P2k (2k)
α−β = (2, 2)−α lα0(2.16)

∑

β≤α

(
α

β

)
(2, 2)β−α lβ0

∑

k

P2k−(10)

(
2k−

(
1

0

))α−β

= (2, 2)−α lα0

∑

β≤α

(
α

β

)
(2, 2)β−α lβ0

∑

k

P2k−(01)

(
2k−

(
0

1

))α−β

= (2, 2)−α lα0

∑

β≤α

(
α

β

)
(2, 2)β−α lβ0

∑

k

P2k−(11)

(
2k−

(
1

1

))α−β

= (2, 2)−α lα0

where |α| < m.

We will assume that the mask Pk satisfies (at least) sum rule of order

3. As we shall see shortly, this assumption will provide us with suitable

left eigenvectors for eigenvalues 1
2 and 1

4 .

As indicated in section 1.4, Φ is defined on Rs where s = 2 and the

dilation matrix A in (2.5) is restricted to 2I2. Hence Φ = (φ1 φ2)
T and

the topological rule will be the commonly used one called the “1-to-4 split”

(dyadic) rule.
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2.3. SUM RULE ORDER AND OTHER ASSUMPTIONS

The support of the mask Pk is assumed to be finite such that

(2.17) Pk = 0,k /∈ [−N,N ]2

for some positive integer N .

Please note that only 1-ring templates using either triangular or quadri-

lateral schemes will be examined. From the 1-ring assumption it can be

shown directly that N = 2 in (2.17). Such smaller templates do not depend

on mesh orientation and avoid the unnecessary surface oscillation artifacts

that larger templates have [CJ05]. As discussed in [CJ05], the schemes

will have four-directional symmetry for quadrilateral scheme templates and

six-directional symmetry for triangular scheme templates. Such symmetry

is a very desirable quality since on surfaces it would be very difficult to keep

track of mesh orientation.

Looking at the Fourier transform of both sides of (2.5 |p.12) the following
is obtained:

(2.18) Φ̂ := P (·/2) Φ̂ (·/2)

where

(2.19) P (w) :=
1

| detA|
∑

k∈Z2

Pk e
−ikω

is called the two-scale symbol of the mask {Pk}. Note that | detA| = 4.

Now one can see that if Φ satisfies (2.5 |p.12) then any scalar multiple

of Φ also satisfies (2.5).

So from [Jia99] Φ is said to be a normalized solution to (2.5) if

(2.20) Φ̂ (0) = (1, c)T for some scalar c

Note that from (2.18 |p.17)

Φ̂(0) = P(0) Φ̂(0)

and so Φ̂(0) is a right eigenvector of P(0) for the eigenvalue 1.

Now a matrix A is said to satisfy Condition E [She98] if

• the absolute values of its eigenvalues are less than or equal to 1

• 1 is the only eigenvalue on the unit circle

17
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• 1 is simple [geometric multiplicity = algebraic multiplicity =1].

We will assume that the symbol P (2.19) evaluated at 0 [P (0)] satisfies

Condition E.

Since our mask Pk satisfies sum rule of order 1 (i.e. the basic sum rule),

the following is obtained from (2.16):

(2.21) l00
∑

k

P2k−ηj = l00

where ηj ∈ Z2/2Z2 for j = 0, 1, 2, 3.

Hence

l00
∑

k

Pk = 4 l00

or from (2.19)

l00P (0) = l00

We will assume that

(2.22) l00 = (1, 0)

i.e. that the left eigenvector of P (0) for 1 equals (1, 0).

From (2.22 |p.18) and from the normalization in (2.20 |p.17), we will

obtain the following normalization of these left and right eigenvectors of

P (0) . Note that this normalization is a frequent assumption in proofs in

[JJ02] and [CJR02] among others.

l00 Φ̂(0) = 1

Now if l00 1= (1, 0) we will do the following:

Note that since P(0) satisfies Condition E (by assumption) there exists

a nonsingular matrix U such that

UP (0)U−1 =

(
1 0

0 d

)
with |d| < 1

If we define P1 := UPU−1,then Φ1 := U Φ satisfies the refinement

equation

Φ̂1 = P1 (·/2) Φ̂1 (·/2)

where Φ is a solution of (2.18 |p.17). [She98]
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2.3. SUM RULE ORDER AND OTHER ASSUMPTIONS

Note that the convergence and smoothness of Φ1 are the same as Φ since

its components are just linear combinations of Φ.

So if l00 1= (1, 0) we will use Φ1 instead of Φ and P1 instead of P. With

these modifications we will obtain l00 = (1, 0).

Notice from (2.15 |p.16) that

l00
∑

k∈Z2

Φ (x− k) = 1

which in other words means that Φ satisfies the condition of “generalized

partition of unity.” [CJ06]

Define

TP := [B2k−j]k, j∈[−N,N ]2

where Bj :=
1
4

∑
k, j

Pk−j ⊗ P k and Pk is our subdivision mask.

From [CJ06] the sequence of piecewise linear surfaces with vertices vmj
(2.8 |p.13) converges in the L2-norm to the limit surface F (x) (2.9 |p.13)

• if Tp satisfies Condition E and

• if (2.21 |p.18) is satisfied.
We will assume that TP satisfies Condition E.

Hence only the first components of (2.8 |p.13) will be used as the vertices

of the triangular or (nonplanar) quadrilateral meshes for the mth iteration.

And these (finer and finer) meshes will converge to the target limit surface

F (x) in (2.9).

From the assumption of sum rule of order 3, one can show that
∑

k∈Z2

lαkP2k−j = (2, 2)−α lαj for any j ∈ Z
2 and |α| < 3

where lα0 is the same as in (2.14) and (2.15) and where

(2.23) lαj :=
∑

0≤β≤α

(
α

β

)
jα−β lβ0 for j ∈ Z

2 and |α| < 3

Thus

(2.24) lαL = (2, 2)−α lα
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2.3. SUM RULE ORDER AND OTHER ASSUMPTIONS

where |α| < 3 and L is the bi-infinite form of the regular subdivision matrix:

L := [P2k−j]k,j∈Z2

and where

(2.25) lα :=
[
. . . , lαj , . . .

]
j∈Z2

So we have left eigenvectors for L corresponding to the eigenvalues

(2, 2)−α for |α| < 3.

Since the support of Pk is k ∈ [−2, 2]2 there are up to 25 nonzero 2 x 2

matrices in the mask. However, a 1-ring triangular scheme will only need

to use 19 of these for its finite subdivision matrix (2.11). The quadrilateral

regular case will need all 25 for its finite subdivision matrix (2.13). Thus

the finite (regular) triangular subdivision matrix will be a 38 x 38 matrix

and the finite (regular) quadrilateral subdivision matrix will be a 50 x 50

matrix.

Denoting the required k ∈ [−2, 2]2 by Q, the finite subdivision matrix S

is

(2.26) S := [P2k−j]k,j∈Q

From (2.24) one sees that this subdivision matrix has eigenvalues 1, 1
2 ,

1
4

where it can be easily demonstrated that their geometric multiplicity is at

least 1, 2,and 3 respectively. The eigenvalue 1 must be simple else the

scheme will not converge [RP06]. The subdominant eigenvalue 1
2 is as-

sumed to have geometric and algebraic multiplicity 2 else the scheme will

not be practically useful [Zor00a]. Finally, the subsubdominant eigenvalue
1
4 is assumed to have geometric and algebraic multiplicity 3 else the cur-

vature continuity may be degenerate [Loo01]. The remaining eigenvalues

will be assumed to have modulus strictly less than 1
4 . If any of the re-

maining eigenvalues are defective then generalized eigenvectors will be used

when it becomes necessary to construct a basis for R38 or R50 [triangular

and quadrilateral cases respectively].
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For the extraordinary case, we will assume that 1 is a simple eigenvalue

of the (irregular or extraordinary) subdivision matrix and that its subdom-

inant eigenvalue λ (where λ < 1) is nondefective with multiplicity 2. The

modulus of the remaining eigenvalues is strictly less than λ. We will later

show how this matrix is similar to a block diagonal matrix. We will assume

that the subdominant eigenvalue λ is an eigenvalue of the second and last

blocks of that block diagonal matrix. Cases in which this assumption is

not met are not useful in practice. [PR98],[Zor00a]

Another assumption is that the limit surface F is C2 except on extra-

ordinary vertices where it is C1. This is a common assumption for target

surfaces of subdivision schemes.

The following question naturally arises: given a certain mask, how can

the smoothness of this mask be determined? This question is answered by

Jia and Jiang in [JJ03]. See the section that follows.

2.4. Sobolev Smoothness Determination

In [JJ03], Jia and Jiang develop a theorem for determining the lower

bound on the Sobolev smoothness of refinable function Φ ∈ L2

(
Rd
)r×1

.

Here we will paraphrase the theorem.

Let Φ ∈ L2

(
Rd
)r×1

be a normalized solution of Φ (x) =
∑

α∈Zd PαΦ (Ax− α)

x ∈ R
d with mask P of r×r real-valued matrices and isotropic d×d dilation

matrix A. Assume that P has sum rule of order k. Define

Sk := spec (TP |HΩ) \Sk

where

Sk :=
{
σ−αλj, σ−αλj , σ

−β : α, β ∈ Z
d, |α| < k, |β| < 2k, 2 ≤ j ≤ r

}

where σ is from (2.3) and λj are the eigenvalues ofP (0) whereP (w) := 1
m

∑
α∈Zd Pα e−iα·ω

[By assumption, λ1 = 1 and |λj | < 1 for j = 2, ..., r.] Also recall that

m := |detA|.
Now define Ω :=

{∑k=∞
k=1 A−kxk : xk ∈ [−N,N ]d

}
where supp(P ) ⊂

[−N,N ]d . Define [Ω] := Ω ∩ Zd.
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Jia and Jiang define HΩ (a subspace of C0

(
Td

)r×r
) as follows:

HΩ :=




h (ω) ∈ C0

(
Td

)r×r
: h (ω) =

∑

α∈[Ω]

hα e
−iα·ω






where C0

(
Td

)r×r
denotes the space of all r × r matrix functions with

trigonometric polynomial entries.

And for a given refinement equation with symbol P (ω) ∈ C0

(
Td

)r×r

they define the transition operator TP on C0

(
Td

)r×r
by

TPX (ω) :=
m−1∑

j=0

P
(
A−T (ω + 2πηj)

)
X
(
A−T (ω + 2πηj)

)
P
(
A−T (ω + 2πηj)

)∗

where the complex conjugate of P (ω) is denoted by P (ω)∗ = P (−ω)T

and where {ηj} is the complete set of representations of the m cosets of

Zd/MTZd.

Now if we define

ρ0 := max {|λ| : λ ∈ Sk}

then we have the following lower bound for λ (Φ) :

λ (Φ) ≥ −
d

2
logm ρ0

where λ (Φ) is from (2.4 |p.10).
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CHAPTER 3

Derivative Formulas for Interpolating Triangular

Subdivision Schemes

3.1. Introduction

Here we are examining 1−ring triangular interpolating schemes. Their

template is given in the upper part of Fig. 2.1 and the elements of the

mask are given by 2.10. In an interpolatory scheme these matrices have the

following structure: [CJ08]

(3.1)

P0,0 =





1 ∗ · · · ∗
0 ∗ · · · ∗
...

... · · ·
...

0 ∗ · · · ∗




, P2j =




0 ∗ · · · ∗
...

... · · · ...

0 ∗ · · · ∗



 , j ∈ Z
2\ {(0, 0)}

Note that

(3.2) vm2mk0
= v0k0

follows from (2.7 |p.13) and the above matrix structures.

These regular vertices lie on a 3-directional mesh in a “so-called” para-

metric domain. This domain corresponds to the integer subscripts of the

vertices and will be associated with the parameters of the limit surface (as

we will see later). See Fig. 3.1 on p. 24.

In the following we will be using the assumptions presented in Chapter

2 to develop the first and second partial derivatives of the regular vertices

of a triangular interpolating scheme We will derive from our assumptions

as much information as possible about the templates {Pk}k and the 1 × 2

constant vectors lα0 introduced in (2.14 |p.15).



3.1. INTRODUCTION

Figure 3.1. Three directional mesh for triangular scheme

Through direct calculation using the Sum rules we determined the fol-

lowing:

l(1,0)0 = l(0,1)0 = [0, 0](3.3)

l(2,0)0 = l(0,2)0 = [0, h]

l(1,1)0 =

[
0,

h

2

]
where h 1= 0

As indicated in Chapter 2, l(0,0)0 = [1, 0].

Also through direct calculation using the Sum rules we determined:

P0,0 =

(
1 h

(
−3

8 + 9t3 +
3
2t4

)

0 t4

)

D =

(
0 h

(
1
16 −

3
2 t3 −

1
4t4

)

0 t3

)

(3.4)

B =

(
3
8 0

− 1
8h − t1

1
8 − t2

)
C =

(
1
8 0

t1 t2

)

where tj for j = 1, ..., 4 are “free” variables and h is from (3.3 |p.24). Using

the techniques in ([JO03]), the values of these tj will determine the Sobolev
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smoothness of the refinable function Φ (2.5 |p.12). See the prior section

2.4 on p. 21 for more information.

3.2. Development of general derivative formulas

We will use the same technique as found in [SDL99] to develop a rep-

resentation of the first partial derivatives in terms of the initial control net.

In [SDL99] the authors represented a control net around any given regular

vertex (call it vm2mk0
) as a linear combination of right eigenvectors of the

subdivision matrix. Then it was determined that in this linear combina-

tion the two first partial derivatives at vm2mk0
are equal to two of the 1 × 3

“coefficients”, namely the coefficients for the right eigenvectors (call them

r1 and r2) corresponding to the multiple eigenvalue 1
2 . Finally by multi-

plying the initial control net by two normalized left eigenvectors of 1
2 (call

them l1 and l2) such that lirj = δ (i− j) where i, j = 1, 2 they obtained a

representation of the two first partial derivatives as linear combinations of

the initial control net.

Here we will use this technique to develop representations of the first

and second partial derivatives of the limiting surface where the initial con-

trol net is regular and then first partial derivatives corresponding to an

extraordinary vertex.

3.3. First Partial Derivatives(Regular)

Here, as in [SDL99], we will also start at any given regular vertex vm2mk0

for some k0 ∈ Z2 (after m iterations of our subdivision scheme). But in

contrast we will be initially representing its surrounding control net as a

linear combination of left eigenvectors.

In a regular interpolatory triangular scheme, the control vector net sur-

rounding a vertex (call it vm2mk0
) is a 3 × 38 vector consisting of 19 3 × 1

initial control vertices and 19 3×1 initial shape control vertices. See Figure

3.2 on p. 27.

Denote each vertex surrounding vm
2mk0

after m subdivisions by

(3.5) um
k0, j := vm

2mk0+j
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where k0 ∈ Z2 and j = (Q1, s, Q2 ,s)
T for s = 1, . . . , 19 and where Q is defined

as the following 2× 19 matrix:

(3.6)

Q :=

(
0 1 1 0 −1 −1 0 2 2 0 −2 −2 0 2 1 −1 −2 −1 1

0 0 1 1 0 −1 −1 0 2 2 0 −2 −2 1 2 1 −1 −2 −1

)

The columns of Q reflect the ordering in Figure 3.2.

Define the following 3 x 38 matrix

(3.7) Um
k0

:=
{
um
k0, j : j = (Q1 s, Q2 s)

T as above
}

Hence

Um+1
k0

= Um
k0
S

where S is given in (2.26 |p.20).
Additionally,

(3.8) Um
k0

= U0
k0
Sm

In other words, the mth control net surrounding vm
2mk0

is obtained by

applying the subdivision matrix to our initial control net m times.

The initial control vector net (U0
k0
) around any regular v0

k0
can be

represented as a linear combination of 1× 38 (generalized) left eigenvectors

of our 38× 38 subdivision matrix S (2.26 |p.20).
By letting {Lj}0≤j≤37 be a set of 38 (possibly generalized) linearly in-

dependent left eigenvectors of S then U0
k0

can be written as

(3.9) U0
k0

= α(0)
0 L0+α(0)

1 L1+α(0)
2 L2+α(0)

3 L3+α(0)
4 L4+α(0)

5 L5+
37∑
α(0)
j

j=6

Lj

where α(0)
j ∈ R3 j = 0, . . . , 37

By assumption (see Chapter 2) 1 is the dominant eigenvalue of S with

multiplicity 1, 1
2 is the subdominant eigenvalue of S with multiplicity 2

and 1
4 is the subsubdominant eigenvalue with multiplicity 3. All other

eigenvalues have modulus less than 1
4 .

In (3.9 |p.26) let L0 be the left eigenvector of 1, L1 and L2 be the two

left eigenvectors of 1
2 and L3,L4 and L5 be the three left eigenvectors of
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0
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Figure 3.2. Ordering around central vertex. The intersection
of grid lines are the parametric location of the vertices (the
subscripts). The single numbers represent the order in which
the vertices are considered. The vertex subscripts reflect the
parametric domain.

1
4 . For j ≥ 6, Lj is a (generalized) left eigenvalue corresponding to an

eigenvalue with modulus strictly less than 1
4 .

From (3.8 |p.26) we then have

Um
k0

= α(0)
0 L0+2−mα(0)

1 L1+2−mα(0)
2 L2+4−mα(0)

3 L3+4−mα(0)
4 L4+4−mα(0)

5 L5+
37∑

j=6

λm
j α

(0)
j Lj

where |λj | < 1
4 for j = 6, ..., 37.
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Thus

lim
m→∞

Um
k0

= α(0)
0 L0

lim
m→∞

2m
(
Um

k0
− α(0)

0 L0

)
= α(0)

1 L1 + α(0)
2 L2

Now since

• the first component of Um
k0

is vm2mk0

• vm2mk0
= v0k0

(see 3.2 |p.23) and
• the first component of L0 is 1

then we have

(3.10) α(0)
0 = v0k0

= vm2mk0

Hence we have the following:

(3.11) lim
m→∞

2m
(
Um

k0
−
[
v0k0,, 0, v

0
k0,, 0, v

0
k0,, 0..., v

0
k0,, 0

])
=α(0)

1 L1 + α(0)
2 L2

Now from (2.23 |p.19),(2.25 |p.20), (3.3 |p.24) and (3.6 |p.26) we can

obtain the following representations of Lj for j = 0, 1, ..., 5.

L0 = [1, 0, 1, 0, 1, 0, 1, 0, ..., 1, 0, 1, 0](3.12)

L1 = [0, 0, 1, 0, 1, 0, 0, 0, ...,−1, 0, 1, 0]

L2 = [0, 0, 0, 0, 1, 0, 1, 0, ...,−2, 0,−1, 0]

L3 = [0, h, 1, h, 1, h, 0, h, ..., 1, h, 1, h]

L4 =

[
0,

h

2
, 0,

h

2
, 1,

h

2
, 0,

h

2
, ..., 2,

h

2
,−1,

h

2

]

L5 = [0, h, 0, h, 1, h, 1, h, ..., 4, h, 1, h]

So just looking at the odd components of the left and right sides of

(3.11 |p.28) we have

lim
m→∞

2m
([

vm2mk0
, v02mk0+(1,0)T , v

0
2mk0+(1,1)T , ..., v

0
2mk0+(1,−1)T

]
−
[
v0k0

, v0k0
, v0k0

, ..., v0k0

])
=

α(0)
1 L̃1 + α(0)

2 L̃2(3.13)

28



3.3. FIRST PARTIAL DERIVATIVES(REGULAR)

where

L̃1 = [0, 1, 1, 0,−1,−1, 0, 2, 2, 0,−2,−2, 0, 2, 1,−1,−2,−1, 1]

L̃2 = [0, 0, 1, 1, 0,−1,−1, 0, 2, 2, 0,−2,−2, 1, 2, 1,−1,−2,−1]

Our goal is to connect the above formula with the 2 partial derivative

of our limit surface F . First we need to locally parameterize F in the (s, t)

plane as in [SDL99]. The (s, t) plane is drawn in Figure 3.2.

Define as follows a local parameterization of F in a neighborhood of

k0 =
(
k(1)
0 , k(2)

0

)T
∈ Z2

(3.14) F

(
k(1)
0 +

l(1)

2m
, k(2)

0 +
l(2)

2m

)
:= vm2mk0+l

where m ∈ Z+, vm as in (2.8 |p.13), and l =
(
l(1), l(2)

)T
= (Q1, j , Q2, j)

T
1≤j≤19

for Q defined in (3.6 |p.26).
Since F is assumed to be C2 at regular vertices then

lim
m→∞

2m






F
(
k(1)
0 , k(2)

0

)
− F

(
k(1)
0 , k(2)

0

)
, F

(
k(1)
0 + 2−m · 1, k(2)

0

)
− F

(
k(1)
0 , k(2)

0

)
,

F
(
k(1)
0 + 2−m · 1, k(2)

0 + 2−m · 1
)
− F

(
k(1)
0 , k(2)

0

)
,

F
(
k(1)
0 , k(2)

0 + 2−m · 1
)
− F

(
k(1)
0 , k(2)

0

)
, ...,

F
(
k(1)
0 + 2−m · (−1) , k(2)

0 + 2−m · (−2)
)
− F

(
k(1)
0 , k(2)

0

)
,

F
(
k(1)
0 + 2−m · 1, k(2)

0 + 2−m · (−1)
)
− F

(
k(1)
0 , k(2)

0

)






=

Fs

(
k(1)
0 , k(2)

0

)
L̃1 + Ft

(
k(1)
0 , k(2)

0

)
L̃2(3.15)

So from the local parametrization (3.14 |p.29) we have

lim
m→∞

2m
([

vm2mk0
, vm2mk0+(1,0)T , v

m
2mk0+(1,1)T , ..., v

m
2mk0+(1,−1)T

]
−
[
v0k0

, v0k0
, v0k0

, ..., v0k0

])
=

Fs

(
k(1)
0 , k(2)

0

)
L̃1 + Ft

(
k(1)
0 , k(2)

0

)
L̃2

By the linear independence of L̃1 and L̃2 we have

Fs

(
k(1)
0 , k(2)

0

)
= α(0)

1(3.16)

Ft

(
k(1)
0 , k(2)

0

)
= α(0)

2
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Proposition 3.1. Suppose that an interpolatory triangular scheme is con-

vergent with limiting surface F in C1 where for k0 =
[
k(1)
0 , k(2)

0

]T
∈ Z2 the

initial control vector surrounding vk0 is given as in Figure 3.2. Also as-

sume its mask {Pk}k has Sum Rule of at least order 3. Let α(0)
1 ,α(0)

2 ∈ R3

be the column vectors in (3.9 |p.26). Then

Fs

(
k(1)
0 , k(2)

0

)
= α(0)

1 , Ft

(
k(1)
0 , k(2)

0

)
= α(0)

2

Similarly we can obtain the derivative of F at a point
(
k(1)
0 + i(1)

2n , k
(2)
0 + i(2)

2n

)

for k0, i ∈ Z2 and n ∈ Z+.

In this case denote each vertex surrounding vn
2nk0+i after m additional

subdivisions by

un+m
k0,i, j

:= vn+m
2n+mk0+2mi+j

for m 1= 0

un
k0, i,j := vn

2nk0+i+j for m = 0

where j =(Q1, s, Q2, s)
T
1≤s≤19 for Q defined in (3.6 |p.26).

Let

(3.17) Un+m
k0,i

:=
{
un+m
k0,i, j

: j = (Q1, s, Q2, s)
T
1≤s≤19 as above

}

Similar to what was done earlier, we can represent Un+0
k0,i

as

(3.18)

Un+0
k0,i

= α(n)
0 L0 + α(n)

1 L1 + α(n)
2 L2 + α(n)

3 L3 + α(n)
4 L4 + α(n)

5 L5 +
37∑

j=7

α(n)
j Lj

where Lj are defined in (3.12 |p.28) and α(n)
j ∈ R3.

As in (3.10 |p.28) we have

α(n)
0 = vn2nk0+i = vn+m

2n+mk0+2mi

Likewise as in (3.11 |p.28) we obtain:

lim
m→∞

2m
(
Un+m

k0,i
−
[
vn2nk0+i,, 0, v

n
2nk0+i,, 0, v

n
2nk0+i,, 0..., v

n
2nk0+i,, 0

])
=α(n)

1 L1+α(n)
2 L2

This in turn leads to (like in (3.13 |p.28)):
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lim
m→∞

2m





[
vn+m
2n+mk0+2mi

, vn+m
2n+mk0+2mi+(1,0)T ,

vn+m
2n+mk0+2mi+(1,1)T , ..., v

n+m
2n+mk0+2mi+(1,−1)T

]

−
[
vn2nk0+i,, v

n
2nk0+i,, v

n
2nk0+i,, ..., v

n
2nk0+i,

]



=

α(n)
1 L̃1 + α(n)

2 L̃2

(3.19)

Our local parameterization of F in a neighborhood of
(
k(1)
0 + i(1)

2n , k
(2)
0 + i(2)

2n

)

is

(3.20)

F

(
k(1)
0 +

i(1)

2n
+ 2−(n+m)l(1), k(2)

0 +
i(2)

2n
+ 2−(n+m)l(2)

)
:= vm+n

2m+nk0+2mi+l

wherem,n ∈ Z+, vm+n as in (2.8 |p.13), and l =
(
l(1), l(2)

)T
= (Q1, j , Q2, j)

T
1≤j≤19

for Q defined in (3.6 |p.26).
As in (3.15)

lim
m→∞

2m






F
(
k(1)
0 + i(1)

2n , k
(2)
0 + i(2)

2n

)
− F

(
k(1)
0 + i(1)

2n , k
(2)
0 + i(2)

2n

)
,

F
(
k(1)
0 + i(1)

2n + 2−(n+m) · 1, k(2)
0 + i(2)

2n

)
− F

(
k(1)
0 + i(1)

2n , k
(2)
0 + i(2)

2n

)
,

F
(
k(1)
0 + i(1)

2n + 2−(n+m) · 1, k(2)
0 + i(2)

2n + 2−(n+m) · 1
)
− F

(
k(1)
0 + i(1)

2n , k
(2)
0 + i(2)

2n

)
,

F
(
k(1)
0 + i(1)

2n , k
(2)
0 + i(2)

2n + 2−(n+m) · 1
)
− F

(
k(1)
0 + i(1)

2n , k
(2)
0 + i(2)

2n

)
, ...,

F
(
k(1)
0 + i(1)

2n + 2−(m+n) · (−1) , k(2)
0 + i(2)

2n + 2−(n+m) · (−2)
)
−

F
(
k(1)
0 + i(1)

2n , k
(2)
0 + i(2)

2n

)
,

F
(
k(1)
0 + i(1)

2n + 2−(m+n) · (1) , k(2)
0 + i(2)

2n + 2−(n+m) · (−1)
)
−

F
(
k(1)
0 + i(1)

2n , k
(2)
0 + i(2)

2n

)






=
1

2n
Fs

(
k(1)
0 +

i(1)

2n
, k(2)

0 +
i(2)

2n

)
L̃1 +

1

2n
Ft

(
k(1)
0 +

i(1)

2n
, k(2)

0 +
i(2)

2n

)
L̃2

(3.21)

by the Chain Rule.

Using (3.20) we can equate the right sides of 3.19 and 3.21

α(n)
1 L̃1+α(n)

2 L̃2 =
1

2n
Fs

(
k(1)
0 +

i(1)

2n
, k(2)

0 +
i(2)

2n

)
L̃1+

1

2n
Ft

(
k(1)
0 +

i(1)

2n
, k(2)

0 +
i(2)

2n

)
L̃2
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So by linear independence

Fs

(
k(1)
0 +

i(1)

2n
, k(2)

0 +
i(2)

2n

)
= 2nα(n)

1(3.22)

Ft

(
k(1)
0 +

i(1)

2n
, k(2)

0 +
i(2)

2n

)
= 2nα(n)

2

Proposition 3.2. Suppose that an interpolatory triangular scheme is con-

vergent with limiting surface F in C1 where for k0 =
[
k(1)
0 , k(2)

0

]T
∈ Z2 the

nth control net surrounding v2nk0+i for i ∈ Z
2\ (0, 0)T (after n subdivisions

of the initial control vector net) is given as in (3.17 |p.30). Also assume

its mask {Pk}k has Sum Rule of at least order 3. Let α(n)
1 ,α(n)

2 ∈ R3 be the

column vectors in (3.18 |p.30). Then

Fs

(
k(1)
0 +

i(1)

2n
, k(2)

0 +
i(2)

2n

)
= 2nα(n)

1 , Ft

(
k(1)
0 +

i(1)

2n
, k(2)

0 +
i(2)

2n

)
= 2nα(n)

2

3.4. Second Partial Derivatives (Regular)

The procedure for obtaining the second partial derivatives of our limit

surface F is similar. Again we will first consider vertex vm2mk0

(
= v0k0

)
from

the initial control net after m subdivisions.

Define J∗ as the 38× 38 “picking” matrix that for odd j between 3 and

31 replaces the j and j + 1 columns with the j + 6 and j + 7 columns (and

vice versa) of any 3 × 38 matrix. To illustrate, Um
k0
J∗ replaces um

k0+(1,0)T

with um
k0+(−1,0)T

and vice versa. It also replaces um
k0+(1,1)T

with um
k0+(−1,−1)T

and vice versa.
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We then obtain the following set of equalities:

lim
m→∞

22m
[
Um

k0
+Um

k0
J∗ − 2

[
v0k0,, 0, v

0
k0,, 0, v

0
k0,, 0..., v

0
k0,, 0

]]
=

lim
m→∞

22m






[
α(0)
0 L0 + 2−mα(0)

1 L1 + 2−mα(0)
2 L2 + 4−mα(0)

3 L3...

+4−mα(0)
4 L4 + 4−mα(0)

5 L5 + o (2−2m)

]

+
[

α(0)
0 L0 + 2−mα(0)

1 L1 + 2−mα(0)
2 L2 + 4−mα(0)

3 L3...

+4−mα(0)
4 L4 + 4−mα(0)

5 L5 + o (2−2m)

]

J∗−

2
[
v0k0,, 0, v

0
k0,, 0, v

0
k0,, 0..., v

0
k0,, 0

]






=

lim
m→∞

22m






[
4−mα(0)

3 L3 + 4−mα(0)
4 L4 + 4−mα(0)

5 L5 + o (2−2m)
]
+

[
4−mα(0)

3 L3 + 4−mα(0)
4 L4 + 4−mα(0)

5 L5 + o (2−2m)
]
J∗




 =

lim
m→∞

22m
{
2 · 4−mα(0)

3 L3 + 2 · 4−mα(0)
4 L4 + 2 · 4−mα(0)

5 L5 + o
(
2−2m

)}
=

2α(0)
3 L3 + 2α(0)

4 L4 + 2α(0)
5 L5

(3.23)

Now we look at the second order directional derivatives in the direction

of each of the 18 surrounding vertices and derive:

lim
m→∞

22m






0, F
(
k(1)
0 + 2−m (1) , k(2)

0

)
+ F

(
k(1)
0 + 2−m (−1) , k(2)

0

)

−2F
(
k(1)
0 , k(2)

0

)
,

F
(
k(1)
0 + 2−m (1) , k(2)

0 + 2−m (1)
)
+ F

(
k(1)
0 + 2−m (−1) , k(2)

0 + 2−m (−1)
)

−2F
(
k(1)
0 , k(2)

0

)
, ...,

F
(
k(1)
0 + 2−m (−1) , k(2)

0 + 2−m (−2)
)
+ F

(
k(1)
0 + 2−m (1) , k(2)

0 + 2−m (2)
)

−2F
(
k(1)
0 , k(2)

0

)
,

F
(
k(1)
0 + 2−m (1) , k(2)

0 + 2−m (−1)
)
+ F

(
k(1)
0 + 2−m (−1) , k(2)

0 + 2−m (1)
)

−2F
(
k(1)
0 , k(2)

0

)






=

Fss

(
k(1)
0 , k(2)

0

)
L̃3 + 2Fst

(
k(1)
0 , k(2)

0

)
L̃4 + Ftt

(
k(1)
0 , k(2)

0

)
L̃5

(3.24)

33



3.4. SECOND PARTIAL DERIVATIVES (REGULAR)

where

L̃3 =
[
0, 12, 12, 0, (−1)2 , (−1)2 , ..., (−1)2 , 12

]

L̃4 =
[
0, 1 · 0, 1 · 1, 0 · 1, (−1) · 0, (−1)2 ...., (−1) (−2) , 1 (−1)

]

L̃5 =
[
0, 0, 12, 12, 0, (−1)2 , ..., (−2)2 , (−1)2

]

which are the odd components of L3, L4, and L5 respectively.

Using (3.14 |p.29) we then can equate the right sides of (3.23 |p.33) and
(3.24 |p.33) to obtain:

2α(0)
3 L̃3+2α(0)

4 L̃4+2α(0)
5 L̃5 = Fss

(
k(1)
0 , k(2)

0

)
L̃3+2Fst

(
k(1)
0 , k(2)

0

)
L̃4+Ftt

(
k(1)
0 , k(2)

0

)
L̃5

By linear independence we have:

Fss

(
k(1)
0 , k(2)

0

)
= 2α(0)

3(3.25)

Fst

(
k(1)
0 , k(2)

0

)
= α(0)

4

Ftt

(
k(1)
0 , k(2)

0

)
= 2α(0)

5

Proposition 3.3. Suppose that an interpolatory triangular scheme is con-

vergent with limiting surface F in C2 where for k0 =
[
k(1)
0 , k(2)

0

]T
∈ Z2

the initial control vector surrounding vk0 is given as in Figure 3.2. Also

assume its mask {Pk}k has Sum Rule of at least order 3. Let α(0)
3 ,α(0)

4 ,α(0)
5

∈ R3 be the column vectors in (3.9 |p.26). Then

Fss

(
k(1)
0 , k(2)

0

)
= 2α(0)

3

Fst

(
k(1)
0 , k(2)

0

)
= α(0)

4

Ftt

(
k(1)
0 , k(2)

0

)
= 2α(0)

5

Similar to the proof of Proposition 3.2 we have the following

Proposition 3.4. Suppose that an interpolatory triangular scheme is con-

vergent with limiting surface F in C2 where for k0 =
[
k(1)
0 , k(2)

0

]T
∈ Z2 the

nth control net surrounding v2nk0+i for i ∈ Z
2\ (0, 0)T (after n subdivisions

of the initial control vector net) is given as in (3.17 |p.30). Also assume

its mask {Pk}k has Sum Rule of at least order 3. Let α(n)
1 ,α(n)

2 ∈ R3 be the
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3.5. FIRST PARTIAL DERIVATIVES (EXTRAORDINARY)

column vectors in (3.18 |p.30). Then

Fss

(
k(1)
0 +

i(1)

2n
, k(2)

0 +
i(2)

2n

)
= 22n+1α(n)

3(3.26)

Fst

(
k(1)
0 +

i(1)

2n
, k(2)

0 +
i(2)

2n

)
= 22nα(n)

4

Ftt

(
k(1)
0 +

i(1)

2n
, k(2)

0 +
i(2)

2n

)
= 22n+1α(n)

5

3.5. First Partial Derivatives (Extraordinary)

The scheme is assumed to be C1 at the extraordinary vertices. So in a

similar fashion, first partial derivatives at an extraordinary vertex (valence

n 1= 6) will be developed. As before, we will start by developing the left

eigenvectors of the subdominant eigenvalue λ. We assume

• λ has multiplicity 2 and

• the subdominant eigenvalue λ is an eigenvalue of the second and

last blocks of a block diagonal matrix that is similar to the subdi-

vision matrix for the extraordinary vertex.

Please note that since our subdivision matrix has real entries only then by

the above assumptions λ must be real.

First we introduce some notation from [CJ08]. Let C be a 2n × 2n

cyclic block matrix with 2× 2 submatrix blocks Cj. We have

(3.27) C =





C0 C1 · · · Cn−1

Cn−1 C0 · · · Cn−2

· · · · · · · · · · · ·
C1 C2 · · · C0





Let C (C0, C1;Cn−1) denote the above matrix C but with Cj = 0, j 1=
0, 1, n− 1.

Define the 2n× 2n matrix Un

(3.28) Un :=
[
zk jI2

]
k=0,...,n−1, j=0,...,n−1

where

(3.29) z := e
2πi
n
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Q/n

Qn

Q/n

Q/n

Q/n

Q/n

Q/n

Q/n

Figure 3.3. Extraordinary Vertex Template (triangular)

By direct calculation, the DFT (Discrete Fourier Transform) of C, de-
fined by Ĉ := UnCU−1

n , can be written as

Ĉ = diag
(
Ĉ0,Ĉ1, . . . ,Ĉn−1

)

where Ĉj :=
∑n−1

k=0 Ckz−jk

Let Sn be the following (6n + 2)× (6n + 2) subdivision matrix around

an extraordinary vertex of valence n

(3.30)





Qn

[
B B · · · B

] [
D D · · · D

] [
C C · · · C

]

1
n





Q

Q
...

Q




C (B,C;C) C (P0,0, D;D) C (B, 0;B)

0 0 diag (D) 0

0 0 C (D,D; 0) diag (C)





where B,C are as in (2.10 |p.13) and Qn, Q are from the template for the

extraordinary vertex given in Figure 3.3:
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In Figure 3.3

(3.31) Qn =

[
1 w1,2

0 w2,2

]
Q =

[
0 q1,2
0 q2,2

]

where we will assume that

(3.32) w1,2 = −q1,2

Note that Sn is a matrix on a 2-ring neighborhood of our central extra-

ordinary vertex just as S (2.26 |p.20) is a matrix on a 2-ring neighborhood

of our central vertex v0.

Define

U := diag (I2, Un, Un, Un) (6n + 2) × (6n+ 2) matrix

Let L represent the (6n+2)× (6n+2) “picking” matrix that exchanges

the j + nk block row with the 3 (j − 2) + k + 2 block row where 0 ≤ k ≤ 2

and 2≤ j ≤ n+1. Then as in [Zor00a] and [CJ08], S̃n:=LUSn (Un)
−1 L−1

is a (6n+2)×(6n+2) block diagonal matrix that is similar to Sn and hence

has the same eigenvalues. S̃n has the following representation:

S̃n =





M0 0 0 0 0 0

0 M1 0 0 0 0

0 0 M2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · Mn−2 0

0 0 0 · · · 0 Mn−1





where

M0 =





Qn B D C

Q B + 2C P0,0 + 2D 2B

0 0 D 0

0 0 2D C




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and for j = 1, 2, ..., n− 1

Mj =




B + C

(
zj + 1

zj

)
P0,0 +D

(
zj + 1

zj

)
B (1 + zj)

0 D 0

0 D
(
1 + 1

zj

)
C





Our real subdominant eigenvalue (call it λ) of multiplicity 2 is assumed

to be an eigenvalue of the second block M1. So it must either be an eigen-

value of B+C
(
z + 1

z

)
or it must be an eigenvalue of

[
D 0

D
(
1 + 1

z

)
C

]
. If it

were an eigenvalue of the latter then its multiplicity would not be 2. Hence,

it is an eigenvalue of B + C
(
z + 1

z

)
.

So if we further restrict our subdivision matrix to a 1-ring neighborhood

around the central extraordinary vertex we get the (2n+2)×(2n+2) matrix

S1n where

(3.33) S1n :=





Qn

[
B B · · · B

]

1
n





Q

Q
...

Q




C (B,C;C)





If we define (2n + 2)× (2n + 2) matrix Ũ := diag (I2, Un) we can then

define S̃1n := Ũ S1n
(
Ũ
)−1

(here we do not need the “picking” matrix to

obtain the desired form we want):

(3.34)

S̃1n =





Qn B 0 · · · 0

Q B + 2C 0 · · · 0

0 0 B + C
(
z + 1

z

)
· · ·

...
...

...
. . . . . . 0

0 0 0 · · · B + C
(
zn−1 + 1

zn−1

)





Note that the subdominant eigenvalue of S̃1n is λ.
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Lemma 3.1. Claim that if t2 (from 3.4 |p.24) is such that
∣∣1
8 − t2 + t2 (z + z−1)

∣∣ <
3
8 + 1

8 (z + z−1) then λ = 3
8 + 1

8 (z + z−1) and a left eigenvector for λ of

B + C
(
z + 1

z

)
is [1, 0].

Proof. From (3.4 |p.24), we see that

B + C

(
z +

1

z

)
=

[
3
8 +

1
8 (z + z−1) 0

− 1
8h − t1 + t1 (z + z−1) 1

8 − t2 + t2 (z + z−1)

]

So its 2 eigenvalues are 3
8 +

1
8 (z + z−1) and 1

8 − t2 + t2 (z + z−1) . We know

that λ is an eigenvalue of this matrix. Hence by our modulus assumption,

λ = 3
8+

1
8 (z + z−1). We can then readily see that [1, 0] is a left eigenvector

for λ. !

Since t2 is a free variable, we can assume in the following that
∣∣ 1
8 − t2 + t2 (z + z−1)

∣∣ <
3
8 +

1
8 (z + z−1).

We can readily see that the 2n+ 2 row vector (0, 0, 0, 0, 1, 0, 0, . . . , 0) is

a left eigenvector of S̃1n for λ and thus (0, 0, 0, 0, 1, 0, 0, . . . , 0) Ũ is a left

eigenvector of S1n for λ.

So we have

L1 = (0, 0, 0, 0, 1, 0, 0, . . . , 0) Ũ =
(
0, 0, 1, 0, z, 0, . . . , zn−1, 0

)

where L1 is a complex left eigenvector of S1n for λ

Note that λ ∈ R. Hence the real and imaginary parts
(
L̃1 and L̃2 respectively

)

are two real left eigenvectors of the real matrix S1n for λ.

L̃1 =

(
0, 0, 1, 0, cos

(
2π

n

)
, 0, . . . , cos

(
2 (n− 1)π

n

)
, 0

)

L̃2 =

(
0, 0, 0, 0, sin

(
2π

n

)
, 0, . . . , sin

(
2 (n− 1)π

n

)
, 0

)
(3.35)

Lemma 3.2. L̃1 and L̃2 are linearly independent over C.

Proof. Suppose ∃ c1, c2 ∈ C such that c1L̃1 + c2L̃2 = 0. Then imme-

diately we can see that c1 = 0. Thus c2L̃2 = 0. Hence c2 sin
(
2πk
n

)
= 0 for

k = 1, ..., n− 1. Thus since n ≥ 3, c2 = 0. !
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t

s

u0
6

u0
1

u0
2u0

4

u0
5

u0
7

(cos2π(6)
7 , sin

2π(6)
7 )

u0
0

(cos2π(5)
7 , sin

2π(5)
7 )

(cos2π(2)
7 , sin

2π(2)
7 )

(cos2π(1)
7 , sin

2π(1)
7 )

(cos2π(0)
7 , sin

2π(0)
7 )

(cos2π(4)
7 , sin

2π(4)
7 )

(cos2π(3)
7 , sin

2π(3)
7 )

u0
3

Figure 3.4. Initial control vector net of extraordinary vertex
of valence 7 and the 7 vertices adjacent to it. The parameters
of the surrounding 7 vertices are given. Note the s and t axis.

As in the regular case we will be representing an initial control vector net

around an extraordinary vertex (having valence n) as a linear combination

of left eigenvectors.

Let us denote the extraordinary vertex by v00 (the first component of

u0
0 := [v00 , s

0
0]). The initial control vector net that includes u0

0 and the

vertices immediately adjacent to u0
0 is a 3× (2n+ 2) vector of n+ 1 initial

control vertices and n + 1 initial shape control vertices. See Figure 3.4

where n = 7.

Denote the vector net immediately surrounding (and including) the ex-

traordinary vertex after m ≥ 0 subdivisions by

Um := [um
0 ,u

m
1 ,u

m
2 , ...,u

m
n ]

where for j = 0, 1, 2, ..., n, um
j :=

[
vmj , s

m
j

]
(the block vertex consisting of

new vertices and new shape control vertices).

Hence

Um+1 = UmS1n

Um = U0 (S1n)
m

where S1n is given in (3.33 |p.38).
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The 3 × (2n + 2) initial control vector net (U0) around this irregular

v0
0 can be represented as a linear combination of 1 × (2n+ 2) (possibly

generalized) left eigenvectors of our (2n + 2)× (2n+ 2) subdivision matrix

S1n (3.33 |p.38).
So by letting

{
L̃j : 0 ≤ j ≤ 2n+ 1

}
be a set of 2n + 2 (possibly gen-

eralized) linearly independent left eigenvectors of S1n U0 can be written

as

(3.36) U0 = α̃(0)
0 L̃0 + α̃(0)

1 L̃1 + α̃(0)
2 L̃2 +

2n+1∑

j=3

α̃(0)
j L̃j

where for j = 0, . . . , 2n+1 α̃(0)
j ∈ R3 where L̃1, L̃2 are the left eigenvectors

for λ from (3.35 |p.39).
Note that the left eigenvector for 1 is L̃0 = [1, 0, 1, 0, ..., 1, 0] due to the

assumption (3.32 |p.37).
Recall that by assumption the eigenvalues for L̃j (j = 3, ..., 2n+1) have

modulus less than λ.

Hence

Um = α̃(0)
0 L̃0 + λmα̃(0)

1 L̃1 + λmα̃(0)
2 L̃2 + o (λm)

lim
m→∞

λ−m
(
Um − α̃(0)

0 L̃0

)
= α̃(0)

1 L̃1 + α̃(0)
2 L̃2

Since

• lim
m→∞

Um = α̃(0)
0 L̃0

• the first component of L̃0 being 1 and

• the scheme being interpolatory

we derive α̃(0)
0 = v00 = vm0 for m = 1, 2, ....

So we have

(3.37) lim
m→∞

λ−m
(
Um −

[
v00,, 0, v

0
0,, 0, v

0
0,, 0..., v

0
0,, 0

])
=α̃(0)

1 L̃1 + α̃(0)
2 L̃2

Looking at the odd components of the left and right sides we obtain:

(3.38)

lim
m→∞

λ−m
(
[vm0 , v

m
1 , v

m
2 , ..., v

m
n ]−

[
v00,, v

0
0,, v

0
0,, ..., v

0
0,

])
=α̃(0)

1
˜̃
L1 + α̃(0)

2
˜̃
L2
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where

˜̃
L1 =

[
0, cos(

2 · 0 · π
n

), cos

(
2 · 1 · π

n

)
, cos

(
2 · 2 · π

n

)
, ..., cos

(
2 · (n− 1) · π

n

)]

˜̃
L2 =

[
0, sin(

2 · 0 · π
n

), sin

(
2 · 1 · π

n

)
, sin

(
2 · 2 · π

n

)
, ..., sin

(
2 · (n− 1) · π

n

)]

Now we will use (3.37 |p.41) to get a representation of the two first

partial derivatives at the point on the surface corresponding to the extra-

ordinary vertex.

Let us parametrize F locally around this point (see Figure 3.4) where

F (0, 0) := v00

F

(
cos

(
2jπ

n

)
, sin

(
2jπ

n

))
:= v0j+1 for j = 0, 1, ..., n− 1

F

(
λm cos

(
2jπ

n

)
,λm sin

(
2jπ

n

))
:= vmj+1 after m subdivisions

Since F is assumed to be C1 at extraordinary vertices then

lim
m→∞

λ−m






F (0, 0)− F (0, 0) , F
(
λm cos

(
2·0·π
n

)
,λm sin

(
2·0·π
n

))
− F (0, 0) ,

F
(
λm cos

(
2·1·π
n

)
,λm sin

(
2·1·π
n

))
− F (0, 0) ,

F
(
λm cos

(
2·2·π
n

)
,λm sin

(
2·2·π
n

))
− F (0.0) , ...,

F
(
λm cos

(
2·(n−2)·π

n

)
,λm sin

(
2·(n−2)·π

n

))
− F (0, 0) ,

F
(
λm cos

(
2·(n−1)·π

n

)
,λm sin

(
2·(n−1)·π

n

))
− F (0, 0)






=

Fs (0, 0)
˜̃
L1 + Ft (0, 0)

˜̃
L2

So from the local parametrization we have

lim
m→∞

λ−m
(
[vm0 , vm1 , v

m
2 , ..., v

m
n ]−

[
v00, v

0
0, v

0
0, ..., v

0
0

])
=(3.39)

Fs (0, 0)
˜̃
L1 + Ft (0, 0)

˜̃
L2
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From (3.38 |p.41) and (3.39 |p.42) and the linear independence of
˜̃
L1

and
˜̃
L2

Fs (0, 0) = α̃(0)
1

Ft (0, 0) = α̃(0)
2

Proposition 3.5. Suppose that an interpolatory triangular scheme is con-

vergent with limiting surface F that is C1 at points corresponding to extra-

ordinary vertices. Let F (0, 0) be such a point. Let α̃(0)
1 ,α̃(0)

2 ∈ R3 be the

column vectors in (3.36 |p.41). Then

Fs (0, 0) = α̃(0)
1 , Ft (0, 0) = α̃(0)

2

3.6. Partial Derivatives in Terms of Initial Control Net

So far we have partial derivatives in terms of coefficients of the linear

combinations of left eigenvectors. Here we will obtain a much more specific

representation of the partial derivatives. They will be given in terms of

the initial control vector net. First looking at the regular case, we will use

right eigenvectors of the subdivision matrix to achieve this.

3.6.1. Regular Case

We are first going to obtain the right eigenvectors of S (2.26 |p.20).
As in [Zor00a] and [CJ08], we can derive the following 6 diagonal block

matrix B̃ that is similar to the subdivision matrix S where

(3.40) B̃ = LUSU−1
L
−1

and

(3.41) U := diag (I2, U6, U6, U6) 38× 38 matrix

where U6 is defined in (3.28 |p.35).
L denotes the 38 × 38 “picking” matrix that exchanges the 6k + j and

(j − 2) 3 + k + 2 (block matrix) rows where 0 ≤ k ≤ 2 and 2 ≤ j ≤ 7
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One gets

B̃ =





M0

M1

M2

M3

M4

M5





where

M0 =





P0,0 B D C

6D B + 2C P0,0 + 2D 2B

0 0 D 0

0 0 2D C




, 8× 8 matrix

(3.42)

Mj =




B + C

(
zj + 1

zj

)
P0,0 +D

(
zj + 1

zj

)
B (1 + zj)

0 D 0

0 D
(
1 + 1

zj

)
C



 , 6× 6 matrix for j = 1, . . . , 5

The eigenvalues of the blocks Mj for j = 0, . . . , 5 are the eigenvalues of

S since B̃ is similar to S.

We can show through direct calculations using a computer algebra sys-

tem that

• 1 and 1
4 are eigenvalues of M0,

• 1
2 is only an eigenvalue of M1 and M5, and

• 1
4 is also an eigenvalue of M2 and M4.

The corresponding right eigenvectors are

r1/2 = [−3h, 1, 0, 0, 0, 0]T for blocks M1 and M5(3.43)

r1/4 =

[
−h (16t2 + 1)

1 + 16ht1
, 1, 0, 0, 0, 0

]T
for block M2 and M4

r1/4 =

[
−hq, 1, hq,−

m

p
, 0, 0, 0, 0

]T
for block M0
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where q = −1+24t3+4t4, m = −4t4+1+192ht1t3+32ht1t4+24t3−8ht1,

p = −1 + 8t2 (see 3.4 |p.24). Note that h is from (3.3 |p.24).
We then “pad” the top and bottom components with the appropriate

number of zeros and obtain right eigenvectors for B̃ above. If we then mul-

tiply by U−1L−1 (3.40 |p.43) we obtain right eigenvectors for our subdivision

matrix S.

Again using a computer algebra system we can obtain the following 38×1

right eigenvectors for 1
2 and 1

4 that are orthonormal to our left eigenvectors

in (3.12 |p.28); i.e. we have LiRj = δ (i− j) i, j = 1, 2, 3, 4, 5:

R1 :=

[
0, 0,

1

3
,
−1

9h
,
1

6
,
−1

18h
,
−1

6
,

1

18h
,
−1

3
,
1

9h
,
−1

6
,

1

18h
,
1

6
,
−1

18h
, 0, ..., 0

]T

R2 :=

[
0, 0,

−1

6
,

1

18h
,
1

6
,
−1

18h
,
1

3
,
−1

9h
,
1

6
,
−1

18h
,
−1

6
,

1

18h
,
−1

3
,
1

9h
, 0, ..., 0

]T

R3 :=

[
2d1, 2d2,−1

3(d1 − 1), 13 (d3 + w) ,−1
6(2d1 + 1), 1

6(2d3 − w),−1
6(2d1 + 1), 1

6(2d3 − w),

−1
3(d1 − 1), 13 (d3 + w) ,−1

6(2d1 + 1), 1
6(2d3 − w),−1

6(2d1 + 1), 1
6(2d3 − w), 0, ..., 0

]T

R4 :=

[
−2d1,−2d2,

1
3(d1 − 1),−1

3 (d3 + w) , 1
3(d1 + 2),−1

3 (d3 − 2w) , 1
3(d1 − 1),−1

3 (d3 + w) ,
1
3(d1 − 1),−1

3 (d3 + w) , 13(d1 + 2),−1
3 (d3 − 2w) , 1

3(d1 − 1),−1
3 (d3 + w) , 0, ..., 0

]T

R5 :=




2d1, 2d2,−1

6(2d1 + 1), 16(2d3 − w),−1
6(2d1 + 1), 16(2d3 − w),

−1
3(d1 − 1), 13 (d3 + w) ,−1

6(2d1 + 1),
1
6(2d3 − w),−1

6(2d1 + 1), 16(2d3 − w),−1
3(d1 − 1), 13 (d3 + w) , 0, ..., 0





T

where

d1 :=
1

4

(pq
r̃

)

d2 := −
1

4h

(p
r̃

)

d3 :=
1

4h

(m
r̃

)

w := −
(1 + 16ht1)

h (1 + 16t2)

and where p, q, and m are from (3.43 |p.44) and r̃ := 1−2t2+30t3−96t2t3−
t4 − 16t2t4 + 144ht1t3 + 24ht1t4 − 6ht1. See (3.4 |p.24) and (3.3 |p.24).

Note that by direct calculation the following are true:
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• if 1 + 16t2 = 0 then the eigenvalue 1
4 will have multiplicity >3

• if q = 0 then 1
2 is no longer the subdominant eigenvalue

Since right and left eigenvectors that correspond to different eigenvalues

are orthogonal we can multiply both sides of (3.9 |p.26) by each Rj and so

obtain (using (3.16 |p.29) and (3.25 |p.34)) the following representations for

the first and second partial derivatives at a point locally parameterized as(
k(1)
0 , k(2)

0

)
:

Fs

(
k(1)
0 , k(2)

0

)
= α(0)

1 = U0
k0
R1(3.44)

Ft

(
k(1)
0 , k(2)

0

)
= α(0)

2 = U0
k0
R2

Fss

(
k(1)
0 , k(2)

0

)
= 2α(0)

3 = 2U0
k0
R3

Fst

(
k(1)
0 , k(2)

0

)
= α(0)

4 = U0
k0
R4

Ftt

(
k(1)
0 , k(2)

0

)
= 2α(0)

5 = 2U0
k0
R5

Note that the 15th through 38th components of the above right eigenvec-

tors equal 0. So define R∗
j as the 14× 1 column vector whose components

are the first 14 components of Rj (j = 1, 2, ..., 5) . Also define Ũ0
k0

as the

3× 14 vector consisting of the first 14 elements of U0
k0
.

We can then rewrite (3.44) as:

Fs

(
k(1)
0 , k(2)

0

)
= α(0)

1 = Ũ0
k0
R∗

1

Ft

(
k(1)
0 , k(2)

0

)
= α(0)

2 = Ũ0
k0
R∗

2

Fss

(
k(1)
0 , k(2)

0

)
= 2α(0)

3 = 2Ũ0
k0
R∗

3

Fst

(
k(1)
0 , k(2)

0

)
= α(0)

4 = Ũ0
k0
R∗

4

Ftt

(
k(1)
0 , k(2)

0

)
= 2α(0)

5 = 2Ũ0
k0
R∗

5

Similarly we then obtain from (3.22 |p.32) and (3.26 |p.35) the following
representations for the first and second partial derivatives of a point locally
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parameterized as
(
k(1)
0 + i(1)

2n , k
(2)
0 + i(2)

2n

)
on the surface F :

Fs

(
k(1)
0 +

i(1)

2n
, k(2)

0 +
i(2)

2n

)
= 2nα(n)

1 = 2nŨn
k0,iR

∗
1(3.45)

Ft

(
k(1)
0 +

i(1)

2n
, k(2)

0 +
i(2)

2n

)
= 2nα(n)

2 = 2nŨn
k0,iR

∗
2

Fss

(
k(1)
0 +

i(1)

2n
, k(2)

0 +
i(2)

2n

)
= 22n+1α(n)

3 = 22n+1Ũn
k0,iR

∗
3

Fst

(
k(1)
0 +

i(1)

2n
, k(2)

0 +
i(2)

2n

)
= 22nα(n)

4 = 22nŨn
k0,iR

∗
4

Ftt

(
k(1)
0 +

i(1)

2n
, k(2)

0 +
i(2)

2n

)
= 22n+1α(n)

5 = 22n+1Ũn
k0,iR

∗
5

where Ũn
k0,i is the 3× 14 vector consisting of the first 14 elements of Un

k0,i

(3.17 |p.30).
Thus we see that once we are working with a specific subdivision scheme

we only need to compute the above right eigenvectors one time, and so all

that is needed to compute the partial derivatives is the surrounding control

net.

3.6.2. Extraordinary Case

Likewise we will obtain a similar representation of the first partial deriva-

tives of the limit surface at an extraordinary vertex. So we need to get the

right eigenvectors of Sn (3.30 |p.36) for the subdominant eigenvalue λ.

Lemma 3.3. Claim that if t2 (from 3.4 |p.24) is such that
∣∣1
8 − t2 + t2 (z + z−1)

∣∣ <
3
8 + 1

8 (z + z−1) then λ = 3
8 + 1

8 (z + z−1) and a right eigenvector of λ for

B + C
(
z + 1

z

)
is [1, d2]

T where d2 =
− 1

8h−t1+t1(z+z−1)
λ−( 1

8−t2+t2(z+z−1))
.

Proof. We have the same assumption as in Lemma 3.1. And so from

that lemma we have λ = 3
8 +

1
8 (z + z−1). Recall that λ is an eigenvalue of

B + C

(
z +

1

z

)
=

[
3
8 +

1
8 (z + z−1) 0

− 1
8h − t1 + t1 (z + z−1) 1

8 − t2 + t2 (z + z−1)

]
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Let [d1, d2]
T be a right eigenvector for λ. So we obtain the following

two equations:
(
3

8
+

1

8

(
z + z−1

))
d1 = λd1

(
−

1

8h
− t1 + t1

(
z + z−1

))
d1 +

(
1

8
− t2 + t2

(
z + z−1

))
d2 = λd2

If d1 = 0 we must have d2 1= 0 and so λ = 1
8 − t2 + t2 (z + z−1) by the

second equation. Contradiction. Thus d1 1= 0and can be normalized so

that it equals 1. From the second equation we have:

(3.46) d2 =
− 1

8h − t1 + t1 (z + z−1)

λ−
(
1
8 − t2 + t2 (z + z−1)

)

!

As said previously, we will assume that the free variable t2 is such that∣∣1
8 − t2 + t2 (z + z−1)

∣∣ < 3
8+

1
8 (z + z−1). Hence [1, d2] is a right eigenvector

of B + C
(
z + 1

z

)
corresponding to λ.

Padding with zeros we have that the 2n+2 column vector [0, 0, 0, 0, 1, d2, 0, ..., 0]
T

is a right eigenvector of λ for S̃1n (3.34 |p.38) and thus Ũ−1 [0, 0, 0, 0, 1, d2, 0, ..., 0]
T

is a right eigenvector of λ for S1n.

By direct calculation

R1 =
[
0, 0, 1, d2, z, d2z, z

2, d2z
2, ..., zn−1, d2z

n−1
]

is a complex right eigenvector of λ for S1n where z is from (3.29 |p.35)
and z is the complex conjugate of z.

Since λ and S1n are both real then the real and imaginary parts of R1

are also real right eigenvectors of λ for S1n:

R̃1 =

[
0, 0, 1, d2, cos

(
2·1·π
n

)
, d2 cos

(
2·1·π
n

)
, ...,

cos
(

2·(n−1)·π
n

)
, d2 cos

(
2·(n−1)·π

n

)
]T

(3.47)

R̃2 =

[
0, 0, 0, 0, sin

(
2·1·π
n

)
, d2 sin

(
2·1·π
n

)
, ...,

sin
(

2·(n−1)·π
n

)
, d2 sin

(
2·(n−1)·π

n

)
]T
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3.7. SPECIFIC TEMPLATE

Note that R̃1 and R̃2 are linearly independent and the proof mirrors

the proof of Lemma 3.2 on page 39.

Through direct calculation and using the fact that
n−1∑
j=0

sin
(
2πj
n

)
cos

(
2πj
n

)
=

0, we obtain the following 2 right eigenvectors {R̂1, R̂2} such that L̃iR̂j =

δ (i− j) for L̃i in (3.35 |p.39) where i, j = 1, 2 :

R̂1 =
1

L̃1R̃1

(
R̃1

)

R̂2 =
1

L̃2R̃2

(
R̃2

)

Furthermore, since L̃1R̃1 =
n−1∑
j=0

cos2
(
2πj
n

)
= n

2 and L̃2R̃2 =
n−1∑
j=1

sin2
(
2πj
n

)
=

n
2

R̂1 =
2

n
R̃1(3.48)

R̂2 =
2

n
R̃2

From Proposition 3.5 on page 43 and from (3.36 |p.41) we now have

a representation of the first partial derivatives of the limit surface at an

extraordinary vertex in terms of the surrounding block vertices:

Fs (0, 0) = U0R̂1

Ft (0, 0) = U0R̂2

Proposition 3.6. Suppose that an interpolatory triangular scheme is con-

vergent with limiting surface F that is C1 at points corresponding to ex-

traordinary vertices. Let F (0, 0) be such a point. Assume that λ =
3
8 +

1
8 (z + z−1). Then for R̂1, R̂2 in (3.48)

Fs (0, 0) = U0R̂1, Ft (0, 0) = U0R̂2

3.7. Specific Template

Let’s now apply these formulas to a specific 1-ring triangular interpola-

tory scheme that was developed by Chui and Jiang in [CJ05]. The scheme
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is given by (3.4 |p.24) where

[t1, t2, t3, t4] =
1

512
[−17,−5,−45,−182](3.49)

h = 1

These values result in Φ being in W 3.03450.

Substituting these values into our formulas for the right eigenvectors

(regular case) we get:

R∗
1 =

[
0, 0,

1

3
,−

1

9
,
1

6
,−

1

18
,−

1

6
,
1

18
,−

1

3
,
1

9
,−

1

6
,
1

18
,
1

6
,−

1

18

]T

R∗
2 =

[
0, 0,−

1

6
,
1

18
,
1

6
,−

1

18
,
1

3
,−

1

9
,
1

6
,−

1

18
,−

1

6
,
1

18
,−

1

3
,
1

9

]T

R∗
3 =

[
−
290

59
,−

64

59
,
68

59
,−

700

1593
,
77

118
,−

515

3186
,
77

118
,−

515

3186
,
68

59
,−

700

1593
,
77

118
,−

515

3186
,
77

118
,−

515

3186

]T

R∗
4 =

[
290

59
,
64

59
,−

68

59
,
700

1593
,−

9

59
,−

185

1593
,−

68

59
,
700

1593
,−

68

59
,
700

1593
,−

9

59
,−

185

1593
,−

68

59
,
700

1593

]T

R∗
5 =

[
−
290

59
,−

64

59
,
77

118
,−

515

3186
,
77

118
,−

515

3186
,
68

59
,−

700

1593
,
77

118
,−

515

3186
,
77

118
,−

515

3186
,
68

59
,−

700

1593

]T

3.7.1. Corresponding specific derivative formulas

Note that for any particular scheme, the above calculations only need to be

done once. If we insert these values into either (3.44 |p.46) or (3.45 |p.47)
we then get the first and second partial derivatives as linear combinations

of the block vectors that surround the regular vertex.

Figures 3.5 , 3.6 and 3.7 visually show the symmetry that these formulas

have.

3.7.2. ”Visual C1” for extraordinary case

In [CJ08], Chui/Jiang develop a template for an extraordinary vertex of a

1-ring interpolatory scheme. Referring to Qn and Q in (3.31 |p.37)

Q :=

[
0 145

512β

0 − 45
512β

]

Qn :=

[
1 −145

512β

0 x1

]
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(−1/6, 1/18) ! (v0
k0+(−1,−1), s

0
k0+(−1,−1))

(0, 0) ! (v0
k0

, s0
k0

)

(1/6,−1/18) ! (v0
k0+(1,1), s

0
k0+(1,1))

(1/6,−1/18) ! (v0
k0+(0,−1), s

0
k0+(0,−1))

Fs

(−1/6, 1/18) ! (v0
k0+(0,1), s

0
k0+(0,1))

(1/3,−1/9) ! (v0
k0+(1,0), s

0
k0+(1,0))

(−1/3, 1/9) ! (v0
k0+(−1,0), s

0
k0+(−1,0))

(a)

(1/6,−1/18) ! (v0
k0+(−1,0), s

0
k0+(−1,0))

(0, 0) ! (v0
k0

, s0
k0

)

(1/6,−1/18) ! (v0
k0+(1,1), s

0
k0+(1,1))

(−1/6, 1/18) ! (v0
k0+(−1,−1), s

0
k0+(−1,−1))

Ft

(−1/6, 1/18) ! (v0
k0+(1,0), s

0
k0+(1,0))

(1/3,−1/9) ! (v0
k0+(0,1), s

0
k0+(0,1))

(−1/3, 1/9) ! (v0
k0+(0,−1), s

0
k0+(0,−1))

(b)

Figure 3.5. The above diagrams represents Fs and Ft. Each
block vertex has both a “regular” vertex and a shape control
vertex. Each is multiplied by the respective numbers. Note
the symmetry in each diagram around the central vertex. Ft

only differs from Fs by a rotation of the s− t axes.

They found that the eigenvalues of the upper left block inM0 in (3.42 |p.44)
would be given by 1, 59

512 , and λ̃± := 5
16+

x1
2 ±

1
64

√
400− 1280x1 + 1024x2

1 − 155β.

Choices can be made for x1 and β such that the eigenvalues of the subdi-

vision matrix S1n (3.33 |p.38) satisfy λ0 = 1, λ1 = λ2, with |λ1 < 1| and
|λj| < |λ1| , j = 3, 4, ....
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Meshes are formed by subdividing an initial control set of points in R2

whose coordinates are the 2 left eigenvectors of the subdominant eigenvalue

λ. The extraordinary scheme is shown to be “visually” C1 in the sense that

these 2-D meshes suggest the regularity and injectivity of the characteristic

map.

From Lemma 3.3 and from (3.48) we can get specific right eigenvectors

of λ by using appropriate values of t1,t2 and h [from (3.4 |p.24)].
We obtain:

d2 =
−17 (z + z−1)− 47

123 + 69 (z + z−1)

where z is from (3.29 |p.35).
So from (3.47 |p.48) and (3.48 |p.49) and using the values from (3.49 |p.50)

we get for n = 5

R̂1 =
2

5

[
0, 0, 1, d2, cos

(
2π

5

)
, d2 cos

(
2π

5

)
, ..., cos

(
8π

5

)
, d2 cos

(
8π

5

)]

R̂2 =
2

5

[
0, 0, 0, 0, sin

(
2π

5

)
, d2 sin

(
2π

5

)
, ..., sin

(
8π

5

)
, d2 sin

(
8π

5

)]

where

d2 =
−17 (z + z−1)− 47

123 + 69 (z + z−1)
≈ −.3471689765

See Figure 3.8 on p. 55 for a visual representation of these two partial

derivatives.
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(136/59, −1400/1593) ! (v0
k0+(−1,0), s

0
k0+(−1,0))

(−580/59,−128/59) ! (v0
k0

, s0
k0

)

(136/59, −1400/1593) ! (v0
k0+(1,0), s

0
k0+(1,0))

(77/59,−515/1593) ! (v0
k0+(1,1), s

0
k0+(1,1))

(77/59,−515/1593) ! (v0
k0+(0,1), s

0
k0+(0,1))

(77/59,−515/1593) ! (v0
k0+(−1,−1), s

0
k0+(−1,−1))

(77/59,−515/1593) ! (v0
k0+(0,−1), s

0
k0+(0,−1))

Fss

(a)

(77/59,−515/1593) ! (v0
k0+(−1,0), s

0
k0+(−1,0))

(−580/59, −128/59) ! (v0
k0

, s0
k0

)

(77/59,−515/1593) ! (v0
k0+(1,1), s

0
k0+(1,1))

(77/59,−515/1593) ! (v0
k0+(−1,−1), s

0
k0+(−1,−1))

Ftt

(77/59,−515/1593) ! (v0
k0+(1,0), s

0
k0+(1,0))

(136/59, −1400/1593) ! (v0
k0+(0,1), s

0
k0+(0,1))

(136/59, −1400/1593) ! (v0
k0+(0,−1), s

0
k0+(0,−1))

(b)

Figure 3.6. The above diagrams represents Fss and Ftt. Each
block vertex has both a “regular” vertex and a shape control
vertex. Each is multiplied by the respective numbers. Ob-
serve the symmetry in each diagram around the central ver-
tex. Ftt only differs from Fss by a rotation of the s− t axes.
Note that the central vertex is multiplied by factors. Also
note that the factors have been multiplied by 2 as required
by (3.44 |p.46).
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Fst

(290/59, 64/59) ! (v0
k0

, s0
k0

)

(−68/59, 700/1593) ! (v0
k0+(1,0), s

0
k0+(1,0))

(−9/59,−185/1593) ! (v0
k0+(1,1), s

0
k0+(1,1))

(−68/59, 700/1593) ! (v0
k0+(0,1), s

0
k0+(0,1))

(−68/59, 700/1593) ! (v0
k0+(−1,0), s

0
k0+(−1,0))

(−9/59,−185/1593) ! (v0
k0+(−1,−1), s

0
k0+(−1,−1))

(−68/59, 700/1593) ! (v0
k0+(0,−1), s

0
k0+(0,−1))

(a)

Figure 3.7. The above diagram represents Fst. Each block
vertex has both a “regular” vertex and a shape control vertex.
Each is multiplied by the respective numbers. Observe the
symmetry in each diagram around the central vertex. Note
that the central vertex is multiplied by factors.

54
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t

s

( 2
5 cos( 8π

5 ),−.1389cos( 8π
5 )) ! (v0

5 , s
0
5)

(0, 0) ! (v0
0 , s

0
0)

Fs

( 2
5 cos( 2π

5 ),−.1389cos( 2π
5 )) ! (v0

2 , s
0
2)

( 2
5 cos( 4π

5 ),−.1389cos( 4π
5 )) ! (v0

3 , s
0
3)

( 2
5 ,−.1389) ! (v0

1 , s
0
1)

( 2
5 cos( 6π

5 ),−.1389cos( 6π
5 )) ! (v0

4 , s
0
4)

(a)

t

s

( 2
5 sin( 8π

5 ),−.1389sin( 8π
5 )) ! (v0

5 , s
0
5)

(0, 0) ! (v0
0 , s

0
0)

Ft

(0, 0) ! (v0
1 , s

0
1)

( 2
5 sin( 2π

5 ),−.1389sin( 2π
5 )) ! (v0

2 , s
0
2)

( 2
5 sin( 4π

5 ),−.1389sin( 4π
5 )) ! (v0

3 , s
0
3)

( 2
5 sin( 6π

5 ),−.1389sin( 6π
5 )) ! (v0

4 , s
0
4)

(b)

Figure 3.8. The above diagrams represents Fs and Ft at an
extraordinary vertex of valence 5. We use the scheme in Sub-
section 3.7.2. Each block vertex has both a “regular” vertex
and a shape control vertex. Each is multiplied by the respec-
tive numbers.
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4.1. INTRODUCTION 56

CHAPTER 4

Derivative Formulas for Interpolating Quadrilateral

Subdivision Schemes

4.1. Introduction

Here we are examining 1−ring quadrilateral interpolating schemes. Their

template is at the lower part of Fig. (2.1 |p.15) and the elements of the

mask are given by (2.12 |p.14). As in the triangular interpolatory case,

the structure of these matrices corresponds to the algebraic structure of an

interpolatory mask given in [CJ08] and shown in (3.1 |p.23).
For the quadrilateral scheme, the regular vertices lie on a 2-directional

mesh in the “so-called” parametric domain. This domain corresponds

to the integer subscripts of the vertices and will be associated with the

parameters of the limit surface (as we will see later). See Fig. 4.1 on p. 57.

In the following we will be using the assumptions presented in Chapter

2 to develop the first and second partial derivatives of the regular vertices

of a quadrilateral interpolating scheme

We will derive as much information as we can regarding the templates

{Pk}k and the 1× 2 constant vectors lα0 introduced in (2.14 |p.15).
Through direct calculation using the Sum rules we determined the fol-

lowing:

l(1,0)0 = l(0,1)0 = [0, 0](4.1)

l(2,0)0 = l(0,2)0 = [0, h]

l(1,1)0 = [0, 0]

where h 1= 0

As indicated in Chapter 2 l(0,0)0 = [1, 0].



4.1. INTRODUCTION

Figure 4.1. Two-directional mesh for Quadrilateral subdivisions

Also through direct calculation using the Sum rules we determined:

R0,0 =

(
1 4t3 + h

(
−1

2 + 8t4 + 8t5 + 2t6
)

0 t6

)(4.2)

L =

(
0 −t3 − 1

4

(
4t3 + h

(
−1

2 + 8t4 + 8t5 + 2t6
))

0 t5

)
N =

(
0 t3
0 t4

)

J =

(
3
8 0

− 1
8h − 2t1

1
8 − 2t2

)
K =

(
1
4 0

− 1
16h

1
16

)
M =

(
1
16 0

t1 t2

)

where tj are ”free” variables for j = 1, ..., 6. Using the techniques in

([JO03]), the values of the tj will determine the Sobolev smoothness of the

refinable function Φ (2.5 |p.12). See section 2.4.
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4.2. FIRST PARTIAL DERIVATIVES (REGULAR)

4.2. First Partial Derivatives (Regular)

We will use the same technique as in the triangular regular case to

develop a representation of the first partial derivatives in terms of the initial

control net.

Again we start at any given regular vertex vm2mk0
for some k0 ∈ Z2 (after

m iterations of our subdivision scheme). Also we will be initially represent-

ing its surrounding control net as a linear combination of left eigenvectors.

For the regular interpolatory quadrilateral scheme, the control vector

net surrounding a vertex (call it vm2mk0
) is a 3×50 vector of 25 3×1 control

vertices and 25 3× 1 shape control vertices. See Figure 4.2.

As before, we define Q as the matrix whose column entries represent

the subscripts of the vertices (Q is now a 2× 25 matrix):

Q :=

[
0 1 0 −1 0 1 −1 −1 1 2 0 −2 · · ·
0 0 1 0 −1 1 1 −1 −1 0 2 0 · · ·

(4.3)

0 2 −1 −2 1 2 −2 −2 2 1 −2 −1 2

−2 1 2 −1 −2 2 2 −2 −2 2 1 −2 −1

]

The columns of Q reflect the ordering in Figure 4.2.

Define the following 3 x 50 matrix that represents the vertices surround-

ing vm2mk0
in a 2-ring neighborhood:

(4.4) Um
k0

:=
{
um
k0, j : j =(Q1 s, Q2 s)

T
1≤s≤25 as above

}

where k0 ∈ Z2 and um
k0, j is defined as in (3.5 |p.25).

Again

Um
k0

= U0
k0
Sm

where S is from (2.26 |p.20).
The initial control vector net (U0

k0
) around any regular v0

k0
can be

represented as a linear combination of 1× 50 (generalized) left eigenvectors

of our 50× 50 subdivision matrix S.

By letting {Lj : 0 ≤ j ≤ 49} be a set of 50 (possibly generalized) linearly

independent left eigenvectors of S then U0
k0

can be written as
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13

12

s

t

10

10

2

4

21

5

8

17

9

6

3

7

23

11

15

19

18 14

22

16 20

24

v
k0+

(

1
−2

)

v
k0+

(

2
1

)

v
k0+

(

0
1

)

v
k0+

(

−1
−2

)

v
k0+

(

1
2

) v
k0+

(

2
2

)

v
k0+

(

−2
2

)

v
k0+

(

−1
0

)

vk0

v
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v
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v
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v
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v
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(
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(
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(
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Figure 4.2. Ordering around central vertex. The intersection
of grid lines are the parametric location of the vertices (the
subscripts). The single numbers represent the order in which
the vertices are considered. The vertex subscripts reflect the
parametric domain.

(4.5) U0
k0

= α(0)
0 L0+α(0)

1 L1+α(0)
2 L2+α(0)

3 L3+α(0)
4 L4+α(0)

5 L5+
49∑

j=6

α(0)
j Lj

where α(0)
j ∈ R3 j = 0, . . . , 49

We have the same assumptions regarding the eigenvalues as for the

triangular scheme, and in (4.5) L0, L1, L2, L3,L4 and L5 are defined as

before.
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4.2. FIRST PARTIAL DERIVATIVES (REGULAR)

We thus get (after m subdivisions)

Um
k0

= α(0)
0 L0+2−mα(0)

1 L1+2−mα(0)
2 L2+4−mα(0)

3 L3+4−mα(0)
4 L4+4−mα(0)

5 L5+
49∑

j=6

λm
j α

(0)
j Lj

where |λj | < 1
4 for j = 6, ..., 49.

Hence

lim
m→∞

Um
k0

= α(0)
0 L0

lim
m→∞

2m
(
Um

k0
− α(0)

0 L0

)
= α(0)

1 L1 + α(0)
2 L2

Now since

• the first component of Um
k0

is vm2mk0
,

• vm2mk0
= v0k0

(see 3.2) and

• the first component of L0 is 1

then we can derive

α(0)
0 = v0k0

Hence we have the following

(4.6) lim
m→∞

2m
(
Um

k0
−
[
v0k0,, 0, v

0
k0,, 0, v

0
k0,, 0..., v

0
k0,, 0

])
=α(0)

1 L1 + α(0)
2 L2

Now from (2.23 |p.19),(2.25 |p.20), (4.1 |p.56) and (4.3 |p.58) we obtain

the following representations of Lj for j = 0, 1, ..., 5

L0 = [1, 0, 1, 0, 1, 0, 1, 0, ..., 1, 0, 1, 0](4.7)

L1 = [0, 0, 1, 0, 0, 0,−1, 0, ...,−1, 0, 2, 0]

L2 = [0, 0, 0, 0, 1, 0, 0, 0, ...,−2, 0,−1, 0]

L3 = [0, h, 1, h, 0, h, 1, h, ..., 1, h, 4, h]

L4 = [0, 0, 0, 0, 0, 0, 0, 0, ..., 2, 0,−2, 0]

L5 = [0, h, 0, h, 1, h, 0, h, ..., 4, h, 1, h]

60



4.2. FIRST PARTIAL DERIVATIVES (REGULAR)

So just looking at the odd components of the left and right sides of (4.6)

we have

lim
m→∞

2m
([

vm2mk0
, v02mk0+(1,0)T , v

0
2mk0+(0,1)T , ..., v

0
2mk0+(2,−1)T

]
−
[
v0k0

, v0k0
, v0k0

, ..., v0k0

])
=

α(0)
1 L̃1 + α(0)

2 L̃2

where

L̃1 = [0, 1, 0,−1, 0, 1,−1,−1, 1, 2, 0,−2, 0, 2,−1,−2, 1, 2,−2,−2, 2, 1,−2,−1, 2]

L̃2 = [0, 0, 1, 0,−1, 0, 0,−1,−1, 0, 2, 0,−2, 1, 2,−1,−2, 2, 2,−2,−2, 2, 1,−2,−1]

Again the goal is to connect the above formula with the 2 partial deriva-

tives of our limit surface F . So we need to locally parameterize F in the

(s, t) plane as in [SDL99]. The (s, t) plane is drawn in Figure 4.2.

We will use the same local parameterization of F in a neighborhood of

k0 =
(
k(1)
0 , k(1)

0

)T
∈ Z2

(4.8) F

(
k(1)
0 +

l(1)

2m
, k(2)

0 +
l(2)

2m

)
:= vm2mk0+l

where m ∈ Z+, vm as in (2.8 |p.13), and l =
(
l(1), l(2)

)T
= (Q1, j , Q2, j)

T
1≤j≤25

for Q defined in (4.3 |p.58).
Using the same argument as in Section 3.3 we arrive at:

lim
m→∞

2m
([

vm2mk0
, vm2mk0+(1,0)T , v

m
2mk0+(0,1)T , ..., v

m
2mk0+(2,−1)T

]
−
[
v0k0

, v0k0
, v0k0

, ..., v0k0

])
=

Fs

(
k(1)
0 , k(2)

0

)
L̃1 + Ft

(
k(1)
0 , k(2)

0

)
L̃2

By the linear independence of L̃1 and L̃2 we have

Fs

(
k(1)
0 , k(2)

0

)
= α(0)

1(4.9)

Ft

(
k(1)
0 , k(2)

0

)
= α(0)

2

Proposition 4.1. Suppose that an interpolatory quadrilateral scheme is

convergent with limiting surface F in C1 where for k0 =
[
k(1)
0 , k(2)

0

]T
∈ Z2

the initial control vector surrounding vk0 is given as in Figure 4.2. Also

assume its mask {Pk}k has Sum Rule of at least order 3. Let α(0)
1 ,α(0)

2 ∈ R3
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4.2. FIRST PARTIAL DERIVATIVES (REGULAR)

be the column vectors in (4.5 |p.59). Then

Fs

(
k(1)
0 , k(2)

0

)
= α(0)

1 , Ft

(
k(1)
0 , k(2)

0

)
= α(0)

2

As we did in the triangular case, denote each vertex surrounding vn
2nk0+i

after m additional subdivisions by

un+m
k0,i, j

:= vn+m
2n+mk0+2mi+j

for m 1= 0

un
k0, i,j := vn

2nk0+i+j for m = 0

where j =(Q1, s, Q2, s)
T
1≤s≤25 for Q defined in (4.3 |p.58).

Let

(4.10) Un+m
k0,i

:=
{
un+m
k0,i, j

: j =(Q1, s, Q2, s)
T
1≤s≤25

}

In the case where we have not done any additional subdivisions, we can

represent the nth control net surrounding the regular vertex v2nk0+i as a

linear combination of Lj (4.7 |p.60)
(4.11)

Un+0
k0,i

= α(n)
0 L0 + α(n)

1 L1 + α(n)
2 L2 + α(n)

3 L3 + α(n)
4 L4 + α(n)

5 L5 +
49∑

j=6

α(n)
j Lj

where α(n)
j ∈ R3.

We obtain the following proposition:

Proposition 4.2. Suppose that an interpolatory quadrilateral scheme is

convergent with limiting surface F in C1 where for k0 =
[
k(1)
0 , k(2)

0

]T
∈ Z2

the nth control net surrounding v2nk0+i for i ∈ Z
2\ (0, 0)T (after n subdivi-

sions of the initial control vector net) is given as in (4.10 |p.62). Also

assume its mask {Pk}k has Sum Rule of at least order 3. Let α(n)
1 ,α(n)

2

∈ R3 be the column vectors in (4.11 |p.62). Then

(4.12)

Fs

(
k(1)
0 +

i(1)

2n
, k(2)

0 +
i(2)

2n

)
= 2nα(n)

1 , Ft

(
k(1)
0 +

i(1)

2n
, k(2)

0 +
i(2)

2n

)
= 2nα(n)

2

Proof. The proof is the same as in section 3.3 for obtaining the first

partials at a regular point on the surface after n subdivisions. !
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4.3. Second Partial Derivative (Regular)

The procedure for obtaining the second partial derivatives of our limit

surface F is similar is to the triangular case. Again we will first consider

regular vertex vm2mk0

(
= v0k0

)
from the initial control net after m subdivi-

sions.

Again define a “picking” matrix J̃ (50 × 50 this time) that for odd j

between 3 and 31 replaces the j and j + 1 column with the j + 4 and j + 5

column (and vice versa) of any 3×50 matrix. To illustrate, using the column

vectors of Q (4.3 |p.58) for the ordering of subscripts in Um
k0

(4.4 |p.58), then
Um
k0
J̃ replaces um

k0+(1,0)T
with um

k0+(−1,0)T
and vice versa and um

k0+(1,1)T
with

um
k0+(−1,−1)T

and vice versa.

We then derive the following set of equalities:

lim
m→∞

22m
[
Um

k0
+Um

k0
J̃ − 2

[
v0k0,, 0, v

0
k0,, 0, v

0
k0,, 0..., v

0
k0,, 0

]]
=(4.13)

lim
m→∞

22m






[
α(0)
0 L0 + 2−mα(0)

1 L1 + 2−mα(0)
2 L2 + 4−mα(0)

3 L3...

+4−mα(0)
4 L4 + 4−mα(0)

5 L5 + o (2−2m)

]

+

[
α(0)
0 L0 + 2−mα(0)

1 L1 + 2−mα(0)
2 L2 + 4−mα(0)

3 L3...

+4−mα(0)
4 L4 + 4−mα(0)

5 L5 + o (2−2m)

]
J̃

−2
[
v0k0,, 0, v

0
k0,, 0, v

0
k0,, 0..., v

0
k0,, 0

]






=

lim
m→∞

22m






[
4−mα(0)

3 L3 + 4−mα(0)
4 L4 + 4−mα(0)

5 L5 + o (2−2m)
]

+
[
4−mα(0)

3 L3 + 4−mα(0)
4 L4 + 4−mα(0)

5 L5 + o (2−2m)
]
J̃




 =

lim
m→∞

22m
{
2 · 4−mα(0)

3 L3 + 2 · 4−mα(0)
4 L4 + 2 · 4−mα(0)

5 L5 + o
(
2−2m

)}
=

2α(0)
3 L3 + 2α(0)

4 L4 + 2α(0)
5 L5
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Looking at the second order directional derivatives in the direction of

each of the 24 surrounding vertices, we have:

lim
m→∞

22m






0, F
(
k(1)
0 + 2−m (1) , k(2)

0

)
+ F

(
k(1)
0 + 2−m (−1) , k(2)

0

)

−2F
(
k(1)
0 , k(2)

0

)
,

F
(
k(1)
0 + 2−m (0) , k(2)

0 + 2−m (1)
)
+ F

(
k(1)
0 + 2−m (0) , k(2)

0 + 2−m (−1)
)

−2F
(
k(1)
0 , k(2)

0

)
, ...,

F
(
k(1)
0 + 2−m (−1) , k(2)

0 + 2−m (−2)
)
+ F

(
k(1)
0 + 2−m (1) , k(2)

0 + 2−m (2)
)

−2F
(
k(1)
0 , k(2)

0

)
,

F
(
k(1)
0 + 2−m (2) , k(2)

0 + 2−m (−1)
)
+ F

(
k(1)
0 + 2−m (−2) , k(2)

0 + 2−m (1)
)

−2F
(
k(1)
0 , k(2)

0

)






=

(4.14)

Fss

(
k(1)
0 , k(2)

0

)
L̃3 + 2Fst

(
k(1)
0 , k(2)

0

)
L̃4 + Ftt

(
k(1)
0 , k(2)

0

)
L̃5

where

L̃3 =
[
(0)2 , (1)2 , (0)2 , (−1)2 , (0)2 , (1)2 , ..., (−1)2 , (2)2

]

L̃4 =
[
(0)2 , (1) · (0) , (0) · (1) , (−1) · 0, 0 · (−1) , (1)2 ...., (−1) (−2) , (2) (−1)

]

L̃5 =
[
(0)2 , (0)2 , (1)2 , (0)2 , (−1)2 , (1)2 , ..., (−2)2 , (−1)2

]

which are the odd components of L3, L4, and L5 (4.7) respectively.

So using our parametrization (4.8 |p.61) we can equate the last expres-

sion in 4.13 and the right side of 4.14:

2α(0)
3 L̃3+2α(0)

4 L̃4+2α(0)
5 L̃5 = Fss

(
k(1)
0 , k(2)

0

)
L̃3+2Fst

(
k(1)
0 , k(2)

0

)
L̃4+Ftt

(
k(1)
0 , k(2)

0

)
L̃5

By linear independence

Fss

(
k(1)
0 , k(2)

0

)
= 2α(0)

3(4.15)

Fst

(
k(1)
0 , k(2)

0

)
= α(0)

4

Ftt

(
k(1)
0 , k(2)

0

)
= 2α(0)

5
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4.4. FIRST PARTIAL DERIVATIVES (EXTRAORDINARY)

Proposition 4.3. Suppose that an interpolatory quadrilateral scheme is

convergent with limiting surface F in C2 where for k0 =
[
k(1)
0 , k(2)

0

]T
∈

Z2 the initial control vector surrounding vk0 is given as in Figure 4.2 on

p. 59. Also assume its mask {Pk}k has Sum Rule of at least order 3. Let

α(0)
3 ,α(0)

4 ,α(0)
5 ∈ R3 be the column vectors in (4.5 |p.59). Then

Fss

(
k(1)
0 , k(2)

0

)
= 2α(0)

3

Fst

(
k(1)
0 , k(2)

0

)
= α(0)

4

Ftt

(
k(1)
0 , k(2)

0

)
= 2α(0)

5

Proposition 4.4. Suppose that an interpolatory quadrilateral scheme is

convergent with limiting surface F in C2 where for k0 =
[
k(1)
0 , k(2)

0

]T
∈ Z2

the nth control net surrounding v2nk0+i for i ∈ Z
2\ (0, 0)T (after n subdivi-

sions of the initial control vector net) is given as in (4.10 |p.62). Also

assume its mask {Pk}k has Sum Rule of at least order 3. Let α(n)
1 ,α(n)

2

∈ R3 be the column vectors in (4.11 |p.62). Then

Fss

(
k(1)
0 +

i(1)

2n
, k(2)

0 +
i(2)

2n

)
= 22n+1α(n)

3(4.16)

Fst

(
k(1)
0 +

i(1)

2n
, k(2)

0 +
i(2)

2n

)
= 22nα(n)

4

Ftt

(
k(1)
0 +

i(1)

2n
, k(2)

0 +
i(2)

2n

)
= 22n+1α(n)

5

Proof. Proof is similar to the proof of Proposition 3.2 on p. 32. !

4.4. First Partial Derivatives (Extraordinary)

Here we will obtain a representation of the first partial derivatives

in a similar fashion as in 3.5 starting on p. 35. Using the notation in

(3.27 |p.35), the following is the (12n+ 2) × (12n+ 2) subdivision matrix
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Sn around an extraordinary vertex of valence n 1= 4:




Wn [J ... J ] [K ... K] [L ... L] [M ... M ] [N ... N ] [M ... M ]

1
n





W

W
...

W




C (J,M ;M) C (K, 0;K) C (R0,0, N ;N) C (J, 0;M) C (L, 0;L) C (M, 0; J)

1
n





w

w
...

w




C (M,M ; 0) diag (K) C (L, L; 0) diag (J) diag (R0,0) diag (J)

0 0 0 diag (L) diag (M) C (N, 0;N) C (0, 0;M)

0 0 0 diag (N) diag (M) diag (L) 0

0 0 0 0 0 diag (N) 0

0 0 0 C (0, N ; 0) 0 diag (L) diag (M)





where J,K, L,M,N and R0,0 are all from (2.12 |p.14) and (4.2 |p.57) and

Wn, W, and w are from the template for the extraordinary vertex given in

Figure 4.3 on p. 67.

In this template, Wn, W, and w are given by:

(4.17) Wn :=

[
1 ñ1,2

0 ñ2,2

]
W :=

[
0 W1,2

0 W2,2

]
w :=

[
0 w1,2

0 w2,2

]

where we will assume that

(4.18) ñ1,2 +W1,2 + w1,2 = 0

Note that Sn is a matrix of a 2-ring neighborhood around our central extra-

ordinary vertex just as S (2.26 |p.20) is a matrix on a 2-ring neighborhood

of our central vertex v0.

We now define

U := diag (I2, Un, Un, Un, Un, Un, Un) (12n+ 2) × (12n+ 2) matrix

with Un as in (3.28 |p.35).

66



4.4. FIRST PARTIAL DERIVATIVES (EXTRAORDINARY)

W/n

Wn

W/n

W/n

W/n

W/n

W/n

w/n

w/n

w/n

w/n

w/n

Figure 4.3. Extraordinary template. (quadrilateral scheme)

Let L represent the (12n+ 2) × (12n+ 2)“picking” matrix that ex-

changes the j + nk block row with the 6 (j − 2) + k + 2 block row where

0 ≤ k ≤ 5 and 2≤ j ≤ n + 1. Then as in [Zor00a] and [CJ08]

S̃n := LUSn (Un)
−1 L−1 is a (12n+ 2) × (12n+ 2) block diagonal matrix

that is similar to Sn and hence has the same eigenvalues. S̃n has the fol-

lowing representation:

S̃n =





M0 0 0 0 0 0

0 M1 0 0 0 0

0 0 M2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · Mn−2 0

0 0 0 · · · 0 Mn−1





where

M0 =





Wn J K L M N M

W J + 2M 2K R0,0 + 2N J +M 2L M + J

w 2M K 2L J R0,0 J

0 0 0 L M 2N M

0 0 0 N M L 0

0 0 0 0 0 N 0

0 0 0 N 0 L M




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and for j = 1, 2, ..., n− 1 and z := e
2πi
n

Mj =





J +M
(
zj + 1

zj

)
K (1 + zj) R0,0 +N

(
zj + 1

zj

)
J +M (zj) L (1 + zj) M + J (zj)

M
(
1 + 1

zj

)
K L

(
1 + 1

zj

)
J R0,0 J

0 0 L M N (1 + zj) M (zj)

0 0 N M L 0

0 0 0 0 N 0

0 0 N
(

1
zj

)
0 L M





For j = 0, Mj has an upper left 6 × 6 block and for j = 1, 2, ..., n− 1

Mj has an upper left 4× 4 block. For j = 0, 1, 2, ..., n− 1, Mj has a lower

right 8 × 8 block. Through direct calculation using a computer algebra

system, the eight eigenvalues of each of these lower blocks are:

0, 0, t2, t4,
1

16
and the 3 roots of a cubic characteristic polynomial

where t2 and t4 are from (4.2 |p.57).
Now the second block M1 [where we are considering M0 as the first

block] has for one of its eigenvalues the subdominant eigenvalue λ. From

the structure of M1, λ is either an eigenvalue of either the 4×4 upper block

[
J +M

(
z + 1

z

)
K (1 + z)

M
(
1 + 1

z

)
K

]

or the 8×8 lower block





L M N (1 + z) M (z)

N M L 0

0 0 N 0

N
(
1
z

)
0 L M




.

Since by assumption λ has multiplicity 2, it will have to be either an eigen-

value of the 4×4 upper block or a root of the cubic characteristic polynomial.

We will assume that λ is an eigenvalue of the upper 4× 4 block.

Again by direct calculation, the 4 eigenvalues of the upper block of M1

are:

10 + 2 cos
(
2π
n

)
±
√

38 + 40 cos
(
2π
n

)
+ 2 cos

(
4π
n

)

32

3 + 32t2
(
cos

(
2π
n

)
− 1

)
±

√
1 + t2

[
256 + 192

(
cos

(
2π
n − 1

))]

+1024 (t2)
2 [cos2

(
2π
n

)
− 2 cos

(
2π
n

)
+ 1

]

32
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Since t2 is a free variable that can be small we have that the subdominant

eigenvalue λ is:

(4.19) λ =
10 + 2 cos

(
2π
n

)
+
√

38 + 40 cos
(
2π
n

)
+ 2 cos

(
4π
n

)

32

Via direct calculation, a left eigenvector for λ of this 4× 4 upper block

is

(4.20) l̃1 = [1, 0, e3, 0]

where

e3 =
1 + z

4λ− 1
Now if we restrict our subdivision matrix to a 1-ring neighborhood

around the central extraordinary vertex we get the following 4n+2×4n+2

matrix S1n:

(4.21) S1n :=





Wn

[
J · · · J

] [
K · · · K

]

1
n





W

W
...

W




C (J,M ;M) C (K, 0;K)

1
n





w

w
...

w




C (M,M ; 0) diag (K)





If we define Ũ := diag (I2, Un, Un) [a (4n + 2) × (4n + 2) matrix] and

L as a “picking” matrix that exchanges the kn + j and 2 (j − 2) + k + 2

(block matrix) rows where 2 ≤ j ≤ n + 1 and 0 ≤ k ≤ 1 then S̃1n :=

LŨ (S1n) Ũ−1L−1 is a similar matrix with the same eigenvalues as S1n and
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the following form:

(4.22) S̃1n =





M̃0 0 0 0 0 0

0 M̃1 0 0 0 0

0 0 M̃2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · M̃n−2 0

0 0 0 · · · 0 M̃n−1





where

M̃0 =




Wn J K

W J + 2M 2K

w 2M K



 and

M̃j =

[
J +M

(
zj + 1

zj

)
K (1 + zj)

M
(
1 + 1

zj

)
K

]
j = 1, 2, ..., n− 1.

By our assumption that λ is an eigenvalue of

[
J +M

(
z + 1

z

)
K (1 + z)

M
(
1 + 1

z

)
K

]

we see that λ is an eigenvalue of the second block M̃1 and from (4.20 |p.69)
l̃1 =

[
1, 0, 1+z

4λ−1 , 0
]
is a corresponding left eigenvector.

By padding the 1 × 4 rowvectorl̃1 with 6 initial zeros and 4 (n− 1)

trailing zeros and we obtain a left eigenvector
˜̃
L1 for λ of S̃1n. Hence,

L̂1 :=
˜̃
L1LŨ is a left eigenvector for λ of S1n. Through direct computation

L̂1 =

[
0, 0, 1, 0, z, 0, z2, 0, ..., zn−1, 0, 1+z

4λ−1 , 0,
(

1+z
4λ−1

)
z, 0,(

1+z
4λ−1

)
z2, 0, ...,

(
1+z
4λ−1

)
zn−1, 0

]
1×(4n+ 2) vector
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By considering the real and imaginary parts we get 2 real left eigenvectors

for λ of S1n :

L̃1 :=




0, 0, 1, 0, cos

(
2π
n

)
, 0, cos

(
2π·2
n

)
, 0, ..., cos

(
2π·(n−1)

n

)
, 0, 1

4λ−1

(
1 + cos

(
2π
n

))
, 0,

1
4λ−1

(
cos

(
2π
n

)
+ cos

(
2π·2
n

))
, 0, ..., 1

4λ−1

(
cos

(
2π(n−1)

n

)
+ cos

(
2π·n
n

))
, 0





(4.23)

L̃2 :=




0, 0, 0, 0, sin

(
2π
n

)
, 0, sin

(
2π·2
n

)
, 0, ..., sin

(
2π·(n−1)

n

)
, 0, 1

4λ−1

(
sin

(
2π
n

))
, 0,

1
4λ−1

(
sin

(
2π
n

)
+ sin

(
2π·2
n

))
, 0, ..., 1

4λ−1

(
sin

(
2π(n−1)

n

)
+ sin

(
2π·n
n

))
, 0





As was done with the triangular interpolatory extraordinary case, the

initial 1−ring control vector net (U0) around this irregular v0
0 can be rep-

resented as a linear combination of 1 × (4n + 2) (possibly generalized) left

eigenvectors of our (4n+ 2)× (4n+ 2) subdivision matrix S1n (4.21).

By letting
{
L̃j

}

0≤j≤4n+1
be a set of 4n+2 (possibly generalized) linearly

independent left eigenvectors of S1n, then U0 can be written as

(4.24) U0 = α̃(0)
0 L̃0 + α̃(0)

1 L̃1 + α̃(0)
2 L̃2 +

4n+1∑

j=3

α̃(0)
j L̃j

where α̃(0)
j ∈ R3 j = 0, . . . , 4n+ 1 and

• the left eigenvector for 1 is L̃0 = [1, 0, 1, 0, ..., 1, 0] due (4.18 |p.66)
and

• L̃1, L̃2 are the left eigenvectors for λ from (4.23 |p.71).
By assumption the eigenvalues for L̃j (j = 3, ..., 4n+ 1) have modulus less

than λ.

Hence

Um = α̃(0)
0 L̃0 + λmα̃(0)

1 L̃1 + λmα̃(0)
2 L̃2 + o (λm)

lim
m→∞

λ−m
(
Um − α̃(0)

0 L̃0

)
= α̃(0)

1 L̃1 + α̃(0)
2 L̃2

Due to

• lim
m→∞

Um = α̃(0)
0 L̃0
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• the first component of L̃0 being 1 and

• the scheme being interpolatory

then α̃(0)
0 = v00 = vm0 for m = 1, 2, ....

So we have

(4.25) lim
m→∞

λ−m
(
Um −

[
v00,, 0, v

0
0,, 0, v

0
0,, 0..., v

0
0,, 0

])
=α̃(0)

1 L̃1 + α̃(0)
2 L̃2

If we just look at the odd components of the left and right sides of (4.25)

then we get

(4.26)

lim
m→∞

λ−m
(
[vm0 , v

m
1 , v

m
2 , ..., v

m
n ]−

[
v00,, v

0
0,, v

0
0,, ..., v

0
0,

])
=α̃(0)

1
˜̃
L1 + α̃(0)

2
˜̃
L2

where

˜̃
L1 :=




0, 1, cos

(
2π
n

)
, cos

(
2π·2
n

)
, ..., cos

(
2π·(n−1)

n

)
, 1
4λ−1

(
1 + cos

(
2π
n

))
,

1
4λ−1

(
cos

(
2π
n

)
+ cos

(
2π·2
n

))
, ..., 1

4λ−1

(
cos

(
2π(n−1)

n

)
+ cos

(
2π·n
n

))





˜̃
L2 :=




0, 0, sin

(
2π
n

)
, sin

(
2π·2
n

)
, ..., sin

(
2π·(n−1)

n

)
, 1
4λ−1

(
sin

(
2π
n

))
,

1
4λ−1

(
sin

(
2π
n

)
+ sin

(
2π·2
n

))
, ..., 1

4λ−1

(
sin

(
2π(n−1)

n

)
+ sin

(
2π·n
n

))





Now we will use (4.26) to get a representation of the two first partial

derivatives at the point on the surface corresponding to the extraordinary

vertex.

Let us parametrize F locally around this point. Let

F (0, 0) := v00

F

(
cos

(
2jπ

n

)
, sin

(
2jπ

n

))
:= v0j+1 for j = 0, 1, ..., n− 1

F




1

4λ−1

(
cos

(
2πj
n

)
+ cos

(
2π(j+1)

n

))
,

1
4λ−1

(
sin

(
2πj
n

)
+ sin

(
2π(j+1)

n

))



 := v0n+j+1

for j = 0, 1, ..., n− 1
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After m subdivisions the 2n surrounding vertices are parametrized as

follows;

F

(
λm

[
cos

(
2jπ

n

)]
,λm

[
sin

(
2jπ

n

)])
:= vmj+1 for j = 0, 1, ..., n− 1

F




λm

4λ−1

(
cos

(
2πj
n

)
+ cos

(
2π(j+1)

n

))
,

λm

4λ−1

(
sin

(
2πj
n

)
+ sin

(
2π(j+1)

n

))



 := vmn+j+1

for j = 0, 1, ..., n− 1

Notice that there is a factor 1
4 λ−1 in the parametrization of the last n

surrounding vertices. These vertices are the ones in the quadrilaterals that

are “opposite” from the central extraordinary vertex. Their parametrization

is essentially this factor multiplied by the sum of the parametrization of the

other 2 vertices that adjoin the central vertex. See Figure 4.4. Also see

Table 4.1 that displays these factors for various valences and shows them to

be positive in value. In particular, see that if the central vertex were really

a regular vertex (i.e. having valence 4) then 1
4 λ−1 = 1.
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valence 1
4 λ−1

3 1.5616
4 1
5 .8334
6 .7583
7 .7173
8 .6923
9 .6758
10 .6643
11 .6559
12 .6497
13 .6449
14 .6411
15 .6381
16 .6356
17 .6336

Table 4.1. Values of 1
4λ−1 for several valences

Since F is assumed to be C1 at extraordinary vertices then

lim
m→∞

λ−m






F (0, 0)− F (0, 0) , F
(
λm cos

(
2·0·π
n

)
,λm sin

(
2·0·π
n

))
− F (0, 0) ,

F
(
λm cos

(
2·1·π
n

)
,λm sin

(
2·1·π
n

))
− F (0, 0) ,

F
(
λm cos

(
2·2·π
n

)
,λm sin

(
2·2·π
n

))
− F (0.0) ,

...

F
(
λm cos

(
2·(n−1)·π

n

)
,λm sin

(
2·(n−1)·π

n

))
− F (0, 0) ,

F
(

λm

4λ−1

[
cos

(
2π·0
n

)
+ cos

(
2π(0+1)

n

)]
, λm

4λ−1

[
sin

(
2π·0
n

)
+ sin

(
2π(0+1)

n

)])

−F (0, 0) ,

F
(

λm

4λ−1

[
cos

(
2π·1
n

)
+ cos

(
2π(1+1)

n

)]
, λm

4λ−1

[
sin

(
2π·1
n

)
+ sin

(
2π(1+1)

n

)])

−F (0, 0) ,
...

F
(

λm

4λ−1

[
cos

(
2π·(n−1)

n

)
+ cos

(
2π(n)

n

)]
, λm

4λ−1

[
sin

(
2π·(n−1)

n

)
+ sin

(
2π(n)

n

)])

−F (0, 0)






=

(4.27)

Fs (0, 0)
˜̃
L1 + Ft (0, 0)

˜̃
L2
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F ( 1
4λ−1 (cos( 2π·0

5 ) + cos( 2π·1
5 ), sin( 2π·0

5 ) + sin( 2π·1
5 )))

F (0, 0)
F (cos( 2π·0

5 ), sin( 2π·0
5 ))

v00 v01

v02

v05

v010

F (cos( 2π·2
5 ), sin( 2π·2

5 ))

F (cos( 2π·1
5 ), sin( 2π·1

5 ))

F ( 1
4λ−1 (cos( 2π·1

5 ) + cos( 2π·2
5 ), sin( 2π·1

5 ) + sin( 2π·2
5 )))

F ( 1
4λ−1 (cos( 2π·2

5 ) + cos( 2π·3
5 ), sin( 2π·2

5 ) + sin( 2π·3
5 )))

F ( 1
4λ−1 (cos( 2π·3

5 ) + cos( 2π·4
5 ), sin( 2π·3

5 ) + sin( 2π·4
5 )))

F ( 1
4λ−1 (cos( 2π·4

5 ) + cos( 2π·5
5 ), sin( 2π·4

5 ) + sin( 2π·5
5 )))

v09

v04

v08

v03

v07

v06

F (cos( 2π·4
5 ), sin( 2π·4

5 ))

F (cos( 2π·3
5 ), sin( 2π·3

5 ))

Figure 4.4. Figure shows the parametrization around a vertex
of valence 5 for an interpolatory quadrilateral scheme. Note
that the vertices were placed on the figure using the actual
values of the parameters.

So from the local parametrization we can equate the right sides of

(4.25 |p.72) and (4.27):

α̃(0)
1
˜̃
L1 + α̃(0)

2
˜̃
L2 = Fs (0, 0)

˜̃
L1 + Ft (0, 0)

˜̃
L2

By linear independence this gives us

Fs (0, 0) = α̃(0)
1

Ft (0, 0) = α̃(0)
2

Proposition 4.5. Suppose that an interpolatory quadrilateral scheme is

convergent with limiting surface F that is C1 at points corresponding to

extraordinary vertices. Let F (0, 0) be such a point. Let α̃(0)
1 ,α̃(0)

2 ∈ R3 be

the column vectors in (4.24 |p.71). Then

Fs (0, 0) = α̃(0)
1 , Ft (0, 0) = α̃(0)

2
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NET

4.5. Partial Derivatives in Terms of Initial Control Net

As in the triangular case, we now have partial derivatives in terms of

coefficients of the linear combinations of left eigenvectors. We will again

obtain a much more specific representation of the partial derivatives. They

will be given in terms of the initial control vector net. Initially looking at

the regular case, we will use right eigenvectors of the subdivision matrix to

achieve this.

4.5.1. Regular Case

We will obtain the right eigenvectors of S (2.26 |p.20) for the eigenvalues 1
2

and 1
4 .

We can derive the following 4 diagonal block matrix D̃ that is similar

to the subdivision matrix S where

D̃ := LUSU−1
L
−1

and where

U := diag (I2,U4, U4, U4, U4, U4, U4) 50× 50 matrix

for U4 defined in (3.41 |p.43).
L is the 50×50 “picking” matrix that exchanges the 4k+j and (j − 2) 6+

k + 2 (block matrix) rows where 0 ≤ k ≤ 5 and 2 ≤ j ≤ 5.

We obtain

D̃ =





M0

M1

M2

M3




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where

M0 =





R0,0 J K L M N M

4L J + 2M 2K R0,0 + 2N J +M 2L M + J

4N 2M K 2L J R0,0 J

0 0 0 L M 2N M

0 0 0 N M L 0

0 0 0 0 0 N 0

0 0 0 N 0 L M





14×14 matrix

and for j = 1, 2, 3 the following 12× 12 matrices

Mj =





J +M
(
zj + 1

zj

)
K (1 + zj) R0,0 +N

(
zj + 1

zj

)
J +M (zj) L (1 + zj) M + J (zj)

M
(
1 + 1

zj

)
K L

(
1 + 1

zj

)
J R0,0 J

0 0 L M N (1 + zj) M (zj)

0 0 N M L 0

0 0 0 0 N 0

0 0 N
(

1
zj

)
0 L M





where z = e
2πi
4 =

√
−1.

We can show through direct calculations that:

• 1 and 1
4 are eigenvalues of M0

• 1
2 is an eigenvalue of M1 and M3

• 1
4 is a double eigenvalue of M2.

.

The right eigenvectors of 1
2 for M1,

1
4 for M0 and 1

4 for M2 are (respec-

tively)

r1/2 =

[
1, w0,

1

4
(1− i) , w1 (1− i) , 0, ..., 0

]T
12× 1

r1/4 = [w2, w3, w4, w5, w6, w7, 0, ..., 0]
T 14× 1

r1/4 = [1, w8, 0, 0, 0, ..., 0]
T 12× 1

r1/4 =

[
0, 0, 1,−

1

3h
, 0, ..., 0

]T
12× 1
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where

w0 =
− (3 + 32t1h)

h (32t2 + 7)

w1 = −
(32t2 − 64ht1 + 1)

4h (32t2 + 7)

w2 = h (1− 16t4 − 16t5 − 4t6)

w3 = 1

w4 = −32t3

w5 =
8
(
2t6 +

4
ht3 + 128t1t3 − 1

2 − 4t5
)

32t2 − 3

w6 = −h + 4ht6 + 32t3 + 16ht4 + 16ht5

w7 =
−1 − 32t2 + 16t5 − 512t2t5 − 48t4 + 512t2t4 + 4t6 + 128t2t6 +

32
h t3 + 1024t1t3

32t2 − 3

w8 = −
( 1

h + 32t1
1 + 32t2

)

where t1, t2, t3, t4, t5, t6 and h are from (4.2 |p.57).
It can be directly shown that

• t2 1= 3
32 and t2 1= −1

32 else the subsubdominant eigenvalue, 1
4 , has

multiplicity 4 and

• if 32t2 + 7 = 0 then the eigenvalue 1 has multiplicity greater than

1.

We then insert the appropriate number of leading and trailing zeros to

obtain right eigenvectors for D̃ above. By multiplying by U−1L−1 we derive

right eigenvectors for our subdivision matrix S.

Again using a computer algebra system we can obtain the following 50×1

right eigenvectors for 1
2 and 1

4 such that LiRj = δ (i− j) j = 1, 2, ..., 5
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where the Li are from (4.7 |p.60):

R1 =

[
0, 0, 13 ,

1
3w0, 0, 0,−1

3 ,−
1
3w0, 0, 0,

1
12 ,

1
3w1,− 1

12 ,−
1
3w1,− 1

12 ,−
1
3w1,

1
12 ,

1
3w1, 0, ..., 0

]T

(4.28)

R2 =

[
0, 0, 0, 0, 13 ,

1
3w0, 0, 0,−1

3 ,−
1
3w0,

1
12 ,

1
3w1,

1
12 ,

1
3w1,− 1

12 ,−
1
3w1,− 1

12 ,

−1
3w1, 0, ..., 0

]T

R3 =

[
w2
2w7

, 1
2w7

, 1
4 +

w4
8w7

, w8
4 + w5

8w7
,−1

4 +
w4
8w7

,−w8
4 + w5

8w7
, 1
4 +

w4
8w7

,
w8
4 + w5

8w7
,−1

4 +
w4
8w7

,−w8
4 + w5

8w7
, w6
8w7

, 18 ,
w6
8w7

, 18 ,
w6
8w7

, 18 ,
w6
8w7

, 1
8 , 0, ..., 0

]T

R4 =

[
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1

4
,−

1

12h
,−

1

4
,

1

12h
,
1

4
,−

1

12h
,−

1

4
,

1

12h
, 0, ..., 0

]T

R5 =

[
w2
2w7

, 1
2w7

,−1
4 +

w4
8w7

,−w8
4 + w5

8w7
, 1
4 +

w4
8w7

, w8
4 + w5

8w7
,−1

4 +
w4
8w7

,

−w8
4 + w5

8w7
, 14 +

w4
8w7

, w8
4 + w5

8w7
, w6
8w7

, 18 ,
w6
8w7

, 18 ,
w6
8w7

, 1
8 ,

w6
8w7

, 1
8 , 0, ..., 0

]T

Since right and left eigenvectors that correspond to different eigenvalues

are orthogonal we can multiply both sides of (4.5 |p.59) by each Rj and so

obtain (using (4.9 |p.61) and (4.15 |p.64)) the following representations for

the first and second partial derivatives at a point locally parameterized as(
k(1)
0 , k(2)

0

)
:

(4.29)

Fs

(
k(1)
0 , k(2)

0

)
= α(0)

1 = U0
k0
R1

Ft

(
k(1)
0 , k(2)

0

)
= α(0)

2 = U0
k0
R2

Fss

(
k(1)
0 , k(2)

0

)
= 2α(0)

3 = 2U0
k0
R3

Fst

(
k(1)
0 , k(2)

0

)
= α(0)

4 = U0
k0
R4

Ftt

(
k(1)
0 , k(2)

0

)
= 2α(0)

5 = 2U0
k0
R5

Note that the 19th through 50th components of the above right eigenvectors

equal 0. So define R∗
j as the 18 × 1 column vector whose components are

the first 18 components of Rj (j = 1, 2, ..., 5) . Also define Ũ0
k0

as the 3×18

vector consisting of the first 18 elements of U0
k0
(4.4 |p.58).
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We can then rewrite (4.29) as:

(4.30)

Fs

(
k(1)
0 , k(2)

0

)
= α(0)

1 = Ũ0
k0
R̃∗

1

Ft

(
k(1)
0 , k(2)

0

)
= α(0)

2 = Ũ0
k0
R̃∗

2

Fss

(
k(1)
0 , k(2)

0

)
= 2α(0)

3 = 2Ũ0
k0
R̃∗

3

Fst

(
k(1)
0 , k(2)

0

)
= α(0)

4 = Ũ0
k0
R̃∗

4

Ftt

(
k(1)
0 , k(2)

0

)
= 2α(0)

5 = 2Ũ0
k0
R̃∗

5

Similarly we then obtain from (4.12 |p.62) and (4.16 |p.65) the following

representations for the first and second partial derivatives of a point locally

parameterized as
(
k(1)
0 + i(1)

2n , k
(2)
0 + i(2)

2n

)
on the surface F

(4.31)

Fs

(
k(1)
0 + i(1)

2n , k
(2)
0 + i(2)

2n

)
= 2nα(n)

1 = 2nŨn
k0,iR̃

∗
1

Ft

(
k(1)
0 + i(1)

2n , k
(2)
0 + i(2)

2n

)
= 2nα(n)

2 = 2nŨn
k0,iR̃

∗
2

Fss

(
k(1)
0 + i(1)

2n , k
(2)
0 + i(2)

2n

)
= 22n+1α(n)

3 = 22n+1Ũn
k0,iR̃

∗
3

Fst

(
k(1)
0 + i(1)

2n , k
(2)
0 + i(2)

2n

)
= 22nα(n)

4 = 22nŨn
k0,iR̃

∗
4

Ftt

(
k(1)
0 + i(1)

2n , k
(2)
0 + i(2)

2n

)
= 22n+1α(n)

5 = 22n+1Ũn
k0,iR̃

∗
5

where Ũn
k0,i is the 3× 18 vector consisting of the first 18 elements of Un

k0,i

(4.10 |p.62).
So again we see that once we are working with a specific subdivision

scheme we only need to compute the above right eigenvectors one time, and

thus all that is needed to compute the partial derivatives is the surrounding

control net.

4.5.2. Extraordinary Case

We will obtain a similar representation of the first partial derivatives of the

limit surface at an extraordinary vertex with valence n 1= 4. Therefore, we

need to get the right eigenvectors of S1n (4.21 |p.69) for the subdominant

eigenvalue λ.
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Through direct calculations the following is a right eigenvector of sub-

dominant λ for M̃1 in S̃1n (4.22 |p.70):




1

d2
d3
d4





where

(4.32)

d2 :=
−( 16λ−1

2+2re(z))
(

−8(4λ−1)+128h(4λ−1)(re(z)−1)t1−2−2re(z)
64h(4λ−1)

)

−
64h(4λ−1)t1−1

64h(4λ−1)

t2+[ 16λ−1
16+16re(z) ][1+16t2(re(z)−1)−8λ]

∈ R

d3 :=
1+z−1

16λ−4 /∈ R

d4 :=
(

256t2(1+re(z))
[1+z][−16t2(1+re(z))−{16λ−1}{1+16t2(re(z)−1)−8λ}]

)
×

(
− 1

8h + 2t1 (re (z)− 1)− 2+2re(z)
64h(4λ−1) −

[
t1
t2
− 1

64ht2(4λ−1)

] [
1
8 + 2t2 (re (z)− 1)− λ

])
/∈ R

and where z := e
2πi
n , t1, t2, h are from (4.2 |p.57) and λ is from (4.19 |p.69).

The following will be needed shortly:

re (d3) =
1+re(z)
16λ−4

im (d3) =
−im(z)
16λ−4

re (d4) =
(

1+re(z)
2+2re(z)

)
×
(

256t2(1+re(z))
[−16t2(1+re(z))−{16λ−1}{1+16t2(re(z)−1)−8λ}]

)
×

(
− 1

8h + 2t1 (re (z)− 1)− 2+2re(z)
64h(4λ−1) −

[
t1
t2
− 1

64ht2(4λ−1)

] [
1
8 + 2t2 (re (z)− 1)− λ

])

im (d4) =
(

−im(z)
2+2re(z)

)
×
(

256t2(1+re(z))
[−16t2(1+re(z))−{16λ−1}{1+16t2(re(z)−1)−8λ}]

)
×

(
− 1

8h + 2t1 (re (z)− 1)− 2+2re(z)
64h(4λ−1) −

[
t1
t2
− 1

64ht2(4λ−1)

] [
1
8 + 2t2 (re (z)− 1)− λ

])

Now we will insert 6 leading zeros and 4 (n− 2) trailing zeros to get a

right eigenvector of λ for S̃1n. Then multiplying by Ũ−1L−1 we get the

following 4n+ 2 right eigenvector of λ for S1n (4.21 |p.69):
[
0, 0, 1, d2, z, d2z, z

2, d2z
2, ..., zn−1, d2z

n−1, d3, d4, d3z, d4z, d3z
2, d4z

2, ..., d3z
n−1, d4z

n−1
]T
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Separating the real and imaginary parts we have 2 real right eigenvectors

of λ:

R̃1 =





0, 0, 1, d2, cos
(
2π
n

)
, d2 cos

(
2π
n

)
, ..., cos

(
2π(n−1)

n

)
, d2 cos

(
2π(n−1)

n

)
, re (d3) , re (d4) ,

re (d3) cos
(
2π
n

)
+ im (d3) sin

(
2π
n

)
, re (d4) cos

(
2π
n

)
+ im (d4) sin

(
2π
n

)
, ...,

re (d3) cos
(

2π(n−1)
n

)
+ im (d3) sin

(
2π(n−1)

n

)
,

re (d4) cos
(

2π(n−1)
n

)
+ im (d4) sin

(
2π(n−1)

n

)





T

R̃2 =





0, 0, 0, 0, sin
(
2π
n

)
, d2 sin

(
2π
n

)
, ..., sin

(
2π(n−1)

n

)
, d2 sin

(
2π(n−1)

n

)
, im (d3) , im (d4) ,

im (d3) cos
(
2π
n

)
− re (d3) sin

(
2π
n

)
, im (d4) cos

(
2π
n

)
− re (d4) sin

(
2π
n

)
, ...,

im (d3) cos
(

2π(n−1)
n

)
− re (d3) sin

(
2π(n−1)

n

)
,

im (d4) cos
(

2π(n−1)
n

)
− re (d4) sin

(
2π(n−1)

n

)





T

Through direct calculation using a computer algebra system we obtain

the following 2 right eigenvectors
[
R̂1, R̂2

]
such that for i, j = 1, 2 : L̃iR̂j =

δ (i− j) where L̃i is from (4.23 |p.71) for

R̂1 =
2β

n · γ
R̃1 +

2α

n · γ
R̃2(4.33)

R̂2 =
2α

n · γ
R̃1 −

2β

n · γ
R̃2

and where

γ := −1− 2re (e3) re (d3) + 2im (e3) im (d3)

− [re (e3) re (d3)]
2 − [im (e3) im (d3)]

2 − [re (e3) im (d3)]
2 − [im (e3) re (d3)]

2

β := −1− re (e3) re (d3) + im (e3) im (d3)

α := −re (e3) im (d3)− im (e3) re (d3)

So by Proposition 4.5 on p. 75 and by (4.24 |p.71) we now have a represen-

tation of the first partial derivatives of the limit surface at an extraordinary

vertex in terms of the surrounding block vertices:

Fs (0, 0) = U0R̂1(4.34)

Ft (0, 0) = U0R̂2

Proposition 4.6. Suppose that an interpolatory quadrilateral scheme is

convergent with limiting surface F that is C1 at points corresponding to
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extraordinary vertices. Let F (0, 0) be such a point. Assume that λ =
3
8 +

1
8 (z + z−1). Then for R̂1, R̂2 in (4.33 |p.82)

Fs (0, 0) = U0R̂1, Ft (0, 0) = U0R̂2

4.6. Specific Template

Let’s now apply these formulas to a specific 1-ring quadrilateral interpo-

latory scheme that was developed by Chui/Jiang in [CJ05]. The scheme

is given by (4.2 |p.57) where

[t1, t2, t3, t4, t5, t6] =
1

256
[5,−1,−30,−9,−33,−86]

h = −1

These values result in Φ being in W 3.27720.

Plugging these values into our formulas for the right eigenvectors (reg-

ular case) (4.28 |p.79) we get:

R1 =

[
0, 0,

1

3
,
19

165
, 0, 0,−

1

3
,−

19

165
, 0, 0,

1

12
,
17

660
,−

1

12
,−

17

660
,−

1

12
,−

17

660
,
1

12
,
17

660

]T

R2 =

[
0, 0, 0, 0,

1

3
,
19

165
, 0, 0,−

1

3
,−

19

165
,
1

12
,
17

660
,
1

12
,
17

660
,−

1

12
,−

17

660
,−

1

12
,−

17

660

]T

R3 =

[
−3975

764 ,
200
191 ,

941
764 ,

2295
5348 ,

559
764 ,

1149
5348 ,

941
764 ,

2295
5348 ,

559
764 ,

1149
5348 ,

975
3056 ,

309
3056 ,

975
3056 ,

309
3056 ,

975
3056 ,

309
3056 ,

975
3056 ,

309
3056

]T

R4 =

[
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1

4
,
1

12
,−

1

4
,−

1

12
,
1

4
,
1

12
,−

1

4
,−

1

12

]T

R5 =

[
−3975

764 ,
200
191 ,

559
764 ,

1149
5348 ,

941
764 ,

2295
5348 ,

559
764 ,

1149
5348 ,

941
764 ,

2295
5348 ,

975
3056 ,

309
3056 ,

975
3056 ,

309
3056 ,

975
3056 ,

309
3056 ,

975
3056 ,

309
3056

]T

4.6.1. Corresponding specific derivative formulas

Note that for any particular scheme, the above calculations only need to be

done once. If we insert these values into either (4.30 |p.80) or (4.31 |p.80)
then we get the first and second partial derivatives as linear combinations

of the block vectors that surround the regular vertex.
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Figure 4.5. Partial derivatives in interpolatory quadrilateral
scheme. Note the symmetry around the central axis. Observe
the symmetry between Fs and Ft

The following charts (Figures 4.5, 4.6 and 4.7) visually show the sym-

metry that these formulas have:

4.6.2. “Visual C1” for extraordinary case

To accompany this specific regular template, we propose the following tem-

plate for an extraordinary vertex. Referring to the matrices in (4.17 |p.66),
let

Wn :=

[
1 β

4

[
4t3 + h

(
−1

2 + 8t4 + 8t5 + 2t6
)]

0 β
4 (t6)

]
W := β

[
0 −2t3 + h

(
1
8 − 2t4 − 2t5 − 1

2t6
)

0 t5

](4.35)

w := β

[
0 t3
0 t4

]

where β = 4 if n = 3 else β = 16
n . Note that if n = 4 then these revert to

the matrices for the regular mask.

This template appears satisfactory for three reasons. The first is that

the leading eigenvalues of the subdivision matrix S1n (4.21 |p.69) satisfy
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5

8

6

3

7

s

t

( 975
1528 , 309

1528 ) · v
k0+

(

−1
−1

)

(−3975
382 , 400

191 ) · vk0

( 975
1528 , 309

1528 ) · v
k0+

(

1
1

)

( 975
1528 , 309

1528 ) · v
k0+

(

1
−1

)

Ftt

( 559
382 , 1149

2674 ) · v
k0+

(

1
0

)

( 941
382 , 2295

2674 ) · v
k0+

(

0
1

)

( 941
382 , 2295

2674 ) · v
k0+

(

0
−1

)

( 975
1528 , 309

1528 ) · v
k0+

(

−1
1

)

( 559
382 , 1149

2674 ) · v
k0+

(

−1
0

)

Figure 4.6. Second partial derivatives Fss and Ftt in inter-
polatory quadrilateral scheme. Note the symmetry around
the central axis. Observe the symmetry between Fss and Ftt
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2

4

5

8

6

3

7

s

t

( −1
4 ,

−1
12 ) · v

k0+
(

1
−1

)

(0, 0) · v
k0+

(

0
1

)

(0, 0) · v
k0+

(

0
−1

)

(0, 0) · vk0

Fst

(0, 0) · v
k0+

(

1
0

)

(0, 0) · v
k0+

(

−1
0

)

( 1
4 , 1

12 ) · v
k0+

(

1
1

)

(−1
4 ,

−1
12 ) · v

k0+
(

−1
1

)

( 1
4
, 1
12

) · v
k0+

(

−1
−1

)

Figure 4.7. Note the extremely simple form of Fst. Also sym-
metric around central vertex.
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the conditions

(4.36) λ0 = 1 λ1 = λ2 |λj| < |λ1| j = 3, 4, ...

for valences 3 to (at least) 16. See Appendix A for a listing of the eigen-

values for each of these valences.

The second is the appearance of the 2-D meshes formed by performing 4

subdivisions on an initial control set of points in R2 whose coordinates are

the two left eigenvectors of the subdominant eigenvalue λ. These meshes

were first introduced in [Rei95] and were seen again in [CJ08]. The meshes

in Figures 9.1 through 9.3 shown in Appendix B suggest the regularity and

injectivity of the characteristic map.

The background for the above second reason is that in [Rei95] Reif in-

troduced sufficient conditions for C1 continuity at an extraordinary vertex.

Namely, if the leading eigenvalues satisfied (4.36 |p.86) and if the charac-

teristic map is regular and injective then almost all surfaces generated by

the subdivision are C1 continuous. Briefly, the characteristic map is the

map φ : U → R2 that is the subdivision surface generated from U (a 2-D

initial control net whose coordinates are the two left eigenvectors of the

subdominant eigenvalue λ).

The third reason is that actual subdivision surfaces generated using the

templates in (4.17 |p.66) and (4.35 |p.84) appear good. See Figures 4.9 and

4.10.

From (4.32 |p.81) and (4.33 |p.82) we can derive specific right eigenvec-

tors R̂1, R̂2 of λ by using the values of tj and h from the regular case. For

valence = 5 we obtain the following:

R̂1 =




0, 0, .2749, .0934, .08492, .02887,−.2224,−.0756,−.2224,−.0756, .08492,

.02887, .07497, .02305,−.02864,−.008798,−.09266,−.02850,−.02864,

−.008804, .0794, .02304





T

R̂2 =

[
0, 0, 0, 0, .2614, .0888, .1616, .05492,−.1616,−.05492,−.2614,−.08888, .05447,

.01675, .08816, .02711, 0, 0,−.08816,−.02710,−.05447,−.01675

]T
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4.6. SPECIFIC TEMPLATE

If we insert these values into (4.34 |p.82) then we get the partial deriva-

tives as linear combinations of the block vectors that surround the extraor-

dinary vertex.

The following diagrams [Figure 4.8] visually demonstrate these formulas:

u0
2 · (.08492, .02887)

Fs

u0
0 · (0, 0) u0

1 · (.2749, .0934)

u0
6 · (.07497, .02305)u0

3 · (−.2224,−.0756)

u0
4 · (−.2224,−.0756)

u0
9 · (−.02864,−.008804)

u0
5 · (.08492, .02887)

u0
10 · (.07497, .02304)

u0
7 · (−.02864,−.008798)

u0
8 · (−.09266,−.02850)

(a)

u0
2 · (.2614, .0888)

u0
0 · (0, 0) u0

1 · (0, 0)

Ft

u0
6 · (.05447, .01675)

u0
7 · (.08816, .02711)

u0
3 · (.1616, .05492)

u0
8 · (0, 0)

u0
4 · (−.1616,−.05492)

u0
9 · (−.08816,−.02710)

u0
5 · (−.2614,−.0888)

u0
10 · (−.05447,−.01675)

(b)

Figure 4.8. The above diagrams represents Fs and Ft at a
vertex of valence 5 for our specific interpolatory quadrilateral
scheme.
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4.6. SPECIFIC TEMPLATE

Figure 4.9. Figure created using our interpolating quadrilat-
eral subdivision scheme There are several extraordinary ver-
tices of valence 3 and 7.

Figure 4.10. Another view of the figure created with the in-
terpolating quadrilateral scheme
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5.1. ADDITIONAL ASSUMPTIONS 89

CHAPTER 5

Derivative Formulas for Approximating Triangular

and Approximating Quadrilateral Schemes

With approximating schemes initial and subsequent control vertices do

not lay on the limit surface F . Instead these vertices converge to the limit

surface. In other words, for vm
k = (vmk , smk ) generated after m subdivisions

or for vn+m
k =

(
vn+m
k , sn+m

k

)
generated after n+m subdivisions by the local

averaging rule (2.7 |p.13) we have

lim
m→∞

sup
k

|vm2mk − F (k)| = 0(5.1)

lim
m→∞

sup
k

∣∣∣∣v
n+m
2n+mk+2mi

− F

(
k+

i

2n

)∣∣∣∣ = 0

A benefit of approximating schemes is that the quality of the surface

produced is generally better than that produced by interpolatory schemes

[Zor00b]. A drawback is that vertices are not points on the limit surface

and thus we have the limit above (5.1) instead of the following equality that

we have for the interpolatory case:

vm2mk = F (k) m = 0, 1, 2, ... k ∈ Z
2

As a result we require an additional assumption so that we can derive

the partial derivatives as for interpolatory schemes.

5.1. Additional Assumptions

We will assume that the cascade algorithm converges in C1 (R2) and in

C2 (R2) . Basically we are proposing to extend Jiang/Smith’s 1-D work on

deriving formulas of first and second derivatives for approximating schemes

for curves to the 2-D surface case. (See [JS09].) B-splines were used

there. We will be using box-splines.



5.1. ADDITIONAL ASSUMPTIONS

The cascade operator QP f for some nontrivial 2×1 vector of compactly

supported functions Φ0 ∈ Ck (R2) and a refinement mask P is defined as

QP Φ0 :=
∑

k∈Z2

PkΦ0 (2 ·−k)

The iteration scheme Φm := QP Φm−1 is called a cascade algorithm.

Note that Φm = Qm
P Φ0. Also the refinable Φ associated with P is a fixed

point for the cascade algorithm (i.e. Φ := QP Φ). In addition note that if

the cascade algorithm converges then the limit function is Φ.

We also have the following relation from [Jia02]:

(5.2)
∑

k

v0
k (Q

m
P Φ0) (x− k) =

∑

k

vm
k Φ0 (2

mx− k)

From [JJL02] we say that the cascade algorithm converges in Ck (R2)

if

(5.3) lim
m→∞

∑

|µ|≤k

‖Dµ (Qm
P Φ0)−DµΦ‖∞ = 0 for |µ| ≤ k

holds for any Φ0 ∈ Ck (R2) where Φ0 is compactly supported and has accu-

racy order of at least k + 1

Note that (5.3) implies

lim
m→∞

‖Dµ (Qm
P Φ0)−DµΦ‖∞ = 0 for |µ| ≤ k

5.1.1. Characterization of Ck Convergence

Before we proceed further, we wish to give the characterization of Ck con-

vergence provided by Chen, Jia and Riemenschneider in [CJR02]. Here is

their theorem:

The subdivision scheme associated with a mask a (r × r

matrices) and a (s × s) dilation matrix M converges in

Ck (Rs) if and only if (1) Vk is invariant under Aε for

every ε ∈ E and (2) ρ∞ ({Aε|V : ε ∈ E}) < m−k/s

In what follows we will define (as in [CJR02]) the terms in the above

theorem.
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5.1. ADDITIONAL ASSUMPTIONS

The matrix M is the same as matrix A in (1.1 |p.4). In their paper,

M is also assumed to be isotropic which means that ∃Λ (s × s invertible

matrix) such that ΛMΛ−1 = diag (σ1, ..., σs) where |σ1| = |σ2| = ... |σs| :=
spectral radius of M . Note that m := |detM |.

E is the complete set of representations of the cosets of Zs/MZs. We

include 0. There are m elements in E.

Aε is a linear operator on (00 (Zs))r [finitely supported r × 1 sequences

on Zs] where

Aεv (α) :=
∑

β∈Zs

a (ε+Mα− β) v (β) α ∈ Z
s and v ∈ (00 (Z

s))r

Define Uk as the linear span of uµ (|µ| ≤ k) where

uµ (α) :=
∑

ν≤µ

(
µ

ν

)
(Λα)ν Bµ−ν α ∈ Z

s

where we have the following recursive definition

Bµ :=
∑

ν≤µ

(
µ

ν

)
σµ−νBµ−νqν (−iD)A (0)

where

qν (x) := (Λx)ν x ∈ R
s

A (ω) :=
1

|detM |
∑

α∈Zs

a (α) e−iα·ω

B0 := left eigenvector of A (0) corresponding to eigenvalue 1

The linear space Vk is defined using Uk :

Vk :=
{
v ∈ (00 (Z

s))r×1 : 〈u, v〉 = 0
}

∀u ∈ Uk

where for u ∈ (0 (Zs))1×r , v ∈ (00 (Zs))r×1

〈u, v〉 :=
∑

α∈Zs

u (−α) v (α)

We now obtain V (a subspace of Vk) defined as:

V := Vk ∩ (0 (K))r
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5.2. TEMPLATES WITH SUM RULE ORDER

where (0 (K))r is the linear space of r × 1 sequences supported on the

following set K:

K ⊂ Z
s :=

n=∞∑

n=1

M−nG

where

G := (supp a ∪ {0})−E + [−1, 1]s

Regarding the second condition of the theorem in [CJR02], if A is a fi-

nite multiset of linear operators on V thenAn := {(A1, A2, ..., An) : A1, A2, ..., An ∈ A}
We define

‖An‖∞ := max {‖A1A2...An‖∞ : (A1, A2, ..., An) ∈ An}

where for any m× n matrix P

‖P‖∞ = max
i

(
∑

j

|pij |

)
= the maximum of the row sums (using absolute values)

Now we can define ρ∞ (A) :

ρ∞ (A) := lim
n→∞

‖An‖1/n∞

So for that second condition of the theorem, we use the finite multiset

{Aε|V : ε ∈ E} in place of A used above in the definitions.

5.2. Templates with Sum Rule Order

5.2.1. Triangular Scheme

We again will derive as much information about the templates {Pk}k and

the 1 × 2 constant vectors lα0 introduced in (2.14). This time we will no

longer have the interpolatory format given in (3.1) and (3.2). As a result

we will have more free variables. The number of free variables increases

from 4 to 6.
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5.2. TEMPLATES WITH SUM RULE ORDER

Through direct calculation using the Sum rules we can determine the

following:

l(1,0)0 = l(0,1)0 = [0, 0](5.4)

l(2,0)0 = l(0,2)0 = [0, h]

l(1,1)0 =

[
0,

h

2

]
where h 1= 0

As indicated in Chapter 2, l(0,0)0 = [1, 0].

Also per direct calculation using the Sum rules we can determine:

P0,0 =

(
1 + 6h

(
3
2 t6 +

1
4 t5

)
h
(
−3

8 + 9t3 +
3
2t4

)

t5 t4

)
D =

(
−h

(
3
2t6 +

1
4t5

)
h
(

1
16 −

3
2t3 −

1
4t4

)

t6 t3

)

B =

(
3
8 0

− 1
8h − t1

1
8 − t2

)

C =

(
1
8 0

t1 t2

)(5.5)

where tj for j = 1, ..., 6 are “free” variables. Using the techniques in

[JO03], the values of the tj will determine the Sobolev smoothness of the

refinable function Φ (2.5 |p.12). See section 2.4.

5.2.2. Quadrilateral Scheme

Again we will have more free variables than for the interpolatory quad

scheme. The number of free variables increases from 6 to 10.

Through direct calculation using the Sum rules we can determine the

following:

l(1,0)0 = l(0,1)0 = [0, 0](5.6)

l(2,0)0 = l(0,2)0 = [0, h]

l(1,1)0 = [0, 0] where h 1= 0

As indicated in Chapter 2 l(0,0)0 = [1, 0].
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Through direct calculation using the Sum rules we determine:

R0,0 =

(
1− 4t9 − 4t10 4t3 + h

(
−1

2 + 8t4 + 8t5 + 2t6
)

− 4
ht10 −

2
ht9 − 4t8 − 4t7 t6

)(5.7)

L =

(
t9 −t3 − 1

4

(
4t3 + h

(
−1

2 + 8t4 + 8t5 + 2t6
))

t7 t5

)

N =

(
t10 t3
t8 t4

)

J =

(
3
8 0

− 1
8h − 2t1

1
8 − 2t2

)

K =

(
1
4 0

− 1
16h

1
16

)

M =

(
1
16 0

t1 t2

)

where tj for j = 1, ..., 10 are “free” variables. Using the techniques in

[JO03], the values of the tj will determine the Sobolev smoothness of the

refinable function Φ (2.5 |p.12). See section 2.4.

5.3. Development of general formulas (Regular case: Triangular

and Quadrilateral)

Here we will find representation of the first and second partial deriva-

tives of the limiting surface in terms of limits of linear combinations of

surrounding vertices as the number of subdivisions goes to ∞. To do this

we will be using box splines. So we will first introduce what box splines

are.

5.3.1. Box Splines

As in [CDV10] define the following set of direction vectors in R2 :

(5.8) Dn :=




e1, ..., e1︸ ︷︷ ︸
n1

, e2, ..., e2︸ ︷︷ ︸
n2

, e3, ..., e3︸ ︷︷ ︸
n3

, e4, ..., e4︸ ︷︷ ︸
n4




 ⊂ Z
2\ {0}

where

e1 := (1, 0)T , e2 := (0, 1)T , e3 := e1+e2 = (1, 1)T , e4 := e1−e2 = (1,−1)T

and where n1, n2 are positive, n3, n4 may be zero and n := n1+n2+n3+n4.

Now relabel the direction vectors in (5.8) with superscripts and define

(5.9) Dm :=
{
e1, e2, ..., em

}
⊂ Dn above
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where

e1 := e1(5.10)

e2 := e2

em ∈ {e1, e2, e3, e4} 2 ≤ m ≤ n

Now define the box spline M (x|D2):

M (x|D2) := χ[0,1)2 (x) , x ∈ R
2

and similar to [Chu98] define the box spline M (x|Dm) inductively for

m = 3, ...n :

M (x|Dm) :=

∫ 1
2

− 1
2

M (x−tem|Dm−1) dt x ∈ R
2

For convenience of notation, write

Mn1n2n3n4 := M (·|Dn)

Mn1n2 := Mn1n200 if n3 = n4 = 0

Mn1n2n3 := Mn1n2n30 if n4 = 0

where Dn is from (5.8 |p.94) or (5.9 |p.94).
As shown in [Chu98] the directional derivative of a box spline can be

given in terms of a forward difference:

(5.11)

DejM (·|Dn) = 6ejM
(
·|Dn\

{
ej
})

for any j such that
〈
Dn\

{
ej
}〉

= R
2

where Dn is given in (5.9 |p.94), ej is given in (5.10 |p.95) and where

6yf := f
(
·+

y

2

)
− f

(
·−

y

2

)

Now let 62 be the 2-directional mesh with vertices in Z2 as given in

Figure 4.1 on p. 57 and let 63 be the 3-directional mesh over Z2 as given

in Figure 3.2 on p.27.

Define

n∗ := min {n1 + n2 + n3, n1 + n2 + n4, n1 + n3 + n4, n2 + n3 + n4}− 2

We have the following facts from [CDV10]:
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• M (x|Dn) ∈ Cn∗
(R2)

• The restriction of Mn1n2 on each square of 62 is in π2
n1+n2−2

• The restriction of Mn1n2n3 on each triangle of 63 is in π2
n1+n2+n3−2

• The closure of the support of M (x|Dn) is: [Dn] =
n∑

i=1
tiei − 1

2 ≤

ti ≤ 1
2

5.3.2. Partial Derivatives as Limits of Surrounding Vertices

With the background given above we can now proceed to develop a rep-

resentation of partial derivative of the limiting surface as a limit of linear

combinations of surrounding vertices. The proofs are provided in Appendix

C.

Theorem 5.1. Assume that the subdivision scheme is an approximating

scheme and that the cascade algorithm given by Φm := QP Φm−1 converges

in C1 (R) . Then for k0 ∈ Z2

D1F (k0) = lim
m→∞

2m
{
1

8

(
3vm

2mk0+(1,0)T
− 3vm

2mk0+(−1,0)T
+ vm

2mk0+(1,1)T

−vm
2mk0+(0,1)T

+ vm
2mk0+(0,−1)T

− vm
2mk0+(−1,−1)T

)}

D2F (k0) = lim
m→∞

2m
{
1

8

(
vm
2mk0+(1,1)T

− vm
2mk0+(1,0)T

+ vm
2mk0+(−1,0)T

−vm
2mk0+(−1,−1)T

+ 3vm
2mk0+(0,1)T

− 3vm
2mk0+(0,−1)T

)}

where F (·) :=
∑

k∈Z2

v0
kΦ (·− k) is the limiting surface for the subdivision

scheme and Φ is from (2.5 |p.12).

Corollary 5.1. Assume that the subdivision scheme is an approximating

scheme and that the cascade algorithm given by Φm := QP Φm−1 converges
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in C1 (R) . Then for k0, i ∈ Z2, n ∈ Z+

D1F

(
k0 +

i

2n

)
= 2n lim

m→∞
2m






1

8





3vn+m
2n+mk0+2mi+(1,0)T

− 3vn+m
2n+mk0+2mi+(−1,0)T

+vn+m
2n+mk0+2mi+(1,1)T

− vn+m
2n+mk0+2mi+(0,1)T

+vn+m
2n+mk0+2mi+(0,−1)T

− vn+m
2n+mk0+2mi+(−1,−1)T










D2F

(
k0 +

i

2n

)
= 2n lim

m→∞
2m






1

8





vn+m
2n+mk0+2mi+(1,1)T

− vn+m
2n+mk0+2mi+(1,0)T

+vn+m
2n+mk0+2mi+(−1,0)T

− vn+m
2n+mk0+2mi+(−1,−1)T

+3vn+m
2n+mk0+2mi+(0,1)T

− 3vn+m
2n+mk0+2mi+(0,−1)T










where F (·) :=
∑

k∈Z2

v0
kΦ (·− k) is the limiting surface for the subdivision

scheme and Φ is from (2.5 |p.12).
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Theorem 5.2. Assume that the subdivision scheme is an approximating

scheme and that the cascade algorithm given by Φm := QP Φm−1 converges

in C2 (R) . Then for k0 ∈ Z2

D2
1F (k0) = lim

m→∞
22m






1

6





−8vm
2mk0+(0,0)T

+ 4vm
2mk0+(1,0)T

+ 4vm
2mk0+(−1,0)T

−2vm
2mk0+(1,1)T

+ vm
2mk0+(2,1)T

+ vm
2mk0+(0,1)T

−2vm
2mk0+(−1,−1)T

+ vm
2mk0+(0,−1)T

+ vm
2mk0+(−2,−1)T










D2D1F (k0) = lim
m→∞

22m






1

2





2vm
2mk0+(0,0)T

− vm
2mk0+(1,0)T

− vm
2mk0+(−1,0)T

+vm
2mk0+(1,1)T

− vm
2mk0+(0,1)T

+vm
2mk0+(−1,−1)T

− vm
2mk0+(0,−1)T










D2
2F (k0) = lim

m→∞
22m






1

6





−8vm
2mk0+(0,0)T

+ 4vm
2mk0+(0,1)T

+ 4vm
2mk0+(0,−1)T

−2vm
2mk0+(1,1)T

+ vm
2mk0+(1,2)T

+ vm
2mk0+(1,0)T

−2vm
2mk0+(−1,−1)T

+ vm
2mk0+(−1,0)T

+ vm
2mk0+(−1,−2)T










where F (·) :=
∑

k∈Z2

v0
kΦ (·− k) is the limiting surface for the subdivision

scheme and Φ is from (2.5 |p.12).
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Corollary 5.2. Assume that the subdivision scheme is an approximating

scheme and that the cascade algorithm given by Φm := QP Φm−1 converges

in C2 (R) . Then for k0, i ∈ Z2, n ∈ Z+

D2
1F

(
k0 +

i

2n

)
= 22n lim

m→∞
22m






1

6





−8vn+m
2n+mk0+2mi+(0,0)T

+ 4vn+m
2n+mk0+(1,0)T

+4vn+m
2n+mk0+2mi+(−1,0)T

− 2vn+m
2n+mk0+2mi+(1,1)T

+vn+m
2n+mk0+2mi+(2,1)T

+ vn+m
2n+mk0+2mi+(0,1)T

−2vn+m
2n+mk0+2mi+(−1,−1)T

+ vn+m
2n+mk0+2mi+(0,−1)T

+vn+m
2n+mk0+2mi+(−2,−1)T










D2D1F

(
k0 +

i

2n

)
= 22n lim

m→∞
22m






1

2





2vn+m
2n+mk0+2mi+(0,0)T

− vn+m
2n+mk0+2mi+(1,0)T

−vn+m
2n+mk0+2mi+(−1,0)T

+ vn+m
2n+mk0+2mi+(1,1)T

−vn+m
2n+mk0+2mi+(0,1)T

+ vn+m
2n+mk0+2mi+(−1,−1)T

−vn+m
2n+mk0+2mi+(0,−1)T










D2
2F

(
k0 +

i

2n

)
= 22n lim

m→∞
22m






1

6





−8vn+m
2n+mk0+2mi+(0,0)T

+ 4vn+m
2n+mk0+2mi+(0,1)T

+4vn+m
2n+mk0+2mi+(0,−1)T

− 2vn+m
2n+mk0+2mi+(1,1)T

+vn+m
2n+mk0+2mi+(1,2)T

+ vn+m
2n+mk0+2mi+(1,0)T

−2vn+m
2n+mk0+2mi+(−1,−1)T

+ vn+m
2n+mk0+2mi+(−1,0)T

+vn+m
2n+mk0+2mi+(−1,−2)T










where F (·) :=
∑

k∈Z2

v0
kΦ (·− k) is the limiting surface for the subdivision

scheme and Φ is from (2.5 |p.12).

Proof. Proof follows the same method as Corollary 5.1. !

5.3.3. Partial Derivatives as Linear Combination of Eigenvectors

We will now get a representation of the partial derivatives as linear com-

binations of left eigenvectors as we had done for the interpolating scheme.

5.3.3.1. Triangular Approximating Scheme. Our sum rule assump-

tion (2.14 |p.15) provides us with specific left eigenvectors of our subdivision
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matrix for eigenvalues 1, 1
2 and 1

4 [see(2.23 |p.19),(2.25 |p.20), (5.4 |p.93)].
So for a 1-ring neighborhood around a regular vertex v0

k0
where k0 ∈ Z2 we

have the following representation of this 3× 14 ring of vectors:
[

v0k0
, s0k0

, v0
k0+(1,0)T

, s0
k0+(1,0)T

, v0
k0+(1,1)T

, s0
k0+(1,1)T

,

..., v0
k0+(−1,−1)T

, s0
k0+(−1,−1)T

, v0
k0+(0,−1)T

, s0
k0+(0,−1)T

]
= α(0)

0 L0+α(0)
1 L1+α(0)

2 L2+
13∑

i=3

α(0)
i Li

where we have the following 3× 14 (possibly generalized) linearly indepen-

dent left eigenvectors of a 14× 14 subdivision matrix S:

L0 = [1, 0, 1, 0, ..., 1, 0] for eigenvalue 1

L1 = [0, 0, 1, 0, 1, 0, 0, 0, ...,−1, 0, 0, 0] for eigenvalue
1

2

L2 = [0, 0, 0, 0, 1, 0, 1, 0, ...,−1, 0,−1, 0] for eigenvalue
1

2

Li = left eigenvectors for eigenvalues γi where |γi| <
1

2

Let J be the 14× 2 matrix defined as

J :=

[
0 0 3

8 0 1
8 0 −1

8 0 −3
8 0 −1

8 0 1
8 0

0 0 −1
8 0 1

8 0 3
8 0 1

8 0 −1
8 0 −3

8 0

]T

By direct calculation:




v0k0
, s0k0

, v0
k0+(1,0)T

, s0
k0+(1,0)T

,

v0
k0+(1,1)T

, s0
k0+(1,1)T

, ..., v0
k0+(−1,−1)T

, s0
k0+(−1,−1)T

,

v0
k0+(0,−1)T

, s0
k0+(0,−1)T



 J =




α(0)
0 L0 + α(0)

1 L1

+α(0)
2 L2 +

13∑
i=3

α(0)
i Li



 J

= α(0)
0 L0J + α(0)

1 L1J + α(0)
2 L2J

+
13∑

i=3

α(0)
i LiJ

= α(0)
0 [0, 0] + α(0)

1 [1, 0] + α(0)
2 [0, 1]

+
13∑

i=3

α(0)
i LiJ
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After m subdivisions we have:




vm2mk0
, sm2mk0

, vm
2mk0+(1,0)T

, sm
2mk0+(1,0)T

,

vm
2mk0+(1,1)T

, sm
2mk0+(1,1)T ,...,

vm
2mk0+(−1,−1)T

, sm
2mk0+(−1,−1)T

,

vm
2mk0+(0,−1)T

, sm
2mk0+(0,−1)T




J =




α(0)
0 L0 + 2−mα(0)

1 L1

+2−mα(0)
2 L2 +

13∑
i=3

γm
i α(0)

i Li



 J

= α(0)
0 L0J + 2−mα(0)

1 L1J + 2−mα(0)
2 L2J

+
13∑

i=3

γm
i α(0)

i LiJ

= α(0)
0 [0, 0] + 2−mα(0)

1 [1, 0] + 2−mα(0)
2 [0, 1]

+
13∑

i=3

γm
i α(0)

i LiJ(5.12)

Now note that





vm2mk0
, sm2mk0

, vm
2mk0+(1,0)T

, sm
2mk0+(1,0)T

,

vm
2mk0+(1,1)T

, sm
2mk0+(1,1)T ,...,

vm
2mk0+(−1,−1)T

, sm
2mk0+(−1,−1)T

,

vm
2mk0+(0,−1)T

, sm
2mk0+(0,−1)T




J =





3
8v

m
2mk0+(1,0)T

+ 1
8v

m
2mk0+(1,1)T

−1
8v

m
2mk0+(0,1)T

− 3
8v

m
2mk0+(−1,0)T

−1
8v

m
2mk0+(−1,−1)T

+ 1
8v

m
2mk0+(0,−1)T

−1
8v

m
2mk0+(1,0)T

+ 1
8v

m
2mk0+(1,1)T

+3
8v

m
2mk0+(0,1)T

+ 1
8v

m
2mk0+(−1,0)T

−1
8v

m
2mk0+(−1,−1)T

− 3
8v

m
2mk0+(0,−1)T





T
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Hence taking the limit as the number of subdivisions goes to infinity:

lim
m→∞

2m





vm2mk0
, sm2mk0

,

vm
2mk0+(1,0)T

, sm
2mk0+(1,0)T

,

vm
2mk0+(1,1)T

, sm
2mk0+(1,1)T ,...,

vm
2mk0+(−1,−1)T

, sm
2mk0+(−1,−1)T

,

vm
2mk0+(0,−1)T

, sm
2mk0+(0,−1)T





J = lim
m→∞

2m





3
8v

m
2mk0+(1,0)T

+ 1
8v

m
2mk0+(1,1)T

−1
8v

m
2mk0+(0,1)T

− 3
8v

m
2mk0+(−1,0)T

−1
8v

m
2mk0+(−1,−1)T

+ 1
8v

m
2mk0+(0,−1)T

−1
8v

m
2mk0+(1,0)T

+ 1
8v

m
2mk0+(1,1)T

+3
8v

m
2mk0+(0,1)T

+ 1
8v

m
2mk0+(−1,0)T

−1
8v

m
2mk0+(−1,−1)T

− 3
8v

m
2mk0+(0,−1)T





T

= α(0)
1 [1, 0] + α(0)

2 [0, 1]

= D1F (k0) [1, 0] +D2F (k0) [0, 1]

= Fs (k0) [1, 0] + Ft (k0) [0, 1]

by Theorem 5.1 on p.96 and by (5.12).

And so by linear independence:

Fs (k0) = α(0)
1

Ft (k0) = α(0)
2

For the second partial derivatives we will need to go to a 2-ring neigh-

borhood around regular vertex v0
k0

where k0 ∈ Z2 and where this 3×38 ring

of vectors Um
k0

is defined the same way as in the interpolatory triangular

scheme (3.7 |p.26).
U0

k0
can be written as a linear combination of left eigenvectors of the

subdivision matrix:

(5.13) U0
k0

= α(0)
0 L0+α(0)

1 L1+α(0)
2 L2+α(0)

3 L3+α(0)
4 L4+α(0)

5 L5+
37∑

j=6

α(0)
j Lj

From (5.4 |p.93) we see that Lj for j = 0, 1, , , , .5 are the same as the

Lj for j = 0, 1, , , , .5 (3.12 |p.28) in the interpolatory triangular scheme.

Let J∗ be the 38× 3 matrix defined as

J∗ :=




J1

J2

J3




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where we have

14× 3 matrix J1 :=




−4

3 0 2
3 0 −1

3 0 1
6 0 2

3 0 −1
3 0 1

6 0

−8
3 0 −2

3 0 4
3 0 −2

3 0 −2
3 0 4

3 0 −2
3 0

−8
3 0 −2

3 0 1
3 0 5

6 0 −2
3 0 1

3 0 5
6 0





T

12× 3 zero matrix := J2

12× 3 matrix J3 :=





1
6 0 0 0 0 0 1

6 0 0 0 0 0
2
3 0 2

3 0 0 0 2
3 0 2

3 0 0 0
1
6 0 2

3 0 0 0 1
6 0 2

3 0 0 0





T

By direct calculation we obtain the following representation of the 3×3

matrix U0
k0
J∗:

U0
k0
J∗ =

{
α(0)
0 L0 + α(0)

1 L1 + α(0)
2 L2 + α(0)

3 L3 + α(0)
4 L4 + α(0)

5 L5 +
37∑

j=6

α(0)
j Lj

}
J∗

= 2α(0)
3

[
1 4 1

]
+ 2α(0)

4

[
0 4 1

]
+ 2α(0)

5

[
0 4 4

]
+

{
37∑

j=6

α(0)
j Lj

}

J∗

After m subdivisions we have:

Um
k0
J∗ =






α(0)
0 L0 + 2−m α(0)

1 L1 + 2−m α(0)
2 L2

+2−2m α(0)
3 L3 + 2−2m α(0)

4 L4 + 2−2m α(0)
5 L5

+
∑37

j=6 γ
m α(0)

j Lj





J∗

= 2 · 2−2m α(0)
3

[
1 4 1

]
+ 2 · 2−2m α(0)

4

[
0 4 1

]
+ 2 · 2−2m α(0)

5

[
0 4 4

]

+

{
37∑

j=6

γm α(0)
j Lj

}

J∗

Hence

lim
m→∞

22mUm
k0
J∗ = 2α(0)

3

[
1 4 1

]
+ 2α(0)

4

[
0 4 2

]
+ 2α(0)

5

[
0 4 4

]

Furthermore, using Theorem 5.2 on p. 98, direct calculations show that

lim
m→∞

22mUm
k0
J∗ = D2

1F (k0)
[
1 4 1

]
+2D2D1F (k0)

[
0 4 2

]
+D2

2F (k0)
[
0 4 4

]
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Thus by linear independence

D2
1F (k0) = 2α(0)

3

D2D1F (k0) = α(0)
4

D2
2F (k0) = 2α(0)

5

Theorem 5.3. Assume that the subdivision scheme is an approximating

triangular scheme and that the cascade algorithm given by Φm := QP Φm−1

converges in C1 (R) . Then for k0 ∈ Z2

D1F (k0) = α(0)
1

D2F (k0) = α(0)
2

where F (·) :=
∑

k∈Z2

v0
kΦ (·− k) is the limiting surface for the subdivision

scheme, Φ is from (2.5 |p.12) and α1, α2 are from (5.12 |p.100). If in

addition the cascade algorithm converges in C2 (R)

D2
1F (k0) = 2α(0)

3

D2D1F (k0) = α(0)
4

D2
2F (k0) = 2α(0)

5

where α(0)
3 , α(0)

4, α(0)
5 are from (5.13 |p.102).

Corollary 5.3. Assume that the subdivision scheme is an approximating

triangular scheme and that the cascade algorithm given by Φm := QP Φm−1

converges in C1 (R) . Then for k0, i ∈ Z2, n ∈ Z+

D1F

(
k0 +

i

2n

)
= 2nα(n)

1

D2F

(
k0 +

i

2n

)
= 2nα(n)

2

where F (·) :=
∑

k∈Z2

v0
kΦ (·− k) is the limiting surface for the subdivision

scheme, Φ is from (2.5 |p.12).and α(n)
1 , α(n)

2 are from (3.18 |p.30). If in
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addition the cascade algorithm converges in C2 (R)

D2
1F

(
k0 +

i

2n

)
= 22n+1α(n)

3

D2D1F

(
k0 +

i

2n

)
= 22nα(n)

4

D2
2F

(
k0 +

i

2n

)
= 22n+1α(n)

5

where α(n)
3 , α(n)

4, α(n)
5 are from (3.18 |p.30).

5.3.3.2. Quadrilateral Approximating Scheme. Our sum rule assump-

tion (2.14 |p.15) provides us with specific left eigenvectors of our subdivision

matrix for eigenvalues 1, 1
2 and 1

4 [see(2.23 |p.19),(2.25 |p.20), (5.6 |p.93)].
So for a 1-ring neighborhood around a regular vertex v0

k0
where k0 ∈ Z2 we

have the following representation of this 3× 18 ring of vectors:




v0k0
, s0k0

, v0
k0+(1,0)T

, s0
k0+(1,0)T

, v0
k0+(0,1)T

, s0
k0+(0,1)T

,

v0
k0+(−1,0)T

, s0
k0+(−1,0)T

, v0
k0+(0,−1)T

, s0
k0+(0,−1)T

,

v0
k0+(1,1)T

, s0
k0+(1,1)T

, v0
k0+(−1,1)T

, s0
k0+(−1,1)T

,

v0
k0+(−1,−1)T

, s0
k0+(−1,−1)T

, v0
k0+(1,−1)T

, s0
k0+(1,−1)T




= α(0)

0 L0+α(0)
1 L1+α(0)

2 L2+
17∑

i=3

α(0)
i Li

where we have the following 3× 18 (possibly generalized) linearly indepen-

dent left eigenvectors of a 18× 18 subdivision matrix S

L0 = [1, 0, 1, 0, ..., 1, 0] for eigenvalue 1

L1 = [0, 0, 1, 0, 0, 0,−1, 0, ...,−1, 0, 1, 0] for eigenvalue
1

2

L2 = [0, 0, 0, 0, 1, 0, 0, 0, ...,−1, 0,−1, 0] for eigenvalue
1

2

Li = left eigenvectors for eigenvalues γi where |γi| <
1

2

Let J be the 18× 2 matrix defined as

J :=

[
0 0 3

8 0 −1
8 0 −3

8 0 1
8 0 1

8 0 0 0 −1
8 0 0 0

0 0 −1
8 0 3

8 0 1
8 0 −3

8 0 1
8 0 0 0 −1

8 0 0 0

]T
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By direct calculation:




v0k0
, s0k0

, v0
k0+(1,0)T

, s0
k0+(1,0)T

,

v0
k0+(0,1)T

, s0
k0+(0,1)T ,...,

v0
k0+(−1,−1)T

, s0
k0+(−1,−1)T

,

v0
k0+(1,−1)T

, s0
k0+(1,−1)T



 J =




α(0)
0 L0 + α(0)

1 L1

+α(0)
2 L2 +

17∑
i=3

α(0)
i Li



 J

= α(0)
0 L0J + α(0)

1 L1J + α(0)
2 L2J

+
17∑

i=3

α(0)
i LiJ

= α(0)
0 [0, 0] + α(0)

1 [1, 0] + α(0)
2 [0, 1]

+
17∑

i=3

α(0)
i LiJ

After m subdivisions we have:




vm2mk0
, sm2mk0

, vm
2mk0+(1,0)T

, sm
2mk0+(1,0)T

,

vm
2mk0+(0,1)T

, sm
2mk0+(0,1)T ,...,

vm
2mk0+(−1,−1)T

, sm
2mk0+(−1,−1)T

,

vm
2mk0+(1,−1)T

, sm
2mk0+(1,−1)T




J =




α(0)
0 L0 + 2−mα(0)

1 L1

+2−mα(0)
2 L2 +

17∑
i=3

γm
i α(0)

i Li



 J

= α(0)
0 L0J + 2−mα(0)

1 L1J + 2−mα(0)
2 L2J

+
17∑

i=3

γm
i α(0)

i LiJ

= α(0)
0 [0, 0] + 2−mα(0)

1 [1, 0] + 2−mα(0)
2 [0, 1]

+
17∑

i=3

γm
i α(0)

i LiJ(5.14)

Now note that




vm2mk0
, sm2mk0

,

vm
2mk0+(1,0)T

, sm
2mk0+(1,0)T

,

vm
2mk0+(0,1)T

, sm
2mk0+(0,1)T ,...,

vm
2mk0+(−1,−1)T

, sm
2mk0+(−1,−1)T

,

vm
2mk0+(1,−1)T

, sm
2mk0+(1,−1)T





J =





3
8v

m
2mk0+(1,0)T

+ 1
8v

m
2mk0+(1,1)T

− 1
8v

m
2mk0+(0,1)T

−3
8v

m
2mk0+(−1,0)T

− 1
8v

m
2mk0+(−1,−1)T

+ 1
8v

m
2mk0+(0,−1)T

−1
8v

m
2mk0+(1,0)T

+ 1
8v

m
2mk0+(1,1)T

+ 3
8v

m
2mk0+(0,1)T

+1
8v

m
2mk0+(−1,0)T

− 1
8v

m
2mk0+(−1,−1)T

− 3
8v

m
2mk0+(0,−1)T





T
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Hence taking the limit as the number of subdivisions goes to infinity:

lim
m→∞

2m





vm2mk0
, sm2mk0

,

vm
2mk0+(1,0)T

, sm
2mk0+(1,0)T

,

vm
2mk0+(0,1)T

, sm
2mk0+(0,1)T ,...,

vm
2mk0+(−1,−1)T

, sm
2mk0+(−1,−1)T

,

vm
2mk0+(1,−1)T

, sm
2mk0+(1,−1)T





J = lim
m→∞

2m





3
8v

m
2mk0+(1,0)T

+ 1
8v

m
2mk0+(1,1)T

−1
8v

m
2mk0+(0,1)T

− 3
8v

m
2mk0+(−1,0)T

−1
8v

m
2mk0+(−1,−1)T

+ 1
8v

m
2mk0+(0,−1)T

−1
8v

m
2mk0+(1,0)T

+ 1
8v

m
2mk0+(1,1)T

+3
8v

m
2mk0+(0,1)T

+ 1
8v

m
2mk0+(−1,0)T

−1
8v

m
2mk0+(−1,−1)T

− 3
8v

m
2mk0+(0,−1)T





T

= α(0)
1 [1, 0] + α(0)

2 [0, 1]

= D1F (k0) [1, 0] +D2F (k0) [0, 1]

= Fs (k0) [1, 0] + Ft (k0) [0, 1]

by Theorem 5.1 on p.96 and by (5.14).

And so by linear independence

Fs (k0) = α(0)
1

Ft (k0) = α(0)
2

For the second partial derivatives we will need to go to a 2-ring neigh-

borhood around regular vertex v0
k0

where k0 ∈ Z2 and where this 3×50 ring

of vectors Um
k0

is defined the same way as in the interpolatory quadrilateral

scheme (4.4 |p.58).
U0

k0
can be written as a linear combination of left eigenvectors of the

subdivision matrix:

(5.15) U0
k0

= α(0)
0 L0+α(0)

1 L1+α(0)
2 L2+α(0)

3 L3+α(0)
4 L4+α(0)

5 L5+
49∑

j=6

α(0)
j Lj

From (5.6 |p.93) we see that Lj for j = 0, 1, , , , .5 are the same as the

Lj for j = 0, 1, , , , .5 (4.7 |p.60) in the interpolatory quadrilateral scheme.
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Let J∗ be defined the 50× 3 matrix defined as

J∗ :=





J1

J2

J3

J4

J5





where we have

10× 3 matrix J1 :=




−4

3 0 2
3 0 1

6 0 2
3 0 1

6 0

−4
3 0 1

6 0 2
3 0 1

6 0 2
3 0

−2
3 0 −1

6 0 −1
6 0 −1

6 0 −1
6 0





T

10× 3 matrix J2 :=




−1

3 0 0 0 −1
3 0 0 0 0 0

−1
3 0 0 0 −1

3 0 0 0 0 0
1
3 0 0 0 1

3 0 0 0 0 0





T

10× 3 matrix J3 :=




0 0 0 0 0 0 1

6 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1
6 0 0 0





T

10× 3 matrix J4 :=





1
6 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
1
6 0 0 0 0 0 0 0 0 0





T

10× 3 matrix J5 :=




0 0 0 0 0 0 0 0 0 0

0 0 1
6 0 0 0 1

6 0 0 0

0 0 1
6 0 0 0 1

6 0 0 0





T

By direct calculation we obtain the following representation of the 3 × 3

matrix U0
k0
J∗:

U0
k0
J∗ =

{
α(0)
0 L0 + α(0)

1 L1 + α(0)
2 L2 + α(0)

3 L3 + α(0)
4 L4 + α(0)

5 L5 +
49∑

j=6

α(0)
j Lj

}
J∗

= 2α(0)
3

[
1 0 1

]
+ 2α(0)

4

[
0 0 2

]
+ 2α(0)

5

[
0 1 1

]
+

{
49∑

j=6

α(0)
j Lj

}
J∗

108
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After m subdivisions we have:

Um
k0
J∗ =






α(0)
0 L0 + 2−m α(0)

1 L1 + 2−m α(0)
2 L2

+2−2m α(0)
3 L3 + 2−2m α(0)

4 L4 + 2−2m α(0)
5 L5

+
∑49

j=6 γ
m α(0)

j Lj





J∗

= 2 · 2−2m α(0)
3

[
1 0 1

]
+ 2 · 2−2m α(0)

4

[
0 0 2

]
+ 2 · 2−2m α(0)

5

[
0 1 1

]

+

{
49∑

j=6

γm α(0)
j Lj

}
J∗

Hence

lim
m→∞

22mUm
k0
J∗ = 2α(0)

3

[
1 0 1

]
+ 2α(0)

4

[
0 0 2

]
+ 2α(0)

5

[
0 1 1

]

Furthermore, using Theorem 5.2 on p. 98, direct calculations show that

lim
m→∞

22mUm
k0
J∗ = D2

1F (k0)
[
1 0 1

]
+2D2D1F (k0)

[
0 0 2

]
+D2

2F (k0)
[
0 1 1

]

Thus by linear independence

D2
1F (k0) = 2α(0)

3

D2D1F (k0) = α(0)
4

D2
2F (k0) = 2α(0)

5

Theorem 5.4. Assume that the subdivision scheme is an approximating

quadrilateral scheme and that the cascade algorithm given by Φm := QP Φm−1

converges in C1 (R) . Then for k0 ∈ Z2

D1F (k0) = α(0)
1

D2F (k0) = α(0)
2

where F (·) :=
∑

k∈Z2

v0
kΦ (·− k) is the limiting surface for the subdivision

scheme, Φ is from (2.5 |p.12) and α1, α2 are from (5.14 |p.105). If in
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addition the cascade algorithm converges in C2 (R)

D2
1F (k0) = 2α(0)

3

D2D1F (k0) = α(0)
4

D2
2F (k0) = 2α(0)

5

where α(0)
3 , α(0)

4, α(0)
5 are from (5.15 |p.107).

Corollary 5.4. Assume that the subdivision scheme is an approximat-

ing quadrilateral scheme and that the cascade algorithm given by Φm :=

QP Φm−1 converges in C1 (R) . Then for k0, i ∈ Z2, n ∈ Z+

D1F

(
k0 +

i

2n

)
= 2nα(n)

1

D2F

(
k0 +

i

2n

)
= 2nα(n)

2

where F (·) :=
∑

k∈Z2

v0
kΦ (·− k) is the limiting surface for the subdivision

scheme, Φ is from (2.5 |p.12).and α(n)
1 , α(n)

2 are from (4.11 |p.62). If in

addition the cascade algorithm converges in C2 (R)

D2
1F

(
k0 +

i

2n

)
= 22n+1α(n)

3

D2D1F

(
k0 +

i

2n

)
= 22nα(n)

4

D2
2F

(
k0 +

i

2n

)
= 22n+1α(n)

5

where α(n)
3 , α(n)

4, α(n)
5 are from (4.11 |p.62).

5.4. Partial Derivatives as Linear Combination of Initial Control

Points

As with the interpolatory cases we will now derive right eigenvectors

for 1
2 and 1

4 of our subdivision matrix that are orthonormal to their cor-

responding left eigenvectors. Again this is done using direct calculations

with a computer algebra system in the same manner as subsections 3.6.1

and 4.5.1.
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5.4.1. Triangular Approximating Case

We can obtain via direct calculations the following 38×1 right eigenvectors

for 1
2 and 1

4 such that LiRj = δ (i− j) i, j = 1, ..., 5 where Li are from

(3.12 |p.28):

R1 :=

[
0, 0,

1

3
,
−1

9h
,
1

6
,
−1

18h
,
−1

6
,

1

18h
,
−1

3
,
1

9h
,
−1

6
,

1

18h
,
1

6
,
−1

18h
, 0, ..., 0

]T

(5.16)

R2 :=

[
0, 0,

−1

6
,

1

18h
,
1

6
,
−1

18h
,
1

3
,
−1

9h
,
1

6
,
−1

18h
,
−1

6
,

1

18h
,
−1

3
,
1

9h
, 0, ..., 0

]T

R3 :=

[
2d1, 2d2,−1

3(d1 − 1), 13 (d3 + w) ,−1
6(2d1 + 1), 1

6(2d3 − w),−1
6(2d1 + 1), 1

6(2d3 − w),

−1
3(d1 − 1), 13 (d3 + w) ,−1

6(2d1 + 1), 1
6(2d3 − w),−1

6(2d1 + 1), 1
6(2d3 − w), 0, ..., 0

]T

R4 :=

[
−2d1,−2d2,

1
3(d1 − 1),−1

3 (d3 + w) , 1
3(d1 + 2),−1

3 (d3 − 2w) , 1
3(d1 − 1),−1

3 (d3 + w) ,
1
3(d1 − 1),−1

3 (d3 + w) , 13(d1 + 2),−1
3 (d3 − 2w) , 1

3(d1 − 1),−1
3 (d3 + w) , 0, ..., 0

]T

R5 :=




2d1, 2d2,−1

6(2d1 + 1), 16(2d3 − w),−1
6(2d1 + 1), 16(2d3 − w),

−1
3(d1 − 1), 13 (d3 + w) ,−1

6(2d1 + 1),
1
6(2d3 − w),−1

6(2d1 + 1), 16(2d3 − w),−1
3(d1 − 1), 13 (d3 + w) , 0, ..., 0





T

where

d1 :=
1

4

(
Ỹ Q̃

X̃

)

d2 := −
1

4h

(
Ỹ

X̃

)

d3 :=
1

4h

(
Z̃

X̃

)

w := −
(1 + 16ht1)

h (1 + 16t2)

111
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for

Ỹ := −1 + 8t2 + 192ht2t6 + 32ht2t5 − 4ht5 − 24ht6 = (−1 + 8t2) (1 + 4ht5 + 24ht6)

Q̃ :=
−1 + 24t3 + 4t4
1 + 4ht5 + 24ht6

(5.17)

X̃ := 144ht3t5 + 3ht5 − 24ht2t5 + 54ht6 − 144ht4t6

− 144ht2t6 + 1− 2t2 + 30t3 − 96t2t3 − t4 − 16t2t4 + 144ht1t3 + 24ht1t4 − 6ht1

Z̃ := 48ht6 + 192ht5t3 − 192ht4t6 − 4t4 + 1 + 192ht1t3 + 32ht1t4 + 24t3 − 8ht1

where tj for j = 1, ..., 6 and h are from (5.5 |p.93).
Note the following facts that can be shown with direct calculation:

• if 1 + 16t2 = 0 then eigenvalue 1
4 has multiplicity greater than 3

• if −1 + 24t3 + 4t4 = 0 then t5 + 6t6 < − 1
12h or else 1

2 is not the

subdominant eigenvalue

Since right and left eigenvectors that correspond to different eigenvalues

are orthogonal we can multiply both sides of (5.13 |p.102) by each Rj and

so obtain (using Theorem 5.3 on p.104) the following representations for

the first and second partial derivatives at a point locally parameterized as(
k(1)
0 , k(2)

0

)
:

Fs

(
k(1)
0 , k(2)

0

)
= α(0)

1 = U0
k0
R1(5.18)

Ft

(
k(1)
0 , k(2)

0

)
= α(0)

2 = U0
k0
R2

Fss

(
k(1)
0 , k(2)

0

)
= 2α(0)

3 = 2U0
k0
R3

Fst

(
k(1)
0 , k(2)

0

)
= α(0)

4 = U0
k0
R4

Ftt

(
k(1)
0 , k(2)

0

)
= 2α(0)

5 = 2U0
k0
R5

Note that the 15th through 38th components of the above right eigenvec-

tors equal 0. So define R∗
j as the 14× 1 column vector whose components

are the first 14 components of Rj (j = 1, 2, ..., 5) . Also define Ũ0
k0

as the

3× 14 vector consisting of the first 14 elements of U0
k0
.
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We can then rewrite (5.18) as:

Fs

(
k(1)
0 , k(2)

0

)
= α(0)

1 = Ũ0
k0
R∗

1

Ft

(
k(1)
0 , k(2)

0

)
= α(0)

2 = Ũ0
k0
R∗

2

Fss

(
k(1)
0 , k(2)

0

)
= 2α(0)

3 = 2Ũ0
k0
R∗

3

Fst

(
k(1)
0 , k(2)

0

)
= α(0)

4 = Ũ0
k0
R∗

4

Ftt

(
k(1)
0 , k(2)

0

)
= 2α(0)

5 = 2Ũ0
k0
R∗

5

Theorem 5.5. Assume that the subdivision scheme is an approximating

triangular scheme and that the cascade algorithm given by Φm := QP Φm−1

converges in C1 (R) . Then for k0 ∈ Z2

D1F (k0) = Fs

(
k(1)
0 , k(2)

0

)
= Ũ0

k0
R∗

1

D2F (k0) = Ft

(
k(1)
0 , k(2)

0

)
= Ũ0

k0
R∗

2

where F (·) :=
∑

k∈Z2

v0
kΦ (·− k) is the limiting surface for the subdivision

scheme, Φ is from (2.5 |p.12), Ũ0
k0

is the 3 × 14 vector consisting of the

first 14 elements of U0
k0
and R∗

1, R
∗
2 are as above. If in addition the cascade

algorithm converges in C2 (R)

D2
1F (k0) = Fss

(
k(1)
0 , k(2)

0

)
= 2Ũ0

k0
R∗

3

D2D1F (k0) = Fst

(
k(1)
0 , k(2)

0

)
= Ũ0

k0
R∗

4

D2
2F (k0) = Ftt

(
k(1)
0 , k(2)

0

)
= 2Ũ0

k0
R∗

5

where R∗
3, R

∗
4,R

∗
5 are as above.

And from Corollary 5.3 on p. 104:

Corollary 5.5. Assume that the subdivision scheme is an approximating

triangular scheme and that the cascade algorithm given by Φm := QP Φm−1
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converges in C1 (R) . Then for k0, i ∈ Z2, n ∈ Z+

D1F

(
k0 +

i

2n

)
= 2nŨn

k0,iR
∗
1

D2F

(
k0 +

i

2n

)
= 2nŨn

k0,iR
∗
2

where F (·) :=
∑

k∈Z2

v0
kΦ (·− k) is the limiting surface for the subdivision

scheme, Φ is from (2.5 |p.12), and Ũn
k0

is the 3×14 vector consisting of the

first 14 elements of Un
k0,i (3.17 |p.30). If in addition the cascade algorithm

converges in C2 (R)

D2
1F

(
k0 +

i

2n

)
= 22n+1Ũn

k0,iR
∗
3

D2D1F

(
k0 +

i

2n

)
= 22nŨn

k0,iR
∗
4

D2
2F

(
k0 +

i

2n

)
= 22n+1Ũn

k0,iR
∗
5

If the denominator 1 + 4ht5 + 24ht6 for Q̃ in (5.17 |p.112) equals zero

then through direct calculations we can arrive at the following three 38× 1

right eigenvectors of 1
4 , {Rj}j=3,4,5, such that LiRj = δ (i− j) i, j = 3, 4, 5

R3 :=

[
2α, 0,−1

3α + 1
3 ,

1
3β − 1

3γ,−
1
3α− 1

6 ,
1
3β + 1

6γ,−
1
3α− 1

6 ,
1
3β + 1

6γ,

−1
3α+ 1

3 ,
1
3β − 1

3γ,−
1
3α− 1

6 ,
1
3β + 1

6γ,−
1
3α− 1

6 ,
1
3β + 1

6γ, 0, ..., 0

]T

R4 :=

[
−2α, 0, 13α− 1

3 ,−
1
3β + 1

3γ,
1
3α + 2

3 ,−
1
3β − 2

3γ,
1
3α− 1

3 ,−
1
3β + 1

3γ,
1
3α− 1

3 ,−
1
3β + 1

3γ,
1
3α + 2

3 ,−
1
3β − 2

3γ,
1
3α− 1

3 ,−
1
3β + 1

3γ, 0, ..., 0

]T

R5 :=

[
2α, 0,−1

3α− 1
6 ,

1
3β + 1

6γ,−
1
3α− 1

6 ,
1
3β + 1

6γ,−
1
3α + 1

3 ,
1
3β − 1

3γ,

−1
3α− 1

6 ,
1
3β + 1

6γ,−
1
3α− 1

6 ,
1
3β + 1

6γ,−
1
3α+ 1

3 ,
1
3β − 1

3γ, 0, ..., 0

]T

(5.19)

114



5.4. PARTIAL DERIVATIVES AS LINEAR COMBINATION OF
INITIAL CONTROL POINTS

where

α :=
8t2 − 1

−16t2 − 1 + 24ht1 − 144ht6

β :=
8ht1 − 1− 48ht6

h (−16t2 − 1 + 24ht1 − 144ht6)

γ :=
1 + 16ht1
h (1 + 16t2)

The 14× 1 shortened version of these eigenvectors would then be used

in Theorem 5.5 and Corollary 5.5.

5.4.1.1. Specific Triangular Approximating Scheme (Regular). In

[CJ08] and [CJ03b] Chui/Jiang devised a spline-based 1-ring triangular

approximating scheme that was labelled the S2
3−subdivision. The nota-

tion indicates that the splines are C2 functions whose restrictions on each

triangle are polynomials of total degree ≤ 3. Here

h = −
1

3
(5.20)

[t1, t2, t3, t4, t5, t6] =
1

16
[2, 0,−1,−2, 6, 1]

where we note that 1 + 4ht5 + 24ht6 = 0.

We will use the right eigenvectors for 1
4 from (5.19) and the right eigen-

vectors for 1
2 from (5.16).

We obtain:

R∗
1 :=

[
0, 0,

1

3
,
1

3
,
1

6
,
1

6
,−

1

6
,−

1

6
,−

1

3
,−

1

3
,−

1

6
,−

1

6
,
1

6
,
1

6

]T

R∗
2 :=

[
0, 0,−

1

6
,−

1

6
,
1

6
,
1

6
,
1

3
,
1

3
,
1

6
,
1

6
,−

1

6
,−

1

6
,−

1

3
,−

1

3

]T

R∗
3 :=

[
−2, 0,

2

3
,
2

3
,
1

6
,
1

6
,
1

6
,
1

6
,
2

3
,
2

3
,
1

6
,
1

6
,
1

6
,
1

6

]T

R∗
4 :=

[
2, 0,−

2

3
,−

2

3
,
1

3
,
1

3
,−

2

3
,−

2

3
,−

2

3
,−

2

3
,
1

3
,
1

3
,−

2

3
,−

2

3

]T

R∗
5 :=

[
−2, 0,

1

6
,
1

6
,
1

6
,
1

6
,
2

3
,
2

3
,
1

6
,
1

6
,
1

6
,
1

6
,
2

3
,
2

3

]T
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Figures 5.1 , ,5.2 and 5.3 visually show the symmetry that these formulas

have.

Diagonal Axis

t

s

Fs (k0)

(

v0
k0+(1,0)T

, s0
k0+(1,0)T

)

·
( 1
3 ,

1
3

)

(

v0
k0+(1,1)T

, s0
k0+(1,1)T

)

·
(

1
6 ,

1
6

)

(

v0
k0+(0,1)T

, s0
k0+(0,1)T

)

·
(

− 1
6 ,−

1
6

)

(

v0
k0+(−1,−1)T

, s0
k0+(−1,−1)T

)

·
(

− 1
6 ,−

1
6

)

(

v0
k0+(0,−1)T

, s0
k0+(0,−1)T

)

·
( 1
6
, 1
6

)

(

v0k0
, s0k0

)

· (0, 0)

(

v0
k0+(−1,0)T

, s0
k0+(−1,0)T

)

·
(

− 1
3 ,−

1
3

)

(a)

Diagonal Axis

t

s
(

v0k0
, s0k0

)

· (0, 0)

Ft (k0)

(

v0
k0+(1,0)T

, s0
k0+(1,0)T

)

·
(

− 1
6 ,−

1
6

)

(

v0
k0+(1,1)T

, s0
k0+(1,1)T

)

·
( 1
6 ,

1
6

)

(

v0
k0+(0,1)T

, s0
k0+(0,1)T

)

·
(

1
3 ,

1
3

)

(

v0
k0+(−1,−1)T

, s0
k0+(−1,−1)T

)

·
(

− 1
6
,− 1

6

)

(

v0
k0+(0,−1)T

, s0
k0+(0,−1)T

)

·
(

− 1
3 ,−

1
3

)

(

v0
k0+(−1,0)T

, s0
k0+(−1,0)T

)

·
( 1
6 ,

1
6

)

(b)

Figure 5.1. The above diagrams represent Fs and Ft. Note
the symmetry between each diagram around the diagonal
axis.
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t

s

Diagonal Axis

(

v0
k0+(0,−1)T

, s0
k0+(0,−1)T

)

·
( 1
3 ,

1
3

)

Fss (k0)

(

v0
k0

, s0
k0

)

· (−4, 0)

(

v0
k0+(1,1)T

, s0
k0+(1,1)T

)

·
( 1
3 ,

1
3

)

(

v0
k0+(0,1)T

, s0
k0+(0,1)T

)

·
( 1
3 ,

1
3

)

(

v0
k0+(−1,0)T

, s0
k0+(−1,0)T

)

·
( 4
3 ,

4
3

)

(

v0
k0+(1,0)T

, s0
k0+(1,0)T

)

·
( 4
3
, 4
3

)

(

v0
k0+(−1,−1)T

, s0
k0+(−1,−1)T

)

·
(

1
3 ,

1
3

)

(a)

t

s

Diagonal Axis

(

v0
k0+(0,−1)T

, s0
k0+(0,−1)T

)

·
(

4
3 ,

4
3

)

(

v0k0
, s0k0

)

· (−4, 0)

Ftt (k0)

(

v0
k0+(1,0)T

, s0
k0+(1,0)T

)

·
(

1
3 ,

1
3

)

(

v0
k0+(1,1)T

, s0
k0+(1,1)T

)

·
( 1
3 ,

1
3

)

(

v0
k0+(0,1)T

, s0
k0+(0,1)T

)

·
( 4
3 ,

4
3

)

(

v0
k0+(−1,0)T

, s0
k0+(−1,0)T

)

·
( 1
3
, 1
3

)

(

v0
k0+(−1,−1)T

, s0
k0+(−1,−1)T

)

·
( 1
3 ,

1
3

)

(b)

Figure 5.2. The above diagrams represent Fss and Ftt. Note
the symmetry between each diagram around the diagonal
axis.
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t

s

Diagonal Axis

(

v0
k0+(0,1)T

, s0
k0+(0,1)T

)

·
(

− 2
3 ,−

2
3

)

Fst (k0)

(

v0k0
, s0k0

)

· (2, 0)

(

v0
k0+(1,1)T

, s0
k0+(1,1)T

)

·
(

1
3 ,

1
3

)

(

v0
k0+(−1,0)T

, s0
k0+(−1,0)T

)

·
(

− 2
3 ,−

2
3

)

(

v0
k0+(−1,−1)T

, s0
k0+(−1,−1)T

)

·
( 1
3 ,

1
3

)

(

v0
k0+(0,−1)T

, s0
k0+(0,−1)T

)

·
(

− 2
3 ,−

2
3

)

(

v0
k0+(1,0)T

, s0
k0+(1,0)T

)

·
(

− 2
3 ,−

2
3

)

Figure 5.3. The above diagram represents Fst. Note the sym-
metry around the diagonal axis.
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5.4.2. Quadrilateral Approximating Case

As indicated at the beginning of section 5.4 on p. 110, we can use the same

techniques as for the interpolating case and obtain the following 50×1 right

eigenvectors for 1
2 and 1

4 , {Rj}j=1,...,5, such that LiRj = δ (i− j) i, j =

1, ..., 5 where Li are from (4.7 |p.60):

R1 :=

[
0, 0, 13 ,−

1
3

3+32ht1
h(7+32t2)

, 0, 0,−1
3 ,

1
3

3+32ht1
h(7+32t2)

, 0, 0, 1
12 ,

1
12

−32t2+64ht1−1
h(7+32t2)

,

− 1
12 ,−

1
12

−32t2+64ht1−1
h(7+32t2)

,− 1
12 ,−

1
12

−32t2+64ht1−1
h(7+32t2)

, 1
12 ,

1
12

−32t2+64ht1−1
h(7+32t2)

, 0, ..., 0

]T

(5.21)

R2 :=

[
0, 0, 0, 0, 13 ,−

1
3

3+32ht1
h(7+32t2)

, 0, 0,−1
3 ,

1
3

3+32ht1
h(7+32t2)

, 1
12 ,

1
12

−32t2+64ht1−1
h(7+32t2)

,
1
12 ,

1
12

−32t2+64ht1−1
h(7+32t2)

,− 1
12 ,−

1
12

−32t2+64ht1−1
h(7+32t2)

,− 1
12 ,−

1
12

−32t2+64ht1−1
h(7+32t2)

, 0, ..., 0

]T

R3 :=





1
2
E(16t5+4t6+16t4−1)

C·F , 1
2h

E
C ,−

1
2h

E·D
C·F + 1

4 ,
1
2h

G
C − 1

4
1+32ht1
h(1+32t2)

,

− 1
2h

E·D
C·F − 1

4 ,
1
2h

G
C + 1

4
1+32ht1
h(1+32t2)

,− 1
2h

E·D
C·F + 1

4 ,
1
2h

G
C − 1

4
1+32ht1
h(1+32t2)

,

− 1
2h

E·D
C·F − 1

4 ,
1
2h

G
C + 1

4
1+32ht1
h(1+32t2)

, 1
8h

E·H
C·F ,

1
8h

J
C ,

1
8h

E·H
C·F ,

1
8h

J
C ,

1
8h

E·H
C·F ,

1
8h

J
C ,

1
8h

E·H
C·F ,

1
8h

J
C , 0, ..., 0





T

R4 :=

[
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1

4
,−

1

12h
,−

1

4
,

1

12h
,
1

4
,−

1

12h
,−

1

4
,

1

12h
, 0, ...0

]T

R5 :=





1
2
E(16t5+4t6+16t4−1)

C·F , 1
2h

E
C ,−

1
2h

E·D
C·F − 1

4 ,
1
2h

G
C + 1

4
1+32ht1
h(1+32t2)

,

− 1
2h

E·D
C·F + 1

4 ,
1
2h

G
C − 1

4
1+32ht1
h(1+32t2)

,− 1
2h

E·D
C·F − 1

4 ,
1
2h

G
C + 1

4
1+32ht1
h(1+32t2)

,

− 1
2h

E·D
C·F + 1

4 ,
1
2h

G
C − 1

4
1+32ht1
h(1+32t2)

, 1
8h

E·H
C·F ,

1
8h

J
C ,

1
8h

E·H
C·F ,

1
8h

J
C ,

1
8h

E·H
C·F ,

1
8h

J
C ,

1
8h

E·H
C·F ,

1
8h

J
C , 0, ..., 0





T
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Here we have

C := −64ht10 + 5h− 16t3 + 128t3t9 − 1280ht5t10 + 64ht6t10 − 1792ht4t10 − 2048h2t4t8

− 2048h2t1t10 − 768ht5t9 − 1024ht4t9 − 2048h2t5t8 − 512h2t6t8 − 2048ht1t3 − 384h2t6t7

− 1536h2t5t7 − 1536h2t4t7 + 1024h2t2t7 − 1024ht2t4 − 256ht2t6 + 8192ht2t4t10 + 2048ht2t6t10

+ 8192t2t3t10 + 4096t2t3t9 + 256ht2t9 + 96ht4 + 64ht5 − 8ht6 + 16384ht1t3t9 + 32768ht1t3t10

+ 32768h2t1t5t10 + 8192h2t1t6t10 + 32768h2t1t4t10 − 8192ht2t5t10 − 8192ht2t5t9 − 16384h2t2t5t7

− 4096h2t2t6t7 − 16384h2t2t4t7 − 512t2t3 − 24ht9 + 256t3t10 + 128h2t8 + 96h2t7 + 32ht2

D := 8 (16ht5t10 − ht10 + 4ht6t10 + 16ht4t10 − t3 + 8t3t9 + 16t3t10)

E := h (3− 48t10 − 32t2 + 512t2t10 + 256t2t9 − 24t9)

F := −1 + 8t9 + 16t10

G := −8ht10 + h− 8t3 + 64t3t9 − 256ht5t10 + 32ht6t10 − 128ht4t10 − 256h2t4t8

− 256h2t1t10 − 192ht5t9 − 128ht4t9 − 256h2t5t8 − 64h2t6t8 − 256ht1t3 − 96h2t6t7 − 384h2t5t7

− 384h2t4t7 + 8ht5 − 4ht6 + 2048ht1t3t9 + 4096ht1t3t10 + 4096h2t1t5t10 + 1024h2t1t6t10

+ 4096h2t1t4t10 + 128t3t10 + 16h2t8 + 24h2t7

H := 256t3t9 − 32t3 − 16ht4 + 512t3t10 + 128ht6t10 − 4ht6

− 32ht10 + 512ht5t10 + h− 16ht5 + 512ht4t10

J := −32ht10 + h− 32t3 + 256t3t9 + 512ht5t10 + 128ht6t10 − 512ht4t10 − 1024h2t4t8

− 1024h2t1t10 − 512ht4t9 − 1024h2t5t8 − 256h2t6t8 − 1024ht1t3 + 1024h2t2t7 − 512ht2t4

− 128ht2t6 + 512ht2t5 + 48ht4 − 16ht5 − 4ht6 + 8192ht1t3t9 + 16384ht1t3t10

+ 16384h2t1t5t10 + 4096h2t1t6t10 + 16384h2t1t4t10 − 16384ht2t5t10

− 8192ht2t5t9 − 16384h2t2t5t7 − 4096h2t2t6t7 − 16384h2t2t4t7

+ 512t3t10 + 64h2t8 + 32ht2

where h and tj for j = 1, ..., 10 are from (5.7 |p.94)
It can be directly shown that:

• t2 1= −1
32 else the subsubdominant eigenvalue, 1

4 , has multiplicity 4.

• if 7 + 32t2 = 0 then the eigenvalue 1 has multiplicity greater than

1.
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Since right and left eigenvectors that correspond to different eigenvalues

are orthogonal we can multiply both sides of (5.15 |p.107) by each Rj and

so obtain (using Theorem 5.4 on p.109) the following representations for

the first and second partial derivatives at a point locally parameterized as(
k(1)
0 , k(2)

0

)
:

Fs

(
k(1)
0 , k(2)

0

)
= α(0)

1 = U0
k0
R1(5.22)

Ft

(
k(1)
0 , k(2)

0

)
= α(0)

2 = U0
k0
R2

Fss

(
k(1)
0 , k(2)

0

)
= 2α(0)

3 = 2U0
k0
R3

Fst

(
k(1)
0 , k(2)

0

)
= α(0)

4 = U0
k0
R4

Ftt

(
k(1)
0 , k(2)

0

)
= 2α(0)

5 = 2U0
k0
R5

Note that the 19th through 50th components of the above right eigenvec-

tors equal 0. So define R∗
j as the 18× 1 column vector whose components

are the first 18 components of Rj (j = 1, 2, ..., 5) . Also define Ũ0
k0

as the

3× 18 vector consisting of the first 18 elements of U0
k0
.

We can then rewrite (5.22) as:

Fs

(
k(1)
0 , k(2)

0

)
= α(0)

1 = Ũ0
k0
R∗

1

Ft

(
k(1)
0 , k(2)

0

)
= α(0)

2 = Ũ0
k0
R∗

2

Fss

(
k(1)
0 , k(2)

0

)
= 2α(0)

3 = 2Ũ0
k0
R∗

3

Fst

(
k(1)
0 , k(2)

0

)
= α(0)

4 = Ũ0
k0
R∗

4

Ftt

(
k(1)
0 , k(2)

0

)
= 2α(0)

5 = 2Ũ0
k0
R∗

5

Theorem 5.6. Assume that the subdivision scheme is an approximating

quadrilateral scheme and that the cascade algorithm given by Φm := QP Φm−1

converges in C1 (R) . Then for k0 ∈ Z2

D1F (k0) = Fs

(
k(1)
0 , k(2)

0

)
= Ũ0

k0
R∗

1

D2F (k0) = Ft

(
k(1)
0 , k(2)

0

)
= Ũ0

k0
R∗

2
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where F (·) :=
∑

k∈Z2

v0
kΦ (·− k) is the limiting surface for the subdivision

scheme, Φ is from (2.5 |p.12), Ũ0
k0

is the 3 × 18 vector consisting of the

first 18 elements of U0
k0
and R∗

1, R
∗
2 are as above. If in addition the cascade

algorithm converges in C2 (R)

D2
1F (k0) = Fss

(
k(1)
0 , k(2)

0

)
= 2Ũ0

k0
R∗

3

D2D1F (k0) = Fst

(
k(1)
0 , k(2)

0

)
= Ũ0

k0
R∗

4

D2
2F (k0) = Ftt

(
k(1)
0 , k(2)

0

)
= 2Ũ0

k0
R∗

5

where R∗
3, R

∗
4,R

∗
5 are as above.

From Corollary 5.4 on p. 110:

Corollary 5.6. Assume that the subdivision scheme is an approximat-

ing quadrilateral scheme and that the cascade algorithm given by Φm :=

QP Φm−1 converges in C1 (R) . Then for k0, i ∈ Z2, n ∈ Z+

D1F

(
k0 +

i

2n

)
= 2nα(n)

1

D2F

(
k0 +

i

2n

)
= 2nα(n)

2

where F (·) :=
∑

k∈Z2

v0
kΦ (·− k) is the limiting surface for the subdivision

scheme, Φ is from (2.5 |p.12).and α(n)
1 , α(n)

2 are from (4.11). If in addition

the cascade algorithm converges in C2 (R)

D2
1F

(
k0 +

i

2n

)
= 22n+1α(n)

3

D2D1F

(
k0 +

i

2n

)
= 22nα(n)

4

D2
2F

(
k0 +

i

2n

)
= 22n+1α(n)

5

where α(n)
3 , α(n)

4, α(n)
5 are from (4.11 |p.62).

5.4.2.1. Specific Quadrilateral Approximating Scheme (Regular).

The following specific template for a 1-ring quadrilateral approximating
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scheme was developed using the Jiang/Oswald Matlab R© routines (see [JO01])

for determining the Sobolev smoothness of refinable functions. Here we

have

h = 1(5.23)

[t1, t2, t3, t4, t5, t6, t7, t8, t9, t10] :=
1

256
[−5, 8, 36,−16,−24, 12,−12,−5, 30, 10]

Φ ∈ W 3.91577948

We use the right eigenvectors from (5.21 |p.119) and obtain the following

50× 1 column vectors:

R1 :=

[
0, 0,

1

3
,−

19

192
, 0, 0,−

1

3
,
19

192
, 0, 0,

1

12
,−

13

384
,−

1

12
,
13

384
,−

1

12
,
13

384
,
1

12
,−

13

384
, 0, ..., 0

]T

R2 :=

[
0, 0, 0, 0,

1

3
,−

19

192
, 0, 0,−

1

3
,
19

192
,
1

12
,−

13

384
,
1

12
,−

13

384
,−

1

12
,
13

384
,−

1

12
,
13

384
, 0, ..., 0

]T

R3 :=

[
− 848

1121 ,
144
1121 ,

1533
4484 ,−

5231
71744 ,−

709
4484 ,

1495
71744 ,

1533
4484 ,−

5231
71744 ,−

709
4484 ,

1495
71744 ,

109
1121 ,

− 435
17936 ,

109
1121 ,−

435
17936 ,

109
1121 ,−

435
17936 ,

109
1121 ,−

435
17936 , 0, ..., 0

]T

R4 :=

[
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1

4
,−

1

12
,−

1

4
,
1

12
,
1

4
,−

1

12
,−

1

4
,
1

12
, 0, ..., 0

]T

R5 :=

[
− 848

1121 ,
144
1121 ,−

709
4484 ,

1495
71744 ,

1533
4484 ,−

5231
71744 ,−

709
4484 ,

1495
71744 ,

1533
4484 ,−

5231
71744 ,

109
1121 ,

− 435
17936 ,

109
1121 ,−

435
17936 ,

109
1121 ,−

435
17936 ,

109
1121 ,−

435
17936 , 0, ...0

]T

Figures 5.4 , ,5.5 and 5.6 visually show the symmetry that these formulas

have.
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s

Diagonal Axis

t

(

v0
k0+(1,0)T

, s0
k0+(1,0)T

)

·
(

1
3 ,− 19

192

)

(

v0
k0+(1,1)T

, s0
k0+(1,1)T

)

·
(

1
12 ,− 13

384

)

(

v0
k0+(0,1)T

, s0
k0+(0,1)T

)

· (0, 0)

(

v0
k0

, s0
k0

)

· (0, 0)

(

v0
k0+(1,−1)T

, s0
k0+(1,−1)T

)

·
(

1
12 ,− 13

384

)

(

v0
k0+(0,−1)T

, s0
k0+(0,−1)T

)

· (0, 0)

(

v0
k0+(−1,0)T

, s0
k0+(−1,0)T

)

·
(

− 1
3 , 19

192

)

(

v0
k0+(−1,−1)T

, s0
k0+(−1,−1)T

)

·
(

− 1
12 , 13

384

)

(

v0
k0+(−1,1)T

, s0
k0+(−1,1)T

)

·
(

− 1
12 , 13

384

)

Fs (k0)

(a)

s

Diagonal Axis

t
(

v0
k0+(1,1)T

, s0
k0+(1,1)T

)

·
(

1
12 ,− 13

384

)

(

v0
k0

, s0
k0

)

· (0, 0)

(

v0
k0+(−1,−1)T

, s0
k0+(−1,−1)T

)

·
(

− 1
12 , 13

384

)

(

v0
k0+(1,0)T

, s0
k0+(1,0)T

)

· (0, 0)

(

v0
k0+(0,1)T

, s0
k0+(0,1)T

)

·
(

1
3 ,− 19

192

)

(

v0
k0+(−1,0)T

, s0
k0+(−1,0)T

)

· (0, 0)

(

v0
k0+(0,−1)T

, s0
k0+(0,−1)T

)

·
(

− 1
3 , 19

192

)

(

v0
k0+(−1,1)T

, s0
k0+(−1,1)T

)

·
(

1
12 ,− 13

384

)

(

v0
k0+(1,−1)T

, s0
k0+(1,−1)T

)

·
(

− 1
12 , 13

384

)

Ft (k0)

(b)

Figure 5.4. The above diagrams represent Fs and Ft. Note
the symmetry between each diagram around the diagonal
axis.
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s

Diagonal Axis

t

(

v0
k0

, s0
k0

)

·
(

− 1696
1121 , 288

1121

)

(

v0
k0+(1,0)T

, s0
k0+(1,0)T

)

·
(

1533
2242 ,− 5231

35872

)

(

v0
k0+(−1,0)T

, s0
k0+(−1,0)T

)

·
(

1533
2242 ,− 5231

35872

)

(

v0
k0+(0,1)T

, s0
k0+(0,1)T

)

·
(

− 709
2242 , 1495

35872

)

(

v0
k0+(0,−1)T

, s0
k0+(0,−1)T

)

·
(

− 709
2242 , 1495

35872

)

(

v0
k0+(1,1)T

, s0
k0+(1,1)T

)

·
(

218
1121 ,− 435

8968

)

(

v0
k0+(−1,−1)T

, s0
k0+(−1,−1)T

)

·
(

218
1121 ,− 435

8968

)

(

v0
k0+(1,−1)T

, s0
k0+(1,−1)T

)

·
(

218
1121 ,− 435

8968

)

(

v0
k0+(−1,1)T

, s0
k0+(−1,1)T

)

·
(

218
1121 ,− 435

8968

)

Fssk0 )

(a)

s

Diagonal Axis

t

(

v0
k0

, s0
k0

)

·
(

− 1696
1121 , 288

1121

)

(

v0
k0+(1,1)T

, s0
k0+(1,1)T

)

·
(

218
1121 ,− 435

8968

)

(

v0
k0+(−1,−1)T

, s0
k0+(−1,−1)T

)

·
(

218
1121 ,− 435

8968

)

(

v0
k0+(1,0)T

, s0
k0+(1,0)T

)

·
(

− 709
2242 , 1495

35872

)

(

v0
k0+(0,1)T

, s0
k0+(0,1)T

)

·
(

1533
2242 ,− 5231

35872

)

(

v0
k0+(−1,0)T

, s0
k0+(−1,0)T

)

·
(

− 709
2242 , 1495

35872

)

(

v0
k0+(0,−1)T

, s0
k0+(0,−1)T

)

·
(

1533
2242 ,− 5231

35872

)

(

v0
k0+(1,−1)T

, s0
k0+(1,−1)T

)

·
(

218
1121 ,− 435

8968

)

(

v0
k0+(−1,1)T

, s0
k0+(−1,1)T

)

·
(

218
1121 ,− 435

8968

)

Ftt (k0)

(b)

Figure 5.5. The above diagrams represent Fss and Ftt. Note
the symmetry between each diagram around the diagonal
axis.
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s

Diagonal Axis

t

(

v0
k0

, s0
k0

)

· (0, 0)

Fst (k0)

(

v0
k0+(1,0)T

, s0
k0+(1,0)T

)

· (0, 0)

(

v0
k0+(0,1)T

, s0
k0+(0,1)T

)

· (0, 0)

(

v0
k0+(−1,0)T

, s0
k0+(−1,0)T

)

· (0, 0)

(

v0
k0+(0,−1)T

, s0
k0+(0,−1)T

)

· (0, 0)

(

v0
k0+(1,1)T

, s0
k0+(1,1)T

)

·
(

1
4 ,− 1

12

)

(

v0
k0+(−1,1)T

, s0
k0+(−1,1)T

)

·
(

− 1
4 , 1

12

)

(

v0
k0+(−1,−1)T

, s0
k0+(−1,−1)T

)

·
(

1
4 ,− 1

12

)

(

v0
k0+(1,−1)T

, s0
k0+(1,−1)T

)

·
(

− 1
4 , 1

12

)

Figure 5.6. The above diagram represents Fst. Note the sym-
metry around the diagonal axis.
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5.5. First Partial Derivatives: Approximating Extraordinary

Case

The approximating extraordinary case is the most difficult to establish

first partial derivative formulas. We will require an additional assumption.

Before we get to that, we will first obtain right and left eigenvectors for the

subdominant eigenvalue λ that has multiplicity 2.

5.5.1. Triangular Scheme

The template and subdivision matrix for the extraordinary vertex are the

same as with the interpolatory extraordinary case except for the matrices

Qn and Q. See Figure 3.3 on p. 36 for the template and see (3.33 |p.38) for
the subdivision matrix.

Here Qn and Q will be denoted by

(5.24) Qn =

[
w1,1 w1,2

w2,1 w2,2

]
Q =

[
q1,1 q1,2
q2,1 q2,2

]

where we will assume that

w1,1 + q1,1 = 1

w1,2 + q1,2 = 0

These restrictions on the templates are needed to ensure that the left

eigenvector for 1 has the format

L̃0 = [1, 0, 1, 0, ..., 1, 0]

Just as with the extraordinary interpolatory case, we have that λ is an

eigenvalue of the 2× 2 matrix B +C
(
z + 1

z

)
where z := e

2πi
n [n equals the

valence of the extraordinary vertex] and where B,C are from (3.4 |p.24).
In addition, as with the interpolatory triangular case, if we further re-

strict our subdivision matrix to a 1-ring neighborhood around the central
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extraordinary vertex we will arrive at the same pair of left and right eigen-

vectors of λ:

L̃1 =

(
0, 0, 1, 0, cos

(
2π

n

)
, 0, . . . , cos

(
2 (n− 1)π

n

)
, 0

)
(5.25)

L̃2 =

(
0, 0, 0, 0, sin

(
2π

n

)
, 0, . . . , sin

(
2 (n− 1)π

n

))

R̂1 =
2

n

[
0, 0, 1, d2, cos

(
2·1·π
n

)
, d2 cos

(
2·1·π
n

)
, ...,

cos
(

2·(n−1)·π
n

)
, d2 cos

(
2·(n−1)·π

n

)
]T

R̂2 =
2

n

[
0, 0, 0, 0, sin

(
2·1·π
n

)
, d2 sin

(
2·1·π
n

)
, ...,

sin
(

2·(n−1)·π
n

)
, d2 sin

(
2·(n−1)·π

n

)
]T

for some d2 ∈ R.

As with the interpolatory case, the initial control vector net (U0) around

the irregular vertex [again let us call it v0
0] and the vector net after m

subdivisions (Um) can be represented as a linear combination of (possibly

generalized) left eigenvectors.

By letting
{
L̃j : 0 ≤ j ≤ 2n+ 1

}
be this set of 2n+2 (possibly general-

ized) linearly independent left eigenvectors then U0 and Um can be written

as

U0 = α̃(0)
0 L̃0 + α̃(0)

1 L̃1 + α̃(0)
2 L̃2 +

2n+1∑

j=3

α̃(0)
j L̃j(5.26)

Um = α̃(0)
0 L̃0 + λmα̃(0)

1 L̃1 + λmα̃(0)
2 L̃2 + o (λm)

where we have:

• α̃(0)
j ∈ R3 j = 0, . . . , 2n+ 1

• the left eigenvector for 1 is L̃0 = [1, 0, 1, 0, ..., 1, 0] and

• L̃1, L̃2 are the left eigenvectors for λ from (5.25 |p.128).
Hence

lim
m→∞

Um = α̃(0)
0 L̃0(5.27)

lim
m→∞

λ−m
(
Um − α̃(0)

0 L̃0

)
= α̃(0)

1 L̃1 + α̃(0)
2 L̃2(5.28)
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as k ⇒ ∞
F (0, 0)

vm,k
0 vm,k

1 as k ⇒ ∞

F
(

λm cos
(

2(2−1)π
5

)

,λm sin
(

2(2−1)π
5

))

F
(

λm cos
(

2(1−1)π
5

)

,λm sin
(

2(1−1)π
5

))

vm,k
4

vm,k
2

F
(

λm cos
(

2(4−1)π
5

)

, λm sin
(

2(4−1)π
5

))

F
(

λm cos
(

2(3−1)π
5

)

,λm sin
(

2(3−1)π
5

))

F
(

λm cos
(

2(5−1)π
5

)

,λm sin
(

2(5−1)π
5

))

vm,k
5

vm,k
3

Figure 5.7. Representation of vertices approaching points on
the limit surface that are parameterized as in (5.29 |p.129).
Valence = 5.

Let us parametrize the limit surface F locally in a similar fashion as we

did for the triangular interpolatory extraordinary case.

Since this is an approximating convergent scheme then we know that:

lim
m→∞

vm0 is a point on the limit surface.

Define F (0, 0) := lim
m→∞

vm0 Now let us fix m ∈ Z+. After we subdivide

m times we get n new neighboring vertices around vm0 . We shall denote

them as vmj for j = 1, 2, ..., n. As we then continue to subdivide beyond m

times we get updated vertices for these vmj and for vm0 . Note that since

this is an approximating scheme the updated vertices are not the same as

the older vertices. Let us denote the updated vertices after k additional

subdivisions as vm,k
j for j = 0, 1, ..., n. Again, for j = 0, 1, ..., n, lim

k→∞
vm,k
j

are points on the limit surface.

For j = 1, 2, ..., n we will parametrize these points as:

(5.29) F

(
λm cos

(
2 (j − 1) π

n

)
,λm sin

(
2 (j − 1)π

n

))
:= lim

k→∞
vm,k
j

See Figure 5.7 for a visual representation in the case where valence = 5.
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From (5.27 |p.128), lim
m→∞

vmj = α̃(0)
0 for j = 0, 1, ..., n.

Thus we have:

α̃(0)
0 = lim

m→∞
vm0 = F (0, 0)

So from strictly looking at the odd components of each side of (5.28 |p.128)
we have

lim
m→∞

λ−m ([vm0 , v
m
1 , v

m
2 , ..., v

m
n ]− [F (0, 0) , F (0, 0) , F (0, 0) , ..., F (0, 0)]) =

(5.30)

α̃(0)
1

[
0, 1, cos

(
2π

n

)
, cos

(
4π

n

)
, ..., cos

(
2 (n− 1)π

n

)]

+α̃(0)
2

[
0, 0, sin

(
2π

n

)
, sin

(
4π

n

)
, ..., sin

(
2 (n− 1) π

n

)]

By assumption, the limit surface is C1 at the parametrized point F (0, 0) .

Thus

lim
m→∞

λ−m









F (0, 0) , F
(
λm cos

(
2(0)π
n

)
,λm sin

(
2(0)π
n

))
,

F
(
λm cos

(
2(1)π
n

)
,λm sin

(
2(1)π
n

))
,

..., F
(
λm cos

(
2(n−1)π

n

)
,λm sin

(
2(n−1)π

n

))





− [F (0, 0) , F (0, 0) , F (0, 0) , ..., F (0, 0)]




=

(5.31)

Fs (0, 0)

[
0, 1, cos

(
2π

n

)
, cos

(
4π

n

)
, ..., cos

(
2 (n− 1)π

n

)]

+Ft (0, 0)

[
0, 0, sin

(
2π

n

)
, sin

(
4π

n

)
, ..., sin

(
2 (n− 1)π

n

)]

If we subtract (5.31) from (5.30) we obtain

lim
m→∞

λ−m




[vm0 , v

m
1 , v

m
2 , ..., v

m
n ]−





F (0, 0) , F
(
λm cos

(
2(0)π
n

)
,λm sin

(
2(0)π
n

))
,

F
(
λm cos

(
2(1)π
n

)
,λm sin

(
2(1)π
n

))
,

..., F
(
λm cos

(
2(n−1)π

n

)
,λm sin

(
2(n−1)π

n

))








=

{
α̃(0)
1 − Fs (0, 0)

}[
0, 1, cos

(
2π

n

)
, cos

(
4π

n

)
, ..., cos

(
2 (n− 1)π

n

)]

+
{
α̃(0)
2 − Ft (0, 0)

}[
0, 0, sin

(
2π

n

)
, sin

(
4π

n

)
, ..., sin

(
2 (n− 1) π

n

)]
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Now we come to the additional assumption mentioned earlier for this

case. We will assume that

(5.32)

lim
m→∞

λ−m



[vm0 , v
m
1 , v

m
2 , ..., v

m
n ]−





F (0, 0) , F
(
λm cos

(
2(0)π
n

)
,λm sin

(
2(0)π
n

))
,

F
(
λm cos

(
2(1)π
n

)
,λm sin

(
2(1)π
n

))
,

..., F
(
λm cos

(
2(n−1)π

n

)
,λm sin

(
2(n−1)π

n

))







 = 0

Due to linear independence, this assumption leads to

Fs (0, 0) = α̃(0)
1

Ft (0, 0) = α̃(0)
2

For a particular subdivision scheme, this assumption could be verified

through the use of a computer program. Unfortunately we don’t know of

any other method to characterize this assumption.

Recall that L̃iR̂j = δ (i− j) for i, j = 1, 2. So from (5.26 |p.128) we

derive

Fs (0, 0) = U0R̂1

Ft (0, 0) = U0R̂2

Theorem 5.7. Suppose that an approximating triangular scheme is con-

vergent with limiting surface F that is C1 at points corresponding to ex-

traordinary vertices. Let F (0, 0) be such a point. Assume (5.32 |p.131).
Then for R̂1, R̂2 in (5.25 |p.128)

Fs (0, 0) = U0R̂1, Ft (0, 0) = U0R̂2

5.5.2. Quadrilateral Scheme

The template and subdivision matrix for the extraordinary vertex are the

same as with the interpolatory extraordinary case except for the matrices

Wn,W and w. See Figure 4.3 on p. 67 for the template and see (4.21 |p.69)
for the subdivision matrix.
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Here Wn, W, and w will be denoted by

(5.33) Wn :=

[
ñ1,1 ñ1,2

ñ2,1 ñ2,2

]
W :=

[
W1,1 W1,2

W2,1 W2,2

]
w :=

[
w1,1 w1,2

w2,1 w2,2

]

where in addition to the assumption needed in the interpolatory case (4.18 |p.66)
we must also assume that

ñ1,1 +W1,1 + w1,1 = 1

These restrictions on the templates are needed to ensure that the left

eigenvector for 1 has the format

L̃0 = [1, 0, 1, 0, ..., 1, 0]

Just as with the extraordinary interpolatory case, we assume that the

tj are such that λ is an eigenvalue of the 4× 4 matrix
[
J +M

(
z + 1

z

)
K (1 + z)

M
(
1 + 1

z

)
K

]

where z := e
2πi
n [n equals the valence of the extraordinary vertex] and where

J,M, and K are from (4.2 |p.57).
In addition, as with the interpolatory quadrilateral case, if we further

restrict our subdivision matrix to a 1-ring neighborhood around the cen-

tral extraordinary vertex we will arrive at the same pair of left and right

eigenvectors of λ as given in (4.23 |p.71) and (4.33 |p.82).
Again, like with the interpolatory case, the initial control vector net

(U0) around the irregular vertex [again let us call it v0
0] and the vector net

after m subdivisions (Um) can be represented as a linear combination of

(possibly generalized) left eigenvectors.

By letting
{
L̃j : 0 ≤ j ≤ 4n+ 1

}
be this set of 4n+2 (possibly general-

ized) linearly independent left eigenvectors then U0 and Um can be written

as
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U0 = α̃(0)
0 L̃0 + α̃(0)

1 L̃1 + α̃(0)
2 L̃2 +

4n+1∑

j=3

α̃(0)
j L̃j(5.34)

Um = α̃(0)
0 L̃0 + λmα̃(0)

1 L̃1 + λmα̃(0)
2 L̃2 + o (λm)

where we have:

• α̃(0)
j ∈ R3 j = 0, . . . , 4n+ 1

• the left eigenvector for 1 is L̃0 = [1, 0, 1, 0, ..., 1, 0] and

• L̃1, L̃2 are the left eigenvectors for λ from (4.23 |p.71).
Hence

lim
m→∞

Um = α̃(0)
0 L̃0(5.35)

lim
m→∞

λ−m
(
Um − α̃(0)

0 L̃0

)
= α̃(0)

1 L̃1 + α̃(0)
2 L̃2(5.36)

Let us parametrize the limit surface F locally in a similar fashion as we

did for the quadrilateral interpolatory extraordinary case.

Since this is an approximating convergent scheme

lim
m→∞

vm0 is a point on the limit surface.

Define F (0, 0) := lim
m→∞

vm0 Now let us fix m ∈ Z+. After we subdivide

m times we get 2n new neighboring vertices around vm0 . We shall denote

the n vertices that share an edge with vm0 as vmj for j = 1, 2, ..., n and the n

vertices that are opposite vm0 in each quadrilateral as um
j for j = 1, 2, ..., n.

As we then continue to subdivide beyond m times we get updated vertices

for these vmj , um
j and for vm0 . Note that since this is an approximating

scheme the updated vertices are not the same as the older vertices. Let

us denote the updated vertices after k additional subdivisions as vm,k
j , um,k

j

respectively. Again for j = 1, 2, ..., n lim
k→∞

vm,k
j and lim

k→∞
um,k
j are points on

the limit surface.
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For j = 1, 2, ..., n we will parametrize these points as:

lim
k→∞

vm,k
j =: F

(
λm cos

(
2 (j − 1) π

n

)
,λm sin

(
2 (j − 1)π

n

))

lim
k→∞

um,k
j =: F





λm

4λ−1

[
cos

(
2(j−1)π

n

)
+ cos

(
2(j)π
n

)]
,

λm

4λ−1

[
sin

(
2(j−1)π

n

)
+ sin

(
2(j)π
n

)]





From (5.35 |p.133),

for j = 0, 1, ..., n lim
m→∞

vmj = α̃(0)
0

for j = 0, 1, ..., n lim
m→∞

um
j = α̃(0)

0

Hence we have:

α̃(0)
0 = lim

m→∞
vm0 = F (0, 0)

So from just looking at strictly the odd components of each side of

(5.36 |p.133) we obtain

lim
m→∞

λ−m

(
[vm0 , vm1 , v

m
2 , ..., v

m
n , u

m
1 , u

m
2 , ..., u

m
n ]−

[F (0, 0) , F (0, 0) , F (0, 0) , ..., F (0, 0)]

)
=(5.37)

α̃(0)
1




0, 1, cos

(
2π
n

)
, cos

(
4π
n

)
, ..., cos

(
2(n−1)π

n

)
,

1
4λ−1

(
1 + cos

(
2π
n

))
, ..., 1

4λ−1

(
cos

(
2(n−1)π

n

)
+ cos

(
2(n)π
n

))





+α̃(0)
2




0, 0, sin

(
2π
n

)
, sin

(
4π
n

)
, ..., sin

(
2(n−1)π

n

)
,

1
4λ−1 sin

(
2π
n

)
, ..., 1

4λ−1

(
sin

(
2(n−1)π

n

)
+ sin

(
2(n)π

n

))




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By assumption the limit surface is C1 at the parametrized point F (0, 0) .

Thus

lim
m→∞

λ−m









F (0, 0) , F
(
λm cos

(
2(0)π
n

)
,λm sin

(
2(0)π
n

))
,

F
(
λm cos

(
2(1)π
n

)
,λm sin

(
2(1)π
n

))
, ...,

F
(
λm cos

(
2(n−1)π

n

)
,λm sin

(
2(n−1)π

n

))
,

F
(

λm

4λ−1

[
cos

(
2(0)π
n

)
+ cos

(
2(1)π
n

)]
, λm

4λ−1

[
sin

(
2(0)π
n

)
+ sin

(
2(1)π
n

)])
, ...,

F
(

λm

4λ−1

[
cos

(
2(n−1)π

n

)
+ cos

(
2(n)π

n

)]
, λm

4λ−1

[
sin

(
2(n−1)π

n

)
+ sin

(
2(n)π

n

)])





− [F (0, 0) , F (0, 0) , F (0, 0) , ..., F (0, 0)]





=

(5.38)

Fs (0, 0)




0, 1, cos

(
2π
n

)
, cos

(
4π
n

)
, ..., cos

(
2(n−1)π

n

)
,

1
4λ−1

[
cos

(
2(0)π
n

)
+ cos

(
2(1)π
n

)]
, ..., 1

4λ−1

[
cos

(
2(n−1)π

n

)
+ cos

(
2(n)π

n

)]





+Ft (0, 0)




0, 0, sin

(
2π
n

)
, sin

(
4π
n

)
, ..., sin

(
2(n−1)π

n

)
,

1
4λ−1

[
sin

(
2(0)π
n

)
+ sin

(
2(1)π
n

)]
, ..., 1

4λ−1

[
sin

(
2(n−1)π

n

)
+ sin

(
2(n)π

n

)]





Just as in the triangular approximating case, if we subtract (5.38) from

(5.37) and if we assume

(5.39)

lim
m→∞

λ−m





[vm0 , v
m
1 , v

m
2 , ..., v

m
n , u

m
1 , ..., u

m
n ]−



F (0, 0) , F
(
λm cos

(
2(0)π
n

)
,λm sin

(
2(0)π
n

))
,

F
(
λm cos

(
2(1)π
n

)
,λm sin

(
2(1)π
n

))
, ...,

F
(
λm cos

(
2(n−1)π

n

)
,λm sin

(
2(n−1)π

n

))
,

F




λm

4λ−1

[
cos

(
2(0)π
n

)
+ cos

(
2(1)π
n

)]
,

λm

4λ−1

[
sin

(
2(0)π
n

)
+ sin

(
2(1)π
n

)]



 , ...,

F




λm

4λ−1

[
cos

(
2(n−1)π

n

)
+ cos

(
2(n)π
n

)]
,

λm

4λ−1

[
sin

(
2(n−1)π

n

)
+ sin

(
2(n)π
n

)]













= 0
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then by linear independence

Fs (0, 0) = α̃(0)
1

Ft (0, 0) = α̃(0)
2

Again, as with the triangular case, this assumption could be verified for

any particular subdivision scheme through the use of a computer program.

Recall that L̃iR̂j = δ (i− j) for i, j = 1, 2. So from (5.34 |p.133) we

derive

Fs (0, 0) = U0R̂1

Ft (0, 0) = U0R̂2

Theorem 5.8. Suppose that an approximating quadrilateral scheme is con-

vergent with limiting surface F that is C1 at points corresponding to ex-

traordinary vertices. Let F (0, 0) be such a point. Assume (5.39 |p.135).
Then for R̂1, R̂2 in (4.33 |p.82)

Fs (0, 0) = U0R̂1, Ft (0, 0) = U0R̂2

5.5.3. “Visual C1” Templates

5.5.3.1. Triangular. In [CJ08], Chui/Jiang develop a template for an ex-

traordinary vertex of a 1-ring triangular approximating scheme. Referring

to Qn and Q in (5.24 |p.127), they set

Q :=

[
a −a

a −a

]
Qn :=

[
1− a a

x3 x4

]

where a = 5
8 −

(
3
8 +

1
4 cos

2π
n

)2
[the weight used in Loop’s scheme [Loo87]]

and x3, x4 ∈ R.

Chui/Jiang found that the eigenvalues of the upper left block in M0 in

(3.42 |p.44) would be given by 1, 1
8 , and

λ̃± :=
5

16
+
x4 − a

2
±

1

16

√
64a2 − 176a+ 128ax4 + 25− 80x4 + 64x2

4 + 256ax3
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Choices can be made for x3 and x4 such that the eigenvalues of the sub-

division matrix S1n (3.33 |p.38) satisfy λ0 = 1, λ1 = λ2, with |λ1 < 1| and
|λj| < |λ1| , j = 3, 4, ....

One such choice was to set λ̃+ :=
(
3
8 +

1
4 cos

2π
n

)2
[where we then obtain

that x3 =
3
8 ] and λ̃− = x4 for a sufficiently small value of x4.

Meshes are formed by subdividing an initial control set of points in R2

whose coordinates are the 2 left eigenvectors of the subdominant eigenvalue

λ. The extraordinary scheme is shown to be ”visually” C1 in the sense that

these 2-D meshes shown in [CJ08] suggest the regularity and injectivity

properties of the characteristic map.

As discussed earlier, the right eigenvectors of λ have the same formula

as in the interpolatory triangular extraordinary case. However, the value

of d2 (3.46 |p.48)will differ since we would use t1,t2 and h values from the

corresponding (regular) approximating triangular scheme.

Using the t1, t2 and h values from (5.20 |p.115) we obtain that d2 = 1

no matter what the valence is for the extraordinary vertex.

So from (3.48 |p.115), (3.47 |p.48) and for n = 5

R̂1 =
2

5

[
0, 0, 1, 1, cos

(
2π

5

)
, cos

(
2π

5

)
, ..., cos

(
8π

5

)
, cos

(
8π

5

)]T

R̂2 =
2

5

[
0, 0, 0, 0, sin

(
2π

5

)
, sin

(
2π

5

)
, ..., sin

(
8π

7

)
, sin

(
8π

7

)]T

See Figure 5.8 for a visual representation of the two first partial derivatives.
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t

s

(

v0
4 , s

0
4

)

· 2
5

(

cos
(

6π
5

)

, cos
(

6π
5

))

Fs (0, 0)

(

v0
0 , s

0
0

)

· (0, 0) (

v0
1 , s

0
1

)

·
(

2
5 , 2

5

)

(

v0
2 , s

0
2

)

· 2
5

(

cos
(

2π
5

)

, cos
(

2π
5

))

(

v0
5 , s

0
5

)

· 2
5

(

cos
(

8π
5

)

, cos
(

8π
5

))

(

v0
3 , s

0
3

)

· 2
5

(

cos
(

4π
5

)

, cos
(

4π
5

))

(a)

t

s

(

v0
5 , s

0
5

)

· 2
5

(

sin
(

8π
5

)

, sin
(

8π
5

))

(

v0
0 , s

0
0

)

· (0, 0)

Ft (0, 0)

(

v0
1 , s

0
1

)

· (0, 0)

(

v0
2 , s

0
2

)

· 2
5

(

sin
(

2π
5

)

, sin
(

2π
5

))

(

v0
3 , s

0
3

)

· 2
5

(

sin
(

4π
5

)

, sin
(

4π
5

))

(

v0
4 , s

0
4

)

· 2
5

(

sin
(

6π
5

)

, sin
(

6π
5

))

(b)

Figure 5.8. The above diagrams represent Fs and Ft for
a specific triangular approximating scheme developed by
Chui/Jiang in [CJ08]. Valence = 5.
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5.5.3.2. Quadrilateral. To accompany the regular approximating quadri-

lateral template (5.7 |p.94), we propose the following specific template for

an extraordinary vertex. Referring to the matrices in (5.33 |p.132), let

Wn =

[
1− β [t9 + t10)

β
4

[
4t3 + h

(
−1

2 + 8t4 + 8t5 + 2t6
)]

β
4

[
− 4

ht10 −
2
ht9 − 4t8 − 4t7

]
β
4 (t6)

]

W = β

[
t9 −t3 − 1

4

(
4t3 + h

(
−1

2 + 8t4 + 8t5 + 2t6
))

t7 t5

]

w = β

[
t10 t3
t8 t4

]

where β = 4 if n = 3 else β = 16
n . Note that if n = 4 then these revert to

the matrices for the regular mask.

This template appears satisfactory for three reasons. The first is that

the leading eigenvalues of the subdivision matrix S1n (4.21 |p.69) satisfy

the conditions (4.36 |86) for valences 3 to (at least) 16. See Appendix D

on p. 213 for a listing of the eigenvalues for each of these valences.

The second is the appearance of the 2-D meshes formed by performing 4

subdivisions on an initial control set of points in R2 whose coordinates are

the two left eigenvectors of the subdominant eigenvalue λ. These meshes

were first introduced in [Rei95] and were seen again in [CJ08]. The meshes

shown in Appendix E on p. 218 suggest the regularity and injectivity of

the characteristic map.

As discussed earlier, the right eigenvectors of λ have the same formula as

in the interpolatory quadrilateral extraordinary case. However, the values

of d2, d3, and d4 (4.32 |p.81) will differ since we would use the values of

t1,t2 and h (5.23 |p.123) from the corresponding (regular) approximating

quadrilateral scheme.

Using such t1, t2 and h values we obtain for n = 5

d2 = −.3124965340

d3 = .2727224604− .1981444659i

d4 = −.1136337283 + .08255973628i
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So from (4.33 |p.82) we have:

R̂1 =

[
0, 0, .2749,−.08597, .08492,−.02656,−.2224, .06954,−.2224, .06954, .08492,−.02656,

.074978,−.03127,−.02864, .01194,−.09266, .03864,−.02864, .01194, .07497,−.03125

]T

R̂2 =

[
0, 0, 0, 0, .2614,−.08176, .1616,−.05053,−.1616, .05053,−.2614, .08176,

.05447,−.02270, .08816,−.03672, 0, 0,−.08816, .03672,−.05447, .02270

]T

See Figure 5.9 on p. 141 for a visual representation of these two first

partial derivatives.

See Figures 5.11 and 5.12 on p. 143 and p. 143 that show a subdivision

surface for this quadrilateral scheme. The original polyhedron is shown

in Figure 5.10 on p. 142. These figures suggest C1 at the extraordinary

vertices.
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t

s
(

u0
3, s̃

0
3

)

· (−.09266, .03864)

Fs (0, 0)

(

v0
2 , s

0
2

)

· (.08492, −.02656)

(

v0
1 , s

0
1

)

· (.2749, −.08597)

(

v0
0 , s

0
0

)

· (0, 0)

(

v0
2 , s

0
2

)

· (.08492, −.02656)

(

v0
3 , s

0
3

)

· (−.2224, .06954)

(

v0
4 , s

0
4

)

· (−.2224, .06954)

(

v0
5 , s

0
5

)

· (.08492,−.02656)

(

u0
1, s̃

0
1

)

· (.07498, −.03127)

(

u0
2, s̃

0
2

)

· (−.02864, .01194)

(

u0
4, s̃

0
4

)

· (−.02864, .01194)

(

u0
5, s̃

0
5

)

· (.07498, −.03125)

(a)

t

s

(

u0
5, s̃

0
5

)

· (−.05447, .02270)

(

v0
0 , s

0
0

)

· (0, 0)

Ft (0, 0)

(

v0
1 , s

0
1

)

· (0, 0)

(

v0
2 , s

0
2

)

· (.2614, −.08176)

(

v0
3 , s

0
3

)

· (.1616,−.05053)

(

v0
2 , s

0
2

)

· (.2614, −.08176)

(

v0
4 , s

0
4

)

· (−.1616, .05053)

(

v0
5 , s

0
5

)

· (−.2614, .08176)

(

u0
1, s̃

0
1

)

· (.05447, −.02270)

(

u0
2, s̃

0
2

)

· (.08816,−.03672)

(

u0
3, s̃

0
3

)

· (0, 0)

(

u0
4, s̃

0
4

)

· (−.08816, .03672)

(b)

Figure 5.9. The above diagrams represent Fs and Ft for our
specific quadrilateral approximating scheme. Valence = 5.
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Figure 5.10. Approximating quadrilateral scheme: Original
Polyhedron
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Figure 5.11. Approximating quadrilateral surface

Figure 5.12. Approximating quadrilateral scheme: Closeup
of subdivision surface
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CHAPTER 6

Shape Parameters

6.1. Background

Parameters have been used to improve the smoothness of subdivision

curves and surfaces at least as far back as 1987 when Dyn and Levin

([DLG87]) showed that for a certain range of parameter values a 4-point

interpolatory subdivision curve is C1. Later in 1998, Shenkman, Dyn and

Levin [SDL99] demonstrated that the Butterfly scheme is C1 at irregular

vertices [valence 4 through 10] for a certain range of parameter values that

are part of its mask. We have already mentioned the use of free vari-

ables [parameters] to arrive at a certain Sobolev smoothness for the surface

generated by the regular mask [CJ05], [JO03].

We have found two articles in the literature that specifically use the

term “shape parameter” that are different than how the term is used here

[GZC07], [MA10]. In [MA10], Mustafa and Ashraf showed that for

certain ranges of a “shape parameter” w that is part of the scalar mask,

a 6-point ternary interpolatory subdivision scheme will generate either a

C0, C1, or C2 curve. In [GZC07] 3 “shape parameters” are introduced in

a Doo-Sabin surface: one is for the scale of the type-V face and the other

two perturb the normal vector of the type-V face. [The type-V face is a

face that contains a vertex.]

Here we use the term “shape parameter” as initially used by Chui/Jiang

in [CJ03b]. Our initial vector “net” is defined as collection of row vectors

{v0
k}k

v0
k :=

[
v01,k, v

0
2,k, ..., v

0
n,k

]

Each component is a “point” in 3-D where the first component is used

for the position of the subdivision vertices and the remaining components

provide up to 3 (n− 1) parameters for shape control. Throughout this
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paper, n = 2 and the initial shape control vertex is represented as s0k instead

of as v02,k. We see how the limiting subdivision surface is influenced by {s0k}k
in (2.9 |p.13).

In [CJ06] it was proposed that the shape control parameters be related

to the vectors for the sum rule order of the subdivision mask. And in

[CJ08] observations were made that for a 1-ring interpolatory triangular

subdivision the corresponding shape parameter s0j for an initial “corner-

type” vertex v0j could be defined as −tjvj for some suitable tj ∈ (0, 2] .

In the following we will discuss a geometric method to formulate these

initial shape control parameters {s0k}k .

6.2. Definition based on discrete normal

We are utilizing discrete normals to formulate our initial shape control

parameters. Here we are extending what was done in the 1-D setting by

Jiang/Smith in [JS09]. Discrete normals have in the past been used as part

of the subdivision process. See [Yan06] and [Yan05] for the 1-D case and

2-D case respectively. In fact, the methods in [JS09] were in part based on

the work done in [Yan06].

So we will have a geometric definition of the initial shape vertices (pa-

rameters). We will see that this definition

• can be fairly easily implemented using computer programming

• provides for surfaces that appear free of wavy artifacts

• has a foundation in differential geometry.

In [JS09] shape parameters were formulated for a C2 3-point subdivision

scheme that produces planar curves. To formulate a shape parameter at an

initial vertex vj of the polygon, the basic idea was to use a projection of one

of the two neighboring edges onto a well-defined discrete unit normal at that

vertex and then multiply the resulting vector by a scalar ωj. Values of wj

ranging between −.5 and +.3 produced curves that appeared satisfactory.

Working with triangular surfaces, Yang in [Yan05] used projections

of edges onto vertex (discrete) normals to determine a suitable new edge

midpoint. Figure 6.1 shows one of the triangular edges that has vertices

v0k and p0i at each end. Using a weighted average of the normals to each
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adjoining face, he constructs a discrete unit normal at the two end vertices.

The new edge vertex then equals the sum of the midpoint of the edge and

the sum of the projection of each half of the edge onto the two normals.

That sum is then weighted by a free parameter ω. See (6.1) and Figure

6.1. Yang found that for ω between 0.2 and 0.4 the interpolatory surface

generated by this “normal based subdivision” is G1 smooth (i.e. it has

tangent plane continuity).

v02k+1 =
1

2

(
v0k + p0i

)
+ ω (dvnv + dini)(6.1)

dv =
1

2

(
v0k − p0i

)
· nv

di =
1

2

(
p0i − v0k

)
· ni

p0i

nv
ni

v0k

v02k+1

Figure 6.1. Shows the method used in [Yan05] to obtain a
new edge vertex. Note that discrete normals are used.

With this method in mind, we will use specially calculated discrete nor-

mals at the initial vertices as a basis for the initial shape control parameters.

First we need to determine a “reasonable” definition for such a discrete

normal for both our triangular case and our quadrilateral case.

6.3. Discrete Normal for Triangular Mesh Surfaces

In differential geometry, the mean curvature normal at a point P on a

surface M is

(6.2) κH
−→n P
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where [[O’N06]]

• −→n P is a unit normal vector to M at P

• κH := k1+k2
2 and

• k1, k2 are the maximum and minimum values of the normal curva-

ture of M at P .

The mean curvature normal is related to the Laplacian or the more general

Laplace-Beltrami operator on M . If our surface is parametrized by a

mapping x (s, t) such that xs · xt = 0, xs · xs = 1, and xt · xt = 1 [s, t

are then called conformal parameters [DHKW92]] we then have [see also

[DHKW92]]

(6.3) 2κH
−→n = xss + xtt

where xss + xtt is a form of the Laplace-Beltrami operator on a surface.

In [MDSB02] the Laplace-Beltrami operator is denoted byK (P ) where

P is the point on the surface. We shall also use this notation for the

Laplace-Beltrami operator. Recall that here our surface M is a complex of

discrete triangular meshes. Let our point P be denoted by vertex xi. For

each of the surrounding triangles we define an area as follows [MDSB02]:

• If the triangle is non-obtuse, then the area is the area of the quadri-

lateral bounded by the vertex xi, the two midpoints of each side

of the triangle that has xi as an endpoint and by the circumcenter

of the triangle. Note that the circumcenter of a triangle is the

point where the three perpendicular bisectors of each side meet.

See Figure 6.2.

• If the triangle has an obtuse angle and if that obtuse angle is at

the vertex xi, then the area in the triangle is the same as before

except that we now use the midpoint of the side opposite the vertex

[instead of the circumcenter].

• Finally if the non-obtuse angle is not at the vertex, then the area

in the triangle is the area of the triangle whose three vertices are
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the vertex xi and the two midpoints of each side of the triangle

that has xi as an endpoint.

Using the notation of [MDSB02] we will denote the sum of all these areas

surrounding the vertex xi by AM .

vi

Figure 6.2. Method used in [MDSB02] to denote a quadri-
lateral area in an adjoining triangle if the triangle is non-
obtuse. One corner of the quadrilateral is the circumcenter
of the triangle.

So we have ∫∫

AM

K (x) dA =

∫∫

AM

xss + xtt ds dt

and using Green’s theorem in normal form [see [Str10]] that turns the

Laplacian over a region into a line integral of the gradient over the boundary

of the region:
∫∫

AM

xss + xtt ds dt =

∫∫

AM

∇ ·∇s,tx ds dt =

∫

∂AM

∇s,tx · ns,t dl

where ∇s,tx is the gradient of the surface and ns,t is the outer unit normal

to the border ∂AM with respect to the s, t parameter space.
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In [MDSB02], Meyer et al derive that
∫

∂AM

∇s,t · ns,t dl =
1

2

∑

j∈N1(i)

(cotαij + cot βij) (xj − xi)

where N1 (i) are all the subscripts of the 1-ring neighboring vertices sur-

rounding xi and αij, βij are the two angles opposite to the edge in the two

triangles sharing the edge xjxi. See Figure 6.3.

βij

xi

xj
αij

Figure 6.3. Diagram of angles opposite the common side xjxi

as done in [MDSB02]

Hence

(6.4)

∫∫

AM

K (x) dA =
1

2

∑

j∈N1(i)

(cotαij + cotβij) (xj − xi)

Using (6.4) the discrete mean curvature normal operator at a vertex xi

of a triangular mesh is then defined in [MDSB02] as

(6.5) K (xi) :=
1

2AM

∑

j∈N1(i)

(cotαij + cotβij) (xi − xj)

Hence the discrete unit normal at the vertex xi is

(6.6)
K (xi)

‖K (xi)‖

For triangular mesh surfaces we will be using the definition in (6.6) for

the discrete unit normal at a vertex xi.

149



6.4. DISCRETE NORMAL FOR QUADRILATERAL MESH
SURFACES

Note that from (6.3 |p.147) and (6.5), Meyer in [MDSB02] obtains a

formula to define the discrete mean curvature at a vertex xi

(6.7) κH :=
1

AM

∑

j∈N1(i)

[
1

8
(cotαij + cotβij) ‖xi − xj‖2

]
κN
i,j

where κN
i,j is an estimate of the normal curvature in the direction of the

edge xixj given by

(6.8)

κN
i,j = 2

(xi − xj) · n
‖xi − xj‖2

for n = the discrete unit normal in (6.6 |p.149)

In [MDSB02] it was reported that (6.7 |p.150) had a low average percent

error when compared to second-order accurate Finite Difference operators

on discrete meshes for approximating curvature on simple surfaces where

the curvature is known analytically.

In [Xu04] it is shown that under certain conditions the discrete Laplace-

Beltrami operator in (6.5 |p.149) converges to the actual Laplace-Beltrami

operator. Hence, under these same conditions, the discrete mean curvature

normal converges to the actual mean curvature normal.

6.4. Discrete Normal for Quadrilateral Mesh Surfaces

As noted in [LXZ08] we could use the above methods for quadrilateral

meshes if we subdivide each quadrilateral into two triangles. However, since

a quadrilateral may not be located on a plane, two ways of subdividing a

quadrilateral into triangles can lead to two different computational results

[two different discrete normals] if we apply the methods from subsection 6.3.

So in [LXZ08], Liu et al use a different computational method to define the

discrete mean curvature normal in the case of quadrilateral mesh surfaces

in R3.

In such a case, Liu first defines a bilinear parametric surface Sj that

interpolates the four vertices, {pi, pj, pj+1, pj′}, of the quadrilateral (see

Figure 6.4):

(6.9)

Sj (s, t) := (1− s) (1− t) pi+t (1− s) pj+s (1− t) pj+1+(st) pj′ (s, t) ∈ [0, 1]2
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Sj+5

pj+1′

pj+2′

pj+3

pj+2
pj+1

pj′

pi

pj+3′

pj+4

pj+4′

pj+5

pj+5′

pj

Sj

Sj+1

Sj+2

Sj+3

Sj+4

Figure 6.4. Diagram of quadrilaterals and their vertices
around vertex pi. Sj are from (6.9 |p.150).

Liu uses the formula in differential geometry

lim
diam(R)→0

2∇A

A
= −κH

−→n P =: −H (P )

where

• κH
−→n P [mean curvature normal] is from (6.2 |p.146)

• A is the area of a region R around point P

• ∇A is the gradient of A with respect to the (x, y, z) coordinates of

P and

• H(P ) is notation for the mean curvature normal at P

From this starting point the discrete mean curvature normal at point pi is

derived to be

(6.10) H (pi) :=
2

A (pi)

∑

j

[αj (pj − pi) + βj+1 (pj+1 − pi) + γj′ (pj′ − pi)]
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where A (pi) is the total area of the quadrilaterals around pi, and is

given by

A (pi) =
∑

j

Aj

and where

Aj =
√

‖Ss‖2 ‖St‖2 − 〈Ss, St〉2

Ss =
1

2
(pj+1 − pi) +

1

2
(pj′ − pj)

St =
1

2
(pj − pi) +

1

2
(pj′ − pj+1)

αj =
‖Ss‖2 − ‖St‖2

4Aj

βj+1 =
‖St‖2 − ‖Ss‖2

4Aj

γj′ =
‖Ss − St‖2

4Aj

In [LXZ08] it is shown that the discrete mean curvature normal given in

(6.10 |p.151) converges to the actual mean curvature normal given certain

conditions that include that the vertices interpolate a sufficiently smooth

surface.

Hence for quadrilateral meshes we will use

H (pi)

‖H (pi)‖
as the discrete unit normal at vertex pi.

6.5. Formulation of Shape Parameters for Triangular Meshes

We will now formulate our shape parameters for both the triangular

and quadrilateral meshes. Examples will be given on sample meshes that

indicate the feasibility of these formulations. A geometric interpretation

will also be given.

First we will consider shape parameters of our 1-ring triangular scheme

(either interpolatory or approximating).
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For the triangular case (either interpolatory or approximating) we now

will develop initial shape parameters that generate a “suitable” new edge

point. Using the top template of Figure 2.1 on p. 15 along with the local

averaging rule, we can derive the following formula for the new edge vertex

(here denoted as v12k+m) [See Figure 6.5]:

(6.11)

v12k+m = 2b1,1

(
v0k + v0l

2

)
+ 2c1,1

(
v0i + v0j

2

)
+ b2,1

(
s0k + s0l

)
+ c2,1

(
s0i + s0j

)

where i, j,k, l,m ∈ Z
2.

v0i

v0k

v0l

v0j

v12k+m

Figure 6.5. Diagram of new edge vertex for a triangular scheme

In [Yan05], Yang computed the new edge vertex in a triangular scheme

as the sum of the midpoint of the two edge vertices plus projections of that

same edge onto discrete unit normals of its two end vertices. Similarly, we

will formulate the new edge vertex v12k+m as equal to

• a “weighted midpoint” of the 4 vertices of the two triangles (the

first two terms in (6.11)) plus
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• a certain linear combination of projections of edges onto the dis-

crete unit normals (6.6 |p.149) of the four surrounding vertices (the
last two terms in (6.11)).

The shape parameters
{
s0k, s0l , s0i , s0j

}
will be these linear combina-

tions of edge projections onto the discrete unit normals of the respective

corresponding vertices.

For the following we will be developing the shape parameter s0i corre-

sponding to the vertex v0i . We will assume that vi has a valence ki and so

has ki adjacent edges. This vertex has a discrete outer directed unit normal

ni as defined by (6.6 |p.149). If we want to use projections of edges onto

the unit normals, then we must use all ki adjoining edges in our formulation

of the shape parameter. Thus define

(6.12) di,j :=
1

2

(
v0i − v0j

)
· ni

where
{
v0j
}
j
are the ki adjacent vertices to vi and we use the factor 1

2 as in

(6.1 |p.146) from [Yan05].

We will average these projections. Hence we will use

1

ki

∑

j

di,j

in our formula for the shape parameter si.

The resulting vector that we obtain from projecting these averages onto

the discrete unit normal ni is

(6.13)

[
1

ki

∑

j

di,j

]
ni

Notice in (6.11 |p.153) that the shape parameters are either multiplied

by b2,1 or by c2,1. Similarly [see (6.14)] when we update existing regular

vertices in the triangular approximating scheme the shape parameters are

either multiplied by p2,1 or by d2,1 from (2.10 |p.13). If the vertex to be

updated is extraordinary (let’s call it v00) then the shape parameters are
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multiplied by w2,1 and 1
n q2,1 from (5.24 |p.127). See (6.15).

v12k = p1,1v
0
k(6.14)

+ d1,1

(
v0
k+[1 0]T + v0

k+[1 1]T + v0
k+[0 1]T

+v0
k+[−1 0]T + v0

k+[−1 −1]T + v0
k+[0 −1]T

)

+ p2,1s
0
k

+ d2,1

(
s0
k+[1 0]T + s0

k+[1 1]T + s0
k+[0 1]T

+s0
k+[−1 0]T + s0

k+[−1 −1]T + s0
k+[0 −1]T

)

v10 = w1,1v
0
0(6.15)

+
1

n
q1,1

(
v01 + v02 + v03

+...+ v0n−2 + v0n−1 + v0n

)

+ w2,1s
0
0

+
1

n
q2,1

(
s01 + s02 + s03

+...+ s0n−2 + s0n−1 + s0n

)

Since we want a new edge point (and in addition any updated vertex) to

mainly reflect the average of the projections onto the unit normal we will

now multiply our formula (6.13 |p.154) by the factor 1
γi

such that

• γi = the element of {p2,1, d2,1, b2,1, c2,1} that has the maximum

absolute value if the initial shape parameter (s0i ) is for a regular

vertex that immediately adjoins only other regular vertices

• γi = the element of
{
p2,1, d2,1,

1
nq2,1, b2,1, c2,1

}
that has the max-

imum absolute value if the initial shape parameter (s0i ) is for a

regular vertex that also adjoins an extraordinary vertex of valence

n

• γi = the element of {w2,1, d2,1, b2,1, c2,1} that has the maximum

absolute value if the initial shape parameter (s0i ) is for an extraor-

dinary vertex of valence n
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So now we have arrived at the following formula:
[

1

γi ki

∑

j

di,j

]
ni

Finally as in [Yan05] and [JS09] we want to multiply by a free variable

ωi that we can vary to achieve differing shape results with our shape pa-

rameter. Hence we finally arrive at the following formulation for our shape

parameter:

(6.16) s0i :=

[
ωi

γi ki

∑

j

di,j

]
ni

From (6.11 |p.153) and (6.16 |p.156) we see that our new edge vertex

is a weighted average of the four surrounding vertices plus a displacement

using the four surrounding discrete unit normals.

Similarly, from (6.14 |p.155), (6.15 |p.155) and (6.16 |p.156) we see that
an updated vertex [approximating case] is a weighted average of the old ver-

tex and its surrounding vertices plus a displacement using the surrounding

discrete unit normals.

See Figure 6.6 that diagrams how the edge vertex is created [or a regular

vertex is updated] for the triangular case. In these diagrams, ξx stands for
ωx

γx kx

∑
j dx,j in the shape parameter formula (6.16 |p.156).

Now let us explore this definition of the shape parameter in terms

of the definition of the discrete normal curvature in [MDSB02]. From

(6.8 |p.150) and (6.12 |p.154) we see immediately that

κN
i,j =

4di,j∥∥v0i − v0j
∥∥2

Thus

di,j =
κN
i,j

∥∥v0i − v0j
∥∥2

4
= one fourth the product of the discrete normal curvature in the

direction of the edge v0i v
0
j and the square of the length

of that adjoining edge.

156



6.5. FORMULATION OF SHAPE PARAMETERS FOR
TRIANGULAR MESHES

ξi
−→n i

v12k+m

b1,1 v0k

c1,1 v0j

b1,1 v0l

ξl
−→n l

ξj
−→n j

ξk
−→n k

c1,1 v0i

(a)

v12k

d(1,1) v0
k+[1 0]T

d(1,1) v0
k+[1 1]T

d(1,1) v0
k+[−1 0]T

d(1,1) v0
k+[0 −1]T

ξ
k+[1 0]T

−→n
k+[1 0]T

ξ
k+[1 1]T

−→n
k+[1 1]T

ξ
k+[0 1]T

−→n
k+[0 1]T

ξ
k+[−1 −1]T

−→n
k+[−1 −1]T

ξ
k+[0 −1]T

−→n
k+[0 −1]T

d(1,1) v0
k+[0 1]T

d(1,1) v0
k+[−1 −1]T

ξk
−→n k

ξ
k+[−1 0]T

−→n
k+[−1 0]T

p(1,1) v0
k

(b)

Figure 6.6. Two diagrams that show how the edge vertex is
created [left side] or how a regular vertex is updated [right
side] for the triangular case. In these diagrams, ξx stands for
ωx

γx kx

∑
j dx,j in the shape parameter formula (6.16 |p.156).

.

From the definition of the dot product we also know that

κN
i,j =

2 cos θi,j
‖vi − vj‖

where θi,j is the angle between the discrete unit normal ni and the adjoining

edge v0i − v0j .

So we also have that

di,j =
cos θi,j

∥∥v0i − v0j
∥∥

2
= half the product of the cosine of the angle

between ni and the adjoining edge v0i − v0j

and the length of that adjoining edge.

We can thus reformulate s0i (6.16 |p.156) as:

s0i :=

[
ωi

4γi ki

∑

j

∥∥v0i − v0j
∥∥2 κN

i,j

]
ni or

s0i :=

[
ωi

2γi ki

∑

j

∥∥v0i − v0j
∥∥ cos θi,j

]
ni
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Figure 6.7. Original Triangular Polyhedron

So we can see that if a vertex v0i has larger discrete normal curvatures

in the directions of its adjacent edges then the length or norm of s0i will

increase. From (6.11 |p.153) this increased length will provide more dis-

placement to “push out” further the new midpoint vertices along these

edges.

In the same vein, if we have the same angles {θi,j}j yet longer adjacent
edges then the length or norm of s0i will increase. So again we will have more

outward displacement of the midpoint vertices along these longer edges.

Note that with our definition of s0i we now have only one free variable for

each individual initial shape parameter rather than three [since the shape

parameter is a 3 × 1 vector]. Thus we can still vary the shape parameter

to achieve different shapes but we now only have to deal with choosing

one value for each initial shape parameter. So of course this leads to the

question of what range of values for the free variable ωi might produce

suitable surfaces that have fewer artifacts or waviness.

Figure 6.7 is the original triangular polyhedron. Figures 6.8, 6.9 and

6.10 show the result of using 3 different values for ω for all the initial shape

vertices (interpolatory triangular scheme). Note how w = .25 appears

smooth. We could speculate that values of ω between .2 and .4 provide

smooth surfaces with that particular interpolatory triangular scheme. Fur-

ther examples might be able to support that speculation.
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Figure 6.8. ω = .10: Note that surface is very ”bumpy”

Figure 6.9. ω = .25: Note that surface appears smooth
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Figure 6.10. ω = .50: Note that surface appears a little
”bumpier” than with ω = .25
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6.6. Formulation of Shape Parameters for Quadrilateral Meshes

For a quadrilateral scheme [both interpolatory and approximating] we

now will develop initial shape parameters that generate “suitable” new edge

points, face points and updated existing vertices [approximating case only].

Using the bottom template from (2.1 |p.15) along with the local averaging

rule, we can derive the following formulas for the new edge, face vertices and

updated existing vertices (let’s call them v12p+i, v
1
2u+v and v12j respectively).

For a new edge vertex v12p+i the local averaging rule yields: [for both

the interpolatory and the approximating cases]

(6.17)

v12p+i = 2 j1,1

(
v0p + v0q

2

)
+4m1,1

(
v0k + v0j + v0m + v0n

4

)
+j2,1

(
s0p + s0q

)
+m2,1

(
s0k + s0j + s0m + s0n

)

where p, i, j,k,m,n,q ∈ Z
2

For a new face vertex v12u+v the local averaging rule yields: [for both

the interpolatory and the approximating cases]

(6.18) v12u+v = 4k1,1

(
v0r + v0s + v0t + v0w

4

)
+ k2,1

(
s0r + s0s + s0t + s0w

)

where r, s, t,u,v,w ∈ Z
2

To update an existing regular vertex v0j [in the approximating case] the

local averaging rule yields:

v12j = r1,1v
0
j + 4l1,1

(
v0
j+(1,0)T

+ v0
j+(0,1)T

+ v0
j+(−1,0)T

+ v0
j+(0,−1)T

4

)

(6.19)

+ 4n1,1

(
v0
j+(1,1)T

+ v0
j+(−1,1)T

+ v0
j+(−1,−1)T

+ v0
j+(1,−1)T

4

)

+ r2,1s
0
j

+ l2,1
(
s0
j+(1,0)T

+ s0
j+(0,1)T

+ s0
j+(−1,0)T

+ s0
j+(0,−1)T

)

+ n2,1

(
s0
j+(1,1)T

+ s0
j+(−1,1)T

+ s0
j+(−1,−1)T

+ s0
j+(1,−1)T

)

where j ∈ Z
2

To update an existing extraordinary vertex v00 [in the approximating

case] we use the template given in (4.3 |p.67) and the corresponding matrices
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given in (5.33 |p.132). See Figure 6.11 to help clarify the notation in the

following.

v10 = ñ1,1v
0
0

+
1

n
W1,1

(
v01 + v02 + v03

+... + v0n−2 + v0n−1 + v0n

)

+
1

n
w1,1

(
u0
1 + u0

2 + u0
3

+...+ u0
n−2 + u0

n−1 + u0
n

)

+ ñ2,1s
0
0

+
1

n
W2,1

(
s01 + s02 + s03

+... + s0n−2 + s0n−1 + s0n

)

+
1

n
w2,1

(
s̃01 + s̃02 + s̃03

+...+ s̃0n−2 + s̃0n−1 + s̃0n

)

Similar to our triangular mesh case, we will formulate the new edge

vertex v12p+i as equal to a “weighted midpoint” of the 6 vertices of the ad-

joining quadrilaterals (the first two terms in (6.17 |p.161)) plus a certain

linear combination of projections of the edges onto the discrete unit nor-

mals (from [LXZ08]) of the six surrounding vertices (the last two terms in

(6.17 |p.161)). The shape parameters
(
s0k, s0j , s0m, s0n

)
will then be these

linear combinations of edge projections onto the discrete unit normals of

the respective corresponding vertices.

The new face vertex v12u+v will be equal to a “weighted midpoint” of the

4 vertices of the quadrilateral (the first term in (6.18 |p.161)) plus a certain

linear combination of projections of the edges onto the discrete unit normals

of these four surrounding vertices (the last term in (6.18 |p.161)). Again the

shape parameters (sr, ss, st, sw) will be these linear combinations of edge

projections onto the discrete unit normals of the respective corresponding

vertices.

The updated existing regular vertex v12j will be equal to a weighted av-

erage of the “old” vertex and the 8 surrounding vertices [regular case] (first

3 terms in (6.19 |p.161)) plus a certain linear combination of projections of
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1
7w1,1u

0
7 +

1
7w2,1s̃

0
7

ñ1,1v
0
0 + ñ2,1s

0
0

1
7W1,1v

0
1 + 1

7W2,1s
0
1

1
7w1,1u

0
1 +

1
7w2,1s̃

0
1

1
7W1,1v

0
2 + 1

7W2,1s
0
2

1
7w1,1u

0
2 +

1
7w2,1s̃

0
2

1
7W1,1v

0
3 + 1

7W2,1s
0
3

1
7w1,1u

0
3 +

1
7w2,1s̃

0
3

1
7W1,1v

0
4 + 1

7W2,1s
0
4

1
7w1,1u

0
4 +

1
7w2,1s̃

0
4

1
7W1,1v

0
5 + 1

7W2,1s
0
5

1
7w1,1u

0
5 +

1
7w2,1s̃

0
5

1
7W1,1v

0
6 + 1

7W2,1s
0
6

1
7w1,1u

0
6 +

1
7w2,1s̃

0
6

1
7W1,1v

0
7 + 1

7W2,1s
0
7

Figure 6.11. Diagram showing what an initial extraordinary
central vertex and shape parameter and its surrounding ver-
tices and their shape parameters are multiplied by to update
the central vertex. Note that the u0

k and s̃0k pertain to the
vertices that are opposite the quadrilateral from the central
vertex. Here valence = 7.

edges onto the discrete unit normals of the “old” vertex and and of these 8

surrounding vertices (last 3 terms in (6.19 |p.161)). The shape parameters(
s0j , s0

j+(1,0)T
, s0

j+(0,1)T
, s0

j+(−1,0)T
, s0

j+(0,−1)T
,

s0
j+(1,1)T

, s0
j+(−1,1)T

, s0
j+(−1,−1)T

, s0
j+(1,−1)T

)

are these linear combina-

tions of edge projections onto the discrete unit normals of the respective

corresponding vertices.

The shape parameter s0i (related to v0i ) is defined similarly as in the

triangular case:

(6.20) s0i :=

[
ωi

γi ki

∑

j

di,j

]

ni

where

• ωi is our free variable and can vary in value as needed [we will

generally want to keep it within the range from .2 to .4]
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• ki = valence of v0i ,

• ni is the discrete unit normal at v0i as defined for a quadrilateral

mesh in [LXZ08]

• di,j :=
1
2

(
v0i − v0j

)
· ni where

{
v0j
}
j
are the adjacent vertices along

edges to v0i
and

• γi = the element of {r2,1, l2,1, n2,1, k2,1, j2,1, m2,1} that has themax-

imum absolute value if the initial shape parameter (s0i ) is for a

regular vertex that immediately adjoins only other regular vertices

• γi = the element of
{
r2,1, l2,1, n2,1, k2,1, j2,1, m2,1,

1
nW2,1,

1
nw2,1

}
that

has the maximum absolute value if the initial shape parameter (s0i )

is for a regular vertex that also adjoins an extraordinary vertex of

valence n

• γi = the element of {ñ2,1, l2,1, n2,1, k2,1, j2,1, m2,1} that has the

maximum absolute value if the initial shape parameter (s0i ) is for

an extraordinary vertex of valence n

6.7. Illustration of Shape Parameter Definitions Using Matlab R©,

With this definition of the shape parameter in place, we can use com-

puter routines on various surfaces to test how well such a definition works.

We will use the quadrilateral schemes developed in sections 4.6 (p. 83), 4.6.2

(p. 84), 5.4.2.1 (p. 122), and 5.5.3.2 (p. 139). Figures 6.13 through 6.24

show the result of using 3 different values for ω (ω = .25, ω = .4, ω = .8)

uniformly for all the initial shape vertices. Since interpolatory schemes

retain all the vertices from every level of subdivision we would expect them

to more quickly reflect differing values for ω. Note how w = .25 appears

fairly smooth for both types of schemes but ω = .4 starts to show a bit of

waviness for the interpolatory scheme. The waviness increases significantly

for ω = .8. On the other hand, the approximating scheme remains smooth

for both ω = .4 and ω = .8.

All figures were done with 3 subdivisions of the original polyhedron

(Figure 6.12).
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Figure 6.12. Original polyhedron used for the following figures

Figure 6.13. Approximating scheme with ω = .25
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Figure 6.14. Top view for approximating scheme where ω = .25

Figure 6.15. Interpolatory scheme with ω = .25
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Figure 6.16. Top view for interpolatory scheme with ω = .25

Figure 6.17. Approximating scheme with ω = .4
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USING MATLAB R©,

Figure 6.18. Top view of approximating scheme with ω = .4

Figure 6.19. Interpolatory scheme with ω = .4
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6.7. ILLUSTRATION OF SHAPE PARAMETER DEFINITIONS
USING MATLAB R©,

Figure 6.20. Top view of interpolatory scheme with ω = .4

Figure 6.21. Approximating scheme with ω = .8
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6.7. ILLUSTRATION OF SHAPE PARAMETER DEFINITIONS
USING MATLAB R©,

Figure 6.22. Top view of approximating scheme with ω = .8

Figure 6.23. Interpolatory scheme with ω = .8
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6.7. ILLUSTRATION OF SHAPE PARAMETER DEFINITIONS
USING MATLAB R©,

Figure 6.24. Top view of interpolatory scheme with ω = .8
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CHAPTER 7

Surface Normals and Curvature

Up to now we have obtained the first and second partial derivatives at

a point x0 on the limit surface F that is locally parameterized as (s0, t0).

In applications the geometric structures of interest are the unit surface

normals, Gaussian curvature and perhaps the mean curvature. We can

derive formulas for these directly from these first and second partial deriva-

tives [Gra93].

7.1. Normal and Curvature Formulas

Having obtained the first partial derivatives at a point x0 on the limit

surface F that is locally parameterized as (s0, t0), the unit surface normal

at such a point

(7.1) nx0 = ±
D1 (s0, t0)×D2 (s0, t0)

‖D1 (s0, t0)×D2 (s0, t0)‖

where ‖·‖ is the Euclidean norm and

(x1, x2, x3)
T × (y1, y2, y3)

T := (x2y3 − y2x3, x3y1 − y3x1, x1y2 − y1x2)
T

for (x1, x2, x3)
T , (y1, y2, y3)

T ∈ R3

We can also obtain the mean and Gaussian curvatures [Gra93]

If x0 corresponds to a regular vertex then the Gaussian curvature,

Kg (x0), equals

Kg (x0) =

[D2
1 (s0, t0) · (D1 (s0, t0)×D2 (s0, t0))] [D2

2 (s0, t0) · (D1 (s0, t0)×D2 (s0, t0))]

− [D1D2 (s0, t0) · (D1 (s0, t0)×D2 (s0, t0))]
2

[
(D1 (s0, t0) ·D1 (s0, t0)) (D2 (s0, t0) ·D2 (s0, t0))− (D1 (s0, t0) ·D2 (s0, t0))

2]2
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If x0 corresponds to a regular vertex then the mean curvature, Kh (x0),

equals

Kh (x0) =

(D2
1 (s0, t0) · (D1 (s0, t0)×D2 (s0, t0))) ‖D2 (s0, t0)‖2

−2 (D1D2 (s0, t0) · (D1 (s0, t0)×D2 (s0, t0))) (D1 (s0, t0) ·D2 (s0, t0))

+ (D2
2 (s0, t0) · (D1 (s0, t0)×D2 (s0, t0))) ‖D1 (s0, t0)‖2

2
(
‖D1 (s0, t0)‖2 ‖D2 (s0, t0)‖2 − (D1 (s0, t0) ·D2 (s0, t0))

2) 3
2

We have created several figures of normal vectors on both triangular and

quadrilateral surfaces (both interpolatory and approximating.) These were

created on Matlab R© using the formula (7.1 |p.172) and using our derived

formulas for the two first partial derivatives. For each particular surface

we have created figures showing a surface normal vector corresponding to

both a regular vertex and an extraordinary vertex. Hence all of our first

partial derivative formulas were used. See Appendix F starting on p. 221 to

view these figures. The black line extending from the figures is the surface

normal. For visual purposes, we have deliberately made the normals longer

than unit length. Note that the lines appear to be visually normal to the

surface.

7.2. Achieving a specific normal at a point

There may be times when a specific normal is desired on a surface. (See

Chapter 8 starting on p. 179.) First note that the first partial derivatives

are a linear combination of the immediately surrounding control and shape

vertices. Also recall that the parameter (ω) is the free variable in deter-

mining a shape vertex. So basically there are 2 methods that can be used to

achieve a specific unit normal at a point corresponding to a vertex. They

are:

• to adjust the needed surrounding parameter values (ωj)

• to adjust the necessary surrounding initial control vertices

We will examine the first option. (The second option may be examined

in future work. Notice that by changing or adjusting surrounding con-

trol vertices then by our definition of shape vertices the surrounding shape

vertices will also change.)
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So the goal is to discover surrounding parameter values that minimally

differ from their default value (for instance, a default value of ωk = .25)

and that at the same time will achieve the desired unit normal at our point

on the surface.

Let us assume we have a point on the surface that corresponds to a ver-

tex of valence n. For a triangular scheme the two first partial derivatives

are composed of a linear combination of the n adjacent initial control and

shape vertices For a quadrilateral scheme, they are composed of a lin-

ear combination of the 2n adjacent and opposing initial control and shape

vertices. Let us denote the initial control vertices by {v0k}
n or 2n
k=1 and the

corresponding shape vertices by {ωkb0k}
n or 2n
k=1 where b0k is the initial shape

control parameter defined in (6.16 |p.156) or (6.20 |p.163) except for the ωk.

So we then have for specific αk, βk, γk, ηk from our first partial derivative

formulas:

D1 (s0, t0) =
n or 2n∑

k=1

(
αkv

0
k + βkwkb

0
k

)

D2 (s0, t0) =
n or 2n∑

k=1

(
γkv

0
k + ηkwkb

0
k

)

where here we will allow ωk to vary as needed.

In order to achieve a specific unit normal u := (u1, u2, u3)
T we must

satisfy the following set of equalities:

u1 −
[
1 0 0

]( D1 (s0, t0)×D2 (s0, t0)

‖D1 (s0, t0)×D2 (s0, t0)‖

)
= 0(7.2)

u2 −
[
0 1 0

]( D1 (s0, t0)×D2 (s0, t0)

‖D1 (s0, t0)×D2 (s0, t0)‖

)
= 0

u3 −
[
0 0 1

]( D1 (s0, t0)×D2 (s0, t0)

‖D1 (s0, t0)×D2 (s0, t0)‖

)
= 0

that are nonlinear in our variables ωk.

In addition, we want at the same time to keep our ωk values as close

as possible to whatever value we usually set the ωk equal to. So, as an
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example, we want to minimize

(7.3)
n or 2n∑

k=1

(ωk − .25)2

Hence our problem becomes minimizing
∑n or 2n

k=1 (ωk − .25)2 while sat-

isfying 3 nonlinear constraint equations (7.2).

We solved this problem by using the command patternsearch on Matlab R©.

This command in turn utilizes an Augmented Lagrangian Pattern Search

(ALPS) algorithm to solve the nonlinear constraint [Mat11]. Here is some

background and information on both patternsearch and ALPS.

The patternsearch algorithm is a direct search algorithm. The term

“direct search” has been around since 1961 where it appeared in an article

[HJ61] by R. Hooke and T.A. Jeeves . There it was described as a

sequential examination of trial solutions involving compar-

ison of each trial solution with the ‘best’ obtained up to

that time together with a strategy for determining...what

the next trial solution will be.

In [LTT00] Lewis discusses three basic categories of direct search meth-

ods that are used in solving the unconstrained minimization

minimize f (x) where f : Rn → R

These categories are:

• pattern search methods

• simplex methods

• methods with adaptive sets of search directions

Only the first method (pattern search) will be discussed here. Starting

with some initial point in Rn, the value of the function f (x) is considered at

a pattern of points that lie on a rational lattice. These surrounding points

can be considered as steps leading from the initial point. For example, this

rational lattice can be formed from the n unit coordinate vectors where the

magnitude of the vectors (i.e. the magnitude of the steps) indicates the

resolution of the lattice. Look at Figure 7.1 on p. 176 for a simple example

where n = 2.
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7.2. ACHIEVING A SPECIFIC NORMAL AT A POINT

initial (or current) point with rational coordinates (a, b)

4 points will be polled from the current center point

length of vectors are ∆k

(a, b+∆k)

(a−∆k, b) (a+∆k, b)

(a, b−∆k)

Figure 7.1. Current point with the arrows pointing to next 4
points to be polled. Length of the steps will change according
to the algorithm.

A systematic strategy is employed for visiting the points in the lattice in

the immediate vicinity of the current point in Rn. This strategy of visiting

points is called “polling.” At each point visited (or polled) the function is

evaluated or compared with previous values. If a point in that poll is found

that has a smaller value for the function f (x) then that point is labeled as

the new current point. The mesh size is then increased (often by a factor

of 2) and a new polling begins around that new current point. If the poll

is unsuccessful (i.e. no smaller function value is found) then the mesh size

is decreased (often by a factor of .5). This is the only time the mesh of

the lattice is reduced. This feature is crucial to the convergence to the

discovery of a minimum value [LTT00].

In our case, the function we want to minimize is subject to 3 nonlin-

ear constraints (7.2 |p.174). So patternsearch must have an additional

algorithm to accommodate such constraints. This algorithm is the Aug-

mented Lagrangian Pattern Search algorithm (ALPS) that is discussed in

both [Mat11] and [KLT06].

The algorithm uses what is called an outer iteration and each outer

iteration contains an inner iteration. Assume that we have m nonlinear

equality constraints (ci = 0 for i = 1...m) and the function to be minimized

is f (x) where ci : Rn → R and f : Rn → R. At each (outer) iteration k

176
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the new function to be minimized becomes

Φk

(
x;λ(k), µk

)
:= f (x) +

m∑

i=1

λ(k)
i ci (x) +

1

2µk

m∑

i=1

ci (x)
2

where λ(k)
i are (nonnegative) Lagrange multiplier estimates and µk is a

positive penalty parameter. Note that this is an unconstrained function

and so a direct search method such as patternsearch is used to to find the

solutions

(7.4) xk = argminΦk (x;λ, µ)

This minimization requires its own iterations (the inner iterations) and

a stopping criterion is the first unsuccessful polling for a mesh size less

than δk (a stopping tolerance that is calculated with each outer iteration).

Stopping criteria for the outer iterations are that our mesh has become

suitably small and that the nonlinear equality constraints are met using xk

from (7.4 |p.177):

δk < δ∗ [a small predetermined positive number]

‖ci (xk)‖mi=1 < η∗ [another preset small positive number]

At each outer iteration λ(k)
i and µk are updated.

If ‖ci (xk)‖mi=1 < ηk [small number determined at each outer iteration]

then the λ(k)
i are updated by

λ(k+1)
i = λ(k)

i +
ci (xk)

µk

and µk stays the same (µk+1 = µk).

Otherwise keep the Lagrangian multiplier estimates the same (λ(k+1)
i =

λ(k)
i ) and reduce the penalty parameter µk :

µk+1 = τkµk

for some small τk that is calculated with each outer iteration.

The solutions to (7.4 |p.177) at the final outer iteration are the output

of this algorithm. The convergence of this algorithm is shown in [KLT06].

In Appendix G we show several figures using our various subdivision

schemes. Each figures shows a “desired” normal that is obtained using

177
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the above algorithm in the Matlab R© routine patternsearch. This normal is

shown using a solid line. Also shown as a dashed or broken line is the normal

we would have obtained at that point if we had not been trying to obtain a

specific normal. The caption shows the angle (in degrees) between the two

normals and the value of the minimized function in (7.3 |p.175). Note that

generally the larger the minimized function value is then the poorer the

final surface appears. Also note how approximation schemes yield surfaces

with fewer artifacts than the comparable interpolatory schemes.
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CHAPTER 8

Applications Involving Surface Normals

Here we shall consider two uses of surface normals in the field of com-

puter graphics.

The first is in lighting and shading. Surface normals have been and

still are used in computer graphics to light and shade figures. Lighting

and shading, however, are not identical. Lighting refers to the interaction

between sources of light and the materials that the light(s) shine on. In

this process, some light is absorbed and some is reflected [Avi89]. On

the other hand, shading refers to where and how the lighting methods are

applied. It is used to determine the color of all the pixels. Shading can

be done per polygon (flat shading), per vertex (Gouraud shading) or per

pixel (Phong shading, Ray tracing) [FvDFH95]. So shading and lighting

are not independent since the lighting model that is used does affect the

shading of a pixel.

The second application of surface normals that we will consider involves

creating the appearance of a “rough” surface without explicitly changing

the geometry of the underlying model. This process is called bump mapping

and was developed by J.F. Blinn in [Bli78].

But first we will look at lighting and shading.

8.1. Lighting and Shading Models

We shall first look at two lighting models that use the surface normal:

• Lambert model

• Phong model

These are not the only lighting models. For instance, the Torrance-Sparrow

model [TS92] and Anisotropic lighting [IB02] also use surface normals.



8.1. LIGHTING AND SHADING MODELS

After first looking at these two models, we will then look at three shading

methods that use surface normals:

• Flat shading

• Gouraud shading

• Phong shading

8.1.1. Lambert Lighting Model

Before discussing the Lambert model, note that light also gets reflected

off objects in the environment instead of just emanating from an outside

light source. This indirect lighting is called “ambient” lighting. In lighting

models this ambient lighting is added onto the other types of light reflec-

tion considered by the particular model. By adding this ambient lighting

unlit areas do not appear completely black. The formula for this ambient

illumination is: [FvDFH95]

Iaka

where Ia is the ambient light intensity, ka is the material’s ambient re-

flectance coefficient, and Ia, ka ∈ [0, 1].

Now we shall go on to the Lambert lighting model. This model uses

Lambert’s cosine law. This law states that the intensity of reflected light

from a surface that only reflects in a diffuse way [such a chalk] is directly

proportional to the cosine of the angle θ between the vector to the light

source and the surface normal. [FvDFH95] This type of reflection is called

a “diffuse” reflection. Here the intensity of the reflected light depends only

on the direction of the light sources and is not dependent on the position

of the viewer. If a light source is directly “over” the unit surface normal

then the reflection will be the most intense. The larger the angle the light

source makes with the unit surface normal then the less intense will be the

reflected light.

The formula for the intensity of the diffuse reflection (Id) is: [FvDFH95]

(8.1) Id = IL kd max (n · L, 0)

where

• IL = light source intensity ∈ [0, 1]
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• kd =the material’s diffuse reflectance coefficient ∈ [0, 1]

• n=surface unit normal

• L =unit vector pointing toward the light source

See upper diagram in Figure 8.1.

Light Source

Light Source

θ
n Unit Surface Normal

L Vector in the direction of

(a)

Light Source

Specular Reflection

direction of Viewer

r Unit Vector in the direction of
θ
θ

n Unit Surface Normal

v Unit Vector in the

L Unit Vector in the direction of Light Source

(b)

Figure 8.1. The top diagram represents the Lambert Illumi-
nation Model. Note that the position of a viewer is not part
of the model. The bottom diagram represents the Phong Il-
lumination Model. Here we have two additional components:
a vector r that reflects the light source vector across the unit
normal n and a vector v that points to a viewer. Thus spec-
ular highlights are made that depend on the position of a
viewer.
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8.1.2. Phong Lighting Model

In this model developed by Bui Tuong Phong in 1975, light received by a

surface is also considered to be reflected in one direction [Pho75]. Note

that this is in addition to having a diffuse reflection component and an

ambient reflection component. This type of reflection is called a “specular”

reflection. Metallic or polished surfaces conform to this model. Bright spots

on the surface exhibit these reflections. Here the intensity of the reflected

light depends on the relationship between the viewer, the light sources and

the surface.

One formula for the intensity of the specular reflection (Is) is [FvDFH95]:

Is = IL ks max (r · v, 0)n

where

• IL = light source intensity ∈ [0, 1]

• ks =specular reflectance coefficient ∈ [0, 1]

• v=unit vector in the direction of the viewer

• r =unit vector in the direction of the specular reflection = 2(n·L)n−L

||2(n·L)n−L||

for n and L in (8.1 |p.180)
• n = an index that conveys how imperfect the surface is [Note

that when n = ∞ then the surface is a perfect mirror and all

reflected light emerges along the direction reflected by this “mir-

ror” [Wat00].]

See lower diagram in Figure 8.1.

An alternative lighting model [Blinn-Phong model] was developed in

1977 by J. Blinn [Bli77]. Here the formula for the intensity of the specular

reflection (Is) is:

Is = IL ks (n · h)n

where

• IL = light source intensity ∈ [0, 1]

• ks =specular reflectance coefficient ∈ [0, 1]

• n=surface unit normal

• h := L+v
||L+v||

• n = an index that conveys how imperfect the surface is
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Since the angle between h and n is always less than 90◦, this alternative

avoids a problem in the regular Phong model that occurs when the angle

between r and v is greater than 90◦ [McK11].

Now we proceed onto the three types of shading that we will consider.

8.1.3. Flat Shading

Flat shading is a fast way to color the pixels of each polygon. Here an

illumination method is applied at one of the vertices of the polygon or at

the center of the polygon. The color that is so obtained is then applied to

all the pixels of that particular polygon. The obvious disadvantage is that

the surface appears faceted since there is no variation in shade across the

polygon. The advantage is that is it relatively inexpensive to implement.

8.1.4. Gouraud Shading

Gouraud shading reduces the faceted appearance of the flat shading method

[Gou71]. Here an illumination method is applied to each of the vertices

of the polygon. Thus an RGB color is calculated for each of the polygo-

nal vertices. These colors are then interpolated across each polygon. See

Figure 8.2 showing the interpolation across a scanline of a surface triangle.

Gouraud shading does not deal effectively with specular highlights and

so is usually reserved for calculating diffuse reflections. However, it is com-

putationally less expensive than Phong shading discussed below [Wat00].
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scanline

B

X

C

D

YP

Ap = sXY · Ax + (1− sXY ) ·Ay

Ab

Ac

Ax

Ad

tCB = |CX|
|CB|

Ay

sXY = |XP |
|XY |

Ap

Ay = tDB · Ad + (1− tDB) · AbAx = tCB ·Ac + (1− tCB) ·Ab

tDB = |DY |
|DB|

Aletter represents an attribute such as RGB color or unit surface normal

Figure 8.2. This diagram represents the interpolation of an
attribute such as RGB color [Gouraud shading] and Unit Sur-
face Normal [Phong Shading]. Given any scanline across a
surface polygon, the endpoint attributes (Ax, Ay) are first
interpolated and then the attribute on the scanline (Ap) is
interpolated using the previously obtained interpolated val-
ues at the two endpoints.

8.1.5. Phong Shading

In Phong shading, the unit surface normals are calculated at each vertex and

then interpolated across the surface of the polygon similar to how Gouraud

shading interpolates a color across the surface. Then at each pixel of the

polygon, the interpolated surface normal is used to implement the Phong

lighting method. So we see that the illumination is applied per pixel.

Phong shading provides a more realistic image than does Gouraud shad-

ing. Specular reflection will show up that might be missed with the Gouraud

method. Highlights are produced that are much less dependent on the un-

derlying polygons. However, Phong shading is more expensive to implement

than Gouraud shading since more calculations are required to interpolate

the surface normal and to evaluate the illumination at each pixel [Wat00].

In the Gouraud method and particularly in the Phong method, we have

an advantage in that we can use the methods described in this paper and
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thus calculate the precise unit surface normals at each vertex instead of

approximating the surface unit normal with a discrete normal calculation.

Future work could include comparing the difference in the shading of the

image using our exact surface unit normal versus using a discrete approxi-

mation.

8.1.6. Perspective Corrected Interpolation

Both Gouraud and Phong shading use linear interpolation of some attribute

(RGB color and unit surface normal respectively). However, the linear

interpolation of some attribute in 3D space between two points of varying

distances from the viewer does not translate into a linear interpolation in

2D screen space. For instance, a point in 3D space that is not at the center

of the interpolation line could be projected onto 2D screen space at the

center of the 2D projection of the 3D line. This will cause a distortion of

that attribute in our 2D image.

Many graphics rendering programs place a “virtual” camera at the origin

of 3D space and have it look out into either the −z or +z direction. The z

value of a 3D point tells us the distance that point is away from the virtual

camera. In [Low02] Low determined how we can interpolate in screen space

and yet correct for perspective. The formula is given in (8.2).

If Z1 is the z coordinate for attribute A1 at one end of an edge in 3D

space and Z2 is the z coordinate for attribute A2 at the other end of that

edge in 3D space then we can interpolate between these two attributes in

2D space [say using variable s] as follows:

(8.2) As1 =

(
A1
Z1

+ s
(

A2
Z2

− A1
Z1

))

(
1
Z1

+ s
(

1
Z2

− 1
Z1

)) s ∈ [0, 1]

8.2. Bump Mapping

Now we’re moving onto the second application of surface normals that

we will consider. This application is called “bump mapping.” In [FvDFH95]

we can find a summary of the process of bump mapping developed by J.F.
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Blinn in [Bli78]. This process involves slightly changing the surface nor-

mal before using the normal in the lighting and shading model. The surface

itself is not actually changed because of this new surface normal. What

does change is the way the surface will be illumined. This process models

a slight roughness in a surface that if it truly were there would alter the

surface normal.

So a bump map is an array of displacements, each of which is used to

model moving a point on the surface slightly. Say we have a point on the

surface represented by P . Using our first partial derivatives given in this

paper, we can calculate the surface normal at this point. Let’s call it N .

N = Ps × Pt

where Ps and Pt are the two first partial derivatives at P .

Note that this surface normal is unnormalized.

This point P can then be displaced by adding to it the normalized

surface normal scaled by a selected bump-map value B. The new point P
′

is:

P
′
= P +

BN

|N |
Blinn then provides an approximation for the new [not yet normalized]

normal of this “new” surface point. Let’s call this normal N
′
.

N
′
= N +

Bu

(
N × Pt

)
−Bv

(
N × Ps

)

|N |
where Bu and Bv are partial derivatives of the bump-map entry B with

respect to a parameterization of the bump-map using axes labeled u and

v. Blinn notes that bilinear interpolation can be used to obtain bump-map

values at any certain (u, v) and that finite differences can be used to derive

Bu and Bv.

This new normal
(
N

′
)
is then normalized and substituted as the surface

normal in the lighting and shading process to give the illusion of texturizing.

Two very convincing color plates are displayed in [FvDFH95] demon-

strating the realistic texture provided by bump mapping.
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8.3. Potential to Use Matrix-valued Schemes for these

Applications

These two general applications, shading and texturizing with a bump

map, can be readily applied if our computer graphic surfaces are gener-

ated using a 1-ring triangular or quadrilateral matrix-valued subdivision

scheme described in this thesis. Given a particular matrix-valued subdivi-

sion scheme, we can initially compute the coefficients that form the linear

combination of surrounding control and shape vertices. Recall that these

coefficients come from the orthogonal right eigenvectors. See, for example,

(4.28 |p.79), (5.16 |p.111), and (5.21 |p.119). These linear combinations of

surrounding vertices (both control and shape) provide us with precise first

partial derivatives that in turn give us precise unit surface normals. We

can then shade or texturize our generated surface using these exact unit

normals.

We can obtain these precise unit normals at vertices of the original con-

trol mesh without even having to further subdivide. The formulas for the

first partial derivatives involve the immediate surrounding vertices at what-

ever refinement level of subdivision we have attained. So for first partial

derivatives at initial vertices, we only need the surrounding initial vertices

(again both control and shape). We want to emphasize that the coefficients

that multiply these surrounding vertices only need to be calculated one

time for any particular matrix-valued subdivision scheme.

So, to summarize, any computer graphic application that requires unit

normals can benefit from these formulas that readily provide such unit

normals as long as the surface is being generated by a 1-ring matrix-valued

scheme described here.
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CHAPTER 9

Conclusions and Future Work

Surface subdivision schemes are used in computer graphics to generate

visually smooth surfaces of arbitrary topology. Knowing precise unit sur-

face normals on these smooth surfaces can be useful for certain applications

in computer graphics. We have seen two applications (shading and textur-

izing with a bump map) that require knowledge of the unit surface normal

at a wide array of surface points. In this dissertation we have provided

formulas for such normals for both triangular and quadrilateral 1-ring sub-

division schemes at both regular surface points and extraordinary surface

points. Both interpolatory and approximating schemes have been consid-

ered. Hence, a computer graphics surface designer can use our subdivision

schemes to readily compute unit surface normals as needed.

We derived these unit surface normals at points on the limit surface as

follows. Starting with 1-ring subdivision schemes (triangular and quadri-

lateral), we were able to obtain formulas for the two first partial derivatives

at points on the limit surface that “correspond” to vertices of the initial

control net or that “correspond” to vertices of any subsequent refinement

of that initial control net. Then, by normalizing the cross product, we

obtained the unit normals.

In addition, at points on the limit surface that correspond to so-called

regular control net vertices, we have been able to derive the three second

partial derivatives. Hence, we can then obtain Gaussian or mean curvature

values at such points on the limit surface.

Since we are using subdivision schemes that have matrix-valued masks,

every vertex of our original polyhedron (and of its successive refinements)

has a corresponding “shape” vertex. These shape vertices are aptly named

because they play a role in changing the shape of our ultimate limit sur-

face. More specifically, the first and second partial derivative formulas for



a particular point consist of linear combinations of “surrounding” vertices

and their corresponding shape vertices. In this dissertation, for various

1-ring subdivision schemes, we derived the coefficients involved in these lin-

ear combinations. Given any particular subdivision scheme we only need to

calculate these coefficients one time. From there, we can readily obtain the

partial derivatives. And so we can use the appropriate formulas from Dif-

ferential Geometry to obtain the unit normals and, if desired, the Gaussian

or mean curvatures.

With the use of MatlabR© to not only generate the refinements for an

initial triangular polyhedron (Fig. 6.7|ṗ.158) and an initial quadrilateral

polyhedron (Fig. 6.12|ṗ.165) but also to calculate the surface normals using

our derivative formulas, we saw that the unit surface normals so obtained

visually appear to be normal to the surface at both regular and extraordi-

nary vertices.

We proposed a definition of the initial shape vertices that correspond

to our initial vertex control net. Up to now there have been preliminary

suggestions as to how to define the initial shape vertices [CJ06], [CJ08].

Taking the lead from Yang in [Yan05] and [Yan06] who used discrete

normals to obtain new edge points, we defined an initial shape vertex as

the average of the adjacent edge projections onto the discrete surface unit

normal where this result is then multiplied by a scalar ω.

There is an advantage and a disadvantage to defining the initial shape

vertex this way. The advantage is that there is only one variable to be

decided upon when defining the shape vertex. That variable is the ω value

we want for that particular shape vertex. The disadvantage is related to

the advantage. There is a lack of flexibility in only having one free variable.

Future work could involve using different values for the ω variable at differ-

ent areas of the surface. Here we uniformly used one value of ω throughout

the surface. Artifact was seen in some of the ω values chosen (particularly

in interpolating schemes). Future work could include testing ω values that

vary depending on the curvature of the surface.

We know that the shape vertices will affect the shape of the limiting

surface. Here, we examined how to obtain a specific unit surface normal

189



by changing just the surrounding shape vertices. Since the initial control

net of vertices of the polyhedron was not changed, we saw quite a bit of

waviness in the interpolatory schemes when we created a unit normal that

widely differed from its original direction. Approximating schemes showed

less artifact.

Future work could include also changing the surrounding control net

vertices to achieve a certain unit surface normal. This could result in sur-

faces with less artifact (particularly in the interpolatory case). However,

there could be a significant increase in computation time.

Another factor to consider is the reason we are wanting to alter a sur-

face normal to become some specified vector. If the reason is to change

the texture of a surface (in computer graphics), we saw that this can be

achieved using a bump map without actually altering the shape of the sur-

face. Nonetheless, surface normals are still used in bump mapping and our

formulation of the first partial derivatives can be directly utilized in the

bump map algorithm discussed in section 8.2 on p. 185.

Other future work could involve comparing the lighting and shading

achieved using our precise surface normals as opposed to using approximate

discrete surface normals. Is there a significant enough improvement in the

image to compensate for a possible increase in computational cost?

Another avenue of future work would be to program the algorithm for

the determination of Ck convergence discussed in subsection 5.1.1 on p. 90.
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ferential geometry operators for triangulated 2-manifolds, Vi-
sualization and Mathematics III (H-C. Hege and K. Polthier,
eds.), Springer, 2002, pp. 35–54.

195



[Mel02] R. Melrose, Sobolev spaces, retrieved from
http://www.math.mit.edu/ rbm/18.155-F02/Lecture-
notes/node11.html, 2002.

[O’N06] B. O’Neill, Elementary differential geometry, rev. second ed.,
Elsevier, 2006.

[Pho75] B. Phong, Illumination for computer generated pictures, Com-
mun. ACM 18 (1975), 311–317.

[PR98] J. Peters and U. Reif, Analysis of algorithms generalizing B-
spline subdivisions, Siam J. Numer. Anal. 35 (1998), 728–748.

[PR08] , Subdivision surfaces, Springer-Verlag, 2008.

[Rei95] U. Reif, A unified approach to subdivision algorithms near ex-
traordinary vertices, Computer Aided Geometric Design 12
(1995), 153–174.

[RP06] U. Reif and J. Peters, Structural analysis of subdivision
surfaces-a summary, Topics in Multivariate Approximation
and Interpolation (K. Jetter et al., eds.), Elsevier, 2006,
pp. 149–190.

[SDL99] P. Shenkman, N. Dyn, and D. Levin, Normals of the butterfly
subdivision scheme surfaces and their applications, Journal of
Comp. and Appl. Math. 102 (1999), 157–180.

[She98] Z. Shen, Refinable function vectors, SIAM J. Math. Anal. 29
(1998), 235–250.

[Str96] V. Strela, Multiwavelets: Theory and applications, Ph.D. the-
sis, MIT, 1996.

[Str10] G. Strang, Calculus, second ed., Wellesley-Cambridge, 2010.

[TS92] K. E. Torrance and E. M. Sparrow, Theory for off-specular re-
flection from roughened surfaces, Radiometry (L. Wolff, Shafer
S., and G. Healey, eds.), Jones and Bartlett Publishers, Inc.,
1992, pp. 32–41.

196



[VZ01] L. Velho and D. Zorin, 4-8 Subdivision, Computer Aided Geo-
metric Design 18 (2001), 397–427.

[Wat00] A. Watt, 3d computer graphics, 3rd ed., Addison-Wesley, 2000.

[Xu04] G. Xu, Convergence of discrete laplace-beltrami operators over
surfaces, Comput. Math. Appl 48 (2004), 347–360.

[Yan05] X. Yang, Surface interpolation of meshes by geometric subdivi-
sion, Computer Aided Design 37 (2005), 497–508.

[Yan06] , Normal based subdivision scheme for curve design,
Computer Aided Geometric Design 23 (2006), 243–260.

[Zor00a] D. Zorin, A method for analysis of C1-continuity of subdivision
surfaces, Siam J. Numer. Anal. 37 (2000), 1677–1708.

[Zor00b] , Subdivision zoo, ACM SIGGRAPH 2000 Conference
Course Notes (2000), 65–102.

197



9.0. APPENDIX A

Appendix A

Eigenvalues are listed for varying valences of the Quadrilateral Inter-

polatory Scheme (see 4.35 on p. 84). The eigenvalues are listed for a

4n+ 2× 4n+ 2 subdivision matrix around the extraordinary vertex of va-

lence n. The subdominant eigenvalue λ of multiplicity 2 is listed in bold

where λ =
10+2 cos( 2π

n )+
√

38+40 cos( 2π
n )+2 cos( 4π

n )
32 .

The eigenvalues are listed in increasing modulus with the exception of 2

complex conjugate eigenvalues that are listed last. Note that their modulus

is less than λ.

Valence 3

0.065949, 0.065949, 0.077245, 0.12832, 0.13327, 0.13327, 0.15240,0.15240,

0.25000, 0.41010, 0.41010, 1, 0.073007-0.057712 I ,0.073007+0.057712 I

Valence 5

0.063740, 0.063740, 0.073791, 0.073791, 0.077245, 0.11365, 0.11365,

0.11911, 0.11911, 0.12832, 0.13790, 0.13790, 0.18377, 0.18377, 0.25000,

0.34011, 0.34011, 0.54999, 0.54999, 1, 0.073007-0.057712 I,

0.073007+0.057712 I

Valence 6

0.062500, 0.065949, 0.065949, 0.076467, 0.076467, 0.077244, 0.10782,

0.10782, 0.11494, 0.11494, 0.12832, 0.13327, 0.13327, 0.14062, 0.15240,

0.15240, 0.25000, 0.25000, 0.25000, 0.41010, 0.41010,

0.57968, 0.57968, 1, 0.073007-0.057712 I, 0.073007+0.057712 I

Valence 7

0.063130, 0.063130, 0.068222, 0.068222, 0.077244, 0.078550, 0.078550,

0.10443, 0.10443, 0.11189, 0.11189, 0.12832, 0.12883, 0.12883, 0.13532,

0.13532, 0.13922, 0.13922, 0.20022, 0.20022, 0.25000, 0.31216, 0.31216,

0.46186, 0.46186, 0.59851, 0.59851, 1, 0.073007-0.057712 I,

0.073007+0.057712 I

Valence 8

0.062500, 0.064438, 0.064438, 0.070312, 0.070312, 0.077244, 0.080203,

0.080203, 0.10227, 0.10227, 0.10958, 0.10958, 0.12500, 0.12500, 0.12500,
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0.12500, 0.12832, 0.13640, 0.13640, 0.14062, 0.17090, 0.17090, 0.25000,

0.25000, 0.25000, 0.36572, 0.36572, 0.50000, 0.50000,

0.61111, 0.61111, 1, 0.073007-0.057712 I, 0.073007+0.057712 I

Valence 9

0.062880, 0.062880, 0.065949, 0.065949, 0.072165, 0.072165, 0.077245,

0.081542, 0.081542, 0.10082, 0.10082, 0.10778, 0.10778, 0.11827, 0.11827,

0.12179, 0.12179, 0.12832, 0.13327, 0.13327, 0.13977, 0.13977, 0.15240,

0.15240, 0.21019, 0.21019, 0.25000, 0.29734, 0.29734, 0.41010, 0.41010,

0.52843, 0.52843, 0.61994, 0.61994,

1, 0.073007-0.057712 I, 0.073007+0.057712 I

Valence 10

0.062500, 0.063740, 0.063740, 0.067480, 0.067480, 0.073791, 0.073791,

0.077244, 0.082645, 0.082645, 0.09978, 0.09978, 0.10635, 0.10635,

0.11365, 0.11365, 0.11911, 0.11911, 0.12832, 0.13025, 0.13025, 0.13790,

0.13790, 0.14002, 0.14002, 0.14062, 0.18377, 0.18377, 0.25000, 0.25000,

0.25000, 0.34011, 0.34011, 0.44634, 0.44634, 0.54999,

0.54999, 0.62634, 0.62634, 1, 0.073007-0.057712 I,

0.073007+0.057712 I

Valence 11

0.062755, 0.062755, 0.064805, 0.064805, 0.068945, 0.068945, 0.075215,

0.075215, 0.077244, 0.083570, 0.083570, 0.099029, 0.099029, 0.10517,

0.10517, 0.11030, 0.11030, 0.11685, 0.11685, 0.12748, 0.12748, 0.12832,

0.13134, 0.13134, 0.13562, 0.13562, 0.14005, 0.14005, 0.16550, 0.16550,

0.21686, 0.21686, 0.25000, 0.28820, 0.28820, 0.37764, 0.37764, 0.47587,

0.47587, 0.56662, 0.56662, 0.63113, 0.63113, 1,

0.073007-0.057712 I, 0.073007+0.057712 I

Valence 12

0.062500, 0.063359, 0.063359, 0.065949, 0.065949, 0.070312, 0.070312,

0.076467, 0.076467, 0.077244, 0.084354, 0.084354, 0.09846, 0.09846,

0.10419, 0.10419, 0.10782, 0.10782, 0.11494, 0.11494, 0.12500, 0.12500,

0.12500, 0.12500, 0.12832, 0.13327, 0.13327, 0.13872, 0.13872, 0.14062,

0.15240, 0.15240, 0.19313, 0.19313, 0.25000, 0.25000,
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0.25000, 0.32361, 0.32361, 0.41010, 0.41010, 0.50000,

0.50000, 0.57968, 0.57968, 0.63480, 0.63480, 1,

0.073007-0.057712 I, 0.073007+0.057712 I

Valence 13

0.062682, 0.062682, 0.064148, 0.064148, 0.067102, 0.067102, 0.071575,

0.071575, 0.077244, 0.077570, 0.077570, 0.085028, 0.085028, 0.098013,

0.098013, 0.10337, 0.10337, 0.10592, 0.10592, 0.11330, 0.11330, 0.12023,

0.12023, 0.12280, 0.12280, 0.12832, 0.13098, 0.13098, 0.13701, 0.13701,

0.14022, 0.14022, 0.14270, 0.14270,

0.17568, 0.17568, 0.22163, 0.22163, 0.25000, 0.28200, 0.28200, 0.35575,

0.35575, 0.43797, 0.43797, 0.51984, 0.51984, 0.59009, 0.59009,

0.63767, 0.63767, 1, 0.073007-0.057712 I, 0.073007+0.057712 I

Valence 14

0.062500, 0.063130, 0.063130, 0.065030, 0.065030, 0.068222, 0.068222,

0.072732, 0.072732, 0.077244, 0.078550, 0.078550, 0.085612, 0.085612,

0.097663, 0.097663, 0.10266, 0.10266, 0.10443, 0.10443, 0.11189, 0.11189,

0.11655, 0.11655, 0.12084, 0.12084, 0.12832, 0.12883, 0.12883, 0.13515,

0.13515, 0.13532, 0.13532, 0.13922, 0.13922, 0.14062, 0.16254, 0.16254,

0.20022, 0.20022, 0.25000, 0.25000, 0.25000, 0.31216, 0.31216, 0.38453,

0.38453, 0.46186, 0.46186, 0.53627, 0.53627, 0.59851, 0.59851,

0.63996, 0.63996, 1, 0.073007-0.057712 I, 0.073007+0.057712 I

Valence 15

0.062638, 0.062638, 0.063740, 0.063740, 0.065949, 0.065949, 0.069298,

0.069298, 0.073791, 0.073791, 0.077245, 0.079422, 0.079422, 0.086122,

0.086122, 0.097380, 0.097380, 0.10205, 0.10205, 0.10324, 0.10324, 0.11066,

0.11066, 0.11365, 0.11365, 0.11911, 0.11911, 0.12683, 0.12683, 0.12832,

0.12957, 0.12957, 0.13327, 0.13327, 0.13790, 0.13790, 0.14032, 0.14032,

0.15240, 0.15240, 0.18377, 0.18377, 0.22520, 0.22520, 0.25000, 0.27753,

0.27753, 0.34011, 0.34011, 0.41010, 0.41010, 0.48236, 0.48236, 0.54999,

0.54999, 0.60540, 0.60540, 0.64181, 0.64181, 1,

0.073007-0.057712 I, 0.073007+0.057712 I

Valence 16
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0.062500, 0.062982, 0.062982, 0.064438, 0.064438, 0.066872, 0.066872,

0.070312, 0.070312, 0.074762, 0.074762, 0.077245, 0.080203, 0.080203,

0.086575, 0.086575, 0.097150, 0.097150, 0.10152, 0.10152, 0.10227,

0.10227, 0.10958, 0.10958, 0.11130, 0.11130, 0.11756, 0.11756, 0.12500,

0.12500, 0.12500, 0.12500, 0.12832,

0.13143, 0.13143, 0.13640, 0.13640, 0.13955, 0.13955, 0.14062, 0.14443,

0.14443, 0.17090, 0.17090, 0.20575, 0.20575, 0.25000, 0.25000, 0.25000,

0.30376, 0.30376, 0.36572, 0.36572, 0.43273, 0.43273, 0.50000, 0.50000,

0.56153, 0.56153, 0.61111, 0.61111, 0.64333, 0.64333 , 1,

0.073007-0.057712 I, .073007+0.057712 I
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Appendix B

Figure 9.1. “Characteristic” map for Interpolatory Quadri-
lateral Scheme (4.35 |p.84) for valences 3 and 5. Note that it
“appears” regular and injective.

Figure 9.2. “Characteristic” map for Interpolatory Quadri-
lateral Scheme (4.35 |p.84) for valences 7 and 9. Note that it
“appears” regular and injective.
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Figure 9.3. “Characteristic” map for Interpolatory Quadri-
lateral Scheme (4.35 |p.84) for valences 11 and 13. Note that
it “appears” regular and injective.
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Appendix C

The following is the proof of Theorem 5.1 on p. 96:

Proof. Let Φ0 :=
[
M221

0

]
. Note thatM221 ∈ C1 (R2) and thatM221 ∈ π2

3

(accuracy order 4). Define

Fm (x) :=
∑

k∈Z2

vm
k Φ0 (2

mx− k)

=
∑

k∈Z2

vmk M221 (2
mx− k)

=
∑

k∈Z2

v0
kQ

m
P Φ0 (x− k) from (5.2 |p.90)

So for j = 1, 2, and using the derivative notation from (2.1 |p.8):

DjFm (x) =
∑

k∈Z2

v0
kDj {Qm

P Φ0 (x− k)}(9.1)

lim
m→∞

DjFm (x) =
∑

k∈Z2

v0
k lim
m→∞

Dj {Qm
P Φ0 (x− k)}

=
∑

k∈Z2

v0
kDjΦ (x− k) by the C1 convergence

= DjF (x)

Now we will get a representation of D1Fm (x) in terms of surrounding

vertices.

D1Fm (x) =
∑

k∈Z2

vmk D1 {M221 (2
mx− k)}

=
∑

k∈Z2

vmk 2
m

{
M121

(
2mx− k+

(
1

2
, 0

)T
)

−M121

(
2mx− k−

(
1

2
, 0

)T
)}

by (5.11 |p.95)
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Thus for k0 ∈ Z2 we have:

D1Fm (k0) =
∑

k∈Z2

vmk 2m
{

M121

(

2mk0 − k+

(
1

2
, 0

)T
)

−M121

(

2mk0 − k−
(
1

2
, 0

)T
)}

= 2m
{
1

8

(
3vm

2mk0+(1,0)T
− 3vm

2mk0+(−1,0)T
+ vm

2mk0+(1,1)T

−vm
2mk0+(0,1)T

+ vm
2mk0+(0,−1)T

− vm
2mk0+(−1,−1)T

)}

where we use Figure 9.4 on p. 206 showing values of M121 when the first

coordinate equals ±1
2 . Note that these values were obtained by using the

software in [Kob96].

Now we take the limit as our subdivisions go to infinity:

lim
m→∞

D1Fm (k0) = lim
m→∞

[
2m

{
1

8

(
3vm

2mk0+(1,0)T
− 3vm

2mk0+(−1,0)T
+ vm

2mk0+(1,1)T

−vm
2mk0+(0,1)T

+ vm
2mk0+(0,−1)T

− vm
2mk0+(−1,−1)T

)}]

And so by (9.1 |p.204)

D1F (k0) = lim
m→∞

[
2m

{
1

8

(
3vm

2mk0+(1,0)T
− 3vm

2mk0+(−1,0)T
+ vm

2mk0+(1,1)T

−vm
2mk0+(0,1)T

+ vm
2mk0+(0,−1)T

− vm
2mk0+(−1,−1)T

)}]

Similarly we will get a representation of D2Fm (x) in terms of a limit of

surrounding vertices.

D2Fm (x) =
∑

k∈Z2

vmk D2 {M221 (2
mx− k)}

=
∑

k∈Z2

vmk 2
m

{
M211

(
2mx− k+

(
0,

1

2

)T
)

−M211

(
2mx− k−

(
0,

1

2

)T
)}

by (5.11 |p.95)
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(1/2, 1) value = 1/8

(1/2, 0)  value = 3/8

(!1/2, !1)  value = 1/8

(!1/2, 0)  value = 3/8

Figure 9.4. Values of M121 where first coordinate =±1
2

Thus for k0 ∈ Z2 we have:

D2Fm (k0) =
∑

k∈Z2

vmk 2m
{

M211

(

2mk0 − k+

(
0,

1

2

)T
)

−M211

(

2mk0 − k−
(
0,

1

2

)T
)}

= 2m
{
1

8

(
vm
2mk0+(1,1)T

− vm
2mk0+(1,0)T

+ vm
2mk0+(−1,0)T

−vm
2mk0+(−1,−1)T

+ 3vm
2mk0+(0,1)T

− 3vm
2mk0+(0,−1)T

)}

where we use Figure 9.5 on p. 212 showing values of M121 when the second

coordinate equals ±1
2 . Again recall that these values were obtained by

using the software in [Kob96]. Now we take the limit as our subdivisions

go to infinity:

lim
m→∞

D2Fm (k0) = lim
m→∞

[
2m

{
1

8

(
vm
2mk0+(1,1)T

− vm
2mk0+(1,0)T

+ vm
2mk0+(−1,0)T

−vm
2mk0+(−1,−1)T

+ 3vm
2mk0+(0,1)T

− 3vm
2mk0+(0,−1)T

)}]

And so by (9.1 |p.204)

D2F (k0) = lim
m→∞

[
2m

{
1

8

(
vm
2mk0+(1,1)T

− vm
2mk0+(1,0)T

+ vm
2mk0+(−1,0)T

−vm
2mk0+(−1,−1)T

+ 3vm
2mk0+(0,1)T

− 3vm
2mk0+(0,−1)T

)}]

!
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The following is the proof of Corollary 5.1 on p. 96:

Proof. It follows the proof of Theorem 5.1.

Fm (x) :=
∑

k∈Z2

vm
k Φ0 (2

mx− k) →

Fm+n (x) :=
∑

k∈Z2

vm+n
k Φ0

(
2m+nx− k

)
→

for j = 1, 2 DjFm+n (x) =
∑

k∈Z2

2m+nvm+n
k DjΦ0

(
2m+nx− k

)

= 2n
∑

k∈Z2

2mvm+n
k DjΦ0

(
2m+nx− k

)
→

lim
m→∞

DjFm+n (x) = 2n lim
m→∞

∑

k∈Z2

2mvm+n
k DjΦ0

(
2m+nx− k

)
→

DjF (x) = 2n lim
m→∞

∑

k∈Z2

2mvm+n
k DjΦ0

(
2m+nx− k

)
→

DjF

(
k0 +

i

2n

)
= 2n lim

m→∞

∑

k∈Z2

2mvm+n
k DjΦ0

(
2m+n

[
k0 +

i

2n

]
− k

)
→

DjF

(
k0 +

i

2n

)
= 2n lim

m→∞

∑

k∈Z2

2mvm+n
k DjΦ0

(
2m+nk0 + 2mi− k

)
→

D1F

(
k0 +

i

2n

)
= 2n lim

m→∞

∑

k∈Z2

2mvm+n
k D1M221

(
2m+nk0 + 2mi− k

)
for j = 1

D2F

(
k0 +

i

2n

)
= 2n lim

m→∞

∑

k∈Z2

2mvm+n
k D2M221

(
2m+nk0 + 2mi− k

)
for j = 2

The rest of the proof follows from using (5.11 |p.95) and the methods in

last parts of Theorem 5.1. !

207



9.0. APPENDIX C

The following is the proof of Theorem 5.2 on page 98:

Proof. Let Φ0 :=
[
M313

0

]
. Note thatM313 ∈ C2 (R2) and thatM313 ∈ π2

5

(accuracy order 6). Define

Fm (x) :=
∑

k∈Z2

vm
k Φ0 (2

mx− k)

=
∑

k∈Z2

vmk M313 (2
mx− k)

=
∑

k∈Z2

v0
kQ

m
P Φ0 (x− k) from (5.2 |p.90) →

D(i,j)TFm (x) =
∑

k∈Z2

v0
kD

(i,j)T {Qm
P Φ0 (x− k)} for (i, j)T = (2, 0)T , (1, 1)T , (0, 2)T

where we are using the derivative notation in (2.2 |p.9)
Hence we can derive due to the C2 convergence:

lim
m→∞

D(i,j)TFm (x) =
∑

k∈Z2

v0
k lim
m→∞

D
(i,j)T {Qm

P Φ0 (x− k)}

(9.2)

=
∑

k∈Z2

v0
kD

(i,j)T

Φ (x− k)

= D
(i,j)T

F (x) for (i, j)T = (2, 0)T , (1, 1)T , (0, 2)T

Now we will get a representation ofD(2,0)TFm (x) in terms of surrounding

vertices.

D(1,0)TFm (x) =
∑

k∈Z2

vmk D
(1,0)T {M313 (2

mx− k)}

=
∑

k∈Z2

vmk 2
m





M213

(
2mx− k+

(
1
2 , 0

)T)

−M213

(
2mx− k−

(
1
2 , 0

)T)




 by (5.11 |p.95)
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Hence

D(1,0)T
[
D(1,0)TFm (x)

]
=
∑

k∈Z2

vmk 22m









M113

(
2mx− k+ (1, 0)T

)

−M113

(
2mx− k−

(
1
2 , 0

)T
+
(
1
2 , 0

)T)





−



 M113

(
2mx− k+

(
1
2 , 0

)T −
(
1
2 , 0

)T)

−M113

(
2mx− k− (1, 0)T

)










Let k0 ∈ Z2.

D(1,0)T
[
D(1,0)TFm (k0)

]
=

∑

k∈Z2

vmk 22m









M113

(
2mk0 − k+(1, 0)T

)

−M113

(
2mk0 − k−

(
1
2 , 0

)T
+
(
1
2 , 0

)T)





−



 M113

(
2mk0 − k+

(
1
2 , 0

)T −
(
1
2 , 0

)T)

−M113

(
2mk0 − k− (1, 0)T

)










= 22m






1

6





−8vm
2mk0+(0,0)T

+ 4vm
2mk0+(1,0)T

+ 4vm
2mk0+(−1,0)T

−2vm
2mk0+(1,1)T

+ vm
2mk0+(2,1)T

+ vm
2mk0+(0,1)T

−2vm
2mk0+(−1,−1)T

+ vm
2mk0+(0,−1)T

+ vm
2mk0+(−2,−1)T










by Figure 9.6 that shows values of M113 where both coordinates are

integers.

Hence

lim
m→∞

D(2,0)TFm (k0) =

lim
m→∞

22m






1

6





−8vm
2mk0+(0,0)T

+ 4vm
2mk0+(1,0)T

+ 4vm
2mk0+(−1,0)T

−2vm
2mk0+(1,1)T

+ vm
2mk0+(2,1)T

+ vm
2mk0+(0,1)T

−2vm
2mk0+(−1,−1)T

+ vm
2mk0+(0,−1)T

+ vm
2mk0+(−2,−1)T










and so by (9.2 |p.208)

D
(2,0)T

F (k0) =

lim
m→∞

22m






1

6





−8vm
2mk0+(0,0)T

+ 4vm
2mk0+(1,0)T

+ 4vm
2mk0+(−1,0)T

−2vm
2mk0+(1,1)T

+ vm
2mk0+(2,1)T

+ vm
2mk0+(0,1)T

−2vm
2mk0+(−1,−1)T

+ vm
2mk0+(0,−1)T

+ vm
2mk0+(−2,−1)T









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Using a symmetric argument [this time starting with Φ0 :=
[
M313

0

]
] we

can derive

D
(0,2)T

F (k0) =

lim
m→∞

22m






1

6





−8vm
2mk0+(0,0)T

+ 4vm
2mk0+(0,1)T

+ 4vm
2mk0+(0,−1)T

−2vm
2mk0+(1,1)T

+ vm
2mk0+(1,2)T

+ vm
2mk0+(1,0)T

−2vm
2mk0+(−1,−1)T

+ vm
2mk0+(−1,0)T

+ vm
2mk0+(−1,−2)T










Now we will get a representation of D2D1Fm (x) in terms of surrounding

vertices. Let Φ0 :=
[
M222

0

]
. Note that M222 ∈ C2 (R2) and that M222 ∈ π2

4

(accuracy order 5).

D1Fm (x) =
∑

k∈Z2

vmk D1 {M222 (2
mx− k)}

=
∑

k∈Z2

vmk 2
m





M122

(
2mx− k+

(
1
2 , 0

)T)

−M122

(
2mx− k−

(
1
2 , 0

)T)




 by (5.11 |p.95)

Hence

D2D1Fm (x) =
∑

k∈Z2

vmk 22m









M112

(
2mx− k+

(
1
2 , 0

)T
+
(
0, 1

2

)T)

−M112

(
2mx− k−

(
1
2 , 0

)T
+
(
0, 12

)T)





−




M112

(
2mx− k+

(
1
2 , 0

)T −
(
0, 1

2

)T)

−M112

(
2mx− k−

(
1
2 , 0

)T −
(
0, 12

)T)









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Let k0 ∈ Z2.

D2D1Fm (k0) =
∑

k∈Z2

vmk 2
2m









M112

(
2mk0 − k+

(
1
2 , 0

)T
+
(
0, 1

2

)T)

−M112

(
2mk0 − k−

(
1
2 , 0

)T
+
(
0, 12

)T)





−



 M112

(
2mk0 − k+

(
1
2 , 0

)T −
(
0, 1

2

)T)

−M112

(
2mk0 − k−

(
1
2 , 0

)T −
(
0, 12

)T)










= 22m






1

2





2vm
2mk0+(0,0)T

− vm
2mk0+(1,0)T

− vm
2mk0+(−1,0)T

+vm
2mk0+(1,1)T

− vm
2mk0+(0,1)T

+vm
2mk0+(−1,−1)T

− vm
2mk0+(0,−1)T










by Figure 9.7 on p. 213 showing values of M112 at
(
1
2 ,

1
2

)
and

(
−1

2 ,−
1
2

)
.

Thus we have

lim
m→∞

D2D1Fm (k0) = lim
m→∞

22m






1

2





2vm
2mk0+(0,0)T

− vm
2mk0+(1,0)T

− vm
2mk0+(−1,0)T

+vm
2mk0+(1,1)T

− vm
2mk0+(0,1)T

+vm
2mk0+(−1,−1)T

− vm
2mk0+(0,−1)T










and so by (9.2 |p.208)

D2D1F (k0) = lim
m→∞

22m






1

2





2vm
2mk0+(0,0)T

− vm
2mk0+(1,0)T

− vm
2mk0+(−1,0)T

+vm
2mk0+(1,1)T

− vm
2mk0+(0,1)T

+vm
2mk0+(−1,−1)T

− vm
2mk0+(0,−1)T










!

.
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(1, 1/2) value = 1/8

(0,! 1/2)  value = 3/8
(!1, !1/2)  value = 1/8

(0, 1/2)  value = 3/8

Figure 9.5. Box spline M211: showing values where second
coordinate =±1

2

(1,1)  value= 1/6

(0,0)  value= 2/3

(!1, !1)  value= 1/6

Figure 9.6. Box spline M113 with values shown at integer co-
ordinates
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(1/2, 1/2)  value = 1/2

(!1/2, !1/2)  value = 1/2

Figure 9.7. Box spline M112 with values shown at
(
1
2 ,

1
2

)
and(

−1
2 ,−

1
2

)

Appendix D

Eigenvalues are listed for varying valences of Quadrilateral Approxi-

mating Scheme (5.5.3.2 |p.139). The subdominant eigenvalue λ is listed

in bold, and eigenvalues are listed in increasing order. Note that complex

eigenvalue(s) are listed last and that their modulus is less than the sub-

dominant eigenvalue.

Valence 3

0., 0., 0., 0.093750, 0.093750, 0.15240, 0.15240, 0.25000,

0.41010, 0.41010, 1., -0.051460-0.0000027064 I,

0.060722+0.0000027064 I, 0.10011-0.000001 I

Valence 5

0., 0., 0., 0., 0., 0.074441, 0.074441, 0.11365, 0.11365, 0.14432, 0.14432,

0.18377, 0.18377, 0.25000, 0.34011, 0.34011, 0.54999, 0.54999,

1., -0.051460-0.0000027064I, 0.060722+0.0000027064 I, 0.10011-0.000001 I

Valence 6

0., 0., 0., 0., 0., 0., 0.062500, 0.093750, 0.093750, 0.10782, 0.10782, 0.15240,

0.15240, 0.15625, 0.15625, 0.25000, 0.25000, 0.25000, 0.41010, 0.41010,

0.57968, 0.57968, 1., -0.051460-0.0000027064 I,

0.060722+0.0000027064 I, 0.10011-0.000001 I
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Valence 7

0., 0., 0., 0., 0., 0., 0., 0.10443, 0.10443, 0.13532, 0.13532, 0.20022, 0.20022,

0.25000, 0.31216, 0.31216, 0.46186, 0.46186, 0.59851, 0.59851, 1.,

-0.051460-0.0000027064I, 0.060722+0.0000027064 I, 0.068682+0. I,

0.068682+0. I, 0.10011-0.000001 I, 0.11109+0. I, 0.11109+0. I,

0.16396+0.000001I, 0.16396+0.000001 I

Valence 8

0, 0., 0., 0., 0., 0., 0., 0., 0.062500, 0.080806, 0.080806, 0.10227, 0.10227,

0.12500, 0.12500, 0.12500, 0.12500, 0.16919, 0.16919, 0.17090, 0.17090,

0.25000, 0.25000, 0.25000, 0.36572, 0.36572, 0.50000, 0.50000,

0.61111, 0.61111, 1., -0.051460-0.0000027064I,

0.060722+0.0000027064 I, 0.10011-0.000001 I

Valence 9

0., 0., 0., 0., 0., 0., 0., 0., 0., 0.093750, 0.093750, 0.10082, 0.10082, 0.11827,

0.11827, 0.15240, 0.15240, 0.21019, 0.21019, 0.25000, 0.29734, 0.29734,

0.41010, 0.41010, 0.52843, 0.52843, 0.61994, 0.61994, 1.,

-0.051460-0.0000027064 I, 0.060722+0.0000027064 I,

0.066266-0.0000012706 I, 0.066266-0.0000012706I, 0.10011-0.000001 I,

0.13585-7.2936× 10ˆ(-7) I, 0.13585-7.2936×10ˆ(-7) I,

0.17288+0.000001 I, 0.17288+0.000001 I

Valence 10

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.062500, 0.074441, 0.074441, 0.09978,

0.09978, 0.10568, 0.10568, 0.11365, 0.11365, 0.14002, 0.14002,

0.14432, 0.14432, 0.17556, 0.17556, 0.18377, 0.18377, 0.25000,

0.25000, 0.25000, 0.34011, 0.34011, 0.44634, 0.44634, 0.54999, 0.54999,

0.62634, 0.62634, 1., -0.051460-0.0000027064 I,

0.060722+0.0000027064 I, 0.10011-0.000001 I

Valence 11

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.099029, 0.099029, 0.11030, 0.11030,

0.13134, 0.13134, 0.16550, 0.16550, 0.21686, 0.21686, 0.25000,

0.28820, 0.28820, 0.37764, 0.37764, 0.47587, 0.47587, 0.56662, 0.56662,

0.63113, 0.63113, 1., -0.051460-0.0000027064I,
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0.060722+0.0000027064 I, 0.065032-0.0000010 I, 0.065032-0.0000010 I,

0.084069-0.000001I, 0.084069-0.000001 I, 0.10011-0.000001 I,

0.11611-0.0000029 I, 0.11611-0.0000029 I, 0.15096+0.000004 I,

0.15096+0.000004I, 0.17759+0.000002 I, 0.17759+0.000002 I

Valence 12

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.062500, 0.070872, 0.070872,

0.093750, 0.093750, 0.09846, 0.09846, 0.10782, 0.10782, 0.12500,

0.12500, 0.12500, 0.12500, 0.15240, 0.15240, 0.15625, 0.15625,

0.17913, 0.17913, 0.19313, 0.19313, 0.25000,

0.25000, 0.25000, 0.32361, 0.32361, 0.41010, 0.41010, 0.50000,

0.50000, 0.57968, 0.57968, 0.63480, 0.63480, 1.,

-0.051460-0.0000027064I, 0.060722+0.0000027064 I, 0.10011-0.000001 I

Valence 13

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.064316, 0.064316, 0.078219,

0.078219, 0.098013, 0.098013, 0.10284, 0.10284, 0.10592, 0.10592,

0.12023, 0.12023, 0.13253, 0.13253, 0.14270, 0.14270, 0.16050, 0.16050,

0.17568, 0.17568, 0.18034, 0.18034, 0.22163, 0.22163, 0.25000, 0.28200,

0.28200, 0.35575, 0.35575, 0.43797, 0.43797,

0.51984, 0.51984, 0.59009, 0.59009, 0.63767, 0.63767, 1.,

-0.051460-0.0000027064I, 0.060722+0.0000027064 I, 0.10011-0.000001 I

Valence 14

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.062500, 0.097663, 0.097663,

0.10443, 0.10443, 0.11655, 0.11655, 0.13532, 0.13532, 0.16254, 0.16254,

0.20022, 0.20022, 0.25000, 0.25000, 0.25000, 0.31216, 0.31216, 0.38453,

0.38453, 0.46186, 0.46186, 0.53627, 0.53627, 0.59851, 0.59851,

0.63996, 0.63996, 1., -0.051460-0.0000027064I,

0.060722+0.0000027064 I, 0.068682+0. I, 0.068682+0. I,

0.086041+3.× 10ˆ(-7) I, 0.086041+3.10× 10ˆ(-7) I,

0.10011-0.000001 I, 0.11109+0. I, 0.11109+0. I, 0.13892+3.× 10ˆ(-7) I,

0.13892+3.10× 10ˆ(-7) I,

0.16396+0.000001 I, 0.16396+0.000001 I, 0.18132-0.000001 I,

0.18132-0.000001 I
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Valence 15

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.063862, 0.063862,

0.074441, 0.074441, 0.093750, 0.093750, 0.097380, 0.097380,

0.10324, 0.10324, 0.11365, 0.11365, 0.11847, 0.11847, 0.12957, 0.12957,

0.14432, 0.14432, 0.15240, 0.15240, 0.16682, 0.16682, 0.18209, 0.18209,

0.18377, 0.18377, 0.22520, 0.22520,

0.25000, 0.27753, 0.27753, 0.34011, 0.34011, 0.41010, 0.41010, 0.48236,

0.48236, 0.54999, 0.54999, 0.60540, 0.60540, 0.64181, 0.64181, 1.,

-0.051460-0.0000027064 I, 0.060722+0.0000027064I, 0.10011-0.000001 I

Valence 16

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 062500, 0.067256,

0.067256, 0.080806, 0.080806, 0.097150, 0.097150, 0.10108, 0.10108,

0.10227, 0.10227, 0.11130, 0.11130, 0.12500, 0.12500, 0.12500, 0.12500,

0.14443, 0.14443, 0.14892, 0.14892, 0.16919, 0.16919, 0.17090, 0.17090,

0.18274, 0.18274, 0.20575, 0.20575,

0.25000, 0.25000, 0.25000, 0.30376, 0.30376, 0.36572, 0.36572, 0.43273,

0.43273, 0.50000, 0.50000, 0.56153, 0.56153, 0.61111, 0.61111,

0.64333, 0.64333, 1., -0.051460-0.0000027064I,

0.060722+0.0000027064 I, 0.10011-0.000001 I
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Appendix E

Figure 9.8. “Characteristic” maps for Approximating
Quadrilateral Scheme (5.5.3.2 |p.139) for valences 3 and 5.
Note that they “appear” regular and injective.

Figure 9.9. “Characteristic” maps for Approximating
Quadrilateral Scheme (5.5.3.2 |p.139) for valences 6 and 7.
Note that they “appear” regular and injective.
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Figure 9.10. “Characteristic” maps for Approximating
Quadrilateral Scheme (5.5.3.2 |p.139) for valences 8 and 9.
Note that they “appear” regular and injective.

Figure 9.11. “Characteristic” maps for Approximating
Quadrilateral Scheme (5.5.3.2 |p.139) for valences 10 and 11.
Note that they “appear” regular and injective.

Figure 9.12. “Characteristic” maps for Approximating
Quadrilateral Scheme (5.5.3.2 |p.139) for valences 12 and 13.
Note that they “appear” regular and injective.
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Figure 9.13. “Characteristic” maps for Approximating
Quadrilateral Scheme (5.5.3.2 |p.139) for valences 14, 15, and
16. Note that they “appear” regular and injective.
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Appendix F

Here are figures showing normals at both regular and extraordinary

vertices for approximating and interpolatory quadrilateral and triangular

schemes. The normal vector in each figure is indicated by the black line.

Please observe that these normal vectors visually affirm the formulas that

went into their calculation.

Figure 9.14. Interpolatory triangular scheme: Two different
views of same normal vector at a regular vertex
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Figure 9.15. Interpolatory triangular scheme: Normal at ver-
tex of valence 5
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Figure 9.16. Interpolatory quadrilateral scheme: Normal at
regular vertex

Figure 9.17. Interpolatory Quadrilateral Scheme: “Top
View” of same normal at regular vertex
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Figure 9.18. Interpolatory Quadrilateral Scheme: Normal at
vertex of valence 3

Figure 9.19. Interpolatory Quadrilateral Scheme: “Top
View” of same normal at vertex of valence 3
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Figure 9.20. Approximating triangular scheme; Normal at
regular vertex

Figure 9.21. Approximating triangular scheme: Another
view of normal at regular vertex
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Figure 9.22. Approximating triangular scheme: Normal at
vertex of valence 4

Figure 9.23. Approximating triangular scheme: Another
view of normal at vertex of valence 4
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Figure 9.24. Approximating quadrilateral scheme: Normal
at a regular vertex

Figure 9.25. Approximating quadrilateral scheme: “Top
view” of same normal at regular vertex
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Figure 9.26. Approximating quadrilateral scheme: Normal
at vertex of valence 3

Figure 9.27. Approximating quadrilateral scheme: “Top
view” of same normal at vertex of valence 3
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Appendix G

Here are shown figures with a specified normal vector [solid line] and

the “usual” normal [broken line] the surface would have had if we had not

done the calculations from section 7.2 on p. 173. Brief descriptions are

given along with the value of the minimized function f (x) =
∑

(x− .25)2

(7.3 |p.175).

Figure 9.28. Approximating quadrilateral scheme: Larger
angle (19.88◦) between desired normal [solid line] and the
“usual” normal [broken line].

∑
(ωk − .25)2 = 39.34 Note

how the figure is forced into a lopsided shape due to the di-
rection of the normal at the top.
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Figure 9.29. Approximating quadrilateral scheme: Smaller
angle (9.93◦) between desired normal [solid line] and “usual”
normal [broken line].

∑
(ωk − .25)2 = 10.65 Note there is a

lesser lopsided look to the figure.
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Figure 9.30. Interpolatory quadrilateral scheme: Larger an-
gle (19.94◦) between desired normal [solid line] and “usual”
normal [broken line].

∑
(ωk − .25)2 = 19.0319 Note the

large amount of artifact and bumpiness for the interpolating
figure to accommodate the new position of the normal at the
top.
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Figure 9.31. Interpolatory quadrilateral scheme: Smaller an-
gle (9.97◦) between desired normal [solid line] and “usual”
normal [broken line].

∑
(ωk − .25)2 = 5.165 Less bumpi-

ness than with the larger angle, but artifact is still present
with the interpolatory figure accommodating the new normal
at the top.

Figure 9.32. Approximating triangular scheme: Larger an-
gle (19.97◦) between desired normal [solid line] and “usual”
normal [broken line].

∑
(ωk − .25)2 = 1.4468 Note that the

left “tower” bulges a bit more due to the new direction of the
normal at top.
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Figure 9.33. Approximating triangular scheme: Smaller an-
gle (9.79◦) between desired normal [solid line] and “usual”
normal [broken line].

∑
(ωk − .25)2 = .2794 Note there is

less bulging of the left “tower”.

Figure 9.34. Interpolatory triangular scheme: Larger angle
(19.46◦) between desired normal [solid line] and “usual” nor-
mal [broken line].

∑
(ωk − .25)2 = 1.2749 Note “bulges” in

right “tower” to accomodate new direction of normal at the
top.
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Figure 9.35. Interpolatory triangular scheme: Smaller angle
(9.53◦) between desired normal [solid line] and “usual” desired
normal [broken line]

∑
(ωk − .25)2 = .2468 Note that there

is much less bulging of the left “tower” to accomodate the
direction of unit normal at the top.
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